初中数学实数知识点

合集下载

初中实数性质知识点总结

初中实数性质知识点总结

初中实数性质知识点总结一、实数的基本性质1. 实数的定义:实数是有理数和无理数的统称。

有理数是可以表示为两个整数的比值的数,无理数是不能表示为有理数的数。

2. 实数的分类:实数可以分为有理数和无理数两类。

有理数包括整数、分数以及可以表示为分数的小数,无理数包括无穷不循环小数和无穷循环小数。

3. 实数的有序性:实数集合中的任意两个数都可以进行大小比较,即两个实数之间存在大小关系,这就是实数的有序性。

4. 实数的稠密性:实数集合中任意两个不相等的实数之间一定存在一个实数,这就是实数的稠密性。

5. 实数的无后继性和无穷性:任意一个实数都有比它大的实数,实数集合是无穷的。

6. 实数的运算封闭性:实数集合中任意两个实数进行加、减、乘、除运算的结果仍然是一个实数。

7. 实数的运算性质:实数集合中的运算满足交换律、结合律、分配律等。

二、实数的代数性质1. 实数的加法性质:(1)交换律:对于任意实数a和b,有a+b=b+a;(2)结合律:对于任意实数a、b和c,有(a+b)+c=a+(b+c);(3)加法单位元:对于任意实数a,有a+0=a;(4)加法逆元:对于任意实数a,有a+(-a)=0。

2. 实数的减法性质:减法可以看成加上一个数的相反数,所以减法的性质和加法的性质相同。

3. 实数的乘法性质:(1)交换律:对于任意实数a和b,有a×b=b×a;(2)结合律:对于任意实数a、b和c,有(a×b)×c=a×(b×c);(3)乘法单位元:对于任意实数a,有a×1=a;(4)乘法逆元:对于任意非零实数a,有a×(1/a)=1。

4. 实数的除法性质:(1)除法分配律:对于任意实数a、b和c,有a÷(b+c)=a÷b+a÷c;(2)除法与乘法结合:对于任意实数a、b和c,有a÷(b×c)=a÷b÷c。

实数的知识点九年级

实数的知识点九年级

实数的知识点九年级实数是数学中的基本概念之一,它包括有理数和无理数两种类型。

在九年级的数学学习中,我们需要掌握实数的定义、性质以及其在代数运算中的应用。

本文将对实数的相关知识点进行论述,帮助同学们更好地理解和掌握这一概念。

一、实数的定义实数是包括有理数和无理数的数的集合。

有理数是可以表示为两个整数之比的数,包括整数和分数两种类型;无理数是不能表示为两个整数之比的数,它们的十进制表示是无限不循环的。

实数可以用数轴上的点表示,每个实数都与数轴上的唯一一个点对应。

二、实数的性质1. 实数的有序性:对于任意两个实数a和b,必定满足a<b、a=b或者a>b中的一种关系。

2. 实数的稠密性:在任意两个实数之间,总存在其他实数。

这意味着无论两个实数之间的距离有多小,总可以找到一个实数填补其中的空隙。

3. 实数的运算封闭性:对于任意两个实数a和b,其加减乘除的结果仍然是实数。

三、实数的分类1. 有理数:有理数可以表示为一个整数除以一个非零整数的形式,包括整数和分数两种类型。

有理数是可以准确表达的,它们的十进制表示要么是有限小数,要么是循环小数。

2. 无理数:无理数是不能写成有理数的形式,它们的十进制表示是无限不循环的。

常见的无理数有π、√2等。

四、实数的运算1. 实数的加法和减法:实数的加法是可交换的,减法可以看作加法的逆运算。

例如,若a、b是实数,则a+b=b+a,a-b=-(-a)+(-b)。

2. 实数的乘法和除法:实数的乘法是可交换的,除法可以看作乘法的逆运算。

例如,若a、b是实数,则a×b=b×a,a÷b=(1/b)×a。

3. 实数的乘方和开方:实数的乘方是将实数连乘多次,开方则是乘方的逆运算。

例如,a的n次方记作a^n,开方记作√a。

五、实数的应用实数是数学在现实生活中的重要应用之一,它广泛地应用于科学、工程、金融等领域。

在几何中,实数可以表示点的坐标,直线的斜率等。

实数初中数学知识点总结

实数初中数学知识点总结

实数初中数学知识点总结一、实数的定义与分类实数是数学中最基本的数系之一,包括有理数和无理数两大类。

有理数可以表示为两个整数的比值,形式为a/b,其中a和b为整数,b不为零。

无理数则不能表示为有理数的形式,例如圆周率π和黄金比例φ。

1.1 有理数有理数包括整数和分数。

整数包括正整数、负整数和零,分数则是整数的比值形式。

有理数可以表示为有限小数或无限循环小数。

1.2 无理数无理数是无限不循环小数,常见的无理数有圆周率π、自然对数的底数e等。

无理数不能表示为分数形式。

二、实数的性质实数具有以下性质:- 封闭性:实数的加法、减法、乘法和除法(除数不为零)都是封闭的。

- 有序性:实数集是一个有序集,任何两个实数都可以比较大小。

- 完备性:实数集中的任何有界数列都有一个极限,这个极限也是实数集中的数。

三、实数的运算3.1 加法实数的加法满足交换律和结合律。

两个实数相加,和的符号由绝对值大的数决定,同号相加取原来的符号,异号相加取绝对值大的数的符号,并用较大的绝对值减去较小的绝对值。

3.2 减法实数的减法可以转化为加法,即a - b = a + (-b)。

减法的顺序改变会改变结果的符号。

3.3 乘法实数的乘法满足交换律、结合律和分配律。

两个正实数相乘得正,两个负实数相乘得正,正实数与负实数相乘得负。

3.4 除法实数的除法可以转化为乘法,即a ÷ b = a × (1/b)。

除以一个非零实数,相当于乘以它的倒数。

四、实数的比较实数的大小比较遵循以下规则:- 正实数都大于零。

- 零大于所有的负实数。

- 负实数都小于零。

- 两个负实数比较大小,其绝对值大的反而小。

五、实数的平方根与立方根5.1 平方根实数a的平方根是一个数b,使得b² = a。

正实数有两个平方根,一个正数和一个负数;零的平方根是零;负数没有实数平方根。

5.2 立方根实数a的立方根是一个数b,使得b³ = a。

有关初中实数知识点总结

有关初中实数知识点总结

有关初中实数知识点总结实数是我们在日常生活中经常接触到的一种数,它可以用来表示物体的长度、重量和体积等实际量,并且可以进行加减乘除运算。

在初中数学中,实数是一个非常重要的概念,学好实数的知识对于理解后续的数学知识是非常有帮助的。

下面将对初中实数的相关知识点进行总结和归纳,以便同学们加深对实数的理解。

一、实数的定义实数是数学上的一个概念,它包括有理数和无理数两个部分。

有理数包括整数和分数,而无理数则是不能表示为有理数的数,如π和根号2等。

实数是实际存在的数,可以用来描述物理世界中的各种现象,如时间、距离、速度等。

实数可以用来进行加、减、乘、除等运算,并且可以比较大小。

二、实数的性质1. 实数的加法性质- 交换律:对任意的实数a和b,有a + b = b + a。

- 结合律:对任意的实数a、b和c,有(a + b) + c = a + (b + c)。

- 存在单位元素0:对任意的实数a,有a + 0 = a。

- 存在相反元素:对任意的实数a,存在一个实数-b,使得a + (-b) = 0。

2. 实数的乘法性质- 交换律:对任意的实数a和b,有a × b = b × a。

- 结合律:对任意的实数a、b和c,有(a × b) × c = a × (b × c)。

- 存在单位元素1:对任意的实数a,有a × 1 = a。

- 存在倒数:对任意的非零实数a,存在一个实数1/a,使得a × (1/a) = 1。

3. 实数的大小比较性质- 对任意的实数a和b,有且只有下列三种情况:- a = b;- a > b;- a < b。

- 反对称性:对任意的实数a和b,如果a > b,则-b > -a。

- 传递性:对任意的实数a、b和c,如果a > b且b > c,则a > c。

4. 实数的数轴表示实数可以在数轴上用点表示,数轴上的原点表示0,右侧表示正数,左侧表示负数。

实数知识点总结概括初中

实数知识点总结概括初中

实数知识点总结概括初中一、实数的基本概念1. 实数的定义实数是包括有理数和无理数的数的集合,记作R。

有理数包括整数和分数,而无理数是那些无法写成有理数形式的数,如π和√2等。

实数的概念是对数的一个总称,它是数学研究和运用的基础。

2. 实数的表示实数可以用小数表示,小数可以是有限的,也可以是无限的循环小数。

有理数可以表示为有限小数或无限循环小数,而无理数通常用无限不循环小数表示。

3. 实数的分布实数可以用数轴表示,数轴上的点对应着实数。

实数在数轴上是连续的,任意两个实数之间都存在着无穷多个实数。

这种连续的性质是实数的重要特点之一。

二、实数的性质1. 实数的比较实数之间可以比较大小,可以用不等式表达实数的大小关系。

对于任意两个实数a和b,有a<b、a=b或a>b三种可能的关系。

2. 实数的绝对值实数的绝对值是这个实数到原点的距离,记作|a|,其中a是实数。

绝对值有以下性质:(1)若a>0,则|a|=a;(2)若a<0,则|a|=-a;(3)|a|=0的充分必要条件是a=0。

3. 实数的有序性实数集合是有序的,即实数集合中的每个实数都可以和实数集合中的其他实数相比较大小。

这种有序性是实数与数学中其他集合的一个重要区别。

4. 实数的密度实数在数轴上是连续分布的,任意两个实数之间都存在着无穷多个实数。

这种性质体现了实数的密度,也是实数在数学中的重要性质之一。

三、实数的运算1. 实数的加法和减法实数的加法和减法是最基本的运算,可以利用数轴对实数的加法和减法进行图形化表示,以便更直观地理解实数的运算。

2. 实数的乘法和除法实数的乘法和除法是对实数进行组合和分解的运算,可以用数轴对实数的乘法和除法进行图形化表示,以便更直观地理解实数的运算。

3. 实数的乘方和开方实数的乘方和开方是对实数进行多次相乘或多次开方的运算,可以用数轴对实数的乘方和开方进行图形化表示,以便更直观地理解实数的运算。

4. 实数的混合运算实数的混合运算是实数运算的综合应用,包括加减乘除、乘方开方等多种运算的组合和应用。

初一实数知识点

初一实数知识点

初一实数知识点实数是数学中重要的一种数集,其包括有理数和无理数两个部分。

在初中数学中,学生将接触到很多实数知识点。

本文将从实数的性质、大小关系、运算及应用等角度,详细介绍初一实数知识点。

一、实数的性质1. 有序性:对于任意两个实数a和b,存在以下三种关系中的一种:a<b,a=b或者a>b,且这种关系具有传递性,即如果a<b,b<c,则有a<c。

2. 密闭性:如果对于实数集合中的任意两个实数a和b,其和a+b和积ab也必然属于该集合,则称该实数集合是密闭的。

3. 稠密性:对于任意两个实数a和b(a<b),存在一个实数c,使得a<c<b。

4. 无处不在:实数集合无限延展,其中的数无限多。

无论多小的实数,都存在。

二、实数的大小关系1. 基本不等式:对任意两个实数a和b,有不等式$$2ab≤a^2+b^2$$2. 绝对值:绝对值表示实数与0之间的距离,通常用竖线“| |”表示。

对于任意实数a,则其绝对值定义如下:当a≥0时,$|a|=a$;当a<0时,$|a|=-a$。

3. 实数的比较:对于任意两个实数a和b,若a-b>0,则有a>b;若a-b=0,则有a=b;若a-b<0,则有a<b。

4. 实数的符号:实数a>0时,a为正数;a<0时,a为负数;a=0时,a为零。

三、实数的运算1. 四则运算:实数的四则运算与我们平时的计算方法一致。

其中,加法运算即为两个实数的和;减法运算即为两个实数的差;乘法运算即为两个实数的积;除法运算即为两个实数的商。

2. 平方运算:对于任意实数a,其平方表示为a^2。

3. 立方运算:对于任意实数a,其立方表示为a^3。

4. 乘方运算:对于任意实数a和正整数n,其乘方表示为a^n。

5. 乘方根运算:对于任意正整数n和正实数a,其乘方根表示为$a^{1/n}$,记为$\sqrt[n]{a}$。

初中数学实数知识点总结

初中数学实数知识点总结

初中数学实数知识点总结一、实数的分类实数是由整数、分数、无理数和有理数四种数构成的。

整数是不含小数部分的正整数、负整数和0。

例如,-3、-2、-1、0、1、2、3等都是整数。

分数是由整数和非零整数构成的比值。

例如,1/2、3/4、-2/3等都是分数。

无理数是指不能表示为有理数的数,通常是无限不循环小数。

如π、根号2、根号3等都是无理数。

有理数是整数和分数的集合,是可以表示为整数比整数的分数的数。

有理数包括整数和分数,例如-3、-2、-1、0、1、2、3、1/2、3/4等都是有理数。

二、实数的加法和减法实数的加法和减法是我们在日常生活中经常用到的运算方式。

对于整数和分数的加法和减法,我们可以按照它们的正负号和大小进行相应的运算。

例如,对于同号的整数,其加法就是两个数的绝对值相加,并且结果的符号与原来的符号相同;对于异号的整数,其加法就是两个数的绝对值相减,并且结果的符号取绝对值大的数的符号。

对于分数的加法和减法,我们可以先找到它们的公共分母,然后按照相同的公共分母进行运算。

三、实数的乘法和除法实数的乘法和除法也是我们在日常生活中经常用到的运算方式。

对于整数和分数的乘法和除法,我们可以按照相应的规则进行运算。

例如,对于整数的乘法和除法,我们可以按照同号和异号的规则进行运算。

对于分数的乘法和除法,我们可以把乘法转化为乘以倒数的形式进行运算。

四、实数的比较大小在日常生活中,我们经常需要比较不同的数的大小。

对于实数的比较大小,我们可以按照它们的绝对值和符号进行比较。

例如,比较两个正数的大小时,我们可以直接比较它们的绝对值大小;比较一个正数和一个负数的大小时,我们可以直接判断正数的大小。

对于分数的比较大小,我们可以将它们转化为相同的分母后再进行比较。

五、实数的混合运算在实际应用中,我们经常需要对不同类型的实数进行混合运算。

例如,我们需要计算一个整数与一个分数的乘积,或者一个整数与一个无理数的和。

对于这种情况,我们可以根据它们的类型进行相应的转化,然后再进行运算。

七年级实数相关知识点

七年级实数相关知识点

七年级实数相关知识点实数是数学中非常重要的一个概念,在七年级数学中也有着非常重要的地位。

本篇文章将带您了解七年级实数相关知识点,掌握实数的基础概念、性质及其在数学中的应用。

一、实数的基本概念实数是指可以表示成有限小数或无限循环小数的数,它包括有理数和无理数两部分。

其中有理数可以表示为两个整数之比,而无理数是不能被有理数表示的数。

实数是数学中最常用的数集,包含了所有我们熟知的数字,如自然数、整数、分数等。

二、实数的性质1. 实数具有封闭性,即两个实数进行基本运算(加、减、乘、除)的结果仍然是实数。

2. 实数具有可加性和可乘性,即它们满足加法和乘法的交换律、结合律和分配律。

3. 实数具有存在唯一逆元的性质,即任何实数都存在加法逆元和乘法逆元。

4. 实数具有实数序列的收敛性,即一个实数序列满足有界性和单调性,它就一定收敛于一个实数。

5. 实数与自然数、整数、有理数和无理数之间存在包含关系。

三、实数的应用实数不仅仅是数学中的基础概念,它也在其他领域中有着广泛的应用。

1. 在物理学中,实数代表实际存在的质量、长度、时间等物理量。

2. 在经济学中,实数被用来描述货币、价格等实际物品和劳务的数量。

3. 在工程学中,实数用来描述电路电荷、电压、电阻等的实际值。

4. 在计算机科学中,实数被广泛应用于机器学习、神经网络等人工智能领域中。

总结实数是数学中非常基础的概念,也是数学运算中不可或缺的一部分。

它的基本概念和性质需要我们掌握,并在实践中加以应用。

值得一提的是,实数在我们日常生活以及其他学科领域中也有着广泛的应用,我们需要认真学习并灵活运用。

初中数学实数知识点

初中数学实数知识点

初中数学实数知识点一、引言实数是初中数学教学中的重要组成部分,它为学生提供了解决各种数学问题的基础工具。

本文旨在概述初中数学中实数的关键知识点,以帮助学生建立扎实的数学基础。

二、实数的定义实数是可以在数轴上表示的任何数。

它们包括所有的整数、分数(有理数)和无限不循环小数(无理数)。

三、实数的分类1. 有理数a. 整数:包括正整数、负整数和零。

b. 分数:表示为两个整数的比,其中分母不为零。

2. 无理数a. 不可表示为分数的无限不循环小数。

b. 常见的无理数包括π和e。

四、实数的性质1. 有序性:实数具有大小顺序,可以比较大小。

2. 封闭性:实数集合在加法、减法、乘法和除法(除以非零数)下是封闭的。

3. 完备性:任何实数序列都有极限。

五、实数的运算1. 加法a. 同号相加:取相同的符号,绝对值相加。

b. 异号相加:取绝对值较大的数的符号,绝对值相减。

2. 减法a. 减去一个数等于加上它的相反数。

3. 乘法a. 正数乘以正数得正数,负数乘以负数得正数,正数乘以负数得负数。

b. 任何数乘以零得零。

4. 除法a. 除以一个非零实数,等于乘以它的倒数。

b. 零除以任何非零数得零。

六、实数的应用1. 解方程:利用实数的运算性质解一元一次方程、一元二次方程等。

2. 几何计算:在几何图形中,实数用于计算长度、面积和体积。

3. 统计与概率:实数在数据分析、概率计算中有广泛应用。

七、实数的近似表示1. 四舍五入法:根据给定的精度要求,对实数进行近似处理。

2. 有效数字:表示实数的精确度,通常保留到一定的位数。

八、结论掌握实数的知识点对于初中生来说至关重要,它不仅是数学学习的基础,也是解决日常生活中实际问题的重要工具。

通过理解和练习实数的性质和运算,学生可以提高自己的数学能力和逻辑思维。

九、附录1. 常见实数运算表2. 实数近似计算的实例3. 实数在方程和几何中的应用例题请注意,本文仅为实数知识点的概述,具体的教学和学习应结合实际的教材和习题进行。

总结整理实数知识点

总结整理实数知识点

总结整理实数知识点一、实数的定义实数是可以用来表示实际物理量的数。

实数包括有理数和无理数两种类型。

有理数是可以表示为两个整数之比的数,而无理数是不能表示为有理数的数。

二、实数的性质1. 实数的大小比较实数有一个非常重要的性质,就是可以比较大小。

实数可以按照大小顺序进行比较,任意两个实数可以进行大小比较,可以判断哪一个大哪一个小。

2. 实数的运算实数可以进行加法、减法、乘法和除法运算。

实数的运算满足交换律、结合律和分配律等基本性质。

任意两个实数的和、差、积和商也是实数。

3. 实数的绝对值实数的绝对值是实数到零点的距离,可以表示为非负数。

任意实数的绝对值是其本身或者其相反数。

4. 实数的平方实数的平方是实数乘以自己,结果也是实数。

实数的平方一定大于等于零。

5. 实数的开方非负实数的开方是唯一确定的非负实数。

负实数的开方是虚数。

6. 实数的范围无限范围不可数的实数非常多,它们可以两两进行大小的比较,任意两个实数之间都存在无穷个实数。

但是,实数的范围是有限的,任意有限范围的实数之间不存在无穷个实数。

7. 实数的连续性实数是连续的,任意两个实数之间都存在无穷个实数,实数形成了一条连续的数轴。

三、实数的表示方式1. 实数的小数表示实数可以表示为小数,小数是实数的一种常见表示方式。

小数可以是有限小数,也可以是无限小数,有限小数可以用有限位数的小数点表示,而无限小数需要使用循环符号或者无限位数的小数点表示。

2. 实数的分数表示实数可以表示为分数,分数是实数的另一种常见表示方式。

分数是有理数的一种,可以表示为两个整数之比。

3. 实数的根式表示实数可以表示为根式,根式是无理数的一种。

无理数是不能表示为有理数的数,它们通常用根式表示,如开方的形式表示。

四、实数的应用实数是数学中的基本概念,任何其他数学分支都要用到实数的概念。

实数的应用非常广泛,可以用来表示实际物理量,如长度、面积、体积、速度、质量等等,还可以用来表示实际经济量,如货币、价格、利率、利润等等,还可以用来表示实际科学量,如时间、温度、压力、密度等等。

初中数学知识点实数总结手写

初中数学知识点实数总结手写

初中数学知识点实数总结手写一、实数的定义与分类实数是数学中最基本的数系之一,包括所有的有理数和无理数。

有理数可以表示为两个整数的比,即分数形式,而无理数则不能表示为分数形式。

实数具有完备性,即任何实数序列都有一个极限,这个极限也是实数。

实数可以分为以下几类:1. 有理数:包括整数和分数,可以表示为a/b的形式,其中a和b都是整数,b≠0。

2. 无理数:不能表示为分数形式的数,如√2、π等。

3. 正实数:大于0的实数。

4. 负实数:小于0的实数。

5. 零:既不是正数也不是负数的特殊实数,用0表示。

二、实数的性质1. 有序性:实数具有大小顺序,可以比较大小。

2. 封闭性:实数的加法、减法、乘法和除法(除数不为零)都是封闭的,即运算结果仍然是实数。

3. 交换律:实数的加法和乘法满足交换律,即a+b=b+a,a*b=b*a。

4. 结合律:实数的加法和乘法满足结合律,即(a+b)+c=a+(b+c),(a*b)*c=a*(b*c)。

5. 分配律:实数的乘法对加法满足分配律,即a*(b+c)=a*b+a*c。

三、实数的运算1. 加法:两个实数相加,和仍然是实数。

例如,3+4=7。

2. 减法:两个实数相减,差值是实数。

例如,7-4=3。

3. 乘法:两个实数相乘,积是实数。

例如,3*4=12。

4. 除法:实数相除,商是实数,但除数不能为零。

例如,12÷4=3。

5. 乘方:实数的乘方是将实数自身乘以指定次数。

例如,2的3次方是2*2*2=8。

6. 开方:求一个实数的平方根或其它次方根。

例如,√9=3,因为3*3=9。

四、实数的比较1. 正实数大于零和所有负实数。

2. 零大于所有负实数。

3. 负实数小于零和所有正实数。

4. 两个负实数中,绝对值大的数实际上更小。

五、实数的应用实数在日常生活中有广泛的应用,如计算价格、测量距离、统计数据等。

在数学的其他领域,如代数、几何、三角学和微积分中,实数也是不可或缺的基础。

(完整版)实数知识点总结

(完整版)实数知识点总结

(完整版)实数知识点总结1. 实数的定义实数是包括有理数和无理数在内的数的集合。

实数集包含有理数集和无理数集。

2. 有理数的性质有理数是可以表示为两个整数的比值的数。

有理数的性质包括:- 有理数的四则运算性质:加法、减法、乘法和除法。

- 有理数的分数形式,即可以表示为两个整数的比值。

- 有理数可以表示为小数,且小数可以是有限的或无限循环的。

3. 无理数的性质无理数是不能表示为两个整数的比值的数。

无理数的性质包括:- 无理数不能表示为分数形式。

- 无理数的十进制表示是无限不循环的。

- 无理数可以用无限不循环的小数表示,但无法精确表示。

4. 实数的数轴表示实数可以在数轴上表示,数轴上的每个点都对应一个实数。

5. 实数的运算实数的运算包括加法、减法、乘法和除法。

实数的运算满足以下性质:- 交换律:a + b = b + a,a * b = b * a。

- 结合律:(a + b) + c = a + (b + c),(a * b) * c = a * (b * c)。

- 分配律:a * (b + c) = a * b + a * c。

6. 绝对值绝对值是一个数离0的距离,可以用来表示数的大小。

绝对值的性质包括:- 绝对值非负:|a| >= 0。

- 非零数的绝对值大于0:|a| > 0。

- 绝对值的加法:|a + b| <= |a| + |b|。

7. 实数的比较实数可以进行大小比较,实数的比较满足以下性质:- 反身性:a = a。

- 对称性:如果a > b,则b < a。

- 传递性:如果a > b,b > c,则a > c。

8. 实数的区间实数可以按照大小关系分为开区间、闭区间、半开半闭区间等。

区间的边界可以是实数也可以是无穷大。

9. 实数的近似值由于实数的无理数部分是无限不循环的,所以我们一般用近似值来表示实数。

10. 实数的应用实数在数学和科学中有广泛的应用,如在几何中表示线段长度、在物理中表示物体的质量等。

初中实数知识点总结

初中实数知识点总结

初中实数知识点总结一、实数的概念和分类实数是指所有的有理数和无理数的集合。

有理数包括整数和分数,而无理数是指不能用有理数表示的数,如根号2、π等。

实数集合通常用符号R表示,表示实数是一个无限的、连续的数的集合。

实数是数轴上的所有点的集合,数轴上的每个点都对应一个实数。

根据实数的性质,实数可以分为正数、负数和零。

正数是大于0的数,负数是小于0的数,而零是等于0的数。

正数、负数和零合在一起构成了实数集合中的所有数。

二、实数的运算1. 实数的加法实数的加法满足交换律、结合律和分配律。

两个实数相加时,首先将它们的数值相加,然后根据它们的正负性确定结果的正负性。

2. 实数的减法实数的减法可以看作是实数的加法的特殊情况,减去一个数可以看作是加上这个数的相反数。

3. 实数的乘法实数的乘法也满足交换律、结合律和分配律。

两个实数相乘时,先将它们的数值相乘,然后根据它们的正负性确定结果的正负性。

特别地,任何实数与0相乘的结果都是0。

4. 实数的除法实数的除法是乘法的逆运算,两个实数相除时,先将它们的数值相除,然后根据它们的正负性确定结果的正负性。

特别地,任何非零实数除以0的结果是无穷大或无限接近于0的数。

三、绝对值对于任何实数a,它的绝对值表示为|a|,表示a到原点的距离。

绝对值的性质包括:1. |a| ≥ 0,且|a| = 0当且仅当a=0;2. |a| * |b| = |a * b|;3. |-a| = |a|;4. |a + b| ≤ |a| + |b|。

绝对值在实际运用中有着重要的意义,可以表示距离、误差、温度等概念,并且在解决不等式和绝对值方程等数学问题时起着重要的作用。

四、实数的比较对于任何两个实数a和b,我们可以根据它们的大小关系进行比较。

实数的大小关系包括:1. a > b表示a大于b;2. a < b表示a小于b;3. a = b表示a等于b;4. a ≥ b表示a大于等于b;5. a ≤ b表示a小于等于b。

《实数》知识点归纳

《实数》知识点归纳

《实数》知识点归纳一、实数的定义实数是有理数和无理数的总称。

有理数包括整数和分数,整数又包括正整数、零和负整数;分数包括正分数和负分数。

无理数,也称为无限不循环小数,不能写作两整数之比。

二、实数的分类1、按定义分类实数可以分为有理数和无理数。

有理数:能表示为两个整数之比的数,包括整数和分数。

例如:-3、0、1/2 等。

无理数:无限不循环小数,例如:π(圆周率)、√2(根号 2)等。

2、按正负分类实数可以分为正实数、零和负实数。

正实数:大于 0 的实数,包括正有理数和正无理数。

负实数:小于 0 的实数,包括负有理数和负无理数。

三、数轴数轴是规定了原点、正方向和单位长度的直线。

实数与数轴上的点一一对应,也就是说,每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

例如,在数轴上表示√2,我们可以先确定一个单位长度,然后以原点为起点,向正方向画出长度为√2 个单位长度的线段,其终点对应的数就是√2。

四、相反数绝对值相等,符号相反的两个数互为相反数。

实数a 的相反数是a,0 的相反数是 0。

例如,5 的相反数是-5,π 的相反数是π。

五、绝对值实数 a 的绝对值表示为|a|,定义为:当a≥0 时,|a| = a;当 a<0 时,|a| = a。

绝对值的几何意义是数轴上表示数 a 的点到原点的距离。

例如,|3| = 3,|-2| = 2。

六、倒数若两个数的乘积为 1,则这两个数互为倒数。

非零实数 a 的倒数是1/a,0 没有倒数。

例如,2 的倒数是 1/2,-3 的倒数是-1/3。

七、平方根如果一个数的平方等于 a,那么这个数叫做 a 的平方根。

正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。

例如,9 的平方根是±3,因为(±3)²= 9。

八、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作√a,0 的算术平方根是 0。

实数知识点总结大全

实数知识点总结大全

一、实数的概念及性质1. 实数的定义:实数是指可以用在数轴上表示的数,包括有理数和无理数。

2. 实数的性质:实数具有以下性质:(1)实数集合是一个实数域,它包含了所有实数。

(2)实数是可比较的,即任意两个实数之间可以进行大小比较。

(3)实数是封闭的,对任意两个实数进行加减乘除得到的结果还是实数。

(4)实数满足传递性,即如果a>b,b>c,则a>c。

3. 实数的稠密性:实数的一个重要性质是稠密性,即在任意两个不相等的实数之间,都存在着无穷多个实数。

这意味着实数在数轴上是密密麻麻地分布着的,没有空隙。

4. 实数的有限性:实数作为一种数学对象,是有限的,也就是说,对于任意一个实数,它都可以用有限个操作从某个给定的实数得到。

5. 实数的无限性:实数也具有无限性,例如无理数的小数部分是无限不循环的,这使得实数具有无限性。

二、实数的运算1. 实数的加法:实数的加法满足结合律、交换律和分配律,即对于任意实数a、b、c,有a+(b+c)=(a+b)+c,a+b=b+a,a(b+c)=ab+ac。

2. 实数的减法:实数的减法可以看作加上一个相反数,即a-b=a+(-b)。

3. 实数的乘法:实数的乘法满足结合律、交换律和分配律,即对于任意实数a、b、c,有a(bc)=(ab)c,ab=ba,a(b+c)=ab+ac。

4. 实数的除法:实数的除法满足除法运算的性质,即分子与分母都不为零。

5. 实数的乘方:实数的乘方运算是幂运算的一种特殊形式,即对于实数a和自然数n,有a^n=a*a*...*a(共n个a)。

6. 实数的开方:实数的开方是乘方运算的逆运算,即给定一个实数a,求出另一个实数b,使得b^2=a。

7. 实数的绝对值:实数的绝对值是一个非负的实数,它表示了这个实数到原点的距离,通常用|a|表示。

8. 实数的倒数:对于一个非零实数a,它的倒数是1/a。

1. 实数的大小比较:实数之间可以进行大小比较,对于任意两个实数a和b,有以下比较关系:(1)a>b:表示a大于b。

初中数学“实数”知识点

初中数学“实数”知识点

初中数学“实数”知识点展开全文一、平方根1、平方根(1)平方根的定义:如果一个数x的平方等于a,那么这个数x 就叫做a的平方根.即:如果x2=a,那么x叫做a的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。

(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算;0的平方根是0.(5)符号:正数a的正的平方根可用表示,也是a的算术平方根;正数a的负的平方根可用-表示.(6) <—>a是x的平方 x的平方是ax是a的平方根 a的平方根是x2、算术平方根(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式(x≥0)中,规定 x=。

(2)的结果有两种情况:当a是完全平方数时,是一个有限数;当a不是一个完全平方数时,是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。

(4)夹值法及估计一个(无理)数的大小(5)(x≥0) <—>a是x的平方 x的平方是ax是a的算术平方根 a的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。

二、立方根1、立方根的定义:如果一个数x的立方等于a,这个数叫做a的立方根(也叫做三次方根),即如果,那么x叫做a的立方根。

求一个数的立方根的运算,叫做开立方。

2、一个数a的立方根,记作,读作:“三次根号a”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。

实数常识知识点总结初中

实数常识知识点总结初中

实数常识知识点总结初中一、实数的分类1. 有理数有理数是可以表示为两个整数之比的数,包括正整数、负整数、零、分数(正分数、负分数)等。

有理数包括有限小数和循环小数。

2. 无理数无理数是不能表示为两个整数之比的数,它们的小数部分是无限不循环的,如π、根号2等。

无理数与有理数一起构成了实数集。

二、实数的性质1. 实数的比较对于任意两个实数a和b,可以得出以下比较关系:- 如果a>b,则a-b>0;- 如果a=b,则a-b=0;- 如果a<b,则a-b<0。

2. 实数的运算性质实数的加法、减法、乘法、除法具有以下性质:- 加法结合律:a+(b+c)=(a+b)+c;- 乘法结合律:a*(b*c)=(a*b)*c;- 加法交换律:a+b=b+a;- 乘法交换律:a*b=b*a;- 加法分配律:a*(b+c)=a*b+a*c;- 乘法分配律:a/(b+c)=a/b+a/c。

三、实数的运算1. 实数的加法实数的加法满足封闭性、交换律、结合律和终结律。

2. 实数的减法实数的减法满足封闭性、结合律和终结律,但不满足交换律。

3. 实数的乘法实数的乘法满足封闭性、交换律、结合律和终结律。

4. 实数的除法实数的除法满足封闭性、结合律和终结律,但不满足交换律。

四、实数的绝对值1. 实数a的绝对值表示为|a|,即a的绝对值等于a或-a,即|a|=a或|a|=-a。

2. 实数的绝对值性质- |a|>0,当且仅当a≠0时成立;- |ab|=|a|*|b|;- |a/b|=|a|/|b|,其中b≠0。

五、实数的循环小数1. 循环小数的表示循环小数是一种特殊的小数,它的小数部分在某一个位置开始循环出现。

2. 循环小数的转化将循环小数转化为分数时,可以使用以下步骤:- 令x=循环小数;- 乘以适当的倍数,使得小数部分移到整数部分的右边;- 通过观察找出一个新的循环小数;- 使用代数式求解得到最终结果。

六、实数的应用实数在生活和实际问题中有着广泛的应用,例如在金融、物理、化学等领域中都可以看到实数的应用。

初中实数知识点全总结

初中实数知识点全总结

初中实数知识点全总结一、实数的定义实数是由有理数和无理数组成的数的集合。

有理数包括整数、分数和正整数;无理数则是无法用有理数来表示的数,例如π和√2等。

二、实数的分类1. 有理数有理数包括整数、分数和正整数。

整数包括正整数、负整数和零。

分数是整数和整数的比值,可以是正数、负数或零。

2. 无理数无理数是无法用有理数来表示的数,是不可约分的分数或者是无限不循环小数。

例如π和√2都是无理数。

三、实数的运算1. 加法和减法实数的加法和减法遵循有理数的运算规律,即同号相加或相减为同号,异号相加或相减为两数之差的绝对值,并且符号取两数中绝对值较大的数的符号。

2. 乘法和除法实数的乘法和除法也遵循有理数的运算规律,即同号相乘为正,异号相乘为负,除法则是分子与分母的正负来决定商的正负。

3. 求幂和开方实数的幂指数法则:a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)。

实数的开方是幂的逆运算,例如√a * √a = a。

四、实数的大小比较实数的大小比较是由实数的大小和符号来决定的。

绝对值大的数大,同号的数比较绝对值,异号的数大小关系取决于绝对值的大小。

五、实数的绝对值实数的绝对值是一个非负数,它表示一个数到原点的距离,负数的绝对值是去掉符号得到的正数。

六、实数的有序性实数具有有序性,即任意两个实数之间可以进行大小比较,并且它们之间有顺序。

有理数的有序性遵循数轴上从左到右递增的规律,而无理数也满足这一规律。

七、实数的数轴实数的数轴是用来表示有序性和进行实数的几何意义的工具。

数轴上每一个点都表示一个实数,它们按照大小关系排列在数轴上。

八、实数的近似值实数的近似值是指用一个近似的数来代替真实的数,常用的方法有四舍五入和截断法。

九、实数的应用实数在数学中的应用非常广泛,包括代数、几何、概率统计和数学分析等方面都离不开实数。

以上就是初中实数知识点的全面总结,实数是数学的基础知识,对于学习进阶数学课程和应用数学知识都有着重要的意义。

初二数学《实数》知识点

初二数学《实数》知识点

初二数学《实数》知识点初二数学《实数》知识点一、实数的概念实数是由有理数和无理数组成的无限小数。

实数可以分类为正实数、负实数和零。

正实数包括正整数、正小数和正分数;负实数包括负整数、负小数和负分数;零是实数的特殊形式,既不是正实数也不是负实数。

二、实数的运算实数的运算包括加、减、乘、除和乘方。

运算时,先算乘方再算乘除,最后算加减。

当一个算式中含有多种运算时,应先算乘除后算加减。

乘方的计算规则是底数不变,指数相乘。

三、实数的性质1、有序数对可以确定一个点在数轴上的位置,反过来,一个点在数轴上的位置也可以用有序数对表示。

2、在数轴上表示的两个数,右边的数总比左边的数大。

3、任意一个数除以一个正数,得正实数;除以一个负数,得负实数;除以零,得零。

4、有理数和无理数的乘积都是有理数。

5、两个正实数的积是正实数;两个负实数的积是负实数;正实数和零的积是零;负实数和零的积是零。

6、两个正实数的商的符号取决于它们的绝对值,两个负实数的商的符号取决于它们的绝对值的商的符号。

7、任何一个有理数都可以表示为一个分数形式的有理数,其中分子为该数的整数部分,分母为1。

四、实数的应用实数在实际生活中有着广泛的应用,例如长度、面积、体积、质量等计量单位都是由实数表示的。

此外,实数还应用于科学、工程、经济等领域,如物理学中的速度、加速度等概念,化学中的摩尔质量、溶液浓度等概念,以及经济学中的成本、收益等概念都需要用到实数的知识。

总之,初二数学《实数》知识点是数学学习中的一个重要内容,对于学生掌握数学基础知识和提高数学应用能力都具有重要意义。

在学习过程中,学生应该认真掌握实数的概念、运算和性质,并学会将所学知识应用到实际生活中去。

初中数学实数知识点

初中数学实数知识点

初中数学实数知识点实数是数学中的一个基本概念,它包括有理数和无理数两部分。

初中数学中的实数知识点主要包括实数的基本性质、实数间的大小关系、实数的运算和实数的表示等。

下面我将为您详细介绍这些知识点。

1. 实数的基本性质(1)实数可以按照大小顺序排列,任意两个实数之间都可以比较大小。

(2)实数满足传递性,即若a≤b,b≤c,则a≤c。

(3)实数满足三角不等式,即对于任意实数a和b,有|a+b|≤|a|+|b|。

2. 实数间的大小关系(1)实数中有正数、零和负数三种,其中零是最小的数。

(2)对于两个正数,越大的数大;对于两个负数,越大的数小。

(3)对于一个正数和一个负数,正数大于负数。

(4)绝对值大的数更大。

3. 实数的运算(1)实数的加法运算:加法满足交换律、结合律和消去律。

即对于任意实数a、b和c,有a+b=b+a,(a+b)+c=a+(b+c),a+0=a和a+(-a)=0。

(2)实数的减法运算:减法可以转换为加法,即a-b=a+(-b)。

(3)实数的乘法运算:乘法满足交换律、结合律和分配律。

即对于任意实数a、b和c,有a×b=b×a,(a×b)×c=a×(b×c),a×(b+c)=a×b+a×c。

(4)实数的除法运算:若b≠0,则a÷b=a×(1/b)。

4. 实数的表示(1)实数可以用小数表示,小数位是无线多的,可以是有限的也可以是无限循环的。

(2)实数可以用分数表示,分数可以是真分数、假分数和整数。

(3)实数可以用带根号形式表示,其中无理数是指不能写成两个整数比的形式,常见的无理数有π和√2等。

(4)实数可以用数字和字母的运算式表示,用代数式表示实数的运算过程。

以上是初中数学中关于实数的知识点。

实数是数学中的重要概念,不仅在初中数学中有重要的应用,还是后续高中数学和大学数学中的重要基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学实数知识点一、选择题1.下列说法正确的是( )A .任何数的平方根有两个B .只有正数才有平方根C .负数既没有平方根,也没有立方根D .一个非负数的平方根的平方就是它本身【答案】D【解析】A 、O 的平方根只有一个即0,故A 错误;B 、0也有平方根,故B 错误;C 、负数是有立方根的,比如-1的立方根为-1,故C 错误;D 、非负数的平方根的平方即为本身,故D 正确;故选D .2.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个【答案】D【解析】【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误;③负数没有立方根,错误;④16的平方根是±4,用式子表示是,错误;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,正确.错误的一共有3个,故选D .3.在-2,3.14,5π,这6个数中,无理数共有( ) A .4个B .3个C .2个D .1个【答案】C【解析】-22=, 3.14,3=-是有理数;,5π是无理数; 故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如3 ,35 等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个).4.估计56﹣24的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间【答案】C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】56﹣24=562636=54-=,∵49<54<64,∴7<54<8,∴56﹣24的值应在7和8之间,故选C .【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.5.下列六个数:0、315,9,,,0.13π•-中,无理数出现的频数是( ) A .3 B .4 C .5 D .6【答案】A【解析】【分析】根据无理数的定义找出无理数,根据频数的定义可得频数.【详解】 因为六个数:0、315,9,,,0.13π•-中,无理数是35,9,π 即:无理数出现的频数是3故选:A【点睛】考核知识点:无理数,频数.理解无理数,频数的定义是关键.6.如图,数轴上的点可近似表示(4630-)6÷的值是( )A .点AB .点BC .点CD .点D【解析】【分析】先化简原式得45-,再对5进行估算,确定5在哪两个相邻的整数之间,继而确定45-在哪两个相邻的整数之间即可. 【详解】原式=45-,由于25<<3,∴1<45-<2.故选:A .【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.7.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥ 【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.8.下列各组数中互为相反数的是( )A .52(5)-B .2--和(2)-C .38-38-D .﹣5和15【答案】B【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.9.把-( )A B.C.D【答案】A【解析】【分析】由二次根式-a是负数,根据平方根的定义将a移到根号内是2a,再化简根号内的因式即可.【详解】∵1a-≥,且0a≠,∴a<0,∴-,∴-=故选:A.【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a的取值范围是解题的关键.10.如图,数轴上A,B两点表示的数分别为-1,点B关于点A的对称点为C,则点C所表示的数为()A .-2-3B .-1-3C .-2+3D .1+3【答案】A【解析】【分析】由于A ,B 两点表示的数分别为-1和3,先根据对称点可以求出OC 的长度,根据C 在原点的左侧,进而可求出C 的坐标.【详解】∵对称的两点到对称中心的距离相等,∴CA=AB ,|-1|+|3|=1+3,∴OC=2+3,而C 点在原点左侧,∴C 表示的数为:-2-3.故选A .【点睛】本题主要考查了求数轴上两点之间的距离,同时也利用对称点的性质及利用数形结合思想解决问题.11.设302a =-.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】根据二次根式的性质得出253036<<,推出5306<<,进而可得出a 的范围,即可求得答案.【详解】解:∵253036<<, ∴5306<<∴5230262-<-<-,即33024<-<,∴a 在3和4之间,故选:C .【点睛】此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.如图,已知x 2=3,那么在数轴上与实数x 对应的点可能是( )A.P1B.P4C.P2或P3D.P1或P4【答案】D【解析】试题解析:∵x2=3,∴根据实数在数轴上表示的方法可得对应的点为P1或P4.故选D.13.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.14.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;a<是不可能事件;③若a为实数,则0④16的平方根是4±4=±;其中正确的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.15.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c =0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形, ∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.16.最接近的整数是( ).A .3B .4C .5D .6 【答案】A【解析】【分析】由于91016<<<10与9的距离小于16与10的距离,可得答案.【详解】由于91016<<<10与9的距离小于16与10的距离,可得答案.解:∵2239,416==,∴34<<,10与9的距离小于16与10的距离,最接近的是3.故选:A .【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.17. )A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】C【解析】【详解】解:由36<38<49,即可得67,故选C .18.估计2值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:226122⨯=∵91216<<∴91216<<∴3124<<∴估计2262⨯值应在3到4之间.故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.19.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是3和﹣1,则点C所对应的实数是( )A.1+3B.2+3C.23﹣1 D.23+1【答案】D【解析】【分析】【详解】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()x3=31---,解得x=23+1.故选D.20.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D【答案】B【解析】【分析】3 1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】3 1.732≈-,()---≈,1.7323 1.268()---≈,1.73220.268()---≈,1.73210.732因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.。

相关文档
最新文档