优化结构 巧求最值—— 高中数学一道最值问题的巧解

合集下载

谈谈解答最值问题的四个技巧

谈谈解答最值问题的四个技巧

备考指南最值问题是高考试题中常见的考点之一.此类问题具有较强的综合性,且命题形式多种多样,在解题过程中若找不到恰当的方法,就会因为复杂冗繁的计算量而浪费大量的时间,甚至得不到正确的答案.如何选择合适的方法,如何灵活运用各个模块的知识,是解答最值问题所需要重点考虑的事情.本文举了四个典型的例题,并对其进行了分析、探究,总结出解答最值问题的技巧,供同学们参考.一、用函数的单调性求最值在求解最值问题时,我们通常可将目标式构造成函数式,将问题转化为函数最值问题,利用函数的单调性来求解最值.在解题时,需根据函数单调性的定义,或导函数与函数单调性之间的关系判断出函数的单调性,即可根据函数的单调性求得最值.例1.设a 为实数,求x 2+||x -a +1的最小值.解:设f ()x =x 2+||x -a +1,(1)若x ≤a ,则f ()x =æèöøx -122+a +34,①当a <12时,函数f ()x 在(]-∞,a 上单调递减,可知函数在(]-∞,a 上的最小值为f ()a =a 2+1;②当a ≥12时,函数f ()x 在(]-∞,a 上的最小值为f æèöø12=34+a ,且f æèöø12≤f ()a .(2)若x >a ,则f ()x =æèöøx +122-a +34.①当a ≤-12时,则函数f ()x 在éëöø-12,+∞上单调递增,在éëöøa ,-12上单调递减,所以函数在[)a ,+∞上的最小值为f æèöø-12=34-a ,且f æèöø-12≤f ()a ;②当a >-12时,则函数f ()x 在[)a ,+∞上的最小值为f ()a =a 2+1.综上可得,当a ≤-12时,f ()x min =34-a ;当-12<a≤12时,f ()x min =a 2+1;当a >12时,f ()x min =a +34.将目标式看作二次函数式,便可根据x 与a 的大小关系,以及a 与函数对称轴-12的大小关系,确定二次函数的单调性,即可根据二次函数的单调性确定函数的最值.在解题时,需运用运动和变化的观点,构建关于变量、自变量的集合,通过类比、联想、转化的方式构造合适的函数.二、用基本不等式求最值基本不等式a +b 2≥ab ()a >0,b >0主要用于求函数的最值及证明不等式.在运用基本不等式求最值时,需把握“一正”“二定”“三相等”三个条件,重点关注或配凑出两式的和或积,并使其中之一为定值.例2.求y =x +4x的值域.解:①当x >0时,x +4x ≥=4,当且仅当x =2时等号成立,②当x <0时,()-x +æèöø-4x ≥=4,当且仅当x =2时等号成立,所以x +4x ≤-4,故y =x +4x的值域是(]-∞,-4∪[)4,+∞.由于x 的取值不确定,而运用基本不等式的条件是各式均为正值,于是将x 分为x >0和x <0两种情况,分别运用基本不等式来求最值.三、利用线性规划思想求最值线性规划思想是指求线性约束条件下,目标函数的极值.运用线性规划思想求最值的基本步骤是:①根据题意建立数学模型,并作出可行域;②建立目标函数;③利用图形求出目标函数的最值.例3.已知ìíîïïx -y +2≥0,x +y -4≥0,2x -y -5≤0,求z =x 2+y 2-10y +25的最小值.解:作出可行域,如图中阴影部分所示.将直线x -y +2=0、x +y -4=0、2x -y -5=0两两联立可求出三个顶点的坐标A ()1,3、B ()3,1、C ()7,9,51备考指南而z =x 2+y 2-10y +25=x 2+()y -52表示可行域内任一点()x ,y 到定点M ()0,5的距离的平方,过M 作直线AC易知垂足N 在线段AC 上,则z 的最小值为||MN 2,由点到直线的距离公式可得||MN =,故z 的最小值为||MN 2=92.我们将不等式组看作线性约束条件,画出可行域,便可将问题看作线性规划问题,结合图形寻找到目标函数取得最小值的点,即可利用线性规划思想求得问题的答案.四、利用代数式的几何意义求最值大部分的代数式都有几何意义,如y =x 2表示的是一条抛物线,y =x 表示的是一条直线,y =1x表示的是两条双曲线,等等.在求最值时,可先挖掘代数式的几何意义,画出相应的几何图形,通过寻找图形中的临界情形,如相切、相交等情形,确定目标式的最值.例4.已知x ,y 满足x 225+y 29=1,求()x -42+y 2+()x -22+()y -22的最值.解:由方程x 225+y29=1易知,该曲线为椭圆,设P ()x ,y 为椭圆上的一点,B (2,2),则a =5,b =3,c =4,右焦点A (4,0),左焦点F 1(-4,0),而||PA +||PB =()x -42+y 2+()x -22+()y -22,根据椭圆的定义可得|PF 1|+|PA |=10,则|PA |=10-|PF 1|,|PA |+|PB |=10-|PF 1|+|PB |,根据三角形的性质:两边之和大于第三边,两边之差小于第三边性质,可得10-|F 1B |≤|PF 1|-|PB |≤10+|F 1B |,又F 1B =210,故10-210≤|PA |+|PB |≤10+210.当且仅当P ,B ,A 共线时等号成立,故()x -42+y 2+()x -22+()y -22的最大值是10+210,最小值是10-210.解答此题,需将方程x 225+y 29=1看作椭圆,P 看作椭圆上的一个动点,那么目标式表示的是线段||PA +||PB ,问题就变为求两线段和的最大值、最小值.挖掘题目中代数式的几何意义,将问题转化为几何图形问题,利用几何图形的性质以及相关定理、公式即可解题.当然,求最值的方法还有很多,如导数法、转化法等.这就要求让同学们运用发散思维,去寻求、总结更多的解答最值问题的方法.(作者单位:安徽省临泉第二中学)(上接34页)三、引导学生关注时事,点评其中的人与事“文章合为时而著”,在写作教学中,我们要引导学生关注时事,多思考,多评论,让他们走进社会生活,理性地表达自己的观点。

高考最值(定值)问题巧解

高考最值(定值)问题巧解
需 通过 回顾 解题 的教学 来实现.
因此 , 在数 学教 学 中要 重 视解 题 的 回顾 , 学 与 生一起 对解 题 的结果 和解法进行 细致 的分 析 , 解 对 题 的 主要思 想 、 键 因素 和 同一 类型 问题 的解法 进 关 行 概括 , 帮助 学生从 解题 中总结 出数 学 的基 本思 想 和方法 并加 以掌 握 , 将其 用 到 新 的 问题 中去 , 为 成 以后 分 析和解 决 问题 的有 力武器 .
第 4期
陈发志 , : 等 高考 最值 ( 定值) 问题巧解

43 ・
分省市最值 问题的考题分析, 如表 1 . 表 1 21 0 0年 高考 最值 问题 考题 分析
题号 考查 内容 考纲上的考点要求
题 上将继 续 在 稳 定 中 凸 显 变 化 、 变 化 中追 求 创 在 新, 注重 能力 的考 查 和 数 学 思 维 品质 、 学 本 质 的 数 渗透 . 因此 , 值 问题 作 为 对 学生 发 散 思 维 和 创新 最
最值 ( 定值 ) 问题属 于能力考查 的范畴, 在很 多章节都有所涉及. 因此 , 新课改高考注重在各部 分模块的联结处和在知识网络的交汇处命题.
《 考试说明》 对最值 ( 定值 ) 问题的考查渗透在 以下 的知识模 块 中 , 体现 了将知 识 、 能力 、 素质 融合 2 考 点 回顾 在一起 的考 查 目标 : 翻阅近 3年新课 改省市 的高考 试卷 , 笔者 发 现 () 1 新课改教材在 “ 函数 的性质 ” 这一章节 中 内容 基本 相 同 , 中着 重 对 2 1 其 00 增设了最大值和最小值的定义 , 对学生的思维要求 最值 问题 的题 型 、 整理了部 也从“ 直观理解 ” 提高 到“ 抽象概括 ” 课程标准一 年高考试卷中最值问题进行了汇总统计 , .

几何最值问题解题技巧

几何最值问题解题技巧

几何最值问题解题技巧
几何最值问题是一个常见的数学问题,它涉及到在给定的几何形状中找到一个或多个点的最大或最小值。

解决这类问题需要一定的技巧和策略。

以下是一些解决几何最值问题的技巧:
1. 转化问题:将最值问题转化为几何问题,例如求点到直线的最短距离,可以转化为求点到直线的垂足。

2. 建立数学模型:根据问题的具体情况,建立适当的数学模型,例如利用勾股定理、三角函数等。

3. 寻找对称性:在几何图形中寻找对称性,例如利用轴对称、中心对称等性质,可以简化问题。

4. 利用基本不等式:利用基本不等式(如AM-GM不等式)可以求出某些量的最大或最小值。

5. 转化为一元函数:将问题转化为求一元函数的最大或最小值,然后利用导数等工具求解。

6. 构造辅助线:在几何图形中构造辅助线,可以改变问题的结构,从而更容易找到最值。

7. 尝试特殊情况:在某些情况下,尝试特殊情况(例如旋转、对称等)可以找到最值。

8. 逐步逼近:如果无法直接找到最值,可以尝试逐步逼近的方法,例如二分法等。

以上技巧并不是孤立的,有时候需要综合运用多种技巧来解决一个问题。

在解决几何最值问题时,需要灵活运用各种方法,不断尝试和调整,才能找到最合适的解决方案。

巧用数形结合思想求函数最值

巧用数形结合思想求函数最值

巧用数形结合思想求函数最值六招破解函数最值及巧用数形结合求参数问题一、六招破解函数最值问题函数最值问题一直是高考的一个重要的热点问题,在高考中占有极其重要的地位.为了让大家能够更加系统、全面地掌握函数最值问题的解决方法,下面就其问题的常用解法,分类浅析如下:1.配方法配方法是求二次函数最值的基本方法,如函数F(x)=6z/(x)2+/7/(x)+c(qHO)的最值问题,可以考虑用配方法.[例 1]已知函数 =(eA—a)2+(e A—tz)2(tzeR, aHO),求函数 y 的最小值.2.换元法换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和-:角换元,我们可以根据具体问题及题目形式灵活选择换元的方法,以便将复杂的函数最值问题转化为简单的函数最值问题.如可用三角换元解决形如/+/=1及部分根式函数形式的最值问题.3・不等式法利用不等式法求解函数最值,主要是指运用基本不等式及其变形公式來解决函数最值问题的一-种方法.常常使用的基本不等式有以下几种:aIb#a|b。

er2ab(a, b 为实数),° ^y[ab(a0, b20), abW。

J 些艺(a, b为实数).14[例3]函数fix) =-+t^(O<x< 1)的最小值为・兀1X4.函数单调性法先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种方法在高考屮是必考的,多在解答题中的某一问出现.[例4]已知函数»=xln x,则函数心)在也r+2](r>0)上的最小值为.5.导数法设函数兀Q在区间[a, b]上连续,在区间(a, b)内可导,则的在[a, b]上的最大值和最小值应为兀0在(d, b)内的各极值与», fib) 中的最大值和最小值.利用这种方法求函数最值的方法就是导数法.[例5]函数»=x3-3x+l在闭区间[—3,0]上的最大值,最小值分别是,•6.数形结合法数形结合法是指利用函数所表示的几何意义,借助几何方法及函数的图象求函数最值的…种常用的方法.这种方法借助儿何意义,以形助数,不仅可以简捷地解决问题,还可以避免诸多失误,是我们开阔思路、正确解题、提高能力的-种重要途径.[a,[例 6]对 a, bWR,记 max|d, b\=\i1 函数=max||x+l|, |x—2||(x£R)的最小值是.二、巧用数形结合妙解3类求参数问题通过以下三个方面体会数形结合思想的运用.1.通过基本函数模型及变式的图象求参数的取值范围或值|lg x|, OvxWlO,若a,b,c互不相等,[例1]已知函数fix)=<1—2^+6,兀>10,_!»=»=»,则abc的取值范围是(2•通过函数的零点与方程的解的相互关系求函数零点和方程的解及参数的范围[例2]已知mGR,函数/(x)=x2+2(m2+l)x+7,g(x)=-(2m2—m+2)x+m.(1)设函数p(x)=/U)+g(x)・如果p(x)=0在区间(1,5)内有解但无重根,求实数加的取值范围;d,总存在唯一非零实数b(bHa),使得/2(d)=/z(b)成立?若存在,求加的值;若不存在,请说明理由.3.通过圆或圆锥曲线的部分图形与函数图象的关系来求参数的范围[例3]如果函数y=l+p4—F(|x|W2)的图象与函数2)。

高中数学函数最值问题的求解思路与实例分析

高中数学函数最值问题的求解思路与实例分析

高中数学函数最值问题的求解思路与实例分析在高中数学中,函数最值问题是一个常见且重要的考点。

解决这类问题需要掌握一定的数学知识和解题技巧。

本文将从求解思路和实例分析两个方面,详细介绍高中数学函数最值问题的解题方法。

一、求解思路要解决函数最值问题,首先需要明确函数的定义域和值域。

在明确了函数的定义域和值域后,我们可以采取以下步骤来求解函数的最值问题。

1. 找出函数的极值点函数的极值点是函数取得最大值或最小值的点。

要找出函数的极值点,可以先求出函数的导数,然后令导数等于零,解方程得到极值点的横坐标。

再将这些横坐标代入原函数中,求出对应的纵坐标,即可得到函数的极值点。

2. 检查边界点边界点是函数定义域的端点。

在求解函数的最值问题时,需要检查边界点是否可能成为函数的最值点。

将边界点代入函数中,与已经求得的极值点进行比较,找出最大值或最小值。

3. 比较极值点和边界点的大小将已经求得的极值点和边界点进行比较,找出其中的最大值或最小值。

这个值就是函数的最大值或最小值。

二、实例分析为了更好地理解函数最值问题的解题方法,我们来看一个具体的例子。

例题:求函数f(x) = 2x^3 - 3x^2 - 12x + 1的最大值和最小值。

解题步骤:1. 求导数f'(x) = 6x^2 - 6x - 122. 求极值点的横坐标令f'(x) = 0,解方程得到x = -1和x = 3。

3. 求极值点的纵坐标将x = -1和x = 3代入原函数f(x)中,得到f(-1) = -8和f(3) = -32。

4. 检查边界点由于函数没有明确的定义域,我们需要检查函数的值域。

当x趋于正无穷大时,f(x)也趋于正无穷大;当x趋于负无穷大时,f(x)也趋于负无穷大。

因此,函数的边界点为正负无穷大。

5. 比较极值点和边界点的大小将已经求得的极值点和边界点进行比较,发现f(-1) = -8是最小值,f(3) = -32是最大值。

综上所述,函数f(x) = 2x^3 - 3x^2 - 12x + 1的最大值为-32,最小值为-8。

高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题

高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题

数形结合,巧解“与圆有关的最值问题”例1 平面上有两点A (1-,0),B (1,0),P 为圆x y x y 2268210+--+=上的一点,试求S AP BP =+||||22最小值.解析:把已知圆的一般方程化为标准方程得()()x y -+-=34422,设点P 的坐标为(,)x y 00,则2222220000||||(1)(1)S AP BP x y x y =+=+++-+222002(1)2(1)x y OP =++=+ 要使22||||BP AP S +=最小,需||OP 最小,即使圆上的点到原点的距离最小.结合图形,容易知道325||min =-=-=r OC OP ,所以20)13(22min =+=S .点评:设 P (x ,y ),使要求的式子转化为求圆上的点到原点的距离问题,利用数形结合法求最值,实质上是利用初中学过的“连结两点的线段中,直线段最短”这一性质.例2 点A 在圆()()x y -+-=53922上,则点A 到直线3420x y +-=的最短距离为( )A. 9B. 8C. 5D. 2解析:过C 作CD ⊥直线3420x y +-=于D ,交圆C 于A , 则AD CD r =-为所求 .∴AD例3 )0,3(P 在圆0122822=+--+y x y x 内一点.求(1)过P 的圆的最短弦所在直线方程(2)过P 的圆的最长弦所在直线方程解析:圆方程可以化成5)1()4(22=-+-y x ,圆心)1,4(O 1=OP k∴ 短l :)3(--=x y 即 03=-+y x ; 长l :)3(-=x y 即03=--y x . 点评:最长弦当然是直径了,而最短弦是与直径垂直的弦.例4 已知实数x ,y 满足方程22(2)3x y -+=.(1) 求y x的最大值与最小值; (2) 求y x -的最大值与最小值; (3) 求22x y +的最大值和最小值.分析:22(2)3x y -+=为圆的方程,(,)P x y 是圆心为(2,0)点.y x的几何意义是圆上一点与原点连线的斜率,y x -的几何意义是直线y x b =+在轴上的截距,22x y +的几何意义是圆上一点到原点距离的平方.解:(1)设y k x=,即y kx =.当直线y kx =与圆相切时,斜率k 取最大值与最小值,=k =.所以y xk = (2)设y x b -=,当直线y x b -=与圆相切时,纵截距b 取得最大值与最小值,=解得2b =-所以y x -的最大值为2-,最小值2-.(3表示圆上一点到原点距离,由平面几何知识知,其最大值为圆心到原点的距离加上圆的半径,其最小值为圆心到原点的距离减去圆的半径,分别是2与222x y +的最大值和最小值分别为7+7-.例5 过直线1y =上一点P (x ,y )作圆22(1)(1)1x y +++=的切线,求切线长的最小值.解析:如图所示,切线长2221PM PC CM PC =-=-,所以要求PM 的最小值,只需求PC 的最小值.PC 是直线上一点到圆心的距离,由于经直线外一点所引直线的垂线段的长度是该点到直线的距离的最小值,所以当PC 垂直于直线时,min 2PC =,此时,切线长最小,为3.小结与提升:圆的知识在初中与高中都要学习,是一典型的知识交汇点.现在的数学高考非常重视初高中知识的衔接问题,所以同学们在处理与圆有关的小题时,一定要数形结合,多联想一下与之有关的平面几何知识,以免“小题大作”.。

高中数学 2.4 最大值与最小值问题,优化的数学模型课件

高中数学 2.4 最大值与最小值问题,优化的数学模型课件

当 堂
自 主 导
积为 V=(a-2x)2x,再利用三个正数的算术-几何平均值不
双 基 达
学 等式,变形为 xyz≤(x+3y+z)3 求解即可.


【自主解答】 设切去的小正方形的边长为 x(x<a2),无


互 动 探
盖方底盒子的容积为
V,则
V

(a

2x)2x

1 4
(a

2x)(a

时 作 业
当 堂
自 主
铁片的各角切去大小相同的小正方形,再把它的边沿着虚线
双 基


学 翻折成一个无盖方底的盒子,问切去的正方形边长是多少时, 标
才能使盒子的容积最大?










图 2-4-1
菜单
RB ·数学 选修4-5
【思路探究】 设切去的小正方形的边长为 x,由题意可
课 前
知,折成的盒子的底面边长为 a-2x,高为 x,这时盒子的容
课 小值.



【思路探究】 题设中的 ω 与 δ 的形式符合柯西不等式 时


探 究
的形式,可以借助柯西不等式求式子的最值.

菜单
RB ·数学 选修4-5
课 前
【自主解答】 由柯西不等式得 ω·δ=[(
xl )2+(
my )2
当 堂



导 +(

nz)2]·[( ax)2+( by)2+( cz)2]≥( al+ bm+ cn)2,
课 前 自

高考数学最值问题及解题思路分享

高考数学最值问题及解题思路分享

高考数学最值问题及解题思路分享在高考数学中,最值问题是一道经典的题型,出现频率较高。

关于最值问题,我们可以从以下三个方面来进行探讨:最大值、最小值和最优解。

接下来,我们将从这三个方面入手,来一起学习解题思路。

一、最大值最大值问题通常可以通过以下步骤来解决:1. 求导数:首先需要对函数进行求导,找到导数为零的点,即可找到函数的最大值点。

2. 计算:将最大值点代入原函数,可得函数的最大值。

3. 可能存在的特殊情况:若导数不存在或导数为无穷大时,需要另外进行判断。

在多数情况下,最值点就是导数为零的点。

举个例子:已知函数$f(x)=x^3-3x+1$,求其在区间$[-2,2]$上的最大值。

解:首先,求导数:$f'(x)=3x^2-3$。

令$f'(x)=0$,可得极值点$x=\pm1$。

由此得出,当$x=\pm1$时,函数$f(x)$取得最大值。

将$x=\pm1$代入原函数,可得最大值为$f(1)=f(-1)=3$。

二、最小值与最大值问题类似,最小值问题也可以通过以下步骤解决:1. 求导数:首先需要对函数进行求导,找到导数为零的点,即可找到函数的最小值点。

2. 计算:将最小值点代入原函数,可得函数的最小值。

3. 可能存在的特殊情况:若导数不存在或导数为无穷大时,需要另外进行判断。

在多数情况下,最值点就是导数为零的点。

举个例子:已知函数$f(x)=(x-1)^3-x^2$,求其在区间$[0,2]$上的最小值。

解:首先,求导数:$f'(x)=3(x-1)^2-2x$。

令$f'(x)=0$,可得极值点$x=\frac{3}{4}$和$x=2$。

由此得出,当$x=\frac{3}{4}$和$x=2$时,函数$f(x)$取得最小值。

将$x=\frac{3}{4}$和$x=2$代入原函数,可得最小值为$f(\frac{3}{4})=\frac{-49}{64}$和$f(2)=-4$。

三、最优解在实际问题中,我们通常要找到一个最优解,这个解可能既不是最大值也不是最小值,而是在某种条件下最合适的解。

巧求最值问题八种方法

巧求最值问题八种方法

巧求最值问题八种方法如何求“最值"问题求最大值与最小值是中学数学常见的一种题型,在数学竞赛中作为一个靓点大量存在,解这类题有一定的难度和技巧,所以不少同学为之感叹,这里向大家介绍一些求最值问题的方法与技巧。

一、利用配方求最值例1 :若X,y是实数,则x2 xy y2 3x 3y 1999的最小值是____________ 。

分析:由于是二次多项式,难以直接用完全平方公式,所以用配方法来解更为简捷。

原^式=1(x22xy y2) 1(x26x 9) 1 (y26y 9) 1990=2(x y)21(x 3)21(y 3)21990显然有(x-y) 2> 0, (x-3) 2> 0, (y-3) 2> 0,所以当x-y=0,x-3=0,y-3=0 时,得x=y=3 时, 代数式的值最小,最小是1990;例2,设x为实数,求y=x2x丄3的最小值。

x分析:由于此函数只有一个未知数,容易想到配方法,但要注意只有一个完全平方式完不成,因此要考虑用两个平方完全平方式,并使两个完个平方式中的 x 取值相同。

由于y=x 22x i x - 2 i=(x i )2(依斗)2i ,要求 y 的最小x J x '值,必须有X-仁0,且眉士 0,解得x=1,Vx于是当x=1时,y=x 2x - 3的最小值是-1。

x二、利用重要不等式求最值例3 :若xy=1,那么代数式 丄 二的最小值 x 4y分析:已知两数积为定值,求两数平方和的最 小值,可考虑用不等式的性质来解此题,所以:4角的最小值是1x 4y三、构造方程求最值例 4:已知实数 a 、b 、c 满足:a+b+c=2, abc=4. 求a 、b 、c 中的最大者的最小值.分析:此例字母较多,由已知可联想到用根与 系数的关系,构造方程来解。

解:设c 为最大者,由已知可知,c>0,得:a+b=2-c, ab=4,则 a 、b 可以看作 x 2(2 c )x 40 的两c c1 (xy )2=11 ~4 x1 4y 4(27)2根,因为 a 、b 是实数,所以(2 c )24^ 0,即 c 7c 3 4c 2 4c 16 0, (c 2)( c 2)(c 4) 0,得 c 2 或 c 4,因为 C 是 最大者,所以c的最小值是4.四、构造图形求最值例5:使x 24 (8—x )2—16取最小值的实数X 的值 为______ 」分析:用一般方法很难求出代数式的最值 ,由于 X 24(8一XL16=心―0厂(0一2)28厂(0一4)2,于是可构造图形,转化 为:在x 轴上求一点c (x,0),使它到 『 两点A (0,2)和B (8, 4)的距离 * 和CA+CB 最小,利用对称可求出 C 点坐标,这样,通过构造图形使问 题迎刃而解。

巧学数学常考考点最值问题的5大妙解方法

巧学数学常考考点最值问题的5大妙解方法

巧学数学常考考点最值问题的5大妙解方法方法一、函数法(1)利用已知函数性质求最值.已知函数解析式,直接利用已知的基本初等函数的性质(最值、单调性、奇偶性等)是函数法的主要类型之一.(2)构建函数模型求最值很多最值问题需要先建立函数模型,再利用函数性质求解.建立函数模型的关键是找到一个变量,利用该变量表达求解目标,变量可以是实数,也可以是角度(弧度实际上也可以看作一个实数),建立函数模型需要注意建立的函数模型的定义域.点评已知E点在线段AD上移动,利用共线向量定理设出变量x,建立求解目标关于x的函数关系后利用函数性质求解.方法二、不等式法(1)利用基本不等式求最值.基本不等式法是求最值的常用方法之一,使用基本不等式时要注意:①基本不等式的使用条件和等号是否能够成立;②变换已知不等式使之符合使用基本不等式的条件.(2)建立求解目标的不等式求最值.把求解目标归入一个不等式,通过解不等式得出目标最值,是求最值的常用方法之一,在解析几何中求离心率的最值、一般问题中求参数最值时经常使用.方法三、导数法(1)直接使用导数求最值.三次函数、指数、对数与其他函数综合的函数求最值时要利用导数法.基本步骤:确定单调性和极值,结合已知区间和区间的端点函数值确定最值.(2)构造函数利用导数求最值不等式恒成立问题的一个基本处理方法是转化为函数最值问题,需要通过构造函数求函数最值,而求函数最值时导数方法最有效.注意使用导数求函数最值的基本步骤.方法四、数形结合法(1)曲线上的点与直线上点的距离的最值求与直线不相交的曲线上的点与该直线的距离最值最直观的方法就是“平行切线法”,这种方法是数形结合思想的具体体现.(2)根据求解目标的几何意义求最值把求解目标的代数表达式赋予其几何意义,就可以把代数问题转化为几何问题、函数问题解决.常见的目标函数的几何意义有:两点连线的斜率、两点间的距离、直线上的点与曲线上的点的距离等.方法五、构造法(1)构造函数求最值对任意实数a,b,当a≠b时,一定存在实数λ,使得a=λb,使用这个知识,可以把某些以比值形式出现的二元不等式转化为一元不等式.(2)构造模型求最值根据求解目标的特点,通过联想已知知识构造恰当的模型(如正方形、正方体、函数、数列等)求解最值.。

人教版数学-备课资料巧构“定值求最值.

人教版数学-备课资料巧构“定值求最值.

巧构“定值”求最值我们知道运用均值不等式求最值时,有“积一定和最小,和一定积最大”。

因此构造定值是解决这类最值问题的关键。

以下就介绍常见的定值构造技巧,大家仔细体会 一、添(减)项 例1、已知31->x ,则函数1313++=x x y 的最小值为 解:由31->x 知013>+x ,而函数11)131)(13(21131)13(1313=-++≥-+++=++=x x x x x x y 当仅当13113+=+x x ,即0=x 时等号成立,所以函数的最小值是1 二、配凑系数例2-1、已知R y x ∈,,且,1222=+y x 则21y x +的最大值是 解:22222122221222112222=+=++≤+=+y x y x yx当仅当⎪⎩⎪⎨⎧=++=1222222y x y x 即0,2==y x 时,等号成立,所以21y x +的最大值是2例2-2、已知0,0>>y x ,且1232=+y x ,求y x lg lg +的最大值及相应的y x ,值 解:,0,0>>y x 且1232=+y x 6)232(61)3()2(612=+≤⋅=∴y x y x xy 所以6lg lg lg lg ≤=+xy y x 当仅当632==y x 即2,3==y x 时等号成立 从而当2,3==y x 时,y x lg lg +的最大值是6lg 三、拆分项例3-1、求函数)1(110102->+++=x x x x y 的最小值解:01,1>+∴->x x ,所以11)1(8)1(1101022+++++=+++=x x x x x x y=108)11)(1(2811)1(=+++≥++++x x x x 当仅当111+=+x x 即0=x 时等号成立例3-2、已知0>x 求函数)21()(2x x x f -=的最大值 解:271)321()21()21()(32=-++≤-⋅⋅=-=x x x x x x x x x f 当仅当x x 21-=,即31=x 时等号成立,所以函数)21()(2x x x f -=的最大值为271 四、“1”的代换例4-1、已知,0,0>>y x 且32=+y x ,求yx 11+的最小值 解:因为,0,0>>y x 32=+y x ,所以2321)223(31)223(31)23(31)2)(11(3111+=+=+≥++=++=+y x x y y x x y y x y x y x 当仅当32,2=+=y x yxx y ,即2)22(3),12(3-=-=y x 时等号成立故y x 11+的最小值是2321+ 例4-2、已知,10<<x 求xx -+1169的最小值 解:x x -+1169=)]1()[1169(x x x x -+-+]116)1(9[169xxx x -+-++=4943225116)1(9225=⨯⨯+=--+≥xxx x当仅当,116)1(9x x x x -=-即73=x 时等号成立,所以xx -+1169的最小值为49 五、条件变形转换例5-1、已知a ,b 为正常数,x ,y 为正实数,且1=+ybx a ,求x+y 的最小值。

巧用“三招”解答函数最值问题

巧用“三招”解答函数最值问题

方法集锦函数最值问题是一类综合性的问题,常将三角函数、数列、不等式、函数、圆锥曲线等知识点融合在一起考查.同学们在面对不同题型时,要学会见招拆招、有的放矢.本文主要介绍解答函数最值问题的“三招”.一、利用三角函数的有界性我们知道正弦、余弦、正切函数都具有有界性,如x ∈R ,则||sin x ≤1,||cos x ≤1.在求函数的最值时,可以通过三角恒等变换,将问题转化为正弦、余弦、正切函数的最值问题,然后利用正弦、余弦、正切函数的有界性来求函数的最值.例1.求函数y =3sin 2x -6sin x cos x +11cos 2x 的最值.解:y =3∙1-cos 2x 2-3sin 2x +11∙1+cos 2x2=7-sin 2x -4cos 2x =7-5cos(2x +ϕ),∵||cos(2x +ϕ)≤1,∴y min =7-5=2;y max =7+5=12.本题主要考查了三角函数的最值.首先运用二倍角公式对sin 2x ,cos 2x 进行转化,使三角函数式中的角、次数统一,然后运用辅助角公式将三角函数式化为只含有余弦的式子,最后利用余弦函数的有界性求得函数的最值.二、利用换元思想有些函数式比较复杂,如含根式、多个变量等,我们很难直接求出函数的最值,此时可以利用换元思想来求解,将函数式中的某一部分式子或者整体用一个新元代替,通过换元将复杂的式子简化,从而将问题转化为常规的函数最值问题.常见的换元方法有三角换元、均值换元、对称换元等.例2.求函数y =x +1-x 的最值.解:令t =1-x (t ≥0),则x =1-t 2,所以y =-t 2+t +1=-(t -1t )2+54,因为t =12∈[)0,+∞,所以f (x )max =f (0)=54.运用换元思想能够极大程度地简化函数式.同学们要仔细观察函数式的结构、特征,恰当地进行换元.当遇到a 2+b 2=1类型的式子时,可令a =sin x ,b =cos x ,进行三角换元;当遇到a +b =m (m 为常数)类型的式子时,可令a =m 2+λ,b =m 2+γ,进行均值换元;等等.在换元后,通常可利用函数的图象和性质,或者基本不等式求得最值.三、利用判别式法在遇到形如y =ax 2+bx +c dx 2+ex +f及y =ax +b ±cx 2+dx +e 的二次函数最值问题时,我们可以将问题转化为二次方程问题,根据函数的定义域,确定判别式与0之间的关系,通过解不等式求出函数的最值.例3.当0≤x ≤1时,求函数y =2x 2-5x +23x 2-10x +3最值.解:将函数式变形可得(3y -2)x 2+(5-10y )x +(3y -2)=0,由Δ≥0,可得()5-10y 2-4(3y -2)2≥0,解得y ≥1916或y ≤14,即f (x )极小值=916,f (x )极大值=14,当y =14时,x =1;y =916时,x =-1(不符合题意),而x =0时,f (x )=23,所以函数y =2x 2-5x +23x 2-10x +3的最大值为f (0)=23.值得注意的是,在利用判别式法求函数的最值时,求出的y 是值域而不是最值,此时同学们要注意考虑定义域的范围,可以将极大值、极小值分别代入函数式中进行检验,结合定义域的范围进行综合考虑.函数的最值问题是高中数学中常考的一类问题.解答此类问题的方法有很多,除了上述“三招”之外还有配方法、数形结合法、导数法等.有些题目往往需要同时运用几种方法来综合求解,因此同学们在解题时,不要局限于使用某种方法,要注意灵活应变.(作者单位:山东省胶州市第二中学)48。

巧求“最值”问题八种方法

巧求“最值”问题八种方法
1 1
Байду номын сангаас
4 + 4 一 1 ≥ O,( 4 2 ( 一 2 ( 一 4 9 0, O f c 6 f )f )f ) - 得 < ≤
2或 c 4 因 为 C 最 大 者 , 以 c 最 小 值 是 4 ≥ , 是 所 的 .
4 构 造 图 形 求 最 值
例 5 使  ̄z +4  ̄( 一 41 取最 小值 的 实 / 4 / 8 ) - 6 -







( 1 +( 一 ) 2 的 小 必 有z ) — 一, 一 。 1 要求 最 值,须
、 Z 1

所 以 一 — z一 2 令 Y 0 得 o , 一 ,

1 , / 一亡 一0 解 得 z , —0 且 ̄ z , 一1 于是 当 z 一1时 , 一


1 利 用 配 方 求 最 值
例 1 若 z Y是 实 数 , - 一x 4 Y 一 3 , 则 z y - 。 x一 3 + y 19 9 9的 最 小 值 是 ( 98年 数 学 新 蕾 竞 赛 题 ) 19 . 分 析 与 解 :由 于 是 二 次 多 项 式 , 以直 接 用 完 全 平 难 方公 式 , 以用 配 方 法 来 解 更 为 简 捷 . 所
数 z的 值 为 ( 0 6年 全 国初 中数 学 竞 赛 试 题 ) 20 . 分 析 与解 :用 一 般 方 法 很 难 求 出 代数 式 的 最 值 , 由
原式一÷ ( x Y) ÷ ( x 9 4 z 一2y 4 - 4 - z 一6 ) - 4 -
1 1 1

于 是 构 造 如 图 所 示 . A( , 作 0 2 关 于 z轴 的 对 称 点 A ( , 2 , ) 0 一 ) 令 直 线 A B 的 解 析 式 为 y— k 4 x -

高中数学函数最值问题的解题思路与举例

高中数学函数最值问题的解题思路与举例

高中数学函数最值问题的解题思路与举例在高中数学中,函数最值问题是一个常见且重要的考点。

解决这类问题需要运用一定的解题思路和技巧。

本文将介绍一些常见的函数最值问题及其解题思路,并通过具体的例子来说明。

一、函数最值问题的基本概念和解题思路函数最值问题是指在一定的条件下,求函数的最大值或最小值。

解决这类问题的基本思路是找到函数的极值点,然后比较这些极值点的函数值,得出最值。

对于一元函数,我们可以通过求导数的方法来求解极值点。

具体步骤如下:1. 求函数的导数;2. 令导数等于零,解方程得到极值点;3. 比较这些极值点的函数值,得出最值。

对于二元函数,我们可以通过偏导数的方法来求解极值点。

具体步骤如下:1. 求函数的偏导数;2. 令偏导数等于零,解方程得到极值点;3. 比较这些极值点的函数值,得出最值。

二、函数最值问题的举例及解析1. 求函数 y = x^2 在区间 [0, 2] 上的最大值和最小值。

解析:首先,我们求函数的导数:y' = 2x。

令导数等于零,得到 x = 0。

将 x = 0 代入函数,得到 y = 0。

所以函数在 x = 0 处取得最小值 0。

然后,我们比较区间的两个端点和极值点的函数值。

将 x = 0、x = 2 代入函数,得到 y(0) = 0,y(2) = 4。

所以函数在区间 [0, 2] 上的最大值为 4。

综上所述,函数 y = x^2 在区间 [0, 2] 上的最大值为 4,最小值为 0。

2. 求函数 y = x^3 - 3x 在区间 [-2, 2] 上的最大值和最小值。

解析:首先,我们求函数的导数:y' = 3x^2 - 3。

令导数等于零,解方程得到 x = ±1。

将 x = ±1 代入函数,得到 y(1) = -2,y(-1) = 2。

所以函数在 x = ±1 处取得极值。

然后,我们比较区间的两个端点和极值点的函数值。

将 x = -2、x = 2 代入函数,得到 y(-2) = -14,y(2) = 10。

解几最值求有妙法,构造函数多方出击-高考数学一题多解

解几最值求有妙法,构造函数多方出击-高考数学一题多解

解几最值求有妙法,构造函数多方出击一、攻关方略与圆锥曲线有关的最值或范围问题大都是综合性问题,解法灵活,技巧性强,涉及代数函数、三角函数、平面几何等方面的知识,求最值常见的解法有几何法和代数法两种,若题目的条件和结论能明显体现几何特征及意义,如与圆锥曲线的定义相关或涉及过焦点的弦长、焦半径、焦点三角形等,则考虑利用图形性质来解决;若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,圆锥曲线中的最值问题的载体是直线与圆锥曲线的关系,特别是相交所引出的图形的最值问题,大致可分为两类:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.本讲重点放在用目标函数法求最值的策略.建立目标函数解与圆锥曲线有关的最值问题是一种常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,比如转化为二次函数或三角函数的最值问题,然后利用配方法、基本不等式、函数的单调性或三角函数的有界性等,尤其是对复杂函数解析式的再构造,其方法并非唯一,不同的构造必有多种不同的解法,或繁或简,通过解题经验的积累,尽可能找到最为巧妙的构造,得到最为简捷的解法,真可谓:解几最值求有妙法,构造函数多方出击.思维发散或繁或简,纵横联结枝繁叶茂.【典例】已知点()0,2A -,圆2222:1x y E a b +=(0a b >>F 是椭圆E的右焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与椭圆E 相交于P ,Q 两点,当OPQ △的面积最大时,求l 的方程.解题策略解析几何是用代数方法研究几何问题的一门数学学科,代数方法当然离不开比较复杂的计算,高考命题特别提出“多考想,少考算”,突出考查学生分析推理、转化的数学逻辑思维能力,如何在解析几何中避免繁杂、冗长的计算,即简化计算,也就成了处理这类问题的难点与关键,解析几何题目中常用的简化运算的技巧有:圆锥曲线的概念、条件等价转化、以形助数、设而不求以及通过构造以巧妙的方法减少运算量等,本例第(1)问,根据已知条件,利用基本量求椭圆方程;第(2)问,先建立OPQ △面积的函数表达式,再求最值,其中函数变量的选取尤为重要,不同的解析式有不同的求最值的方法.策略一由弦长公式求PQ ,由点到直线距离公式求d ,由12=⋅S PQ d 得解析式,换元法转化为用基本不等式求最值和l 的方程策略二由POQ AOQ AOP S S S =-△△△得函数解析式再进一步求解策略三利用坐标法求解析式再进一步求解(1)解:设(c,0)F ,由条件知,23c =,得c =又2c a =,∴2a =,2221b a c =-=,故E 的方程为2214x y +=.(2)解法一当l x ⊥轴时,不合题意,故设:2l y kx =-,()11,P x y 、()22,Q x y ,将2y kx =-代入椭圆方程,整理得()224116120k x kx +-+=.则()()222(16)48411643k k k ∆=-+=-当0∆>,即234k >时由弦长公式得12||PQ x =-==.又由点到直线的距离公式得点O 到直线l的距离d =∴OPQ △的面积221||24141S PQ k k d ===++⨯.t =,244144t S t t t ==++.则2243k t =+且0t >,当4t t =,即2t =时,OPQ △2=,解得2k =.故所求直线l的方程为2y =-或2y =-.解法二设直线:2l y kx =-交椭圆E 于()11,P x y ,()22,Q x y .且P 在线段AQ 上.由222,440y kx x y =-⎧⎨+-=⎩得()224116120k x kx +-+=,1221641k x x k +=+,1221241x x k =+.由0∆>得234k ≥.则21122POQ AOQ AOP S S S x x =-=⨯-==△△△同解法一得所求直线l 的方程为2y =-或2y =-.解法三设l 的方程为2y kx =-,与椭圆方程联立得222,44,y kx x y =-⎧⎨+=⎩消去y 整理得()224116120k x kx +-+=.则1221641k x x k +=+,1221241x x k =+,且由0∆>,得234k >.设点P 、Q 的坐标分别为()11,x y ,()22,x y .点O 的坐标为(0,0),用坐标法求OPQ △的面积S 可表示为11221112001x y S x y =.即()()1221122112112222S x y x y x kx x kx x x =-=---=-⎡⎤⎣⎦241k k ==+.同解法一得所求直线l 的方程为2y =-或2y =-.【点评】运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,【针对训练】1.已知椭圆的方程为22143x y +=,1F ,2F 分别为椭圆的左、右焦点,线段PQ 是椭圆上过点2F 的弦,则1PFQ △内切圆面积的最大值为______.2.已知抛物线2:4C y x =上一点()4,4M -,A ,B 是抛物线C 上的两动点,且0MA MB ⋅= ,则点M 到直线AB 距离的最大值是______.(2021全国乙卷理11)3.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦(2021全国新高考Ⅰ卷5)4.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.6.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.(2022·浙江)7.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(1)若116=p ,求抛物线2C 的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.(2022·浙江)8.如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.(2019年高考数学浙江卷第21题)9.如图所示,已知点()1,0F 为抛物线22y px =(0p >)的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧,记AFG 、CQG 的面积分别为1S ,2S.(1)求p 的值及抛物线的准线方程;(2)求的12S S 最小值及此时点G 的坐标.10.如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I)求直线AP斜率的取值范围;PA PQ的最大值(II)求·参考答案:1.9π16【分析】()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△,解法一:112PF Q S PQ d =⋅ ,点1F 到直线PQ 的距离为d .由弦长公式和点到直线距离公式,求最大值.解法二:1121212PF Q S F F y y =- ,由弦长公式和基本不等式求最大值.【详解】解法一如图所示,1PFQ △的()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△.当直线PQ 的斜率不存在时,易得||3PQ =,此时1121||32PF Q S F F PQ =⋅⋅=△,∴34r =;当直线PQ 的斜率为k 时,直线PQ 的方程为(1)y k x =-.将(1)y k x =-代入22143x y +=,并整理得:()22224384120k x k x k +-+-=.设()11,P x y 、()22,Q x y ,则2122843k x x k +=+,212241243k x x k -=+.||PQ ==()2212143k k +==+.∵点1F 到直线PQ 的距离d =.则12112|||243PF Qd k S PQ k ==⋅+△,则()()()()222222222211124331PFQ k k k k S k k k ++⎛⎫== ⎪⎡⎤⎝⎭+++⎣⎦△,设21u k =+,2v k =,则122112(3)96PF Q S uv u v u v v u⎛⎫== ⎪+⎝⎭⨯++△,且2211u k v k +=>,设(1)u t t v=>,设1()96f t t t =++,则21()9f t t '=-,当1t >时,()0f t '>,∴96(1)16u v f v u ⋅++>=,则1212116PF Q S ⎛⎫ ⎪⎝<⎭△,∴13PF Q S <△,∴34r <.综上,当直线PQ 垂直于x 轴时,1PFQ △的内切圆半径r 取得最大值34,∴1PFQ △的内切圆面积的最大值为9π16.解法二显然直线PQ 的斜率不为0,故可设其方程为1x my =+,将1x my =+代入22143x y+=,并整理得()2234690m y my ++-=,设()11,P x y ,()22,Q x y ,则122634m y y m +=-+,122934y y m =-+,∴1121221234PF Q S F F y y m =-===+△121,令1t ≥.设1()3f t t t =+,则21()3f t t'=-,则当1t >时,()0f t '>[]1,+∞,∴(1)4f =≥(当0m =时等号成立),∴1PF Q S △的最大值为3.此时1344PF Q S r ==△,即r 的最大值为34.∴1PFQ △的内切圆面积的最大值为9π16.故答案为:9π162.【分析】解法一:首先利用坐标表示直线MA ,MB 和直线AB 的斜率,并利用坐标表示1MA MB k k ⋅=-,代入直线AB 的方程,化简求直线所过定点,利用几何法表示点M 到直线AB距离的最大值;解法二:利用1MA MB k k ⋅=-得()()12124324y y y y y x +-++=,利用换元得直线AB 的方程为44320x ty t -+-=,列出点到直线距离公式d ==关系求函数最大值;解法三:首先设直线AB 的方程为x ky b =+,与抛物线方程联立,并利用韦达定理表示0MA MB ⋅=,得22123616164b b k k -+=-+,化简后表示,k b 的关系,可求得定点坐标,再利用两点距离表示点到直线距离的最大值.【详解】解法一:如图所示,设()11,A x y ,()22,B x y ,则直线MA 的斜率为()()()11111144444444MA y y k x y y y ++===-+--.同理可得直线MB 的斜率为244MB k y =-.直线AB 的斜率为12122212121244AB y y y y k y y x x y y --===--+.由1244144MA MB k y y k =⨯=---⋅,得()1212432y y y y -+=-.又直线AB 的方程为()11124y y x x y y -=-+,故()12124y y y y y x +-=.∴()()12124324y y y y y x +-++=.即()12(4)4(8)y y y x +-=-,∴直线AB 过定点()8,4P .点M 到直线AB距离的最大值为||MP ==解法二:同解法一得()()12124324y y y y y x +-++=.令12y y t +=,则直线AB 的方程为44320x ty t -+-=.点M 到直线AB的距离d ==令2t s -=,则有d =,当10s =-时等号成立,即点M 到直线AB距离的最大值为解法三:设直线AB 的方程为x ky b =+,211,4y A y ⎛⎫⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭.由24x ky by x=+⎧⎨=⎩,得2440y ky b --=.∴()2160k b ∆=+>,124y y k +=,124y y b =-.∴0MA MB ⋅= ,即2212124,44,4044y y y y ⎛⎫⎛⎫-+⋅-+= ⎪ ⎪⎝⎭⎝⎭,∴()()22212121212122432016y y y y y y y y y y ⎡⎤-+-++++=⎣⎦.①把121244y y ky y b+=⎧⎨=-⎩代入(1)式整理得22123616164b b k k -+=-+.即22(6)(42)b k -=-,∴48b k =-+或44b k =+.当44b k =+时,直线AB 的方程为(4)4x k y =++,恒过点(4,4)-M ,不符合题意;当48b k =-+时,直线AB 的方程为(4)8x k y =-+,恒过点()8,4P ,符合题意.∴点M 到直线AB的距离的最大值是||MP =故答案为:3.C【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.4.C【分析】法一:根据椭圆定义得到1226MF MF a +==,结合基本不等式进行求解;法二:设出()00,M x y ,使用焦半径结合033x -≤≤进行求解.【详解】法一:由题意,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).法二:设()00,M x y ,033x -≤≤,由焦半径公式可得:1002003,3MF a ex MF a ex =+=+=-=-,故21200053399MF MF x x ⎛⎫⎛⎫⋅=+⋅=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为033x -≤≤,所以2009x ≤≤,当200x =,即00x =时,12MF MF ⋅取得最大值,最大值为9.故选:C .5.(1)24y x =(2)13【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,代入抛物线方程,进而可得20025910y x +=,可得点Q 的轨迹,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥=,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.6.(1)2p =(2)()max = PAB S 【分析】(1)方法一利用两点间距离公式求得FN 关于圆M 上的点()00,N x y 的坐标的表达式,进一步转化为关于0y 的表达式,利用二次函数的性质得到最小值,进而求得p 的值;方法二,利用圆的性质,F 与圆22:(4)1M x y ++=上点的距离的最小值,简洁明快,为最优解;(2)方法一设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求得两切线方程,由切点弦方程思想得到直线AB 的坐标满足方程00220x x y y --=,然手与抛物线方程联立,由韦达定理可得1202x x x +=,1204x x y =,利用弦长公式求得AB 的长,进而得到面积关于()00,P x y 坐标的表达式,利用圆的方程转化得到关于0y 的二次函数最值问题;方法二,同方法一得到1202x x x +=,1204x x y =,过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .由121||2PAB S PQ x x =⋅- 求得面积关于()00,P x y 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线:AB l y kx b =+,联立直线AB 和抛物线方程,利用韦达定理判别式得到20k b +>,且12124,4x x k x x b +==-.利用点P 在圆M 上,求得,k b 的关系,然后利用导数求得两切线方程,解方程组求得P 的坐标(2,)P k b -,进而利用弦长公式和点到直线距离公式求得面积关于b 的函数表达式,然后利用二次函数的性质求得最大值;【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,0,2p F ⎛⎫ ⎪⎝⎭,设圆M 上的点()00,N x y ,则()22041++=x y .所以()()22001453=-+-≤≤-x y y .从而有||=FN =因为053y -≤≤-,所以当03y =-时,min ||4==FN .又0p >,解之得2p =,因此2p =.[方法二]【最优解】:利用圆的几何意义求最小值抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法抛物线C 的方程为24x y =,即24x y =,对该函数求导得=2xy ',设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅=-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB的面积取最大值321202⨯=[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值同方法一得到1201202,4+==x x x x x y .过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y.()32221200001111||242222⎛⎫=⋅-=-=- ⎪⎝⎭PABS PQ x x x y x y .P 点在圆M 上,则00cos ,4sin ,x y αα=⎧⎨=-+⎩()()333222222001114cos 4sin 16(sin 2)21222ααα⎡⎤=-=-+=-++⎣⎦ PABS x y .故当sin 1α=-时PAB 的面积最大,最大值为[方法三]:直接设直线AB 方程法设切点A ,B 的坐标分别为211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭.设:AB l y kx b =+,联立AB l 和抛物线C 的方程得2,4,y kx b x y =+⎧⎨=⎩整理得2440x kx b --=.判别式2Δ16160=+>k b ,即20k b +>,且12124,4x x k x x b +==-.抛物线C 的方程为24x y =,即24x y =,有2x y '=.则()2111:42-=-PA x x l y x x ,整理得21124x x y x =⋅-,同理可得222:24=⋅-PB x x l y x .联立方程211222,24,24x x y x x xy x ⎧=⋅-⎪⎪⎨⎪=⋅-⎪⎩可得点P 的坐标为1212,24x x x x P +⎛⎫ ⎪⎝⎭,即(2,)P k b -.将点P 的坐标代入圆M 的方程,得22(2)(4)1+-+=k b ,整理得221(4)4b k --=.由弦长公式得12||=-=AB x=点P 到直线AB的距离为d =所以21||222==+== PABS AB d k b=其中[5,3]=-∈--P y b ,即[3,5]∈b .当5b =时,()max = PAB S 7.(1)1(,0)32(2)max p 【分析】(1)根据抛物线的焦点坐标公式求解即可;(2)设直线:l x y m λ=+,与椭圆联立,结合韦达定理得到中点M 的坐标,代入抛物线,再将直线与抛物线联立,结合韦达定理用参数表示点A 坐标,再将椭圆与抛物线联立得到点A 坐标,结合均值不等式,分析即得解.【详解】(1)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(2)由题意,直线l 的斜率不为0,设()()()112200,,,,,,:A x y B x y M x y l x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩,1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++,由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y m λλλ⎧=⇒=+⇒--=⎨=+⎩,012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒=-+222221822228162p p p m p p p λλλλλ+⇒-++⋅=++≥+,18p ≥,21160p ≤,p ≤所以,p,此时A .8.(1)24y x=(2)(,7[7(1,)-∞---++∞ .【分析】(1)根据2MF =,求p ,再求抛物线方程;(2)方法一:主要是用()()1122,,,A x y B x y 坐标表示直线,MA MB ,利用弦长公式将线段长度关系转为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围;方法二:利用焦点弦的性质求得直线,MA MB 的斜率之和为0,再利用线段长度关系即为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法三:利用点,A B 在抛物线上,巧妙设点坐标,借助于焦点弦的性质求得点,A B 横坐标的关系,这样有助于减少变元,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)[方法一]:通式通法设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,所以直线:2yl x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=,因为2RN PN QN =⋅,故2R P Q ⎫=⎪⎪⎭,故2R P Q y y y =⋅.又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦,整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭,()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x 轴上的截距的范围为7n ≤--71n -+<或1n >.[方法二]:利用焦点弦性质设直线AB 的方程为11x k y =+,直线MA 的方程为21x k y =-,直线MB 的方程为31x k y =-,直线l 的方程为221212,,,,,(,0)244y y y x m A y B y N m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由题设可得1m ≠且112k ≠.由121,4x k y y x=+⎧⎨=⎩得21440y k y --=,所以121124,4y y k y y +==-.因为2112231121114,44y y y k k y y y +==+=+,12121223111212110444y y y y y y k k k k y y y y ++∴+=++++=-=,()21221212231121212111111441642y y y y y y k k k y y y y y y +⎛⎫⎛⎫=++=+⋅+-=-- ⎪⎪⎝⎭⎝⎭.由21,2x k y y x m =-⎧⎪⎨=+⎪⎩得2112p m y k +=-.同理3112Q m y k +=-.由11,2x k y y x m =+⎧⎪⎨=+⎪⎩得1112R m y k -=-.因为2||||||RN PN QN =⋅,所以2R P Q y y y -⋅=即222211231(1)(1)13112422m m m k k k k ⎛⎫ ⎪-++== ⎪⎛⎫⎛⎫ ⎪-+--- ⎪⎪⎝⎭⎝⎭⎝⎭.故22121314112k m m k ++⎛⎫= ⎪-⎝⎭⎛⎫- ⎪⎝⎭.令112t k =-,则222221111113311244m t t m t t t t +++⎛⎫⎛⎫==++=++≥ ⎪ ⎪-⎝⎭⎝⎭.所以210,1410,m m m -≠⎧⎨++≥⎩,解得7m ≤--71m -+≤<或1m>.故直线l 在x轴上的截距的范围为(,7[7)(1,)-∞---++∞ .[方法三]最优解设()()22,2(0),,2A a a a B b b >,由,,A F B 三点共线得22222221b a ab a a b a -==-+-,即1ab =-.所以直线MA 的方程为22(1)1a y x a =++,直线MB 的方程为2222(1)(1)11b ay x x b a -=+=+++,直线AB 的方程为22(1)1ay x a =--.设直线l 的方程为2(2)y x m m =+≠-,则222(2)(2)(2),,,1112P Q R N m a m a m a my y y x a a a a a a ----====--+++--.所以()()2222222222(2)(2)||||||11m a m a RN PN QN aa aa +-=⋅⇔=--+-.故()()2222222222221112(1)2140,2133111a a a m t t t a m t t a a a a ⎛⎫-- ⎪--+--+⎛⎫⎡⎤⎝⎭====∈ ⎪⎢⎥-++⎝⎭⎣⎦⎛⎫+-+- ⎪⎝⎭(其中1t a a =-∈R ).所以(,14[14)m ∈-∞-++∞ ,且2m ≠-,因此直线l 在x轴上的截距为(,7[7(1,)2m-∈-∞---++∞ .9.(1)2p =,=1x -(2)最小值为1(2,0).【分析】(1)根据焦点坐标求解p ,再根据准线方程公式求解即可;(2)直线AB 的方程为(1)y k x =-,与抛物线联立,得到关于y 的韦达定理,用坐标表示12S S ,求得取得最小值时t 的值,再由()()22212312311312G x x x x y y y =++=++,结合韦达定理,求解即可.【详解】(1)由题意得12p=,即2p =,∴抛物线的准线方程为=1x -.(2)设()11,A x y ,()22,B x y ,()33,,C x y 不妨设12y y >,又Q 在点F 的右侧,故1230y y y >>>,又直线AB 的方程为(1)y k x =-.联立2(1)4y k x y x =-⎧⎨=⎩,得2440y y k --=,∴124y y =-.1112AGB AGB AF y S S S AB y y ==-△△,3231AGC AGC CQ y S S S CA y y -==-+△△,由G 为ABC 的重心,有AGB AGC S S =△△,且1230y y y ++=.故2424211311121111122422421231212121121224242416S y y y y y y y y y y y S y y y y y y y y y y y y y -++---=⋅=⋅===---+---.令12S n S =,21y t =,则222416t t n t -=-,即2(2)4160n t t n --+=.①当2n =时,122S S =,此时8t =;②当2n ≠时,二次方程至少有一个正根,故0∆≥,解得22n ≥,若方程有两个非正根,此时12124021602x x n n x x n ⎧+=≤⎪⎪-⎨⎪=≥⎪-⎩,不等式组无解,故22n +≥,即12min1S S ⎛⎫=+ ⎪⎝⎭8t =+.()()()222222123123121211131212G x x x x y y y y y y y ⎡⎤=++=++=+++⎣⎦()22121216y y y y =++.而218y t ==+2221168y y ==-,故G 点坐标为(2,0).10.(I )(-1,1);(II )2716.【详解】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+,因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA12x +1)k +,|PQ|=2)Q x x -=-,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2'()(42)(1)f k k k =--+,所以f (k )在区间1(1,2-上单调递增,1(,1)2上单调递减,因此当k =12时,||||PA PQ ⋅取得最大值2716.【点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.。

巧求最值问题八种方法

巧求最值问题八种方法

如何求“最值”问题求最大值与最小值是中学数学常见的一种题型,在数学竞赛中作为一个靓点大量存在,解这类题有一定的难度和技巧,所以不少同学为之感叹,这里向大家介绍一些求最值问题的方法与技巧。

一、 利用配方求最值例1:若x,y 是实数,则19993322+--+-y x y xy x 的最小值是 。

分析:由于是二次多项式,难以直接用完全平方公式,所以用配方法来解更为简捷。

原式=1990)96(21)96(21)2(212222++-++-++-y y x x y xy x =1990)3(21)3(21)(21222+-+-+-y x y x 显然有 (x-y)2≥0, (x-3)2≥0, (y-3)2≥0,所以 当x-y=0,x-3=0,y-3=0时 ,得x=y=3时, 代数式的值最小,最小是1990; 例2,设x 为实数,求y=312-+-xx x 的最小值。

分析:由于此函数只有一个未知数,容易想到配方法,但要注意只有一个完全平方式完不成,因此要考虑用两个平方完全平方式,并使两个完个平方式中的x 取值相同。

由于y=121122--+++-x x x x =1)1()1(22--+-xx x ,要求y 的最小值,必须有x-1=0,且01=-x x ,解得x=1,于是当x=1时,y=312-+-xx x 的最小值是-1。

二、 利用重要不等式求最值例3:若xy=1,那么代数式44411y x +的最小值是 。

分析:已知两数积为定值,求两数平方和的最小值,可考虑用不等式的性质来解此题,44411y x +=2222222)(121·1·2)21()1(xy y x y x =≥+=1 所以:44411y x +的最小值是1 三、 构造方程求最值例4:已知实数a 、b 、c 满足:a+b+c=2, abc=4.求a 、b 、c 中的最大者的最小值. 分析:此例字母较多,由已知可联想到用根与系数的关系,构造方程来解。

数学高考必备技巧如何快速解决函数题中的最值问题

数学高考必备技巧如何快速解决函数题中的最值问题

数学高考必备技巧如何快速解决函数题中的最值问题在数学高考中,函数题是一个较为常见的题型。

而函数题中的最值问题,往往是考察学生在解析几何、导数、极限等内容应用能力的重要环节。

为了帮助同学们更好地解决函数题中的最值问题,下面将分享一些数学高考必备技巧。

一、确定函数的定义域在解决函数题中的最值问题时,首先要确定函数的定义域。

因为只有正确确定函数的定义域,才能保证在确定最值时不遗漏结果。

二、化简函数式子在求解函数的最值问题时,化简函数式子是一个常用的技巧。

通过对函数式子进行整理,可以简化计算过程,使问题更容易解答。

三、求函数的导数对函数求导是解决最值问题的常用方法之一。

通过求导,可以得到函数的单调性和极值点的信息,从而帮助我们找到最值点。

四、用导数判断最值点通过函数的导数,我们可以判断函数在某个区间上的单调性,从而确定最值点的大致位置。

当导数为正时,函数单调递增;当导数为负时,函数单调递减。

通过对导数符号的判断,可以排除一部分已知不是最值点的位置。

五、考虑函数在区间端点处的值在解决最值问题时,除了使用导数判断最值点外,还要考虑函数在自变量区间的端点处的取值情况。

通过比较函数在端点处的大小,可以确定最值点的具体位置。

六、用图像法辅助解题对于一些复杂的函数,可以通过画出函数图像的方式来帮助解题。

通过观察函数图像的走向和凹凸性质,可以更加直观地找到函数的最值点。

七、对称性的利用在解决函数最值问题时,有时候可以利用函数的对称性来简化计算。

如利用奇偶函数的性质,可以通过仅计算函数在定义域的一半上的取值情况,得到整个定义域的最值点。

八、注意边界条件在解决函数最值问题时,要特别注意边界条件,比如函数在某些点上无定义,或者在某些点上可能取到无穷大等情况。

这些边界条件的考虑对于正确求解最值问题非常重要。

九、化最值问题为优化问题在解决函数最值问题时,有时可以将最值问题转化为优化问题进行求解。

通过建立相应的优化模型,可以运用最优化理论进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

优化结构巧求最值
——高中数学一道最值问题的巧解
关键词:高中数学、高考数学、解题技巧、结构化思想、均值不等式、对勾函数、最值问题.当我们遇到一个陌生问题时,我们将如何解决?相信此时我们需要结构化的思想,分析陌生问题的结构,研究结构间的关联,并将其变形演化、优化为我们熟知的问题结构.来看下面这个例子:
例:
已知函数()f x =,其中0x >.则 Rom 的最大值是________.分析:这种题目一般出现在压轴的填空题.大家都知道,求最值常用的方法有:配方法、判别式法、函数的单调性、函数的有界性、均值不等式、数形结合等.然而,这道题目的结构和这些方法都不匹配,解题陷入障碍.此时,我们需要认真审视它的结构,去发现结构间的关联,进而合理转化问题结构.
仔细观察,大家可以发现,分子和分母的x 系数中局部有两倍关系,这暗示我们可以通过换元来转化问题的结构.但我们首先必须消除分子分母中x 次数的差别,所以我们分子分母同除x .
解:()364271f x x x x x =++++-令
,由0
x >
得2t ≥+,所以22()1
t f x t =+,令()g t =22211t t t t
=++①,由对勾函数性质知()g t 在t ,
∞m 上单调递减,
所以1()(22g t g ≤+=,此时x = ,所以f (x )≤ .即f (x )的最大值为 .
思考:为什么①式不能用均值不等式求最大值?
总结:本题抓住分子和分母的x 系数中局部的两倍关系,对分子分母同除x ,然后换元优化为大家熟悉的对勾函数的结构,问题迎刃而解.
分析并分解问题的结构,寻找结构间的关联,然后变形转化、优化为我们熟知的问题结构是解决陌生问题的主要途径.
------------------------------------------------
如果本文对你有所启发,请转发给亲朋好友.
如果对相关问题感兴趣,记得关注天郎数学.。

相关文档
最新文档