有理数乘方教案
有理数的乘方教案
有理数的乘方教案一、教学目标:1. 理解有理数乘方的概念,掌握有理数乘方的法则。
2. 能够正确计算正整数、负整数、正分数和负分数的乘方。
3. 能够应用有理数乘方的知识解决实际问题。
二、教学重点:1. 有理数乘方的概念及法则。
2. 不同类型有理数乘方的计算方法。
三、教学难点:1. 有理数乘方的法则的应用。
2. 解决实际问题时的计算方法。
四、教学准备:1. 教学课件或黑板。
2. 练习题。
五、教学过程:1. 导入:通过复习幂的定义,引入有理数乘方的概念。
2. 讲解:讲解有理数乘方的法则,并通过示例进行解释。
a. 正整数乘方:\( a^n = a \times a \times \ldots \times a \)(n 个a)b. 负整数乘方:\( a^{-n} = \frac{1}{a^n} \)c. 正分数乘方:\( a^{\frac{m}{n}} = \sqrt[n]{a^m} \)d. 负分数乘方:\( a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}} \)3. 练习:让学生进行不同类型有理数乘方的计算练习。
4. 应用:通过实际问题,让学生运用有理数乘方的知识进行计算。
5. 总结:对本节课的内容进行总结,强调有理数乘方的法则及应用。
6. 布置作业:布置相关练习题,巩固所学知识。
六、教学拓展:1. 引导学生探讨有理数乘方的性质,如:a. \( (a^m)^n = a^{mn} \)b. \( a^m \times a^n = a^{m+n} \)c. \( \frac{a^m}{a^n} = a^{m-n} \)(a不为0)2. 引导学生思考负整数乘方与负分数乘方的联系和区别。
七、课堂互动:1. 提问环节:让学生回答有理数乘方的概念、法则及应用。
2. 小组讨论:让学生分组讨论有理数乘方的性质,分享彼此的理解和感悟。
八、教学评价:1. 课堂练习:检查学生在课堂上的学习效果,及时发现并解决问题。
七年级数学《有理数的乘方》教案设计优秀5篇
教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。
2.已知一个数,会求出它的正整数指数幂,渗透转化思想。
3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。
教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。
教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。
教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)其中一种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2某2个,1.5小时后分裂成2某2某2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an 中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。
说明:(1)举例94来说明概念及读法。
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。
(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。
(4)乘方是一种运算,幂是乘方运算的结果。
(三)应用迁移,巩固提高【例1】(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值。
(2)注意(-2)4与-24的区别。
根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.【例2】计算:(1)(3; (2)(-)3;(3)(-)4;(4)-;(5)-22某(-3)2;(6)-22+(-3)2.(四)总结反思,拓展升华1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念。
【有理数的乘方教案】
【有理数的乘方教案】一、教学目标1.理解有理数的乘方的概念。
2.掌握有理数乘方的运算法则。
3.能够运用有理数乘方解决实际问题。
二、教学内容1.有理数乘方的概念2.有理数乘方的运算法则3.有理数乘方的应用三、教学重点与难点1.重点:有理数乘方的概念及运算法则。
2.难点:有理数乘方的应用。
四、教学过程1.引入新课师:同学们,我们之前学过有理数的乘法,那么大家知道有理数的乘方吗?生:不知道。
师:今天我们就来学习有理数的乘方。
2.讲解有理数乘方的概念师:我们来看一下有理数乘方的概念。
有理数乘方是指将一个有理数作为底数,将另一个有理数作为指数,进行乘法运算的过程。
例如:2^3表示2乘以2乘以2,即2×2×2=8。
生:有理数乘方是将一个有理数作为底数,将另一个有理数作为指数,进行乘法运算的过程。
3.讲解有理数乘方的运算法则师:我们来看一下有理数乘方的运算法则。
法则1:同底数幂的乘法法则当两个幂的底数相同时,它们的乘法等于底数不变,指数相加。
例如:2^3×2^2=2^(3+2)=2^5=32。
法则2:幂的乘方法则幂的乘方是将底数不变,指数相乘。
例如:(2^3)^2=2^(3×2)=2^6=64。
法则3:积的乘方法则积的乘方是将每个因式分别乘方,然后将所得的幂相乘。
例如:(2×3)^2=2^2×3^2=4×9=36。
师:同学们,我们明白了有理数乘方的运算法则后,进行一些练习。
4.练习(1)计算:2^3×2^2(2)计算:(2^3)^2(3)计算:(2×3)^2生:(1)2^3×2^2=2^(3+2)=2^5=32(2)(2^3)^2=2^(3×2)=2^6=64(3)(2×3)^2=2^2×3^2=4×9=365.应用师:现在,我们来应用有理数乘方的知识解决一些实际问题。
例1:一个正方形的边长为2cm,求它的面积。
有理数的乘方教学设计教案
有理数的乘方教学设计-教案章节一:有理数乘方的概念引入1. 引入有理数的概念,复习有理数的定义和性质。
2. 引导学生思考有理数乘法的运算规则,复习乘法的定义和性质。
3. 提出问题:如果有理数可以进行乘法,有理数能否进行乘方呢?章节二:有理数的乘方运算规则1. 解释有理数乘方的概念,介绍乘方的定义和性质。
2. 通过示例讲解有理数乘方的运算规则,引导学生理解和掌握乘方的计算方法。
\( (-2)^3 \)\( \frac{3}{4}^2 \)\( (-5)\times (-5)\times (-5) \)章节三:有理数的乘方性质1. 引导学生探索有理数乘方的性质,如乘方的分配律、结合律和幂的乘方规则。
2. 通过示例和练习题目,让学生理解和掌握有理数乘方的性质。
\( (-2)^3 \times (-2)^2 = (-2)^(3+2) \)\( \frac{3}{4}^2 \times \frac{3}{4} = \frac{3}{4}^(2+1) \)章节四:有理数的乘方应用1. 引导学生思考有理数乘方在实际问题中的应用,如计算利息、折扣等。
2. 通过示例和练习题目,让学生学会使用有理数乘方解决实际问题。
一本书的原价是20元,打8折后的价格是16元,问打几折后的价格是12元?银行的年利率是5%,本金是10000元,计算一年后的利息是多少?章节五:有理数的乘方综合练习1. 提供一份综合练习题,涵盖有理数乘方的概念、运算规则和应用。
2. 引导学生独立完成练习题,巩固对有理数乘方的理解和掌握。
3. 解答学生的问题,提供指导和帮助,确保学生能够正确理解和应用有理数乘方。
有理数的乘方教学设计-教案章节六:有理数的乘方运算规则(续)1. 回顾上一章节的有理数乘方运算规则,强调乘方的定义和性质。
2. 进一步讲解有理数乘方的特殊情况,如负数的乘方和分数的乘方。
\( (-3)^2 \)\( \frac{1}{2}^3 \)\( (-2)\times (-2)\times (-2) \)章节七:有理数的乘方性质(续)1. 引导学生深入理解有理数乘方的性质,如乘方的分配律、结合律和幂的乘方规则。
有理数的乘方教案
有理数的乘方教案《有理数的乘方》优秀教案《有理数的乘方》优秀教案篇1教学目标1、理解有理数乘方的概念,掌握有理数乘方的运算;2、培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;3、渗透分类讨论思想教学重点和难点重点:有理数乘方的运算难点:有理数乘方运算的符号法则课堂教学过程设计一、从学生原有认知结构提出问题在小学我们已经学习过aa,记作a2,读作a的平方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么读作什么 aaaaa呢在小学对于字母a我们只能取正数进入中学后,我们学习了有理数,那么a还可以取哪些数呢请举例说明二讲授新课1、求n个相同因数的积的运算叫做乘方2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数一般地,在an中,a取任意有理数,n取正整数应当注意,乘方是一种运算,幂是乘方运算的结果当an看作a的n次方的结果时,也可以读作a的n次幂。
3、我们知道,乘方和加、减、乘、除一样,也是一种运算,就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算例1计算:(1)2,2,2,24;(2)-2,2,3,(-2)4;(3)0,02,03,04教师指出:2就是21,指数1通常不写让三个学生在黑板上计算引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系(1)模向观察正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零(2)纵向观察互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等(3)任何一个数的偶次幂都是什么数任何一个数的偶次幂都是非负数你能把上述的结论用数学符号语言表示吗当a0时,an0(n是正整数);当a当a=0时,an=0(n是正整数)(以上为有理数乘方运算的符号法则)a2n=(-a)2n(n是正整数);=-(-a)2n-1(n是正整数);a2n0(a是有理数,n是正整数)例2计算:(1)(-3)2,(-3)3,[-(-3)]5;(2)-32,-33,-(-3)5;(3),让三个学生在黑板上计算教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了课堂练习计算:(1),,,-,;(2)(-1)2001,322,-42(-4)2,-23(-2)3;(3)(-1)n-1三、小结让学生回忆,做出小结:1、乘方的有关概念2、乘方的符号法则3括号的作用四、作业1、计算下列各式:(-3)2;(-2)3;(-4)4;;-0.12;-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)52、填表:3、a=-3,b=-5,c=4时,求下列各代数式的值:(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b24、当a是负数时,判断下列各式是否成立(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=.5、平方得9的数有几个是什么有没有平方得-9的有理数为什么6、若(a+1)2+,b-2,=0,求a2000b3的值课堂教学设计说明1、数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养因此,根据教学内容和学生的`认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标2、数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,an是学生通过类推得到的推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯3、把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号4、有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实《有理数的乘方》优秀教案篇2教学目标1.知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;3.会用科学记数法表示较大的数.教学重点1.有理数乘方的意义,求有理数的正整数指数幂;2.用科学记数法表示较大的数.教学难点有理数乘方结果(幂)的符号的确定.教学过程(教师)问题引入手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条.你能算出拉扣6次后共有多少根面条吗乘方的有关概念试一试:将一张报纸对折再对折……直到无法对折为止.你对折了多少次请用算式表示你对折出来的报纸的层数.你还能举出类似的实例吗1.对于式子(-3)6与-36,下列说法中,正确的是(A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果也不相等2.下列叙述中:①正数与它的绝对值互为相反数;②非负数与它的绝对值的差为0;③-1的立方与它的平方互为相反数;④±1的倒数与它的平方相等.其中正确的个数有(A.1B.2C.3D.4《有理数的乘方》优秀教案篇3教学目标:1、知识与技能:了解科学记数法的意义,会用科学记数法表示绝对值比较大的数。
数学教案-有理数的乘方
数学教案-有理数的乘方一、教学目标1.知识与技能:1.1理解有理数的乘方的概念。
1.2学会计算有理数的乘方。
2.过程与方法:2.1通过实例,培养学生的观察、分析和归纳能力。
2.2通过练习,提高学生解决问题的能力。
3.情感态度与价值观:3.1激发学生对数学学习的兴趣,培养学生积极探究的精神。
3.2培养学生合作学习的意识,提高学生的团队协作能力。
二、教学重点与难点1.重点:有理数乘方的概念及计算方法。
2.难点:掌握有理数乘方的运算规律。
三、教学过程1.导入新课1.1回顾有理数的加法、减法、乘法运算,引导学生思考:有理数的乘方是什么?1.2通过实例,让学生初步感知有理数乘方的概念。
2.探究新知例1:2的3次方是多少?例2:-3的2次方是多少?例3:-5的4次方是多少?2.2让学生尝试用自己的语言描述有理数乘方的概念。
3.讲解有理数乘方的计算方法3.1讲解正有理数的乘方:将正有理数连乘若干次,乘的次数就是指数。
3.2讲解负有理数的乘方:将负有理数的绝对值连乘若干次,乘的次数就是指数,根据乘积的符号确定结果的符号。
4.练习巩固练习1:计算下列各数的乘方。
①2^3②(-3)^2③(-5)^4练习2:判断下列说法是否正确。
①任何有理数的乘方都是正数。
②负数的乘方一定是负数。
③乘方运算就是连乘运算。
4.2讲解练习过程中遇到的问题,让学生充分理解有理数乘方的计算方法。
5.2强调有理数乘方的运算规律,如:同底数幂的乘法、幂的乘方等。
6.课后作业作业1:计算下列各数的乘方。
①3^4②(-2)^5③4^0作业2:判断下列说法是否正确。
①任何有理数的乘方都是正数。
②负数的乘方一定是负数。
③乘方运算就是连乘运算。
四、教学反思本节课通过实例引入有理数乘方的概念,让学生在探究过程中理解有理数乘方的计算方法。
在教学过程中,注意引导学生观察、分析和归纳,培养学生的观察力和思维能力。
通过练习巩固,让学生充分掌握有理数乘方的运算规律。
有理数的乘方的教案
有理数的乘方的教案一、教学目标1、理解有理数乘方的意义。
掌握乘方的概念,能够准确说出底数、指数和幂。
理解负数的奇次幂是负数,负数的偶次幂是正数。
2、掌握有理数乘方的运算。
能够熟练进行有理数的乘方运算。
正确运用乘方运算解决实际问题。
3、培养学生的观察、分析、归纳和运算能力。
二、教学重难点1、重点有理数乘方的概念及运算。
幂的符号法则。
2、难点对乘方意义的理解,尤其是负数的乘方。
灵活运用乘方运算解决实际问题。
三、教学方法1、讲授法讲解有理数乘方的概念、性质和运算规则。
2、练习法通过大量的练习题,让学生巩固所学知识。
3、讨论法组织学生讨论乘方运算中的易错点和解题技巧。
四、教学过程1、导入通过实例引出乘方的概念,如折纸、细胞分裂等。
2、知识讲解11 介绍乘方的定义:求 n 个相同因数 a 的积的运算叫做乘方,记作 a^n ,其中 a 叫做底数,n 叫做指数,乘方的结果叫做幂。
111 举例说明不同底数和指数的乘方表达式,如 2^3、(-3)^4 等。
112 讲解幂的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0 的任何正整数次幂都是 0 。
113 进行乘方运算的示范,如 2^3 = 2×2×2 = 8 ,(-2)^3 =(-2)×(-2)×(-2) =-8 。
3、课堂练习21 安排学生进行简单的乘方运算练习,如 3^2、(-4)^2 等。
211 给出一些含有乘方的混合运算题目,如 2^2 + 3^2 4^2 。
212 巡视学生的练习情况,及时给予指导和纠正。
4、小组讨论31 组织学生分组讨论在乘方运算中容易出错的地方及原因。
311 每组选派代表发言,分享讨论结果。
312 教师对学生的讨论进行总结和补充。
5、实际应用41 给出与实际生活相关的乘方问题,如计算面积、体积等。
411 引导学生运用乘方知识解决问题,并进行交流和展示。
412 对学生的解决方案进行评价和总结。
有理数的乘方教案
有理数的乘方教案一、教学目标1、知识与技能目标理解有理数乘方的意义。
掌握有理数乘方的运算。
2、过程与方法目标通过观察、类比、归纳等活动,培养学生的数学思维能力。
在乘方运算的过程中,提高学生的运算能力和解题技巧。
3、情感态度与价值观目标让学生在自主探索和合作交流中,体验数学学习的乐趣。
培养学生的严谨治学态度和勇于探索的精神。
二、教学重难点1、教学重点有理数乘方的意义。
有理数乘方的运算。
2、教学难点负数的乘方运算。
乘方运算与乘法运算的关系。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课(1)通过展示细胞分裂的图片或视频,引导学生思考细胞分裂的次数与细胞数量之间的关系。
(2)提出问题:一个细胞经过一次分裂变成 2 个,经过两次分裂变成4 个,经过三次分裂变成8 个,那么经过n 次分裂会变成多少个?2、讲授新课(1)有理数乘方的意义①以细胞分裂为例,经过 n 次分裂,细胞的数量为 2^n 个。
②给出乘方的定义:求 n 个相同因数 a 的积的运算,叫做乘方,乘方的结果叫做幂。
记作:a^n,其中 a 叫做底数,n 叫做指数。
③举例说明:如 2^3 中,底数是 2,指数是 3,幂是 8。
(2)有理数乘方的运算①正数的任何次幂都是正数。
②负数的奇次幂是负数,负数的偶次幂是正数。
③ 0 的任何正整数次幂都是 0。
(3)计算示例①计算 2^4 ,(-2)^3 ,0^5 等。
②强调运算顺序:先确定符号,再计算绝对值。
3、课堂练习(1)安排一些基础的乘方运算练习,如 3^2 ,(-3)^2 ,-4^2 等。
(2)设置一些综合性的题目,如(-2)^3 ×(-1/2)^2 等。
4、课堂小结(1)回顾有理数乘方的意义和运算方法。
(2)强调负数乘方运算的注意事项。
5、布置作业(1)书面作业:课本上的课后练习题。
(2)拓展作业:让学生自己寻找生活中可以用有理数乘方解决的问题。
五、教学反思在教学过程中,要注重引导学生理解乘方的意义,通过大量的实例和练习帮助学生掌握乘方的运算。
有理数的乘方教案
有理数的乘方教案一、教学目标:1. 知识与技能:(1)理解有理数的乘方的概念;(2)掌握有理数乘方的法则;(3)能够运用有理数的乘方解决实际问题。
2. 过程与方法:(1)通过观察、探究、归纳等方法,引导学生发现有理数乘方的规律;(2)培养学生的运算能力和逻辑思维能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生勇于探究、合作学习的品质;(3)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点:1. 教学重点:(1)有理数的乘方的概念;(2)有理数乘方的法则;(3)运用有理数的乘方解决实际问题。
2. 教学难点:(1)有理数乘方的规律;(2)有理数乘方在实际问题中的应用。
三、教学过程:1. 导入:(1)复习相关知识:有理数的乘法;(2)提出问题:有理数的乘法可以推广到乘方,有理数的乘方是什么呢?2. 探究与讲解:(1)引导学生观察、分析有理数乘方的例子,发现乘方的规律;(2)讲解有理数乘方的概念和法则;(3)举例说明有理数乘方在实际问题中的应用。
3. 练习与巩固:(1)让学生独立完成练习题,检测对有理数乘方的理解和掌握;(2)引导学生总结乘方的运算规律。
四、课后作业:1. 必做题:(1)完成练习册上的相关题目;(2)运用有理数乘方解决实际问题。
2. 选做题:(1)研究有理数乘方的拓展问题;(2)制作有关有理数乘方的手抄报。
五、教学评价:1. 评价内容:(1)学生对有理数乘方的概念和法则的理解;(2)学生运用有理数乘方解决实际问题的能力;(3)学生在探究、合作学习过程中的表现。
2. 评价方法:(1)课堂提问、回答;(2)练习题的正确率;(3)课后作业的完成情况。
六、教学策略:1. 实例演示:通过具体的数值例子,让学生直观地理解有理数乘方的过程和结果。
2. 类比学习:将有理数的乘法与乘方进行类比,帮助学生建立起乘方的概念。
3. 互动讨论:鼓励学生之间进行讨论,分享各自对乘方理解的心得,增进学生的理解和记忆。
有理数的乘方教案
有理数的乘方教案有理数的乘方教案(精选4篇)有理数的乘方教案1一、学什么1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。
2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。
二、怎样学归纳概念:n个a相乘aaa=xx,读作:xx。
其中n表示因数的个数。
求相同因数的积的运算叫作乘方。
乘方运算的结果叫幂。
例1:计算(1)26(2)73(3)(3)4(4)(4)3例2:(1)()5(2)()3(3)()4【想一想】1、(1)10,(1)7,()4,()5是正数还是负数?2、负数的幂的符号如何确定?思考题:1、(a2)2+(b+3)2=0,求a和b的值。
2、计算(2)2009+(2)20103、在右边的33的方格中,现在以两种不同的方式往方格内放硬币,一种每格放100枚,三学怎样:(1)某种细菌在培养过程中,细菌每半小时分裂一次(由分裂成两个),经过两个小时,这种细菌由1个可分裂成()A8个B16个C4个D32个(2)一根长1cm的绳子,第一次剪去一半。
第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为()A()3mB()5mC()6mD()12m(3)(3.4)3,(3.4)4,(3.4)5的从小到大的顺序是。
4、计算(1)(3)3(2)(0.8)2(3)02004(4)12004(5)104(6)()5(7)-()3(8)43(9)32(3)3+(2)223(10)-18(3)25.已知(a2)2+|b5|=0,求(a)3(b)2.2.6有理数的乘方(第2课时)一、学什么会用科学计数法表示绝对值较大的数。
二、怎样学定义:一般地,一个大于10的数可以写成的形式,其中,n是正整数,这种记数法称为科学记数法。
例题教学例1:1972年3月美国发射的先驱者10号,是人类发往太阳系外的第一艘人造太空探测器。
截至2003年12月人们最后一次收到它发回的信号时,它已飞离地球12200000000km。
有理数的乘方教案
有理数的乘方教案一、教学目标:1. 让学生理解有理数的乘方概念,掌握有理数乘方的运算方法。
2. 培养学生运用有理数乘方解决实际问题的能力。
3. 培养学生合作交流、归纳总结的能力。
二、教学重点:1. 有理数的乘方概念。
2. 有理数乘方的运算方法。
三、教学难点:1. 有理数乘方的运算规律。
2. 运用有理数乘方解决实际问题。
四、教学准备:1. 教师准备PPT、教案、例题及练习题。
2. 学生准备笔记本、文具。
五、教学过程:1. 导入新课:教师通过复习幂的定义,引导学生思考有理数乘方的概念。
2. 知识讲解:教师讲解有理数的乘方,包括乘方的定义、乘方的运算方法及乘方的运算规律。
3. 例题解析:教师展示例题,引导学生跟随步骤,共同解答,巩固有理数乘方的运算方法。
4. 课堂练习:教师布置练习题,学生独立完成,检测自己对有理数乘方的掌握程度。
5. 小组讨论:教师组织学生分组讨论,分享各自解决问题的方法,总结有理数乘方的运算规律。
6. 课堂小结:教师引导学生总结本节课所学内容,强化记忆。
7. 课后作业:教师布置课后作业,巩固所学知识。
8. 课后反思:教师反思课堂教学效果,针对学生掌握情况,调整教学策略。
六、教学拓展:1. 教师引导学生思考有理数乘方在实际生活中的应用,如计算利息、折扣等。
2. 教师展示拓展例题,引导学生运用有理数乘方解决实际问题。
七、课堂互动:1. 教师组织课堂互动游戏,让学生在游戏中运用有理数乘方知识。
2. 学生分享自己在生活中遇到的有理数乘方问题,互相交流解决方法。
八、教学评价:1. 教师对学生的课堂表现、练习完成情况进行评价,鼓励优秀学生。
2. 学生自我评价,反思自己在学习有理数乘方过程中的优点和不足。
九、教学延伸:1. 教师引导学生思考有理数乘方在数学其他领域的应用,如代数、几何等。
2. 学生自主探究有理数乘方在其他领域的应用,分享研究成果。
十、课后反思:1. 教师总结本节课的教学效果,反思教学过程中的不足。
有理数的乘方教案
有理数的乘方教案一、教学目标1、知识与技能目标理解有理数乘方的意义。
掌握有理数乘方的运算。
2、过程与方法目标通过观察、类比、归纳,培养学生的思维能力和运算能力。
经历探索有理数乘方运算的过程,体会转化、分类讨论的数学思想。
3、情感态度与价值观目标让学生感受数学与生活的密切联系,增强学生学习数学的兴趣和信心。
培养学生严谨的治学态度和合作交流的意识。
二、教学重难点1、教学重点有理数乘方的意义和运算。
2、教学难点负数和分数的乘方运算。
三、教学方法讲授法、练习法、讨论法四、教学过程1、导入新课先通过一个小故事引入:“国王下棋”,国王答应了一个大臣的请求,即在棋盘的第一个格子里放 1 粒米,第二个格子里放 2 粒米,第三个格子里放 4 粒米,依此类推,每一个格子里放的米粒数都是前一个格子里的 2 倍。
当放到第 64 个格子时,国王发现就算把全国的米都拿来也不够。
引导学生思考这其中蕴含的数学原理。
2、讲授新课结合上述故事,引出乘方的概念。
乘方:求 n 个相同因数 a 的积的运算叫做乘方,乘方的结果叫做幂。
在 an 中,a 叫做底数,n 叫做指数,an 读作“a 的 n 次方”或“a 的 n 次幂”。
例如:2×2×2×2×2 = 2^5,其中 2 是底数,5 是指数,2^5 读作“2的 5 次方”。
强调乘方的书写格式和注意事项。
3、例题讲解例 1:计算(1)3^2 (2)(-2)^3 (3)(-1/2)^4分析:对于(1),3^2 = 3×3 = 9;对于(2),(-2)^3 =(-2)×(-2)×(-2) =-8;对于(3),(-1/2)^4 =(-1/2)×(-1/2)×(-1/2)×(-1/2) = 1/16。
总结负数和分数的乘方运算方法:负数的奇次幂是负数,负数的偶次幂是正数;分数的乘方,分子分母分别乘方。
【有理数的乘方教案(精选多篇)】
【有理数的乘方教案(精选多篇)】第一篇:七年级数学上册有理数的乘方教案人教版有理数的乘方教学目的:知识与才能:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算;过程与方法:培养学生观察、分析^p 、比拟、归纳、概括的才能,浸透转化的思想;情感态度与价值观:培养学生勤思,认真,勇于探究的精神,并联络实际,加强理解,体会数学给我们的生活带来的便利。
教学重点:正确理解乘方的意义,掌握乘方的运算法那么,进展有理数乘方运算。
教学难点:正确理解乘方、底数、指数的概念并合理运算。
教材分析^p :本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,容有关联的是后面“科学计数法”、“有理数的混合运算”等局部内容。
教学方法:教法:引导探究法、尝试指导法,充分表达学生主体地位;学法:学生观察考虑,自主探究,合作交流。
教学用具:电脑多媒体。
课时安排:一课时板书设计:有理数的乘方底数a幂规律:正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数n教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学形式。
整个教学过程从考虑问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、考虑、交流归纳的才能。
缺乏之处:在练习的讲评上,应给学生一个较为自由的空间,让学生互相启发,互相交流。
第二篇:第一章有理数乘方(2)教案第周第节§1.5.1有理数乘方〔2〕教案备课人:李冶学习目的:1、掌握有理数混合运算的顺序,能正确的进展有理数的加,减,乘除,乘方的混合运算。
2、培养学生观察,归纳,猜测,推理的才能。
重点:能正确的进展有理数的混合运算。
难点:灵敏的运用运算律,使计算简单。
教学过程:一课前提问:1、我们已经学习了哪几种有理数的运算?2、有理数的乘方的意义是什么?3、以下的算式里有哪些运算?应按照怎样的顺序运算?3+50÷22×〔-15〕-1二、新课探究:有理数混合运算的顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进展;3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进展;三、例题精析:例1 、计算:〔1〕2?(?3)34(3)15〔2〕(?2)3(3)[(?4)22]?(?3)2(2)例2、观察下面三行数:-2 ,4 ,-8,16,-32,64,…;0,6,-6,18,-30,66,…;-1 ,2,-4, 8,-16,32,…。
1.5.1有理数乘方(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数乘方的基本概念。有理数乘方是指以有理数a为底数,n为指数的乘法运算。它是解决多次重复乘法运算的有效工具,广泛应用于科学计算和日常生活中。
2.案例分析:接下来,我们来看一个具体的案例。以计算正方体体积为例,边长为a,体积为a^3,这展示了有理数乘方在实际中的应用,以及它如何帮助我们解决问题。
2.教学难点
(1)理解负数的乘方:对于负数的乘方,学生容易混淆其正负性质,需要通过实例讲解和练习来加深理解。
举例:解释-2^2和(-2)^2的区别,前者为-4,后者为4。
(2)乘方与乘法的区别:学生容易将有理数乘方与乘法混淆,需要强调两者的区别和联系。
举例:2^3表示2连乘3次,结果为8;2×3表示两个数相乘,结果为6。
1.针对不同学生的理解程度,设计更具针对性的教学活动,关注每一个学生的成长。
2.在讲解乘方性质和运算法则时,增加与生活实际相结合的例子,让学生更好地理解。
3.加强课堂互动,鼓励学生提问和发表观点,提高他们的参与度。
4.调整提问策略,提出更具启发性和针对性的问题,引导学生深入思考。
举例:计算一个正方体的体积,边长为a,体积为a^3。
在教学过程中,教师要针对这些重点和难点进行有针对性的讲解和练习,确保学生能够理解透彻并掌握本节课的核心知识。
有理数的乘方的教案(优秀6篇)-最新
有理数的乘方的教案(优秀6篇)作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。
那么应当如何写教案呢?下面是整理的6篇《有理数的乘方的教案》,在大家参考的同时,也可以分享一下给您的好友哦。
有理数的乘方教案篇一一、学习目标1.能确定有理数加、减、乘、除、乘方混合运算的顺序;2.掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;3.偶次幂的非负性的应用。
二、知识回顾1.在2+ ×(-6)这个式子中,存在着3种运算。
2.上面这个式子应该先算乘方、再算2 、最后加法。
三、新知讲解1.偶次幂的非负性若a是任意有理数,则(n为正整数),特别地,当n=1时,有。
2.有理数的混合运算顺序①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
四、典例探究1.有理数混合运算的顺序意识【例1】计算:-1-3×(-2)3+(-6)÷总结:做有理数的混合运算时,应注意以下运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
练1计算:-2×(-4)2+3-(-8)÷ +2.有理数混合运算的转化意识【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。
练2计算:3.有理数混合运算的符号意识【例3】计算:-42-5×(-2)× -(-2)3总结:在有理数运算中,最容易出错的就是符号。
符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。
要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。
1.11 有理数的乘方(教案)华东师大版(2024)数学七年级上册
1.11 有理数的乘方第1课时 乘方及其运算1.使学生理解有理数乘方的概念,掌握有理数乘方的运算;2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;3.渗透分类讨论思想.重点有理数乘方的运算.难点有理数乘方运算的符号法则.一、导入新课1.计算:(1)(-934 )÷3;(2)(-6)÷(-4)÷(-115 ).2.在小学我们已经学习过a·a ,记作a 2,读作a 的平方(或a 的2次方);a·a·a 记作a 3,读作a 的立方(或a 的3次方);那么a·a·a·a 可以记作什么?读作什么?a·a·a·a·a 呢?a ·a ·a ·…·a,\s\do4(n 个)) (n 为正整数)呢?例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4.这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.2.在a n 中,a 叫做底数,n 叫做指数,a n 读作a 的n 次方,a n 可看作是a 的n 次方的结果时,也可读作a 的n 次幂.例如,23中,底数是2,指数是3,23读作2的3次方,或2的3次幂.3.一个数可以看作这个数本身的一次方,例如8就是81,通常指数为1时省略不写.二、探究新知1.计算:(1)(-2)3;(2)(-2)4;(3)(-2)5.解:(1)原式=(-2)(-2)(-2)=-8;(2)原式=(-2)(-2)(-2)(-2)=16;(3)原式=(-2)(-2)(-2)(-2)(-2)=-32.小结:根据上面的计算,你能总结出有理数乘方运算的符号法则吗?(1)根据有理数乘法运算法则,我们有:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.(2)你能把上述的结论用数学符号语言表示吗?当a>0时,a n >0(n 是正整数);当a<0时,⎩⎪⎨⎪⎧a n >0(n 是偶数),a n <0(n 是奇数); 当a =0时,a n =0(n 是正整数).(以上为有理数乘方运算的符号法则)a 2n =(-a)2n (n 为正整数);a 2n -1=-(-a)2n -1(n 为正整数);a 2n ≥0(a 是有理数,n 是正整数).三、课堂练习1.(-4)5读作什么?其中-4叫做什么数?5叫做什么数?(-4)5是正数还是负数?2.计算:(1)(-1)3; (2)(-1)10; (3)(0.1)3;(4)(32 )4; (5)(-2)3×(-2)2;(6)(-12 )3×(-12 )5; (7)103; (8)105.四、课堂小结1.乘方的有关概念(1)求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.(2)a n 读作a 的n 次方,a n 看作是a 的n 次方的结果时,也可读作a 的n 次幂.(3)一个数可以看作这个数本身的一次方.2.有理数乘方运算的符号法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.要注意括号的作用.五、课后作业教材课后练习第1题,习题2.11第1,2题.有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点,所以我在这一节课的教学中从有理数乘方的意义、有理数乘方的符号法则、有理数乘方运算顺序、有理数乘方书写格式、有理数乘方常见错误等五个方面来教学.在每一个知识点的讲授时,结合具体的实际例子来进行讲解,及时进行总结,形成方法.有理数的乘方中反映出来的数学思想主要是分类讨论思想,在教学中要加以引导,逐步渗透这一思想.第2课时科学记数法1.复习和巩固有理数乘方的概念,掌握有理数乘方的运算;2.使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.重点正确运用科学记数法表示较大的数.难点正确掌握10的幂指数特征.一、导入新课同学们,你们能够迅速地读出和记住下列数字吗?1.光的速度约是300 000 000 m/s,它相当于速度为6 m/s的自行车的速度的多少倍?2.全世界人口数大约是7 400 000 000人;3.第五次人口普查时,中国人口约为1 300 000 000人;4.中国的国土面积约为9 600 000平方千米;5.我国信息工业总产值将达到383 000 000 000元.这样的数,读和写都不方便,接下来,让我们一起来探究一种科学的记数方法吧.二、探究新知1.10n的特征(1)计算102,103,104,…并讨论102表示什么,指数与运算结果中的0的个数有什么关系,与运算结果的位数有什么关系.小结:0的个数和指数相同,整数位数比指数多1.(2)练习:①把下面各数写成10的幂的形式:1000,10 000 000,10 000 000 000.②指出下列各数各是几位数:102,105,1012,1025.2科学记数法定义综上所述,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数法叫做科学记数法.三、课堂练习1.设n是一个正整数,则10n+1是()A.n个10相乘所得的积B.是一个n+1位的整数C.10后面有n+1个0的整数D.是一个n+2位的整数2.用科学记数法表示下列各数:(1)100 000;(2)378 000;(3)-112 000; (4)2945;(5)1346.30.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104; (2)6.070×103;(3)104; (4)-2.24×103.四、课堂小结1.什么是科学记数法?一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n 是正整数,这种记数法叫做科学记数法.2.用科学记数法表示一个数时,10的指数与原数的整数位数有什么关系?10的指数比原数的整数位数少1.五、课后作业教材习题2.12第1,2,3题.在上一节课中,学生已学习了有理数乘方的概念,知道了有理数乘方的意义,会利用有理数乘方法则进行有理数乘方运算.本节课在复习上节课内容的基础上,使学生进一步理解乘方的意义,并能用科学记数法表示大于10的数,本节课的重点和难点都是科学记数法.为此,通过实例,引入了科学记数法,而通过例题的讲授,使学生知道怎样用科学记数法表示绝对值大于10的数,在表示中应重点注意10的指数与原数的整数位数的关系.。
有理数的乘方的教案
有理数的乘方的教案关键信息1、教学目标理解有理数乘方的概念。
掌握有理数乘方的运算。
能运用有理数乘方解决实际问题。
2、教学重难点重点:有理数乘方的运算。
难点:有理数乘方运算中符号的确定。
3、教学方法讲授法练习法讨论法4、教学过程导入新课讲授课堂练习课堂总结课后作业5、教学资源多媒体课件教材练习册11 教学目标111 知识与技能目标学生能够理解有理数乘方的定义,会用数学式子表示有理数的乘方。
能够正确计算有理数的乘方运算,包括正数、负数和零的乘方。
112 过程与方法目标通过观察、类比、归纳等活动,培养学生的逻辑思维能力和运算能力。
让学生经历从特殊到一般的数学探究过程,体会数学的转化思想。
113 情感态度与价值观目标激发学生对数学的兴趣,增强学生学习数学的自信心。
培养学生严谨的科学态度和勇于探索的精神。
12 教学重难点121 教学重点有理数乘方的运算。
重点让学生掌握底数、指数和幂的概念,能够准确计算有理数的乘方。
通过大量的练习,让学生熟练掌握运算方法和技巧。
122 教学难点有理数乘方运算中符号的确定。
由于负数的奇次幂为负,负数的偶次幂为正,这一知识点对于学生来说较难理解和掌握。
在教学中,通过具体的例子和分析,帮助学生理解符号的规律。
13 教学方法131 讲授法通过教师的讲解,让学生理解有理数乘方的概念、性质和运算方法。
在讲授过程中,注重启发式教学,引导学生思考问题。
132 练习法安排适量的课堂练习和课后作业,让学生通过练习巩固所学知识,提高运算能力。
练习的设计要有针对性和层次性,满足不同学生的需求。
133 讨论法组织学生进行小组讨论,让学生在讨论中交流思想,共同解决问题。
通过讨论,培养学生的合作精神和创新能力。
14 教学过程141 导入通过展示拉面师傅拉面的过程,引导学生观察面条根数的变化。
或者提出问题,如“一张厚度为 01 毫米的纸对折 20 次,厚度会是多少?”引发学生的兴趣,从而导入有理数乘方的概念。
有理数的乘方教案
有理数的乘方教案
教学目标:
1. 理解有理数的乘方的概念和性质。
2. 能够计算有理数的乘方运算。
3. 能够应用有理数的乘方解决实际问题。
教学步骤:
引入:让学生回顾一下幂的概念,并且了解一些特殊的幂,如0的任意次方等。
1. 定义有理数的乘方:有理数a的n次方,表示a与自身连乘n次的结果。
解释乘方的特性,如a^m * a^n = a^(m+n),a^m / a^n = a^(m-n)。
2. 引导学生进行简单的乘方计算,如2^3 = 2 * 2 * 2 = 8,(-
3)^4 = (-3) * (-3) * (-3) * (-3) = 81。
3. 结合实际问题,让学生应用乘方计算。
例如,假设一辆汽车每小时行驶60公里,问3小时后汽车行驶的总距离是多少?解答:汽车每小时行驶60公里,3小时后行驶的总距离为
60^3 = 60 * 60 *60 = 216000公里。
4. 引导学生讨论一些有理数乘方的特殊情况,如0的正整数次方为0,0的零次方没有意义。
让学生思考并解释这些特殊情况的原因。
5. 组织学生进行习题训练,巩固他们对有理数乘方的理解和运算能力。
6. 总结归纳乘方的运算规律,强调在进行乘方运算时,要注意有理数的正负及零次方的特殊情况。
7. 布置课后作业,要求学生练习乘方的运算和解答乘方问题。
8. 下节课开始时进行乘方的复习和巩固,解答学生所遇到的问题。
教学资源:教材、习题册。
教学评价:观察学生的课堂表现,包括学习态度、参与度、乘方运算的准确性和解决实际问题的能力。
对学生完成的作业进行评价和批改。
乘方教案(热门7篇)
乘方教案(热门7篇)乘方教案第1篇一、教学目标能理解并掌握有理数乘方的概念及意义,并能够正确进行有理数的乘方运算;通过观察、猜想、实践等数学活动,学生从中提高观察、类比、归纳和计算的能力。
初步了解并体会转化的数学思想,逐步养成观察并发现规律的意识,在相互启发中体验合作学习,树立团队意识.二、教学重难点?有理数乘方的概念及意义,并正确进行有理数乘方的运算有理数乘方的概念及意义,并正确进行有理数乘方的运算三、教学策略本节课采用“启发引导、动手操作、分析讲解”的教学方式,亲身经历将实际问题抽象成数学模型并进行解释和运用的过程.在教学中注意发现问题、思考问题,寻找解决问题的方法.鼓励自主探索、逐步递进.积极参与讨论、合作学习,肯定成绩,激发学习兴趣和积极性四、教学过程教学进程教学内容学生活动设计意图引入新知问题一:把一张纸对折2次可裁成4张,即2×2张;对折3次可裁成8张,即2×2×2张.问:若对折10次可裁成几张?请用一个算式表示(不用算出结果).若对折101次,算式中有几个2相乘?显然,我们遇到了麻烦:如何书写101个、1010个相同因数相乘这样繁琐的式子呢?我们有必要创设一种新的表示方法来表示这样的运算.问题二:边长为a的正方形的面积为 ;棱长为a的正方体的体积为 ;学生动手操作,观察纸片,发现规律回忆小学已学知识并独立完成目的是培养学生的观察及归纳能力让学生亲历每个因数都相同时的乘法,书写起来的冗长,所以才需要创造一种简单的形式学习新知2个a相加可记为:a+a=2a3个a相加可记为:a+a+a=3a4个a相加可记为:a+a+a+a=4an个a相加可记为:a+a+a+……+a=na类比可得:2个a相乘可记为: EMBED Unknown3个a相乘可记为: EMBED Unknown4个a相乘可记为什么呢?n个a相乘又记为什么呢?定义:一般地,我们把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂. 如果有n个a相乘,可以写成,也就是 EMBED Unknown 其中叫做的n次方,也叫做的n次幂. 叫做幂的底数可以取任何有理数;n叫做幂的指数,可以取任何正整数.特殊地,可以看作的一次幂,也就是说的指数是例如:读作-2的4次方或-2的4次幂;底数是-2,指数是4;表示4个-2相乘. x看作幂的话,指数为1,底数为注意:当底数是负数或分数时,写成乘方形式时,必须加上括号.在学生理解有理数的乘方的意义的情况下,提供例1,指导学生完成,巩固概念的理解.例填空:(1) EMBED Unknown 的底数是_____,指数是_____,它表示______;(2) 的底数是______,指数是______,它表示______;(3) 的底数是______,指数是______,它表示_______;例计算:教师引导学生口答学生边记录,边体会、理解正确表达有理数的乘方学生口答分析例题并板书,巩固幂的意义,写出体现幂的意义的全过程体会类比的数学思想乘方教案第2篇【教学目标】(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.(3)培养探索精神,体验小组交流、合作学习的重要性.【教学方法】讲授法、讨论法。
有理数的乘方教学设计教案
有理数的乘方教学设计-教案第一章:导入1.1 教学目标让学生了解有理数乘方的概念。
让学生掌握有理数乘方的运算规则。
1.2 教学内容引入有理数乘方的概念,解释乘方的意义。
通过实际例子,讲解有理数乘方的运算规则。
1.3 教学方法通过生活实例引入有理数乘方的概念,激发学生兴趣。
使用PPT展示有理数乘方的运算规则,让学生跟随讲解。
提供例题,让学生分组讨论和解答,加深理解。
1.4 教学评估通过提问方式检查学生对有理数乘方概念的理解。
设计练习题,让学生独立完成,评估学生对运算规则的掌握。
第二章:有理数的乘方运算规则2.1 教学目标让学生掌握有理数乘方的运算规则。
让学生能够运用运算规则进行有理数的乘方运算。
2.2 教学内容讲解有理数乘方的运算规则,包括正数乘方、负数乘方和零的乘方。
提供实际例子,让学生理解和运用运算规则。
使用PPT展示有理数乘方的运算规则,让学生跟随讲解。
提供例题,让学生分组讨论和解答,加深理解。
设计练习题,让学生独立完成,巩固运算规则。
2.4 教学评估通过提问方式检查学生对有理数乘方运算规则的理解。
设计练习题,让学生独立完成,评估学生对运算规则的掌握。
第三章:有理数的乘方运算练习3.1 教学目标让学生能够运用有理数乘方的运算规则进行计算。
提高学生的运算速度和准确性。
3.2 教学内容提供一系列有理数乘方的练习题,包括不同难度的题目。
指导学生运用运算规则,进行计算和解答。
3.3 教学方法引导学生独立完成练习题,提供必要的帮助和指导。
鼓励学生互相交流和讨论,共同解决问题。
通过PPT展示正确答案,让学生核对和纠正错误。
3.4 教学评估通过提问方式检查学生对有理数乘方运算的掌握情况。
评估学生的运算速度和准确性,及时给予反馈和指导。
第四章:有理数的乘方应用让学生理解有理数乘方在实际问题中的应用。
培养学生解决实际问题的能力。
4.2 教学内容提供实际问题,让学生运用有理数乘方的运算规则进行解决。
讲解实际问题中的数量关系和运算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.9有理数乘方(1)教案
备课组:数学组 备课时间:2016、10、9
【学习目标】
1.理解有理数乘方的意义,正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算。
2.能够灵活地进行乘方运算
3.体会数学与生活的密切联系。
学习重难点:
理解有理数乘方的意义,会进行有理数乘方的计算。
教法:学生探究,合作,交流
教具准备:课本,练习本
【基础部分】
1、确定下列各式积的符号并计算:
(1)2×(-2.5); (2)(-5)×(-7);
(3)(-4)×6; (4) (−4)×5×(−0.25) .
2、计算:(1)3×3×3×3×3= ; (2)(12-)×(12-)×(12-)×(12-)×(12
-)= .
【自主学习】
1、通过上面的探索,归纳乘方相关内容:
(1) a ×a 可记为____.读作_____________。
(2) a ×a ×a 可记为____.读作-__________。
(3) 2×2×2×2×2×2可记为__..读作___________。
(4) a ×a ×a ×a …×a 可记为___..读作___________。
(5)求n 个 的运算,叫做乘方,乘方的结果叫
做 .
(6)在a n 中,a 叫作 ,n 叫作 ,a n 读作 (又叫a 的n 次幂).
注意:一个数可以看作这个数本身的一次方,如5就是51,通常指数为1时可以省略不写. 一个数的二次方,也称为这个数的平方,一个数的三次方,也称为这个数的立方.
2、根据幂的相关知识填空:
(1)在52中,底数是____,指数是____,52读作____或读作____。
(2)在(-4)2中,底数是____,指数是____,读作____或读作____。
(3) 在-42中,底数是____,指数是____,读作____或读作____。
(4) a ,底数是____,指数是____。
【拓展部分】
3、计算下列各题、.并思考:
(1)
(2)
(3)你发现了正数幂与负数幂的符号有什么特点? 与同伴交流你的想法。
写出正数幂与负数幂的符号的特点:
小结:本节课学习的主要内容是什么?你是否已经理解并初步学会?
【检测部分】
1、填空题
(2)(-6)5中,底数是______,指数是______,它是指
?323253534
433相同吗与相同吗?与⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛()()?21,21,1,15
4710是正数还是负数⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛---
________________
-65中,底数是______,指数是______,它是指________________
2、计算:
2(1)5 2(2)(3)- 3(3)(0.2)- 21(4)();8-
4(5)(2)- 4
(6)2- 3
2(7)7 3. 下列计算错误的有( )个
(1)12142
⎛⎝ ⎫⎭⎪=;(2)-=5252;(3)4516252=; (4)--⎛⎝ ⎫⎭⎪=171492
;(5)()-=-1111;(6)()--=0100013.. A. 1 B. 2 C. 3 D. 4
作业布置:
习题2.13 第一题
板书设计:
2.9 有理数的乘方(1)
温故知新: 例题: 练习:
————- —————— ————————
课后反思:
通过本节课的学习,学生基本掌握了有理数乘方的意义,理解底数,指数,幂等概念,能够进行有理数乘方的运算,学生对于含有负数的底数,学生理解出现偏差,需要加强强调与练习。
2.9有理数乘方(2)教案
备课组:数学组 备课时间:2016、10、9
【学习目标】
1. 进一步理解有理数乘方的意义,正确熟练地进行乘方运算.
2.通过实例感受当底数大于1时,乘方运算的结果增长的很快.
学习重难点:
重点:正确熟练地进行乘方运算; 通过实例总结并理解“正数的任何次幂是正数,负数的奇次幂是负数,负数的偶次幂是正数”.
难点:通过实例感受当底数大于1时,乘方运算的结果增长的很快. 教法:学生探究,合作,交流
教具准备:课本,练习本
自主学习,思考问题
一.忆一忆:
(1)在(-4)3中,底数是____,指数是___,读作___.
(2)在-24中,底数是____,指数是____,读作____.
(3)计算: -72 (-7)2;
二.探究新知:
例1:计算
(1)102,103,104,105,
(2)(-10)2,(-10)3,(-10)4,(-10)5, (3)(-3)2
,(1)(-31)3 ,(-2)4
(4) 23 , (32
)4 , 45 ;
想一想:观察例1的结果,你能发现什么规律?
与同伴交流.
三.当堂检测:
(1)-53
(2)-(32)2 (1)-(-3
2)4 (4)-232(3)223 ;
四.(1)做一做:
有一张厚度是0.1mm 的纸,将它对折一次后,
厚度为2×0.1mm,
(1)对折2次后,厚度为多少毫米?
(2)假设对折20次,厚度为多少毫米?
(3)若每层楼平均高度为3米,这张纸对折
20次后有多少层楼高?
(2)想一拉面馆的师傅用一根很粗的面条,
把两头捏合在一起拉伸,再捏合,再拉伸,反复
多次,就能把这根很粗的面条,拉成许多很细的
面条.想想看,拉多少次后,就可以拉出32根面
条?那拉出约209万根面条呢?
当堂检测:
1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。
他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二 天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一 半,这样下去,我就永远不要去要饭了请你们交流讨论,再算一 算,如果把整块面包看成整体“1”,那第十天他将吃到面包?
五.课外拓展:
1.已知x 2=(-2)2,y 3=-1,求:
(1)x ×y 2003的值. (2)20083y
x 的值. 六、课堂小结:
通过本节课的学习,你有什么收获?
七、作业布置:
习题2.14 第一题
八、板书设计:
2.9 有理数的乘方(2)
知识回顾: 例题 练习
—————— —————— ————————
九、课后反思:
通过本节课的学习,学生认识到了怎么表示一些数的乘方,学会估测一些实际生活中的例子,本节课学生存在的问题还是负数的概念,学生容易丢负号的情况。