什么是有限元分析PPT
有限元分析-动力学分析PPT课件
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。
有限元分析及应用课件
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
有限元分析基础教学课件
03
有限元方法
有限元方法的基本思想
划分网格
将连续的求解区域离散为有限个小的单元, 单元之间通过节点连接。
近似解法
用每个小单元上的近似函数来逼近原函数, 从而得到整个求解区域的近似解。
骤。
设定边界条件和载荷
讲述如何运行分析,包括选择求解器、设置 迭代次数、收敛判据等。
运行分析
说明如何为模型设定边界条件和施加载荷, 包括位移、力、温度等。
结果后处理
介绍如何查看和解析结果,包括位移、应力 、应变等。
有限元分析软件编程接口
软件支持的语言
介绍软件支持的编程语言,如 Fortran、C、Python等。
求解平衡方程
通过建立每个小单元上的平衡方程,结合边 界条件和初始条件,求解每个小单元的近似 解。
有限元方法的实现步骤
划分网格
将求解区域离散为有限个小的单 元,选择合适的网格划分方式, 如三角形、四边形等。
求解方程
通过求解刚度矩阵方程,得到每 个小单元的位移分布和应力分布 。
01
建立模型
根据实际问题的需求,建立合适 的数学模型,包括定义求解区域 、定义材料属性、施加边界条件 等。
变形体虚功原理
虚功原理
在变形体上引入虚位移,并计算 虚功,通过虚功等于零的条件, 求解平衡方程。
虚位移
在有限元分析中,将真实位移离 散为多个节点的位移,这些位移 称为虚位移。
最小势能原理与里茨方法
最小势能原理
在变形过程中,物体总势能的变化等 于零,即在平衡状态下,物体的总势 能达到最小值。
有限元分析 ppt课件
课程目标
1) 了解什么是有限单元法、有限单元法的基本 思想。
2) 学习有限单元法的原理,主要结合弹性力学 问题来介绍有限单元法的基本方法,包括单 元分析、整体分析、载荷与约束处理、等参 单元等概念。
3) 初步学会使用商用有限元软件分析简单工程 问题。
4. O.C. Zienkiewicz, R.L. Taylor. The finite element method( 5th ed). Oxford ; Boston : Butterworth-Heinemann, 2000
5. 郭和德编. 有限单元法概论,清华大学, 1998
1 有限单元法简介
自重作用下等截面直杆的材料力学解答
N(x)q(Lx)
d(L x)N(x)d xq(Lx)dx EA EA
u(x)xN(x)d xq(L xx2)
0 EA EA 2
x
du q (Lx) dx EA
x
Ex
q(Lx) A
自重作用下等截面直杆的有限单元法 解答
1)离散化 如图所示,将直杆划分 成n个有限段,有限段之 间通过一个铰接点连接。 称两段之间的连接点为 结点,称每个有限段为 单元。 第 i 个 单 元 的 长 度 为 Li , 包含第i,i+1个结点。
1.3.1网格划分
对弹性体进行必要的简化,再将弹性体 划分为有限个单元组成的离散体。 单元之间通过单元节点相连接。 由单元、结点、结点连线构成的集合称 为网格。
1.3.1网格划分
通常把三维实体划分成四面体(Tetrahedron) 或六面体(Hexahedron)单元的网格
四面体4结点单元
六面体8结点单元
有限元分析经典课件
有限元分析经典课件1. 简介有限元分析(Finite Element Analysis, FEA)是一种以数值模拟方法为基础,通过离散化处理求解结构力学问题的工程方法。
本课件将介绍有限元分析的基本原理和常用的应用领域。
2. 有限元分析的基本原理2.1 有限元方法概述有限元方法(Finite Element Method, FEM)是有限元分析的基础理论和计算方法。
本部分将介绍有限元方法的基本概念、基本步骤、离散化处理等内容。
2.2 有限元网格划分有限元网格划分是有限元分析的关键步骤,它将结构离散化为有限个小单元。
本部分将介绍有限元网格划分的方法、常用网格类型以及网格质量评价的方法。
2.3 有限元方程与加载有限元方程是描述结构力学问题的关键方程。
本部分将介绍有限元方程的推导过程,以及加载条件的处理方法。
2.4 有限元解与后处理有限元解是通过有限元分析得到的结构响应结果。
本部分将介绍有限元解的计算方法以及后处理方法,包括位移、应力、应变等结果的计算和可视化展示。
3. 有限元分析的应用案例3.1 结构力学分析结构力学分析是有限元分析的主要应用之一。
本部分将通过实例演示有限元分析在结构力学分析中的具体应用,包括静力学分析、动力学分析等。
3.2 热力学分析热力学分析是有限元分析的另一个重要应用领域。
本部分将通过实例演示有限元分析在热力学分析中的具体应用,包括热传导、热稳定性等问题的分析。
3.3 流体力学分析流体力学分析是有限元分析的扩展应用领域之一。
本部分将通过实例演示有限元分析在流体力学分析中的具体应用,包括流体流动、压力分布等问题的分析。
4. 有限元分析软件的介绍有限元分析软件是进行有限元分析的工具,市场上有多种成熟的有限元分析软件可供选择。
本部分将介绍一些常用的有限元分析软件,包括Ansys、Abacus等。
5. 总结有限元分析作为一种重要的数值模拟方法,已广泛应用于不同领域的工程问题。
本课件从理论原理到实际应用都进行了全面的介绍,相信对有限元分析的学习和应用都有很大帮助。
《有限元分析概述》课件
PART 05
有限元分析的未来发展与 挑战
新技术与新方法的探索
人工智能与机器学
习
利用人工智能和机器学习技术, 自动构建有限元模型、优化求解 过程和提高分值算法和 求解技术,提高有限元分析的稳 定性和精度。
多物理场耦合
探索多物理场耦合的有限元分析 方法,以解决复杂工程问题中的 多物理场耦合问题。
边界条件的处理
在有限元分析中,边界条件的处理是重要的环节。边界条件通常通过在边界节点上施加约束或加载来实现,以模拟实际系统 的边界条件。
边界条件的处理方式需要根据具体问题进行分析和设定,以确保求解结果的准确性和可靠性。
求解与后处理
求解是有限元分析的核心步骤,涉及到建立方程组、求解方程组并得到离散化模型的结果。常用的求 解方法包括直接法、迭代法和优化算法等。
优化设计
03
根据计算结果,对结构进行优化设计,提高其性能或降低成本
。
PART 04
有限元分析的优缺点
有限元分析的优缺点
• 有限元分析(FEA)是一种数值 分析方法,用于解决各种工程问 题,如结构分析、热传导、流体 动力学等。它通过将复杂的物理 系统离散化为有限数量的简单单 元(或称为“有限元”)来模拟 系统的行为。这些单元通过节点 相互连接,形成一个离散化的模 型,可以用来预测系统的性能和 行为。
2023-2026
ONE
KEEP VIEW
有限元分析概述
REPORTING
CATALOGUE
目 录
• 有限元分析简介 • 有限元分析的基本原理 • 有限元分析的实现过程 • 有限元分析的优缺点 • 有限元分析的未来发展与挑战
PART 01
有限元分析简介
定义与背景
有限元法PPT课件
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
有限元课件ppt
将所有单元的刚度矩阵依照一定的方式组合起来,形成整体的刚度 矩阵。
载荷向量与束缚条件
载荷向量
表示作用在结构上的外力,包括集中力和散布力。
束缚条件
表示结构在某些结点上的位移受到限制,常见的束缚有固定束缚、 弹性束缚等。
载荷向量和束缚条件的引入
在建立整体刚度矩阵后,需要将载荷向量和束缚条件引入到整体刚 度矩阵中,形成完全的线性方程组。
并行计算
采取并行计算技术,提高计算效率。
算法改进
优化算法,提高计算精度和效率。
06 有限元分析软件 介绍
ANSYS
01
功能特点
ANSYS是一款功能强大的有限元分析软件,广泛应用于结构、流体、
电磁等多种工程领域。它提供了丰富的建模工具和求解器,能够处理复
杂的工程问题。
02
优点
ANSYS具有友好的用户界面和强大的前后处理功能,使得建模和网格
有限元法的应用领域
结构分析
有限元法在结构分析中应用最 为广泛,可以用于分析各种类 型的结构,如桥梁、建筑、机
械零件等。
热传导
有限元法可以用于求解温度场 的问题,如热传导、热对流和 热辐射等问题。
流体动力学
有限元法在流体动力学领域也 有广泛应用,可以用于求解流 体流动和流体传热等问题。
其他领域
除了上述领域外,有限元法还 广泛应用于电磁场、声场、化
学反应等领域。
02 有限元的数学基 础
线性代数基础
向量与矩阵
01
介绍向量的基本概念、向量的运算、矩阵的表示和运算规则等
。
线性方程组
02
论述线性方程组的解法,包括高斯消元法、LU分解等。
特征值与特征向量
4-有限元分析PPT模板
有限元分析
1.1 有限元法的基本概念和特点
1.有限元法基本概念
有限元法(Finite Element Method,FEM) 也称为有限单元法或有限元素法,其基本思想是 将物体(即连续求解域)离散成有限个且按一定 方式相互连接在一起的单元组合,来模拟或逼近 原来的物体,从而将一个连续的无限自由度问题 简化为离散的有限自由度问题进行求解。物体被 离散以后,通过对其中的各个单元进行单元分析, 最终得到对整个物体的分析。网络划分中每个小 的块体称为单元。确定单元形状、单元之间相互 连接的点称为节点。单元上节点处的结构内力为 节点力,外力为节点载荷。
提高自动化的
展到求解非线性问题
网格处理能力
现代设计技术
— 7—
先进制造技术
选择位移模式
分析单元的力学性质
计算等效节点力
根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,
找出单元节点力和节点位移的关系式,根据弹性力学的几何方程和物理
方程确定单元的刚度矩阵,形成如下所示的线性方程:
F=Kδ
①
式中:F——节点力向量;
K——单元刚度矩阵;
δ ——节点位移向量。
现代设计技术
04
这是有限元分析的后处理部分,在该步骤中,对
05
计算出来的结果进行加工处理,并以各种形式将计算结 果显示出来。
现代设计技术
— 6—
有限元分析
1.3 有限元分析的发展趋势
由单一场计算向多 物理耦合场问题的求解 方向发展
与CAD/CAM 等软件的集成
软件面向专业 用户的开放性
1
2
3
4
5
由求解线性问题发
现代设计技术
有限元分析过程概要ppt
有限元分析过程概要
4、有限元分析的特点
有限元分析的最大特点就是标准化 规范化 标准化和规范化 标准化 规范化,这种特点使得大规模分 析和计算成为可能,当采用了现代化的计算机以及所编制的软件作为实现 平台时,则复杂工程问题的大规模分析成为可能。 实现有限元分析标准化和规范化的载体就是单元 单元,这就需要我们构建 单元 起各种各样的具有代表性的单元,一旦有了这些单元,就好像建筑施工中 有了一些标准的预制构件(如梁、楼板等),可以按设计要求搭建出各种各 样的复杂结构,如图2-11所示
同时根据作用力与反作用力的关系,有
,进而有:
有限元分析过程概要
对于等截面杆受拉伸的情况,杆件①、 ②的应力分别为:
由虎克定律(Hooke law)得杆件①、②的应变分别为:
有限元分析过程概要
杆件①、②的相对伸长量分别为
由于左端A为固定,则该点沿x方向的位移为零,而B点的位移 则为杆件①的伸长量,C点的位移为杆件①和②的总伸长量, 则归纳为以上结果,有完整的解答:
有限元分析过程概要
将节点A、B、C的平衡关系写成一个方程组,有
矩 阵 形 式
(3-1)
有限元分析过程概要
将材料弹性模量和结构尺寸代入方程中,有以下方程
由于左端点为固定,即 解该方程,有
,该方程的未知量为
,求
有限元分析过程概要
下面就很容易求解出杆①和②中的其它力学量,即
可见通过这种方法得到的结果与材料力学方法完全一致
有限元分析过程概要
1、有限元分析的目的和概念 、
(1)位移 位移(displacement):构件中因承载在任意位置上所引起的移动; 位移 (2)应变 应变(strain):构件中因承载在任意位置上所引起的变形状态; 应变 (3)应力 应力(stress):构件中因承载在任意位置上所引起的受力状态; 应力 有限元分析的目的: 有限元分析的目的:针对具有任意复杂几何形状变形体,完整获 取在复杂外力作用下它内部的准确力学信息,即求取该变形体的 三类力学信息(位移、应变、应力)。从而进行强度(strength)、刚 度(stiffness)等方面的评判,优化设计方案。
有限元分析(FEA)方法PPT课件
(b)定义几何模型 应用实体建模
(c) 用P单元分网。 自适应网格对P方法是无效的
3.施加载荷、求解
应用实体模型加载,而不是有限元模型
求解:推荐采用条件共轭梯度法(PCG),但PCG对于壳体P单元无效
4.后处理 察看结果
有限元分析及应用讲义
举例: platep.dat
20 in
R=5 in
SEQV SMN=773.769 SMNB=708.94 SMX=4421 SMXB=4999
有限元分析及应用讲义
P方法及p单元的应用
P 单元的位移形函数
u=a1+a2x+a3y+a4x2+a5xy+a6y2
v=a7+a8x+a9y+ a10x2+a11xy+a12y2
P方法的优点:
如果使用 p-方法 进行结构分析,可以依靠p单元自动调整单元多项式阶数(2-
– 导出 MeshTool 工具, 划分方式设为自由划 分.
– 推荐使用智能网格划分 进行自由网格划分, 激活它并指定一个尺寸级别. 存储数据库.
– 按 Mesh 按钮开始划分网格. 按拾取器中 [Pick All] 选择所有实体 (推荐).
– 或使用命令 VMESH,ALL 或 AMESH,ALL.
savg = 1100
s = 1000 Elem 1
s = 1100
s = 1200 Elem 2
s = 1300
(节点的 ss 是积分点 的外插)
savg = 1200
7
有限元分析及应用讲义
ANSYS网格误差估计
误差估计作用条件:
• 线性静力结构分析及线性稳态热分析 • 大多数 2-D 或 3-D 实体或壳单元 • PowerGraphics off
《有限元分析概述》课件
如何生成适合于有限元分析的网格,并优 化网格结构。
如何进行杆件的有限元分析,包括轴力、 弯曲和扭转。
3 二维和三维模型的分析
4 不同单元的选择及其特点
如何进行二维和三维模型的有限元分析, 包括平面应力、平面应变和轴对称。
不同类型的有限元单元的选择和应用,以 及它们的特点和限制。
有限元分析软件
ANSYS
有限元分析的应用领域
工程结构分析
有限元分析广泛应用于工程领域,包括建筑、桥梁、船舶、管线等结构的设计和分析。
汽车、航空航天、机械等领域应用
有限元分析在汽车、航空航天、机械等行业中被广泛应用于产品设计和优化。
地震、爆炸等自然灾害分析
有限元分析可以用于模拟和预测地震、爆炸等自然灾害对结构的影响,进而提高结构的抗震 和防爆性能。
COMSOL Multiphysics是一款多物理场耦合的 有限元分析软件,适用于多领域的工程分析。
有限元分析的未来发展
1 超级计算机的运用 2 多物理场耦合
随着计算机性能的提升, 有限元分析可以应用于 更大规模、更复杂的问 题。
有限元分析将更多的物 理场耦合在一起,进行 更全面的分析。
3 计算效率的提高
有限元分析的基本流程
1
,将结构进行建模。
2
离散
将结构分割成小的、简单的单元。
3
材料定义
定义每个单元的材料性质和力学行为。
4
载荷约束条件
对结构施加边界条件和加载条件。
5
求解
通过数值计算方法求解结构的行为特性。
有限元分析的相关问题
1 网格生成及其优化
2 杆件的分析
随着算法和计算技术的 进步,有限元分析的计 算效率将得到提高。
《有限元分析及应用》PPT课件
有限元法的孕育过程及诞生和发展
牛顿(Newton)
莱布尼茨(Leibniz G. W.)
6
大约在300年前,牛顿和莱布尼茨发明了积 分法,证明了该运算具有整体对局部的可加 性。虽然,积分运算与有限元技术对定义域 的划分是不同的,前者进行无限划分而后者 进行有限划分,但积分运算为实现有限元技 术准备好了一个理论基础。
u y
dy
vB
v
v y
dy
66
在小变形的前提下,∠A’P’A1很小,可以认 为,线段PA位移后的绝对伸长,可以用线段两 端点沿x轴的位移之差来表示,即:。
PA PA
uA
uP
u
u x
dx u
u x
dx
从而线段PA的正应变
x为:。 x
PA PA PA
u dx x
dx
u x
v
dy
同理线段PB的正应变
y
dy
zy
1 2
zy
z
dz
0
略去微量项,得 yz zy
MY 0 zx xz
MZ 0
xy yx
剪切力互等定律
53
二维问题:平衡微分方程
x yx X 0
x y xy y Y 0 x y
剪切力互等定律
xy yx
54
应力边界条件
四面微分体Mabc
55
效的力系所代替,只能产生局部应力的改变,而在离
这一面积稍远处,其影响可以忽略不计。
60
61
62
均匀分布载荷作用 下的平板,应力分 布是均匀的。
材料力学中的拉伸 应力计算公式就是 圣维南原理应用的 结论。
63
一对集中力F/2作 用点区域仍然有比 较大的应力梯度变 化,但是比等效力
有限元分析实例ppt课件
Stress distribution
Reaction
有限元分析典型流程
§3-5 有限元分析法存在的问题及发展方向
• 有限元模型的建立 有限元网格的自动划分与动态划分-自适应网格
• 求解过程的优化 减少计算量,降低分析成本。
• 有限元分析结果的判读和评定 采用等值线图、明暗色彩、动态图形、过程模拟
机进行分析计算的重要工具。
但是当时限于国内大中型计算机很少,大约只有杭州汽轮机厂的 Siemens7738和沈阳鼓风机厂的IBM4310安装有上述程序,所以用户 算题非常不方便,而且费用昂贵。PC机的出现及其性能奇迹般的提高, 为移植和发展PC版本的有限元程序提供了必要的运行平台。可以说国内 FEA软件的发展一直是围绕着PC平台做文章。在国内开发比较成功并拥 有较多用户(100家以上) 的有限元分析系统有大连理工大学工程力学 系的FIFEX95、北京大学力学与科学工程系的SAP84、中国农机科学研 究院的MAS5.0和杭州自动化技术研究院的MFEP4. 等。但正如上面所述, 国外很多著名的有限元分析公司已经从前些年对PC平台不屑一顾转变为 热衷发展,对国内FEA程序开发者来说发展PC版本不再具有优势。
单元类型选择
Element type:
3结点三角形平面应力单元
单元特性定义 Element properties:
材料特性:E, µ 单元厚度:t
网格划分
Mesh 1
Total number of elements:356 Total number of nodes:208
Mesh 2
Total number of elements:192 Total number of nodes:115
Rotor Dynamics(转子动力学分析) :转子动力学分析主要解决旋转机械
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用单元的形状
. . 线(弹簧,梁,杆)
面 (薄壳, 二维实体,
.
.
. .
. . .
. .
轴对称实体)
.. .
. .
.
. .
.. ..
线性
二次
线性
二次
. .
.
. .
. .
................体(三维实体)
.
线性
二次
线性
二次
• 节点和单元
块单元
四面体单元
• 一般问题的求解过程
结构离散化
1963-1964年 Besseling、Melosh等人证明了有限元法是基于变分原理的 Ritz法的另一种形式,从而确认有限元法是处理连续介质问题的一种普遍 方法,并为有限元法找到了理论基础。
60年代后期开始进一步利用加权余量法来确定单元特性和建立有限元方程。
70年代以来,随着计算机技术的发展,有限元法的理论和应用研究也随之空 前活跃起来。
模型的建立
设定材料属性
E、G、μ等等
添加边界条件
约束、载荷
划分网格
运行求解
后处理
结果的提取 应力、应变、位移等等
• 边界条件的添加
边界条件——当研究一个物体,与该物体相连接的其他物体被拿掉时,用一个约束或者 载荷来替代被拿掉的物体。这个约束或者载荷就是边界条件。
固定铰链
添加边界条件
位移边界条件 力边界条件
方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
变形体
弹性力学
对象:任意变形体 特征:变形(小)
任意形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(针对微体dxdydz) (1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
非变形体 (刚体)
材料力学
对象:简单变形体 特征:变形(小)
简单形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程:(1)物理本构方程 (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
结构力学
对象:数量众多的简单变形体 特征:变形(小)
简单形状的体(数量众多)
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
P/A As A 0,
一般应力奇异发生情形:
• 集中载荷作用位置处 • 锐利(零半径倒角)拐角处。
不常见的应力奇异情形:
• 由于在划分单元网格时出错,模型中存在 的“裂缝”;
• 曲边单元中处在极不理想位置的中间点; • 严重扭曲的单元。
在应力奇异处:
• 单元网格越是细化,越引起计算应力 无限增加,并且不再收敛。
弹性常数
物体变形后的形状 物体的变形程度 物体的受力状态
物体的材料特征
• 基本方程
力的平衡方程: 几何变形方程: 材料的物理方程(本构关系):
力→应力 位移→应变 应力→应变
力平衡方程
几何变形方程
本构关系
• 有限元法的思路
连续体
离散体
一分一合
连续体
对象的离散化过程
自然离散 (如:桁架) 逼近离散 (连续体)
引入约 束条件
节点载 荷移置
• 有限元法的工程应用
(1) 平衡问题或不依赖于时间的问题 (2) 固体力学和流体力学的特征值问题 (3) 连续介质领域的许多随时间变化的问题和或传播问题
热分析
疲劳分析
静力动力分析 模态分析
流体动力分析
• 有限元分析实例
动力分析
疲劳分析
热分析
模态分析
流体分析
• 利用有限元软件求解的一般过程:
单元分析
集成组合
整体分析
求解计算
为了进行单元分析
为了对整体结构综合分析
• 单元分析
单元分析是为了利用节点位移求解出节点力
单元刚度矩阵
几何
本构
插值 单元内部 方程
关系
等效
节点位移
各点位移
单元应变
单元应力
节点力
单元分析
• 整体特征分析
整体分析是将各个单元再拼凑起来以代替原来的连续体
整体刚度矩阵
建立整体 刚度矩阵
1943年 Courant从应用数学角度,尝试用定义在三角形区域上的分片连续 函数和最小位能原理相结合求解 St. Venant扭转问题。
1956年 Turner、Clough等将刚架位移法推广到弹性力学平面问题,用三 角形单元求得平面应力问题的正确解答。
1960年 Clough进一步处理了弹性力学问题,并第一次提出了“有限单元 法” (Finite Element Method)的名称,使人们开始认识到了有限单元法 的功效。
有限元法—— FEM (Finite Element Method 有限单元法)
一种将连续体离散化为若干个有限大小的单元体的集合,以求解连续体力学 问题的数值方法。
有限元分析—— FEA (Finite Element Analysis)
使用有限元法,以计算机为工具,对实际物理问题进行模拟求解。
有限元法的发展概况
• 离散化过程
自然离散
逼近离散
实体模型
有限元模型
• 有限元分析过程
分解过程
组装与求解过程
• 节点和单元
载荷
有限元模型由一些简单形状的单元组成,单元之间通过节点连 接,并承受一定载荷。
节点: 空间中的坐标位置,具有一定自由度和 存在相互物理作用。
单元: 一组节点自由度间相互作用的数值、矩阵 描述(称为刚度或系数矩阵)。
弹塑性力学
对象:任意变形体 特征:变形(屈服,非线性)
任意形状的体
变量:(1)材料物性描述 (2)变形方面描述 (3)力的平衡描述
方程: (针对微体dxdydz) (1)物理本构方程(屈服,非线性) (2)几何变形方程 (3)力的平衡方程
三大变量→三大方程
变形体
• 基本变量的定义:
主位移 应变 应力
• 有限元法的理论基础:基础ຫໍສະໝຸດ 学对象:质点 特征:无变形
无形状的点
变量:(1)质心描述 (2)运动状态描述 (3)力的平衡描述
理论力学
对象:质点系及刚体 特征:无变形
复杂形状的体
变量:(1) 刚体描述 (2) 运动状态描述 (3) 力的平衡描述
方程:质点的牛顿三大定律
方程:质点和刚体的 牛顿三大定律
固定铰链 载荷(油缸压力)
• 网格的划分
• 网格的划分
粗网格
细网格
• 后处理
延性:Mises 脆性:应力强 度
截面剪裁
ISO剪裁
• ISO剪裁
≥25MPa
≥40MPa
≥60MPa
≥80MPa
• 后处理
探测
• 后处理
探测结果
• 应力奇异 (应力集中)
有限元模型中由于几何构造或载荷引起弹性理论计算应力值无限大。 即使是奇异点,材料的非线性特性不可能允许应力值出现无限增大情况,在理论上总体 应变也是有限的。