单片机恒温箱温度控制系统的设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计题目:单片机恒温箱温度控制系统的设计

本课程设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,可以使温度保持在要求的一个恒定范围内,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。

技术参数和设计任务:

1、利用单片机A T89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。

2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。

3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到0.1℃。

4、温度超出预置温度±5℃时发出声音报警。

5、对升、降温过程没有线性要求。

6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输

7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。

一、本课程设计系统概述

1、系统原理

选用AT89C2051单片机为中央处理器,通过温度传感器DS18B20对恒温箱进行温度采集,将采集到的信号传送给单片机,在由单片机对数据进行处理控制显示器,并比较采集温度与设定温度是否一致,然后驱动恒温箱的加热或制冷。2、系统总结构图

总体设计应该是全面考虑系统的总体目标,进行硬件初步选型,然后确定一个系统的草案,同时考虑软硬件实现的可行性。总体方案经过反复推敲,确定了以美国Atmel公司推出的51系列单片机为温度智能控制系统的核心,并选择低功耗和低成本的存储器、数码显示器等元件,总体方案如下图:

图1系统总体框图

二、硬件各单元设计

1、单片机最小系统电路

单片机选用Atmel公司的单片机芯片AT89C2051 ,完全可以满足本系统中要求的采集、控制和数据处理的需要。单片机的选择在整个系统设计中至关重要,该单片机与MCS-51系列单片机高度兼容、低功耗、可以在接近零频率下工作等诸多优点,而广泛应用于各类计算机系统、工业控制、消费类产品中。

AT89C2051是AT89系列单片机中的一种精简产品。它是将AT89C51的P0口、P2口、EA/Vpp、ALE/PROG、PSEN口线省去后,形成的一种仅20引脚的单片机,相当于早期Intel8031的最小应用系统。这对于一些不太复杂的控制场合,仅有一片AT89C2051就足够了,是真正意义上的“单片机”。AT89C2051为很多规模不太大的嵌入式控制系统提供了一种极佳的选择方案,使传统的51系列单片机

12

Y112MHz

33pF

33pF

10uF

RST

+5V

+5V

R11K

R210K

RST 1

(RXD)P3.02

(TXD)P3.13XTAL24

XTAL15(INT0)P3.26(INT1)P3.37

(T0)P3.48(T1)P3.59GND 10

Vcc 20P1.719P1.618P1.517P1.416P1.315P1.214P1.1(AIN1)13P1.0(AIN0)

12P3.7

11

*AT89C2051

试系统已能满足设计要求,而且降低了成本,结构设计也较精巧。

2、温度传感器

采用数字温度传感器DS18B20,与传统的热敏电阻相比, 他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。可以分别在93.75ms和750ms内完成9位和12位的数字量, 并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线( 单线接口) 读写, 温度变换功率来源于数据总线, 总线本身也可以向所挂接的DS18B20供电, 而无需额外电源。因而使用DS18B20可使系统结构更趋简单,可靠性更高,成本更低。测量温度范围为~55℃~+125℃。C,在一10℃~+85℃。C范围内,精度为±0.5℃。DS1822的精度较差为±2℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。其引脚分布如图3所示

图3 DS18B20引脚图

(1) 引脚功能如下:

NC(1 、2 、6 、7 、8脚) :空引脚,悬空不使用。

VDD(3脚):可选电源脚,电源电压范围3~5.5V。

DQ(4脚):数据输入/输出脚,漏极开路,常态下高电平。

(2) DS18B20测温原理

DS18B20的测温原理如图4所示,图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2 计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线

性,其输出用于修正计数器1的预置值。DS18B20在正常使用时的测温分辨率为0.5℃,如果要更高的精度,则在对DS18B20测温原理进行详细分析的基础上,采取直接读取DS18B20内部暂存寄存器的方法,将DS18B20的测温分辨率提高到0.1~0.01℃。

图4 测温原理图

(3) DS18B20与单片机接口电路

P1.3口和DSl8B20的引脚DQ连接,作为单一数据线。U2即为温度传感芯片DSl8B20,本设计虽然只使用了一片DSl8B20 ,但由于不存在远程温度测量的考虑,所以为了简单起见,采用外部供电的方式,如图2.6所示。测温电缆采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一对接VCC和地线,屏蔽层在电源源端单点接地。

相关文档
最新文档