直线和圆【概念、方法、题型、易误点及应试技巧总结】
高三数学直线与圆知识点复习
高三数学直线与圆知识点复习数学是高中阶段学生最让人头疼的科目之一,而高三阶段的数学更是难度系数加大。
在高三数学课程中,直线与圆是一个非常重要的知识点。
下面我们来复习一下直线与圆的相关知识。
1. 直线方程在平面直角坐标系中,直线可以用一般式或点斜式方程表示。
一般式方程为Ax + By + C = 0,其中A、B和C是常数。
而点斜式方程则是y - y1 = k(x - x1),其中(k是直线的斜率,(x1, y1)是直线上的一点。
直线方程中的斜率对于直线的性质起着重要作用。
斜率为正表示直线向右上方倾斜,斜率为负表示直线向右下方倾斜,斜率为零表示直线为水平线,斜率不存在表示直线为竖直线。
2. 圆的方程在平面直角坐标系中,圆可以用标准方程表示。
标准方程为(x - a)² + (y - b)² = r²,其中(a, b)是圆心的坐标,r是圆的半径。
圆的方程中,圆心对圆的性质起着重要作用。
圆心坐标(a, b)表示圆心所在的位置,半径r则决定了圆的大小。
3. 直线与圆的关系直线与圆有着紧密的关系,可以分为以下几种情况:- 直线与圆相切:直线与圆相切表示直线与圆只有一个交点,此时直线的斜率与半径的斜率互为相反数。
- 直线与圆相离:直线与圆相离表示直线与圆没有交点,此时直线的斜率与半径的斜率不相等。
- 直线与圆相交:直线与圆相交表示直线与圆有两个交点。
- 直径:直径是连接圆上任意两点,并且经过圆心的线段。
直径的长度等于圆的半径的两倍。
4. 直线与圆的求解方法当我们遇到直线与圆的相交等问题时,可以通过以下几种方法求解:- 列方程求解:将直线和圆的方程列出,根据方程求解交点的坐标。
- 利用性质求解:根据直线和圆的性质,通过几何推理求解交点的坐标。
5. 直线与圆的应用直线与圆的知识在实际生活中有广泛的应用。
例如,在建筑设计中,我们需要确定两条直线是否相交,以确保结构的稳定性。
在电子设备设计中,我们需要确定一条直线是否与一个电子元件的引脚相交,以确保电子元件的正常工作。
高中数学直线和圆知识点总结
高中数学直线和圆知识点总结高中数学直线和圆学问点总结直线和圆一.直线1.斜率与倾斜角:ktan,[0,)(1)[0,2(2))时,k0;2时,k不存在;(3)(2,)时,k0(4)当倾斜角从0增加到90时,斜率从0增加到;当倾斜角从90增加到180时,斜率从增加到02.直线方程(1)点斜式:yy0k(xx0)(2)斜截式:ykxbyy1y2y1xayb(3)两点式:xx1x2x1(4)截距式:1(5)一般式:AxByC03.距离公式(1)点P1(x1,y1),P2(x2,y2)之间的距离:P1P2(x2x1)(y2y1)|Ax0By0C|AB2222(2)点P(x0,y0)到直线AxByC0的距离:d(3)平行线间的距离:AxByC10与AxByC20的距离:d4.位置关系(1)截距式:ykxb形式重合:k1k2b1b2相交:k1k2平行:k1k2b1b2垂直:k1k21(2)一般式:AxByC0形式重合:A1B2A2B1且A1C2A2C1且B1C2C1B2平行:A1B2A2B1且A1C2A2C1且B1C2C1B21|C1C2|AB垂直:A1A2B1B20相交:A1B2A2B15.直线系A1xB1yC1+(A2xB2yC2)0表示过两直线l1:A1xB1yC10和l2:A2xB2yC20交点的所有直线方程(不含l2)二.圆1.圆的方程(1)标准形式:(xa)2(yb)2R2(R0)(2)一般式:x2y2DxEyF0(D2E24F0)xx0rcos(3)参数方程:(是参数)yy0rsin【注】题目中消失动点求量时,通常可实行参数方程转化为三角函数问题去解决.(4)以A(x1,y1),B(x2,y2)为直径的圆的方程是:(xxA)(xxB)(yyA)(yyB)02.位置关系(1)点P(x0,y0)和圆(xa)2(yb)2R2的位置关系:222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)2(yb)2R2内部222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)2(yb)2R2上222222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)(yb)R外(2)直线AxByC0和圆(xa)(yb)R的位置关系:推断圆心O(a,b)到直线AxByC0的距离d当dR时,直线和圆相交(有两个交点);当dR时,直线和圆相切(有且仅有一个交点);当dR时,直线和圆相离(无交点);1|AaBbC|AB22222与半径R的大小关系3.圆和圆的位置关系推断圆心距dO1O2与两圆半径之和R1R2,半径之差R1R2(R1R2)的大小关系当dR1R2时,两圆相离,有4条公切线;当dR1R2时,两圆外切,有3条公切线;当R1R2dR1R2时,两圆相交,有2条公切线;当dR1R2时,两圆内切,有1条公切线;当0dR1R2时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l2Rd22扩展阅读:高中数学直线与圆的方程学问点总结高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x轴正方向;②平行:α=0°;③范围:0°≤α<180°。
高中数学直线和圆知识点总结
高中数学直线和圆知识点总结直线和圆一.直线1.斜率与倾斜角:ktan,[0,)(1)[0,2(2))时,k0;2时,k不存在;(3)(2,)时,k0(4)当倾斜角从0增加到90时,斜率从0增加到;当倾斜角从90增加到180时,斜率从增加到02.直线方程(1)点斜式:yy0k(xx0)(2)斜截式:ykxbyy1y2y1xayb(3)两点式:xx1x2x1(4)截距式:1(5)一般式:AxByC03.距离公式(1)点P1(x1,y1),P2(x2,y2)之间的距离:P1P2(x2x1)(y2y1)|Ax0By0C|AB2222(2)点P(x0,y0)到直线AxByC0的距离:d (3)平行线间的距离:AxByC10与AxByC20的距离:d4.位置关系(1)截距式:ykxb形式重合:k1k2b1b2相交:k1k2平行:k1k2b1b2垂直:k1k21(2)一般式:AxByC0形式重合:A1B2A2B1且A1C2A2C1且B1C2C1B2平行:A1B2A2B1且A1C2A2C1且B1C2C1B21|C1C2|AB垂直:A1A2B1B20相交:A1B2A2B15.直线系A1xB1yC1+(A2xB2yC2)0表示过两直线l1:A1xB1yC10和l2:A2xB2yC20交点的所有直线方程(不含l2)二.圆1.圆的方程(1)标准形式:(xa)2(yb)2R2(R0)(2)一般式:x2y2DxEyF0(D2E24F0)xx0rcos(3)参数方程:(是参数)yy0rsin【注】题目中出现动点求量时,通常可采取参数方程转化为三角函数问题去解决.(4)以A(x1,y1),B(x2,y2)为直径的圆的方程是:(xxA)(xxB)(yyA)(yyB)02.位置关系(1)点P(x0,y0)和圆(xa)2(yb)2R2的位置关系:222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)2(yb)2R2内部222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)2(yb)2R2上222222当(x0a)(y0b)R时,点P(x0,y0)在圆(xa)(yb)R外(2)直线AxByC0和圆(xa)(yb)R的位置关系:判断圆心O(a,b)到直线AxByC0的距离d当dR时,直线和圆相交(有两个交点);当dR时,直线和圆相切(有且仅有一个交点);当dR时,直线和圆相离(无交点);1|AaBbC|AB22222与半径R的大小关系3.圆和圆的位置关系判断圆心距dO1O2与两圆半径之和R1R2,半径之差R1R2(R1R2)的大小关系当dR1R2时,两圆相离,有4条公切线;当dR1R2时,两圆外切,有3条公切线;当R1R2dR1R2时,两圆相交,有2条公切线;当dR1R2时,两圆内切,有1条公切线;当0dR1R2时,两圆内含,没有公切线;4.当两圆相交时,两圆相交直线方程等于两圆方程相减5.弦长公式:l2Rd22高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x轴正方向;②平行:α=0°;③范围:0°≤α<180°。
直线与圆知识点归纳总结
直线与圆知识点归纳总结嘿,咱今儿就来唠唠直线与圆的那些事儿哈!直线,那就是直直的一条线呗,没啥弯弯绕绕的。
它可以向两端无限延伸,就像咱那无穷无尽的想象力一样。
圆呢,圆圆的,多可爱呀!它可是有个固定的中心点,所有的点到这中心点的距离都相等呢,这就叫公平公正,哈哈!直线的方程有好多种呢,什么点斜式啦、斜截式啦,就好像人有不同的性格特点一样。
点斜式就像是有了一个点和一个方向,就能确定这条直线啦;斜截式呢,就像是知道了直线在 y 轴上的截距和斜率,也就了解它了。
圆呢,它的方程也有自己的门道。
标准方程就像是给圆穿上了一件合身的衣服,一下子就把它的样子清晰地展现出来了。
直线和圆碰到一起,那故事可就多啦!它们可能会相交,就像是两个好朋友见面握个手;也可能相切,就好像轻轻地碰了一下,点到为止;还有可能相离,那就是各走各的路咯。
咱想想啊,如果要判断直线和圆的位置关系,那咱就得算算距离呀。
圆心到直线的距离和圆的半径比一比,不就知道它们是咋个关系啦。
还有啊,圆的切线,那可是很特别的呢!切线和半径垂直,这就像是一种默契,不用多说都知道。
直线和圆的综合问题那也是常考的呢。
比如说求最值,哎呀,这就像是在玩游戏,要找到最厉害的那个解法。
咱再说说圆的弦长,这就像是圆上的一段小插曲。
通过一些公式和方法,就能算出这弦长有多长啦。
你说直线和圆的知识是不是很有趣呀?就像生活中的各种小细节,看似简单,却蕴含着大大的道理。
咱得好好琢磨琢磨,把这些知识都装进咱的脑袋里,以后遇到问题就能轻松应对啦!这直线和圆啊,就像是数学世界里的一对好伙伴,给我们带来了好多挑战和乐趣,难道不是吗?咱可得把它们研究透咯,让它们为咱的学习和生活增添光彩呀!。
直线与圆的方程知识点总结
直线与圆的方程知识点总结
直线与圆的方程是解析几何中的基本知识点,下面是关于直线与圆的方程的一些重要知识点总结:
直线方程知识点总结:
1. 直线的点斜式方程:y-y0=k(x-x0),其中 (x0, y0) 为直线上的一点,k 为直线的斜率。
2. 直线的斜截式方程:y=kx+b,其中 k 为直线的斜率,b 为 y 轴上的截距。
3. 直线的两点式方程:(y-y1)/(y2-y1)=(x-x1)/(x2-x1),其中 (x1, y1) 和
(x2, y2) 为直线上的两点。
4. 直线的截距式方程:x/a + y/b = 1,其中 a 和 b 分别为直线在 x 轴和 y 轴上的截距。
5. 直线的一般式方程:Ax + By + C = 0,其中 A、B、C 为常数,且 A 和
B 不为 0。
圆的方程知识点总结:
1. 圆的标准式方程:(x-h)^2 + (y-k)^2 = r^2,其中 (h, k) 为圆心坐标,r 为半径。
2. 圆的参数式方程:x=h+rcosθ, y=k+rsinθ,其中 (h, k) 为圆心坐标,r 为半径,θ 为参数。
3. 圆的极坐标式方程:ρ=r,其中 r 为半径,θ 为极角。
4. 圆的直径式方程:x^2 + y^2 + Dx + Ey + F = 0,其中 D、E、F 为常数。
5. 圆的一般式方程:x^2 + y^2 + Ax + By + C = 0,其中 A、B、C 为常数。
在直线与圆的方程中,还有一些重要的知识点和概念,如直线的法线式和参数式,圆的切线和割线等。
理解和掌握这些概念和公式对于解决几何问题非常重要。
直线与圆的方程知识点总结归纳
直线与圆的方程知识点总结归纳直线与圆是几何学中常见的两类曲线,在数学中有各自的方程表示形式。
在本文中,我们将总结和归纳直线与圆的方程的相关知识点。
让我们一起深入了解吧。
直线的方程在平面几何中,直线可以用多种形式表示。
其中,最常见的是点斜式和一般式。
1. 点斜式方程点斜式方程是直线的一种表示方法,使用直线上的一个点和直线的斜率来表示。
设直线上一点为(x₁, y₁),斜率为m。
那么点斜式方程可以表示为:y - y₁ = m(x - x₁)2. 一般式方程一般式方程是直线的另一种表示方法,使用直线的斜率和截距来表示。
设直线的斜率为m,截距为c。
那么一般式方程可以表示为:ax + by + c = 0其中,a和b为不同时为0的任意实数。
圆的方程在平面几何中,圆可以用多种形式表示。
常见的表示形式有标准式和一般式。
1. 标准式方程标准式方程是圆的一种表示方法,使用圆心的坐标和半径长度来表示。
设圆心坐标为(h, k),半径长度为r。
那么标准式方程可以表示为:(x - h)² + (y - k)² = r²2. 一般式方程一般式方程是圆的另一种表示方法,使用圆心的坐标和半径长度来表示。
设圆心坐标为(h, k),半径长度为r。
那么一般式方程可以表示为:x² + y² + Dx + Ey + F = 0其中,D、E和F为不全为0的任意实数。
直线与圆的关系直线与圆的关系可以通过它们的方程来判断。
根据方程的形式,可以得出直线与圆的以下关系:1. 直线与圆相切如果直线的方程与圆的方程仅有一个交点,那么直线与圆相切。
2. 直线与圆相离如果直线的方程与圆的方程没有交点,那么直线与圆相离。
3. 直线与圆相交如果直线的方程与圆的方程有两个交点,那么直线与圆相交。
4. 直线为圆的切线如果直线的方程与圆的方程有一个交点,并且该交点为圆上的点,那么直线为圆的切线。
总结本文总结归纳了直线与圆的方程的相关知识点。
数学高一直线与圆知识点
数学高一直线与圆知识点在高中数学学科中,直线与圆是重要的几何图形,它们的相互关系也是我们必须深入了解的知识点。
下面将从不同角度介绍直线与圆的相关知识。
一、直线的基本概念与性质直线是最常见的几何图形之一,它具有以下基本概念与性质。
1. 定义:直线是由无数个点连成的轨迹,它没有起点和终点,并且内部的任意两点可以连成一条直线。
2. 点斜式方程:直线可以通过点和斜率来表示,一般形式为y= kx + b,其中k为斜率,b为常量。
3. 平行与垂直线:两条直线平行的充要条件是它们的斜率相等;两条直线垂直的充要条件是它们的斜率的乘积为-1。
4. 直线与直线的位置关系:两条直线可能相交、平行或重合。
5. 直线与平面图形的关系:直线可以与平面图形相交于一个或多个点,通过这些交点可以研究直线与图形的性质。
二、圆的基本概念与性质圆是另一种重要的几何图形,它有独特的定义和性质。
1. 定义:圆是由一个不动定点到平面上所有距离相等于这个定点与平面上其他点的距离的轨迹。
这个不动定点称为圆心,所有距离相等的线段称为半径,常用r表示。
2. 圆的方程:圆的方程一般形式为:(x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为半径的长度。
3. 弧长与扇形面积:圆上的弧可以通过圆心角来确定长度,圆心角为1弧度时所对应的弧长度等于半径的长度。
圆的扇形面积等于圆心角所对应的弧长除以圆的周长再乘以圆的面积。
4. 圆内接与外切:如果一个三角形的三边分别和一个圆相切,那么这个三角形叫做这个圆的内切三角形。
如果一个四边形的四边分别和一个圆相切,那么这个四边形叫做这个圆的内切四边形。
三、直线与圆的相交关系直线与圆的相交关系给了我们更多的图形特性来研究。
1. 直线与圆的位置关系:直线可以与圆相离、相切或相交于两个交点。
2. 切线定理:直线若与圆相切,那么切点和圆心连线垂直。
3. 弦:直线在圆内部所对应的线段称为弦,弦的中垂线通过圆心。
高三直线和圆知识点
高三直线和圆知识点直线和圆是高中数学中的重要知识点,对于理解几何图形的性质和解题能力起着至关重要的作用。
本文将为大家详细介绍高三直线和圆的相关知识。
一、直线的定义和性质直线是由无数个点按照同一方向延伸而成的图形。
直线的特点是无限延伸,并且上面的任意两点都可以用直线段相连接。
直线的性质有以下几点:1. 直线上的任意两点可以确定一条直线。
2. 直线上的任意一点,都在直线上。
二、圆的定义和性质圆是由平面上与某一点的距离相等的所有点组成的图形。
这个距离称为圆的半径,通常用字母r表示。
圆心是与所有这些点距离相等的点。
直径是通过圆心的两个点,并且是圆的最长的一条线段,长度等于半径的两倍。
圆的性质有以下几点:1. 圆上所有点到圆心的距离都相等。
2. 圆的直径是圆的最长直线段,且等于半径的两倍。
3. 圆的周长公式为C=2πr,其中C表示周长,r表示半径。
4. 圆的面积公式为A=πr²,其中A表示面积,r表示半径。
三、直线和圆的关系直线和圆是几何图形中经常会出现的组合。
它们之间的关系有以下几种情况:1. 直线与圆的位置关系:a) 直线与圆相切:直线与圆只有一个交点,此时交点为切点。
b) 直线与圆相离:直线与圆没有交点。
c) 直线与圆相交:直线与圆有两个交点。
2. 圆上的点到直线的距离:a) 圆心到直线的距离:圆心到直线的距离等于直线的垂直距离,即圆心到直线的距离是最短的。
b) 圆上任意一点到直线的距离:圆上的任意一点到直线的距离都等于它到直线的垂直距离。
3. 直线和圆的方程:a) 直线的方程:直线的方程可以用斜截式、一般式、点斜式等形式表示,根据题目给定的条件来确定具体的方程形式。
b) 圆的方程:圆的方程可以用标准方程和一般方程来表示,其中标准方程为(x-a)²+(y-b)²=r²,一般方程为Ax²+By²+Cx+Dy+E=0,其中a、b为圆心的坐标,r为半径。
直线与圆、圆与圆的位置关系知识点及题型归纳
直线与圆、圆与圆的位置关系知识点及题型归纳知识点精讲一、 直线与圆的位置关系直线与圆的位置关系有3种,相离,相切和相交 二、 直线与圆的位置关系判断1. 几何法(圆心到直线的距离和半径关系) 圆心(,)a b 到直线0Ax By C ++=的距离,则d =则d r <⇔直线与圆相交,交于两点,P Q ,||PQ =d r =⇔直线与圆相切; d r >⇔直线与圆相离2. 代数方法(几何问题转化为代数问题即交点个数问题转化为方程根个数) 由2220()()Ax By C x a y b r++=⎧⎨-+-=⎩ ,消元得到一元二次方程20px qx t ++=,20px qx t ++=判别式为∆,则: 则0∆>⇔直线与圆相交; 0∆=⇔直线与圆相切; 0∆<⇔直线与圆相离.三、 两圆位置关系的判断是用两圆的圆心距与两圆半径的和差大小关系确定,具体是:设两圆12,O O 的半径分别是,R r ,(不妨设R r >),且两圆的圆心距为d ,则: 则d R r <+⇔两圆相交; d R r =+⇔两圆外切; R r d R r -<<+⇔两圆相离 d R r =-⇔两圆内切;0d R r ≤<-⇔两圆内含(0d =时两圆为同心圆) 四、 关于圆的切线的几个重要结论(1) 过圆222x y r +=上一点00(,)P x y 的圆的切线方程为200x x y y r +=.(2) 过圆222()()x a y b r -+-=上一点00(,)P x y 的圆的切线方程为200()()()()x a x a y b y b r --+--=(3) 过圆220x y Dx Ey F ++++=上一点00(,)P x y 的圆的切线方程为0000022x x y y x x y y D E F ++++⋅+⋅+= (4) 求过圆222x y r +=外一点00(,)P x y 的圆的切线方程时,应注意理解: ①所求切线一定有两条;②设直线方程之前,应对所求直线的斜率是否存在加以讨论.设切线方程为00()y y k x x -=-,利用圆心到切线的距离等于半径,列出关于k 的方程,求出k 值.若求出的k 值有两个,则说明斜率不存在的情形不符合题意;若求出的k 值只有一个,则说明斜率不存在的情形符合题意.题型讲解题型1 直线与圆的相交关系 思路提示研究直线与圆的相交问题,应牢牢记住三长关系,即半径长2l、弦心距d 和半径r 之间形成的数量关系222()2l d r +=.例9.28 已知圆O :225x y +=,直线l :cos sin 1(0)2x y πθθθ+=<<,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =___________. 分析 先求出圆心到直线的距离,在进行判断解析 因为圆心(0,0)到直线l 的距离为1,又因为圆O 4个点符合条件. 评注 若圆O 上到直线l 的距离等于2的点的个数为k ,则2k =;若3k =,则圆O 上到直线l 的距离等于1变式1已知圆O :224x y +=,直线l :1x ya b+=,设圆O 上到直线l 的距离等于1的点的个数有两个,则2211a b +的取值范围___________. 例9.29 已知圆C :228120x y y +-+=,直线l :20ax y a ++=, (1) 当直线l 与圆C 相交时,求实数a 的取值范围;(2) 当直线l 与圆C 相交于,A B 两点,且AB =l 的方程.分析 根据点到直线距离等于半径来度量直线与圆相切问题;根据三长关系解决直线与圆相交问题. 解析 (1)圆C :22(4)4x y +-=,故圆心为(0,4)C ,因为直线l 与圆C 相交,所以圆心为(0,4)C 到直线l 的距离2d =<,解得34a <-,故实数a 的取值范围是3(,)4-∞-(2)由题意,直线l 与圆C 相交于,A B 两点,且AB =224+=,化简可得2870a a ++=,即1a =-或7a =-,故所求直线的方程为20x y -+=或7140x y -+=.评注 在处理直线与圆的相交问题时经常用到三长关系,即半弦长,弦心距,半径长构成直角三角形的三边.变式1 对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是( ) A .相离 B. 相切 C.相交但直线不过圆心 D.相交且直线过圆心变式 2 过点(1,2)--的直线l 被圆222210x y x y +--+=截得的弦长为,则直线l 的斜率为__________.变式3 已知直线l 经过点(1,3)P -且与圆224x y +=相交,截得弦长为l 的方程.例9.30 过点(1,1)P 的直线l 与圆22:(2)(3)9C x y -+-=相交于,A B 两点,则||AB 的最小值为( )A.解析 设圆心(2,3)C 到直线l 的距离d ,由弦长公式||AB ==可知当距离最大d 时,弦长||AB 最小.又||d CP ≤==,当直线l CP ⊥时取等号,故max d =.所以max ||4AB ===.故选B评注 过圆内一定点的所有弦中,过此点的直径为最长弦,过此点且垂直于该直径的弦为最短弦. 变式1 过点(11,2)A 做圆22241640x y x y ++--=的弦,其中弦长为整数的共有( ) A. 16 条 B. 17条 C. 32条 D. 34条例9.31 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A. 解析 22680x y x y +--=可化为22(3)(4)25x y -+-=,故圆心坐标(3,4),半径为5,点(3,5)在圆内,因为AC 最长,所以AC 为直径,即||10AC =,BD 最短,且BD 过点(3,5),所以||BD ==,所以1||||2S AC BD == B变式1 如图所示,已知AC ,BD 为圆O :224x y +=的两条相互垂直的弦,垂足为M ,则四边形ABCD 的面积的最大值为__________.例9.32 (2012北京海淀高三期末理13改编)已知圆22:(1)2C x y -+=,过点(1,0)M -的直线l 交圆C 于,A B 两点,若0CA CB ⋅=(C 为圆心),则直线l 的方程为__________. 解析 设直线:(1)l y k x =+,即:l 0kx y k -+= 则圆心到直线l 的距离为d =又0CA CB ⋅=,故CA CB ⊥,即△ABC 是等腰三角形,2C π∠=.所以sin142d r π====即k =±,故直线l :10x +=或10x ++= 变式 1 已知O 为平面直角坐标系的原点,过点(2,0)M -的直线l 与圆221x y +=交于,P Q 两点.若12OP OQ ⋅=-,求直线l 的方程.变式2 已知圆C :22(1)(6)25x y ++-=上的两点,P Q 关于直线l :8y kx =+对称,且0OP OQ ⋅=(O 为坐标原点),求直线PQ 的方程题型2 直线与圆的相切关系 思路提示若直线与圆相切,则圆心到直线的距离等于半径,切线的几何性质为:圆心和切点的连线垂直于切线. 例9.33 求经过点(1,7)-与圆2225x y +=相切的直线方程.分析 将点(1,7)-代入圆方程得221(7)5025+-=>,知点(1,7)-是圆外一点,故只需求切线的斜率或再求切线上另一点坐标.解析 解法一:依题意,直线的斜率存在,设所求切线斜率为k ,则所求直线方程为7(1)y k x +=-,整理成一般式为70kx y k ---=.由圆的切线的性质,5=,化简得3127120k k --=,解得43k =或34k =-. 故所求切线方程为:43250x y --=或34250x y ++=.解法二:依题意,直线的斜率存在,设所求切线方程为0025x x y y +=(00(,)x y 是切点),将坐标(1,7)-代入后得00725x y -=,由00002272525x y x y -=⎧⎪⎨+=⎪⎩,解得0043x y =⎧⎨=-⎩或0034x y =-⎧⎨=-⎩. 故所求切线方程为:43250x y --=或34250x y ++=.评注 已知圆外一点,求圆的切线方程一般有三种方法:①设切点,用切线公式法;②设切线斜率,用判别式法:③设切线斜率,用圆心到切线距离等于圆半径.一般地,过圆外一点可向圆作两条切线,在后两种方法中,应注意斜率不存在的情况.变式1 已知圆22:(1)(2)4C x y -+-=,求过点(1,5)P -的圆的切线方程.变式2 直线l (2)2y k x =-+与圆22:220C x y x y +--=相切,则的一个方向向量为( ) A. (2,2)- B. (1,1) C. (3,2)- D. 1(1,)2例9.34 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆224470x y x y +--+=相切,求入射光线l 所在直线的方程.分析 利用对称性解决此类反射问题.根据光学特征,对称性的使用既可以使用点的对称,也可以使用圆的对称.解析 已知圆22(2)(2)1x y -+-=关于x 轴的对称圆'C 的方程为22(2)(2)1x y -++=,可设光线所在直线方程为3(3)y k x -=+,所以直线l 与圆'C 相切,圆心'(2,2)C -到直线l 的距离1d ==,解得43k =-或34k =-. 所以光线所在的直线l 方程为4330x y ++=或3430x y +-=.变式 1 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线'l 所在直线与圆224470x y x y +--+=相切,求反射光线'l 所在直线的方程.题型3 直线与圆的相离关系 思路提示关于直线与圆的相离问题的题目大多是最值问题,即直线上的点与圆上的点的最近或最远距离问题,这样的题目往往要转化为直线上的点与圆心距离的最近和最远距离再加减半径长的问题.例9.35 (1)直线:1l y x =-的点到圆22:4240C x y x y ++-+=上的点的距离最小值是____________. (2)由直线1y x =+上的点向圆22(3)(2)1x y -++=引切线,则切线长的最小值为( )分析 过直线1y x =+上任意一点向圆22(3)(2)1x y -++=引切线PQ ,即可得到1||PQ O Q PQ ⊥==,那么,当切线长PQ 取最小值时,即1O P 取最小值.解析 (1)圆C 可化为22(2)(1)1x y ++-=,故圆心(2,1)C -到直线1y x =-的距离d ==1d r -=(3) 过1O 作1O H 垂直于直线1y x =+于点H ,过H 作HR 相切圆1O 与R ,连接1O R ,则切线长的最小值为||HR ,圆心(3,2)-到直线10x y -+=的距离d ==,||HR =,故选A.变式1 已知点P 是直线40(0)kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两切线,,A B 是切点,若四边形PACB 的最小面积是2,则k 的值为( )A. 3B.2C. 变式 2 已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足||||PQ PA =.(1)求实数,a b 间满足的等量关系; (2)求线段PQ 长的最小值.题型4 圆与圆的位置关系 思路提示已知两圆半径分别为12,r r ,两圆的圆心距为d ,则: (1) 两圆外离12r r d ⇔+<; (2)两圆外切12r r d ⇔+=; (3)两圆相交1212||r r d r r ⇔-<<+; (4)两圆内切12||r r d ⇔-=; (5)两圆内含12||r r d ⇔->;两圆外切和内切较为重要,这两种位置关系常与椭圆和双曲线的定义综合考查.例9.36 圆221:20O x y +-=和圆222:40O x y y +-=的位置关系是( )A. 外离B. 相交C. 外切D. 内切 分析 判断圆心距与两圆半径的关系解析 由圆221:20O x y +-=得1(0,0)O ,1r圆222:40O x y y +-=得2(0,2)O ,22r =,121212||||2r r O O r r -<=<+,两圆相交,故选B.变式1 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.变式2 在平面直角坐标系xOy 中,点(0,3)A ,直线l :24y x =-,设圆C 的半径为1,圆心在l 上, (1) 若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2) 使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.例9.37 已知两圆222610x y x y +---=和2210120x y x y m ++-+= (1)m 取何值时两圆外切.(2)m 取何值时两圆外切,此时公切线方程是什么?(3)求45m =时两圆的公共弦所在直线的方程和公共弦的长度.分析 把两圆的一般方程化为标准方程,求两圆的圆心距d ,判断d 与R r +,R r -的关系,再用圆的几何性质分别解决(2)(3)问. 解析 两圆的标准方程分别为22(1)(3)11x y -+-=,22(5)(6)61,(61)x y m m -+-=-<,圆心分别为(1,3),(5,6)M N(1) =25m =+(2) 小于两圆圆心距55=, 解得,两圆方程222610x y x y +---=与2210120x y x y m ++-+=,相减得861250x y +--+=代入,得43130x y +-+=.(3) 两圆的公共弦所在直线方程为2222(261)(101245)0x y x y x y x y +----+--+=,即43230x y +-=,所以公共弦长为=评注 应注意两圆位置关系由圆心距和两圆半径的和与差的大小关系来确定.变式1 若圆224x y +=与圆22260(0)x y ay a ++-=>,公共弦的长为a =___________.变式2 设两圆12,C C 都和两坐标轴相切,且都过点(4,1),则两圆的圆心距离12||C C =( )A. 4B. 有效训练题1. 已知点(,)P a b 在圆C :224x y +=内(异于圆心),则直线10ax by ++=与圆C 的位置关系是( ) A. 相交 B. 相切 C. 相离 D. 不能确定 2.已知a b ≠,且2sin cos 04a a πθθ+-=,2sin cos 04b b πθθ+-=,则连接2(,)a a ,2(,)b b 两点的直线与单位圆的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定3.设,m n R ∈,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( )A. 1⎡-⎣B. (),11⎡-∞⋃+∞⎣C. 2⎡-+⎣D. (),22⎡-∞-⋃++∞⎣4.若直线1x ya b+=经过点(cos ,sin )M αα,则( )A. 221a b +≤B. 221a b +≥ C.22111a b +≤ D. 22111a b +≥5.过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分两部分,使得这两部分的面积之差最大,该直线的方程为( )A. 20x y +-=B. 10y -=C. 0x y -=D. 340x y +-=6.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( ) A. []3,1-- B. []1,3- C. []3,1- D. (][),31,-∞-⋃+∞7. 设,m n R ∈,若直线10mx ny +-=与x 轴相交于点A ,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则△ABC 面积的最小值为___________8.过点(4,0)-作直线l 与圆2224200x y x y ++--=交于,A B 两点,如果||8AB =,则l 的方程为__________.9.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则的最大值是_______. 10.已知点(3,1)M ,直线40ax y -+=及圆22(1)(2)4x y -+-=. (1)求过点M 的圆的切线方程;(2)若直线40ax y -+=与圆相切,求a 的值(3)若直线40ax y -+=与圆相交于,A B 两点,且AB 弦的长为a 的值11.已知圆M 的方程为22(2)1x y +-=(M 为圆心),直线的方程为20x y -=,点P 在直线l 上,,过点P 作圆M 的切线,PA PB ,切点为,A B . (1)若060APB ∠=,试求点的坐标;(2)若点P 的坐标为(2,1),过P 作直线与圆M 交于,C D 两点,当CD =CD 的方程;(3)求证:经过,,A P M 三点的圆必过定点,并求出所有定点的坐标.12. 已知圆C 过点(1,1)P ,且与圆222:(2)(2)(0)M x y r r +++=>关于直线20x y ++=对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅的最小值.(M 为圆M 的圆心);(3)过点P 作两条相异直线分别与圆C 相交于,A B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.。
直线与圆知识点总结
直线与圆知识点总结1. 直线与圆的位置关系:- 直线与圆可能相交于两个点,这种情况称为相交。
- 直线与圆可能与圆外部割线相切于一点,这种情况称为相切。
- 直线可能与圆没有交点,这种情况称为相离。
2. 判断直线与圆的位置关系:- 使用勾股定理可以判断直线与圆是否相交。
设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
- 使用两点式可以判断直线与圆的位置关系。
设直线上两点为(x₁, y₁)和(x₂, y₂),圆的方程为(x - h)² + (y - k)² = r²,其中(h, k)为圆心的坐标,r为半径。
计算直线的斜率m = (y₂ - y₁) / (x₂ - x₁),若直线的斜率存在且非零,则直线与圆相交或相离;若直线的斜率不存在或为0,则直线可能与圆相切或相离。
将直线的方程代入圆的方程,计算方程的解。
若方程的解为实数,且解满足直线的方程,则直线与圆相交;若方程的解为实数,但解不满足直线的方程,则直线与圆相离;若方程的解为复数,则直线与圆相切。
3. 求直线与圆的交点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
将直线的方程代入圆的方程,得到一个关于x的二次方程。
解这个方程即可得到直线与圆的交点的x坐标。
将得到的x坐标代入直线的方程,可以求得对应的y坐标。
4. 求直线与圆的切点:- 设直线的方程为ax + by + c = 0,圆的方程为(x - h)² + (y - k)²= r²,其中(h, k)为圆心的坐标,r为半径。
直线与圆的位置关系与性质知识点总结
直线与圆的位置关系与性质知识点总结直线与圆是几何中常见的两种基本图形,它们的位置关系与性质对于解决几何问题非常重要。
在这篇文章中,我们将总结直线与圆的常见位置关系,并讨论它们的性质。
一、直线与圆的位置关系1. 直线与圆的相交关系当直线与圆有交点时,我们可以得出以下几种情况:- 直线与圆相交于两点:直线穿过圆的中心,此时直径是直线的特例。
- 直线与圆相交于一个点:直线与圆相切,切点称为切点。
- 直线位于圆的内部,没有交点。
- 直线位于圆的外部,也没有交点。
2. 直线与圆的位置关系特例- 切线:直线与圆相切的情况,称为切线。
与圆相切的直线垂直于半径,切点在直线上的法线与从切点到圆心的半径垂直。
- 弦:直线穿过圆,但不过圆心的情况,称为弦。
通过圆心的弦称为直径,且直径是弦中最长的一条线段。
二、直线与圆的性质1. 切线定理定理一:若一条直线与圆相切于切点A,则以切点A为顶点的两条锐角与此直线所夹的圆弧相等。
定理二:若从圆外一点作直线与圆相切于切点A,则此直线与以此点为端点的弦相交处的两个锐角是一对互补角。
2. 弦长定理定理三:若两条弦相交于切点A,则两条弦分割的圆周上的弧长乘积相等。
3. 直径定理定理四:直径是穿过圆心的弦,正好是弦分割的两条弧的半径之和。
4. 割线定理定理五:若两条割线相交于切点A,则此割线与此切点所在的直线上的弦分割的互补角是一对互补角。
三、直线与圆的应用1. 问题一:判断直线是否与圆相交或相切当我们需要解决直线与圆的位置关系问题时,可以利用以下方法:- 使用坐标系和方程:设定坐标系,写出直线和圆的方程并求解交点。
- 使用定理:利用判断圆内点的方法,或使用切线定理判断直线与圆是否相切。
2. 问题二:求解直线与圆的交点坐标当直线与圆相交于两点时,我们可以利用以下方法求解交点坐标:- 使用坐标系和方程:设定坐标系,写出直线和圆的方程,联立方程并求解交点坐标。
3. 问题三:判断两条直线是否为切线或相交于切点当我们需要判断两条直线是否为切线或相交于切点时,可以利用以下方法:- 使用切线定理:若两条直线与圆相切于同一切点,则可判断它们为切线或相交于切点。
高考数学直线和圆【概念、方法、题型、易误点及应试技巧总结】
概念、方法、题型、易误点及应试技巧总结直线和圆一.直线的倾斜角:1.定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0;2.倾斜角的范围[)π,0。
二.直线的斜率:1.定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2.斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=;三.直线的方程: 1.点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
2.斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。
3.两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。
4.截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+bya x ,它不包括垂直于坐标轴的直线和过原点的直线。
5.一般式:任何直线均可写成0Ax By C++=(A,B 不同时为0)的形式。
提醒:(1)直线方程的各种形式都有局限性.(如点斜式不适用于斜率不存在的直线,还有截距式呢?);(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等⇔直线的斜率为-1或直线过原点;直线两截距互为相反数⇔直线的斜率为1或直线过原点;直线两截距绝对值相等⇔直线的斜率为1±或直线过原点。
四.设直线方程的一些常用技巧:1.知直线纵截距b ,常设其方程为y kx b =+;2.知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);3.知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;4.与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=; 5.与直线:0l Ax By C++=垂直的直线可表示为10Bx Ay C -+=.提醒:求直线方程的基本思想和方法是恰当选择方程的形式,利用待定系数法求解。
直线圆的知识点总结
直线圆的知识点总结直线圆是指平面上一条直线和一个圆相交的情况。
在几何学中,直线和圆是两种基本的几何图形,它们的相交情况具有一定的规律和特点。
本文将从直线圆的性质、定理和应用等方面进行总结。
一、直线圆的性质1. 相交情况直线和圆有三种相交的情况:相离、相切和相交。
相离是指直线和圆没有公共点;相切是指直线和圆有且只有一个公共点;相交是指直线和圆有两个不同的公共点。
2. 相交点的位置关系当直线和圆相交时,直线上的两个交点分布在圆的两侧。
如果直线与圆的圆心相交,那么直线必定是圆的直径;如果直线与圆的中点相交,那么直线必定是圆的切线。
3. 直线圆的夹角直线圆的夹角是指直线和圆的切点之间的夹角。
根据几何知识,直线与切线的夹角等于切点到圆心的距离与切线长度的比值。
这一性质在数学教学中有很多应用。
4. 直线圆的长度关系直线和圆的长度关系也是研究的重点之一。
例如,如果一条直线与一个圆相交,那么这条直线的长度可以通过圆的半径和直线与圆心的距离来表示。
5. 直线圆的对称性直线圆具有一定的对称性。
当直线与圆相交时,直线和圆的交点具有对称性。
通过对称性,可以研究出一些相交点的性质和定理。
二、直线圆的定理1. 切线定理切线定理是研究直线与圆相切的性质和定理。
根据切线的定义和性质,可以得出一些切线定理,如切线与半径的垂直关系、一条直线同时是两个圆的切线等。
2. 弦定理弦定理是研究直线与圆相交的性质和定理。
根据弦的定义和性质,可以得出一些弦定理,如弦的长度与角度的关系、弦的对称性等。
3. 直径定理直径定理是研究直线与圆直径的性质和定理。
根据直径的定义和性质,可以得出一些直径定理,如直径的长度关系、直径的对称性等。
4. 圆心角定理圆心角定理是研究直线与圆心角的性质和定理。
根据圆心角的定义和性质,可以得出一些圆心角定理,如圆心角与弦的关系、圆心角的对称性等。
5. 切割定理切割定理是研究直线如何切割圆的性质和定理。
根据切割的定义和性质,可以得出一些切割定理,如切线如何切割圆、切线截线定理等。
直线与圆、圆与圆的位置关系知识点及题型归纳
直线与圆、圆与圆的位置关系知识点及题型归纳-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN直线与圆、圆与圆的位置关系知识点及题型归纳知识点精讲一、 直线与圆的位置关系直线与圆的位置关系有3种,相离,相切和相交二、 直线与圆的位置关系判断1. 几何法(圆心到直线的距离和半径关系)圆心(,)a b 到直线0Ax By C ++=的距离,则d =则d r <⇔直线与圆相交,交于两点,P Q ,||PQ =d r =⇔直线与圆相切; d r >⇔直线与圆相离2. 代数方法(几何问题转化为代数问题即交点个数问题转化为方程根个数)由2220()()Ax By C x a y b r++=⎧⎨-+-=⎩ ,消元得到一元二次方程20px qx t ++=,20px qx t ++=判别式为∆,则:则0∆>⇔直线与圆相交; 0∆=⇔直线与圆相切; 0∆<⇔直线与圆相离.三、两圆位置关系的判断是用两圆的圆心距与两圆半径的和差大小关系确定,具体是:设两圆12,O O 的半径分别是,R r ,(不妨设R r >),且两圆的圆心距为d ,则: 则d R r <+⇔两圆相交; d R r =+⇔两圆外切; R r d R r -<<+⇔两圆相离 d R r =-⇔两圆内切;0d R r ≤<-⇔两圆内含(0d =时两圆为同心圆)四、 关于圆的切线的几个重要结论(1) 过圆222x y r +=上一点00(,)P x y 的圆的切线方程为200x x y y r +=. (2) 过圆222()()x a y b r -+-=上一点00(,)P x y 的圆的切线方程为200()()()()x a x a y b y b r --+--=(3) 过圆220x y Dx Ey F ++++=上一点00(,)P x y 的圆的切线方程为0000022x x y y x x y y D E F ++++⋅+⋅+= (4) 求过圆222x y r +=外一点00(,)P x y 的圆的切线方程时,应注意理解:①所求切线一定有两条;②设直线方程之前,应对所求直线的斜率是否存在加以讨论.设切线方程为00()y y k x x -=-,利用圆心到切线的距离等于半径,列出关于k 的方程,求出k 值.若求出的k 值有两个,则说明斜率不存在的情形不符合题意;若求出的k 值只有一个,则说明斜率不存在的情形符合题意.题型讲解题型1 直线与圆的相交关系 思路提示研究直线与圆的相交问题,应牢牢记住三长关系,即半径长2l、弦心距d 和半径r 之间形成的数量关系222()2l d r +=.例 已知圆O :225x y +=,直线l :cos sin 1(0)2x y πθθθ+=<<,设圆O 上到直线l 的距离等于1的点的个数为k ,则k =___________.分析 先求出圆心到直线的距离,在进行判断解析 因为圆心(0,0)到直线l 的距离为1,又因为圆O 4个点符合条件. 评注 若圆O 上到直线l 的距离等于2的点的个数为k ,则2k =;若3k =,则圆O 上到直线l 的距离等1-变式1已知圆O :224x y +=,直线l :1x ya b+=,设圆O 上到直线l 的距离等于1的点的个数有两个,则2211a b +的取值范围___________. 例 已知圆C :228120x y y +-+=,直线l :20ax y a ++=,(1) 当直线l 与圆C 相交时,求实数a 的取值范围;(2) 当直线l 与圆C 相交于,A B 两点,且AB =l 的方程.分析 根据点到直线距离等于半径来度量直线与圆相切问题;根据三长关系解决直线与圆相交问题. 解析 (1)圆C :22(4)4x y +-=,故圆心为(0,4)C ,因为直线l 与圆C 相交,所以圆心为(0,4)C 到直线l 的距离2d =<,解得34a <-,故实数a 的取值范围是3(,)4-∞-(2)由题意,直线l 与圆C 相交于,A B 两点,且AB =224+=,化简可得2870a a ++=,即1a =-或7a =-,故所求直线的方程为20x y -+=或7140x y -+=.评注 在处理直线与圆的相交问题时经常用到三长关系,即半弦长,弦心距,半径长构成直角三角形的三边.变式1 对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是( ) A .相离 B. 相切 C.相交但直线不过圆心 D.相交且直线过圆心变式2 过点(1,2)--的直线l 被圆222210x y x y +--+=,则直线l 的斜率为__________.变式3 已知直线l 经过点(1,3)P -且与圆224x y +=相交,截得弦长为l 的方程.例 过点(1,1)P 的直线l 与圆22:(2)(3)9C x y -+-=相交于,A B 两点,则||AB 的最小值为( )A.解析 设圆心(2,3)C 到直线l 的距离d ,由弦长公式||AB ==可知当距离最大d时,弦长||AB 最小.又||d CP ≤==,当直线l CP ⊥时取等号,故max d =所以max ||4AB ===.故选B评注 过圆内一定点的所有弦中,过此点的直径为最长弦,过此点且垂直于该直径的弦为最短弦. 变式1 过点(11,2)A 做圆22241640x y x y ++--=的弦,其中弦长为整数的共有( ) A. 16 条 B. 17条 C. 32条 D. 34条例 已知圆的方程为22680x y x y +--=.设该圆过点(3,5)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为( )A. 解析 22680x y x y +--=可化为22(3)(4)25x y -+-=,故圆心坐标(3,4),半径为5,点(3,5)在圆内,因为AC 最长,所以AC 为直径,即||10AC =,BD 最短,且BD 过点(3,5),所以||BD ==,所以1||||2S AC BD ==B变式1 如图所示,已知AC ,BD 为圆O :224x y +=的两条相互垂直的弦,垂足为M ,则四边形ABCD 的面积的最大值为__________.例 (2012北京海淀高三期末理13改编)已知圆22:(1)2C x y -+=,过点(1,0)M -的直线l 交圆C 于,A B 两点,若0CA CB ⋅=(C 为圆心),则直线l 的方程为__________.解析 设直线:(1)l y k x =+,即:l 0kx y k -+= 则圆心到直线l 的距离为d =又0CA CB ⋅=,故CA CB ⊥,即△ABC 是等腰三角形,2C π∠=.所以sin142d r π====即3k =±,故直线l:10x +=或10x += 变式1 已知O 为平面直角坐标系的原点,过点(2,0)M -的直线l 与圆221x y +=交于,P Q 两点.若12OP OQ ⋅=-,求直线l 的方程.变式2 已知圆C :22(1)(6)25x y ++-=上的两点,P Q 关于直线l :8y kx =+对称,且0OP OQ ⋅=(O 为坐标原点),求直线PQ 的方程题型2 直线与圆的相切关系 思路提示若直线与圆相切,则圆心到直线的距离等于半径,切线的几何性质为:圆心和切点的连线垂直于切线.例 求经过点(1,7)-与圆2225x y +=相切的直线方程.分析 将点(1,7)-代入圆方程得221(7)5025+-=>,知点(1,7)-是圆外一点,故只需求切线的斜率或再求切线上另一点坐标.解析 解法一:依题意,直线的斜率存在,设所求切线斜率为k ,则所求直线方程为7(1)y k x +=-,整理成一般式为70kx y k ---=.5=,化简得3127120k k --=,解得43k =或34k =-. 故所求切线方程为:43250x y --=或34250x y ++=.解法二:依题意,直线的斜率存在,设所求切线方程为0025x x y y +=(00(,)x y 是切点),将坐标(1,7)-代入后得00725x y -=,由00002272525x y x y -=⎧⎪⎨+=⎪⎩,解得0043x y =⎧⎨=-⎩或0034x y =-⎧⎨=-⎩. 故所求切线方程为:43250x y --=或34250x y ++=.评注 已知圆外一点,求圆的切线方程一般有三种方法:①设切点,用切线公式法;②设切线斜率,用判别式法:③设切线斜率,用圆心到切线距离等于圆半径.一般地,过圆外一点可向圆作两条切线,在后两种方法中,应注意斜率不存在的情况.变式1 已知圆22:(1)(2)4C x y -+-=,求过点(1,5)P -的圆的切线方程.变式2 直线l (2)2y k x =-+与圆22:220C x y x y +--=相切,则的一个方向向量为( ) A. (2,2)- B. (1,1) C. (3,2)- D. 1(1,)2例 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆224470x y x y +--+=相切,求入射光线l 所在直线的方程.分析 利用对称性解决此类反射问题.根据光学特征,对称性的使用既可以使用点的对称,也可以使用圆的对称.解析 已知圆22(2)(2)1x y -+-=关于x 轴的对称圆'C 的方程为22(2)(2)1x y -++=,可设光线所在直线方程为3(3)y k x -=+,所以直线l 与圆'C 相切,圆心'(2,2)C -到直线l 的距离1d ==,解得43k =-或34k =-.所以光线所在的直线l 方程为4330x y ++=或3430x y +-=.变式1 自点(3,3)A -发出的光线l 射到x 轴上,被x 轴反射,其反射光线'l 所在直线与圆224470x y x y +--+=相切,求反射光线'l 所在直线的方程.题型3 直线与圆的相离关系思路提示关于直线与圆的相离问题的题目大多是最值问题,即直线上的点与圆上的点的最近或最远距离问题,这样的题目往往要转化为直线上的点与圆心距离的最近和最远距离再加减半径长的问题. 例 (1)直线:1l y x =-的点到圆22:4240C x y x y ++-+=上的点的距离最小值是____________. (2)由直线1y x =+上的点向圆22(3)(2)1x y -++=引切线,则切线长的最小值为( )分析 过直线1y x =+上任意一点向圆22(3)(2)1x y -++=引切线PQ ,即可得到1||PQ O Q PQ ⊥==,那么,当切线长PQ 取最小值时,即1O P 取最小值.解析 (1)圆C 可化为22(2)(1)1x y ++-=,故圆心(2,1)C -到直线1y x =-的距离d ==1d r -=(3) 过1O 作1O H 垂直于直线1y x =+于点H ,过H 作HR 相切圆1O 与R ,连接1O R ,则切线长的最小值为||HR ,圆心(3,2)-到直线10x y -+=的距离d ==||HR =,故选A.变式1 已知点P 是直线40(0)kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两切线,,A B 是切点,若四边形PACB 的最小面积是2,则k 的值为( )A. 3B.2C. D. 2 变式2 已知圆22:1O x y +=和定点(2,1)A ,由圆O 外一点(,)P a b 向圆O 引切线PQ ,切点为Q ,且满足||||PQ PA =.(1)求实数,a b 间满足的等量关系; (2)求线段PQ 长的最小值.题型4 圆与圆的位置关系 思路提示已知两圆半径分别为12,r r ,两圆的圆心距为d ,则:(1) 两圆外离12r r d ⇔+<;(2)两圆外切12r r d ⇔+=; (3)两圆相交1212||r r d r r ⇔-<<+; (4)两圆内切12||r r d ⇔-=; (5)两圆内含12||r r d ⇔->;两圆外切和内切较为重要,这两种位置关系常与椭圆和双曲线的定义综合考查.例 圆221:20O x y +-=和圆222:40O x y y +-=的位置关系是( )A. 外离B. 相交C. 外切D. 内切 分析 判断圆心距与两圆半径的关系解析 由圆221:20O x y +-=得1(0,0)O ,1r =圆222:40O x y y +-=得2(0,2)O ,22r =,121212||||2r r O O r r -<=<+,两圆相交,故选B.变式1 在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.变式2 在平面直角坐标系xOy 中,点(0,3)A ,直线l :24y x =-,设圆C 的半径为1,圆心在l 上,(1) 若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线方程;(2) 使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是_________.例 已知两圆222610x y x y +---=和2210120x y x y m ++-+= (1)m 取何值时两圆外切.(2)m 取何值时两圆外切,此时公切线方程是什么(3)求45m =时两圆的公共弦所在直线的方程和公共弦的长度.分析 把两圆的一般方程化为标准方程,求两圆的圆心距d ,判断d 与R r +,R r -的关系,再用圆的几何性质分别解决(2)(3)问.解析 两圆的标准方程分别为22(1)(3)11x y -+-=,22(5)(6)61,(61)x y m m -+-=-<,圆心分别为(1,3),(5,6)M N(1) =25m =+(2) 小于两圆圆心距55=,解得,两圆方程222610x y x y +---=与2210120x y x y m ++-+=,相减得861250x y +--+=代入,得43130x y +-+=.(3) 两圆的公共弦所在直线方程为2222(261)(101245)0x y x y x y x y +----+--+=,即43230x y +-=,所以公共弦长为=评注 应注意两圆位置关系由圆心距和两圆半径的和与差的大小关系来确定.变式1 若圆224x y +=与圆22260(0)x y ay a ++-=>,公共弦的长为a =___________.变式2 设两圆12,C C 都和两坐标轴相切,且都过点(4,1),则两圆的圆心距离12||C C =( )A. 4B. 有效训练题1. 已知点(,)P a b 在圆C :224x y +=内(异于圆心),则直线10ax by ++=与圆C 的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定2.已知a b ≠,且2sin cos 04a a πθθ+-=,2sin cos 04b b πθθ+-=,则连接2(,)a a ,2(,)b b 两点的直线与单位圆的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定3.设,m n R ∈,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( )A. 1⎡-⎣B. (),11⎡-∞⋃++∞⎣C. 2⎡-+⎣D. (),22⎡-∞-⋃++∞⎣4.若直线1x ya b+=经过点(cos ,sin )M αα,则( ) A. 221a b +≤ B. 221a b +≥ C.22111a b +≤ D. 22111a b +≥5.过点(1,1)P 的直线,将圆形区域22{(,)|4}x y x y +≤分两部分,使得这两部分的面积之差最大,该直线的方程为( )A. 20x y +-=B. 10y -=C. 0x y -=D. 340x y +-=6.若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( ) A. []3,1-- B. []1,3- C. []3,1- D. (][),31,-∞-⋃+∞7. 设,m n R ∈,若直线10mx ny +-=与x 轴相交于点A ,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则△ABC 面积的最小值为___________8.过点(4,0)-作直线l 与圆2224200x y x y ++--=交于,A B 两点,如果||8AB =,则l 的方程为__________.9.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则的最大值是_______. 10.已知点(3,1)M ,直线40ax y -+=及圆22(1)(2)4x y -+-=. (1)求过点M 的圆的切线方程;(2)若直线40ax y -+=与圆相切,求a 的值(3)若直线40ax y -+=与圆相交于,A B 两点,且AB 弦的长为a 的值11.已知圆M 的方程为22(2)1x y +-=(M 为圆心),直线的方程为20x y -=,点P 在直线l 上,,过点P 作圆M 的切线,PA PB ,切点为,A B . (1)若060APB ∠=,试求点的坐标;(2)若点P 的坐标为(2,1),过P 作直线与圆M 交于,C D 两点,当CD =CD 的方程;(3)求证:经过,,A P M 三点的圆必过定点,并求出所有定点的坐标.12. 已知圆C 过点(1,1)P ,且与圆222:(2)(2)(0)M x y r r +++=>关于直线20x y ++=对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅的最小值.(M 为圆M 的圆心);(3)过点P 作两条相异直线分别与圆C 相交于,A B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行请说明理由.。
高二数学直线与圆知识点总结
高二数学直线与圆知识点总结
1.直线与圆的关系:①直线与圆有三种关系:①相切、②相离、
③相交;②直线和圆的交点可为两个或一个;③当直线表示的是圆的
切线时,它和圆的距离为零;
2.圆心角、切线:①圆心角是指以圆心为顶点,两条分别经过圆上两
点的弧所构成的角,不大于180°,称为圆心角;②切线是指与圆关于圆上一点的切点由圆内一条直线经过圆上若干点所成的线;
3.圆的方程:①圆的标准方程为:(x-a)^2+(y-b)^2=r^2,其中a,b,r 分别是圆心坐标和半径;②将圆的方程以直线的斜截式中某点及斜率
表示:点到圆心距离=斜率^2*半径;
4.圆的分类:根据中心点是否相同,可将圆分类为同心圆和不同心圆;根据两条切线平行情况,可将圆分类为内切圆、外切圆和相切圆;根
据圆心角是否相等,可将圆分类为同方圆和不同方圆。
方法技巧专题06直线与圆问题
方法技巧专题06直线与圆问题直线与圆是解析几何中的重要问题之一、在直线与圆问题中,主要涉及直线与圆的位置关系、相交问题、切线问题等。
在解决这些问题时,我们需要掌握一些方法和技巧。
下面,将对直线与圆问题进行详细解析。
一、直线与圆的位置关系1.直线与圆的位置关系主要有三种情况:相离、相切和相交。
相离:当直线与圆没有交点时,它们被称为相离。
相切:当直线只与圆相交于一个点时,它们被称为相切。
相交:当直线与圆相交于两个点时,它们被称为相交。
2.判断直线与圆的位置关系的方法有:公式法:通过直线的方程和圆的方程,将两者代入,判断是否有解。
距离法:计算直线与圆心的距离,与圆的半径进行比较。
二、直线与圆的相交问题1.直线与圆相交的条件:当直线与圆相交时,必须满足圆心到直线的距离小于圆的半径。
2.直线与圆相交的情况有三种:相交于两点、相交于一个点和重合。
相交于两点:当直线与圆相交于两点时,直线称为割线。
相交于一个点:当直线只与圆相交于一个点时,直线称为切线。
重合:当直线与圆重合时,直线被称为圆的直径。
三、直线与圆的切线问题1.直线与圆的切线是指直线与圆相切于一个点的情况。
2.切线的性质:切线与半径垂直。
圆心到切点的距离等于切线的长度。
切线与半径的夹角是直角。
四、解直线与圆的问题的步骤1.根据已知条件,列出方程。
2.将方程进行整理、化简或变形。
3.通过解方程求解未知量的值。
4.根据结果判断直线与圆的位置关系、相交情况或切线情况。
五、解直线与圆问题的注意事项1.在列方程时,应根据已知条件选择适用的方程。
2.在解方程过程中,应注意化简计算的准确性。
3.解方程求解未知量时,要注意判断是否有解或多解。
4.在判断直线与圆的位置关系时,应仔细分析条件,不可随意得出结论。
综上所述,直线与圆问题是解析几何中的经典问题之一、通过掌握直线与圆的位置关系、相交问题和切线问题的方法和技巧,能够准确解决这类问题。
在解题时,注意选择适用的方程,进行准确的计算和判断,能够提高解题的准确性。
高二最强总结(直线和圆)
概念、方法、题型、易误点及应试技巧总结直线和圆一.直线的倾斜角:1.定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0;2.倾斜角的范围[)π,0。
如(1)直线023cos =-+y x θ的倾斜角的范围是____(答:5[0][)66,,πππ );(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______(答:42≥-≤m m 或)二.直线的斜率:1.定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;(2.斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=; 3.直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? 4.应用:证明三点共线: AB BC k k =。
如 (1) 两条直线钭率相等是这两条直线平行的____________条件(答:既不充分也不必要); (2)实数,x y 满足3250x y --= (31≤≤x ),则xy的最大值、最小值分别为______(答:2,13-)三.直线的方程:1.点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
2.斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。
3.两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。
高中数学直线与圆的方程知识点总结
高中数学直线与圆的方程知识点总结公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-高中数学之直线与圆的方程一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。
2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。
3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。
4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+=①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1>0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。
②平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直。
③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可;②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可;③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可;⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。
2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=②点到直线距离:2200BA C By Ax d +++=③平行直线间距离:2221BA C C d +-=4、中点、三分点坐标公式:已知两点),(),,(2211y x B y x A①AB 中点),(00y x :)2,2(2121y y x x ++ ②AB 三分点),(),,(2211t s t s :)32,32(2121yy x x ++ 靠近A 的三分点坐标)32,32(2121y y x x ++ 靠近B 的三分点坐标中点坐标公式,在求对称点、第四章圆与方程中,经常用到。
直线和圆基本概念总结
解析几何初步知识点——直线与圆1.引入如何求曲线的方程:在曲线上任取一点P ,设P 点的坐标为(x,y),然后建立x,y 的关系,这个关系0),(=y x f 就是曲线的方程。
2.直线的倾斜角α:(1)定义:(2)范围:3.直线的斜率: K= α4.过两点P 1(x 1 , y 1) ,P 2(x 2 , y 2) 的直线的斜率公式: K=5.直线的方程1)点斜式:已知直线l 过点P 0(x 0,y 0),斜率为k , ,则直线l 的方程为:2)斜截式:已知直线l ,斜率为k , 纵截距为b 则直线l 的方程为: 注:横截距:直线与x 轴交点的横坐标;纵截距:直线与y 轴交点的纵坐标(可正可负也可为0)3)两点式:已知直线l 过点P 1(x 1 , y 1),P 2(x 2 , y 2) 则直线l 的方程为4)截距式:已知直线l 横截距为a , 纵截距为b ,则直线l 的方程为5)一般式:6.直线方程的一般方程为Ax+By+C=0 (A 、B 不同时为0),斜率为7.两直线的位置关系8.已知两点P 1(x 1,y 1)、P 2(x 2,y 2),则21P P =__________________.9.点P(x 0,y 0)到直线Ax+By+C=0的距离d= .10.两条平行线0:1111=++C y B x A l 与0:2222=++C y B x A l 的距离d= .11.曲线C :y = f (x )关于x 轴的对称曲线C 1的方程为 ;关于y 轴的对称曲线C 2的方程为 ;关于原点的对称曲线C 3的方程为 .12.点P (2,3)关于直线x+y=0对称的点的坐标是 .13.圆的方程⑴圆的标准方程是________________,其中圆心是__________,半径是________.⑵二元二次方程x 2+y 2+Dx+Ey+F=0当____________时,方程表示以________为圆心,以______为半径的圆;当____________时,方程表示一个点,此点的坐标是_______________ ;当____________时,方程不表示任何图形.14.直线和圆的几种位置关系:记圆心到直线的距离为d ,圆的半径是r , 则 (1)相离⇔__________;(2)相切⇔__________;(3)相交⇔__________; 15.圆与圆的几种位置关系:记两圆的圆心距为d ,两圆的半径分别为R 、r (R≥r ),则(1)相离⇔______ _________;(2)外切⇔___ _______;(3)相交⇔____ _________;(4)内切⇔___ _______;(5)内含⇔_______ ___ ___.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线和圆一.直线的倾斜角:1.定义:在平面直角坐标系中,对于一条与x 轴相交的直线l ,如果把x 轴绕着交点按逆时针方向转到和直线l 重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
当直线l 与x 轴重合或平行时,规定倾斜角为0;2.倾斜角的范围[)π,0。
如(1)直线023cos =-+y x θ的倾斜角的范围是____(答:5[0][)66,,πππ );(2)过点),0(),1,3(m Q P -的直线的倾斜角的范围m 那么],32,3[ππα∈值的范围是______(答:42≥-≤m m 或)二.直线的斜率:1.定义:倾斜角不是90°的直线,它的倾斜角的正切值叫这条直线的斜率k ,即k =tan α(α≠90°);倾斜角为90°的直线没有斜率;2.斜率公式:经过两点111(,)P x y 、222(,)P x y 的直线的斜率为()212121x x x x y y k ≠--=; 3.直线的方向向量(1,)a k =,直线的方向向量与直线的斜率有何关系? 4.应用:证明三点共线: AB BC k k =。
如(1) 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。
A. -6 B. -7 C. -8 D. -9(2) 直线方程为(3a +2)x +y +8=0, 若直线不过第二象限,则a 的取值范围是 。
(3)若(2,1)d =是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)(4)实数,x y 满足3250x y --= (31≤≤x ),则xy的最大值、最小值分别为______ 三.直线的方程:1.点斜式:已知直线过点00(,)x y 斜率为k ,则直线方程为00()y y k x x -=-,它不包括垂直于x 轴的直线。
2.斜截式:已知直线在y 轴上的截距为b 和斜率k ,则直线方程为y kx b =+,它不包括垂直于x 轴的直线。
3.两点式:已知直线经过111(,)P x y 、222(,)P x y 两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于坐标轴的直线。
4.截距式:已知直线在x 轴和y 轴上的截距为,a b ,则直线方程为1=+bya x ,它不包括垂直于坐标轴的直线和过原点的直线。
5.一般式:任何直线均可写成0Ax By C ++=(A,B 不同时为0)的形式。
如(1). 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ;或 。
(2)经过点(2,1)且方向向量为v=(-1,3)的直线的点斜式方程是__(答:12)y x -=-); (3)直线(2)(21)(34)0m x m y m +----=,不管m 怎样变化恒过点______(答:(1,2)--);四.设直线方程的一些常用技巧:1.知直线纵截距b ,常设其方程为y kx b =+;2.知直线横截距0x ,常设其方程为0x my x =+(它不适用于斜率为0的直线);3.知直线过点00(,)x y ,当斜率k 存在时,常设其方程为00()y k x x y =-+,当斜率k 不存在时,则其方程为0x x =;4.与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=; 5.与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=. 五.点到直线的距离及两平行直线间的距离:(1)点00(,)P x y 到直线0Ax By C ++=的距离d =;(2)两平行线1122:0,:0l Ax By C l Ax By C ++=++=间的距离为d =例:(1)在直线03=+y x 上求一点,使它到原点的距离和到直线023=-+y x 的距离相等,则此点的坐标为 .(2)到直线2x +y +1=0的距离为55的点的集合是( )A.直线2x+y -2=0B.直线2x+y=0C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=0 (3)两平行线3x -2y -1=0,6x +ay +c =0之间的距离为21313 ,则c +2a 的值是( )A .±1 B. 1 C. -1 D . 2六.直线1111:0l A x B y C ++=与直线2222:0l A x B y C ++=的位置关系:1.平行⇔12210A B A B -=(斜率)且12210B C B C -≠(在y 轴上截距); 2.相交⇔12210A B A B -≠;3.重合⇔12210A B A B -=且12210B C B C -=。
4.垂直⇔12120A A B B +=例:(1) 两条直线斜率相等是这两条直线平行的____________条件(2) 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ).A. 2B. 3C. 4D. 5(3)设直线1:60l x my ++=和2:(2)320l m x y m -++=,当m =_______时1l ∥2l ;当m =________时1l ⊥2l ;当m _________时1l 与2l 相交;当m =_________时1l 与2l 重合(4)已知直线l 的方程为34120x y +-=,则与l 平行,且过点(—1,3)的直线方程是______ (5)两条直线40ax y +-=与20x y --=相交于第一象限,则实数a 的取值范围是(答:12a -<<); (6)直线l 过点(1,0),且被两平行直线360x y +-=和330x y ++=所截得的线段长为9,则直线l 的方程是________(答:43401x y x +-==和) 七.到角和夹角公式:1.1l 到2l 的角是指直线1l 绕着交点按逆时针方向转到和直线2l 重合所转的角θ,θ()π,0∈且tan θ=21121k k k k +-(121k k ≠-);(2)1l 与2l 的夹角是指不大于直角的角,(0,]2πθθ∈且tan θ=︱21121k k k k +-︱(121k k ≠-)。
例:(1)已知直线221:1+=x y l ,直线2l 过点)1,2(-P ,且1l 到2l 的夹角为 45,则直线2l 的方程是() A .1-=x yB .5331+=x y C .73+-=x y D .73+=x y(2)已知直线01:,03:21=+-=+y kx l y x l ,若1l 到2l 的夹角为60,则k 的值是A .03或B .03或-C .3D .3-(3)已知点M 是直线240x y --=与x 轴的交点,把直线l 绕点M 逆时针方向旋转45°,得到的直线方程是_____(答:360x y +-=)八.对称(中心对称和轴对称)问题——代入法:如(1)已知点(,)M a b 与点N 关于x 轴对称,点P 与点N 关于y 轴对称,点Q 与点P 关于直线0x y +=对称,则点Q 的坐标为_______(答:(,)b a )(2)已知直线1l 与2l 的夹角平分线为y x =,若1l 的方程为0(0)ax by c ab ++=>,那么2l 的方程是___________(答:0bx ay c ++=);(3)点A(4,5)关于直线l 的对称点为B(-2,7),则l 的方程是_________(答:3y=3x +); (4)已知一束光线通过点A(-3,5),经直线l :3x -4y+4=0反射。
如果反射光线通过点B(2,15),则反射光线所在直线的方程是_________(答:18x 510y -=+);(5)已知ΔABC 顶点A(3,-1),AB边上的中线所在直线的方程为6x+10y -59=0,∠B 的平分线所在的方程为x -4y+10=0,求BC边所在的直线方程 (答:29650x y +-=); 十.圆的方程:1.圆的标准方程:()()222x a y b r -+-=。
2.圆的一般方程:22220(D E 4F 0)+-x y Dx Ey F ++++=>,特别提醒:只有当22D E 4F 0+->时,方程220x y Dx Ey F ++++=才表示圆心为(,)22D E --,半径为的圆(二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是什么? (0,A C =≠且0B =且2240D E AF +->)); 3.圆的参数方程:{cos sin x a r y b r θθ=+=+(θ为参数),其中圆心为(,)a b ,半径为r 。
圆的参数方程的主要应用是三角换元:222cos ,sin x y r x r y r θθ+=→==;22x y t +≤cos ,sin (0x r y r r θθ→==≤≤。
4.()()1122A ,,,x y B x y 为直径端点的圆方程()()()()12120x x x x y y y y --+--=如 (1)圆C 与圆22(1)1x y -+=关于直线y x =-对称,则圆C 的方程为____________(答:22(1)1x y ++=);(2)圆心在直线32=-y x 上,且与两坐标轴均相切的圆的标准方程是__________(答:9)3()3(22=-+-y x 或1)1()1(22=++-y x );(3)如果直线l 将圆:x 2+y 2-2x-4y=0平分,且不过第四象限,那么l 的斜率的取值范围是__(答:[0,2]); (4)方程x 2+y 2-x+y+k=0表示一个圆,则实数k 的取值范围为____(答:21<k );(5)参数方程⎩⎨⎧+-=+=θθsin 33cos 33y x 表示的图形是( ) A .圆心为)3,3(-,半径为9的圆 B .圆心为)3,3(-,半径为3的圆 C .圆心为)3,3(-,半径为9的圆D .圆心为)3,3(-,半径为3的圆十一.点与圆的位置关系:已知点()00M ,x y 及圆()()()222C 0:x-a y b r r +-=>,(1)点M 在圆C 外()()22200CM r x a y b r ⇔>⇔-+->; (2)点M 在圆C 内⇔()()22200CM r x a y b r <⇔-+-<;(3)点M 在圆C 上()20CM r x a ⇔=⇔-()220y b r +-=。
例(1)点P(5a+1,12a)在圆(x -1)2+y 2=1的内部,则a 的取值范围是______(答:131||<a ) 十二。