直线与圆位置关系知识点与经典例题

合集下载

直线与圆的位置关系经典例题

直线与圆的位置关系经典例题

直线与圆的位置关系经典例题一、点与圆的位置关系结合图形认识直线与圆的位置关系,比较OA 与r 的大小关系若点A 在⊙O 内OA r 若点A 在⊙O 上OA r 若点A 在⊙O 外OA r小练习:1.在△ABC 中,90C ∠=︒,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A,那么斜边中点D 与⊙A 的位置关系是()(A)D 在圆外(B)D 在圆上(C)D 在圆内(D)无法确定二、直线与圆的位置关系(1)实验创境:用移动的观点认识如果我们把太阳看作一个圆,那么太阳在升起的过程中,太阳和海平面就有图中的几种位置关系。

(可让学生用硬币自己操作演示)根据直线与圆公共点的个数可以得到三种位置关系:、、。

(2)用数量关系判断从以上的一个例子,可以看到,直线与圆的位置关系只有以下三种,如下图所示:若要判断圆与直线的位置关系,可以将______与_____进行比较大小,由比较的结果得出结论。

典型例题:例1、已知圆的半径等于5厘米,圆心到直线MN 的距离是:(1)4厘米;(2)5厘米;(3)6厘米。

分别说出直线MN 与圆的位置关系以及直线MN 和圆分别有几个公共点?例2.Rt △ABC 中,∠C=90°,AC=3,BC=4,若以C 为圆心,r 为半径作圆,当3,4.2,2===r r r 时,⊙C 与直线AB 分别是怎样的位置关系?★①直线l 和⊙O 相交d r ②直线l 和⊙O 相切d r ③直线l 和⊙O 相离d r1、如果⊙O 的直径为10厘米,圆心O 到直线AB 的距离为10厘米,那么⊙O 与直线AB有怎样的位置关系是2、已知:⊙A 的直径为6,点A 的坐标为)4,3(--,则⊙A 与x 轴的位置关系是;⊙A 与y 轴的位置关系是。

三、切线的判定实验探究:在练习纸上画⊙O ,在⊙O 上任取一点A ,连结OA ,过A 点作直线l ⊥OA ,判断直线l 是否与⊙O 相切?为什么?当直线和圆有唯一公共点时,直线是圆的切线;当直线和圆的距离等于该圆半径时,直线是圆的切线;那么,直接从直线和圆的位置上观察,具备什么条件的直线也是圆的切线呢?两个条件缺一不可(1)经过半径外端(2)垂直于这条半径切线判定定理:经过直径外端并且于这条直径的直线是圆的切线。

(附答案)《直线与圆的位置关系》典型例题

(附答案)《直线与圆的位置关系》典型例题

《直线与圆的位置关系》典型例题例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系?为什么?(1)r=1cm;(2)r=cm;(3)r=2.5cm.例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值.例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD?例4如图,直角梯形中,,,,为上的一点,平分,平分.求证:以为直径的圆与相切.例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.参考答案例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.解:过C点作CD⊥AB于D,在R t△ABC中,∠C=90°,AB=4,BC=2,∴AC=2,∴AB·CD=AC·BC,∴,(1)当r =1cm时CD>r,∴圆C与AB相离;(2)当r=cm时,CD=r,∴圆C与AB相切;(3)当r=2.5cm时,CD<r,∴圆C与AB相交.说明:从“数”到“形”,判定圆与直线位置关系.例2 解:过C点作CD⊥AB于D,在R t△ABC中,∠C=90°,AB=4,BC=2,∴AC=2,∴AB·CD=AC·BC,∴,(1)∵直线AB与⊙C相离,∴0r<CD,即0<r<;(2)∵直线AB与⊙C相切,∴r =CD,即r=;(3)∵直线AB与⊙C相交,∴r>CD,即r>.说明:从“形”到“数”,由圆与直线位置关系来确定半径.例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,所以存在一点P,使R t△PBC∽R t△APD.解:设以AB为直径的圆为⊙O,OP⊥DC,则:OP为直角梯形ABCD的中位线,∴OP=(AD+BC)/2=(4+2)/2=3,又∵OA=OB=AB/2=3,∴OP=OA,∴⊙O与DC相切,∴∠APB=90°,∴∠APD+∠BPC=90°.又∵∠PBC+∠BPC=90°,∴∠APD=∠PBC,又∵∠C=∠D=90°,∴R t△PBC∽R t△APD.因此,DC上存在点P,使R t△PBC∽R t△APD.说明:①直线与圆位置关系的应用;②此题目可以变动数值,使DC与⊙O 相交、相离.例4 分析:要证以为直径的圆与相切,只需证明的中点到的距离等于.证明:过点作于,同理可证:为的中点,即:以为直径的圆与相切.说明:在判定直线是圆的切线时,若条件没有告诉它们有公共点,常用的方法就是“距离判定”法,即先由圆心到该直线作垂线,证明圆心到该直线的距离恰好等于半径,从而得出直线是圆的切线的结论.例5 分析:欲证直线和⊙相离,只需计算点到的距离的长,若,则判定与⊙相离(如图)证明于,是圆心到的距离∽.又⊙的半径为,故与⊙相离.学习要有三心:一信心;二决心;三恒心.知识+方法=能力,能力+勤奋=效率,效率×时间=成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。

直线与圆的位置关系知识点及例题

直线与圆的位置关系知识点及例题

直线与圆的位置关系知识点及例题Prepared on 22 November 2020直线与圆的位置关系一、知识点梳理1、直线与圆的位置关系:图形名称相离相切相交判定d>r d=r d<r交点个数无1个2个例1、下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.A.①②③ B.①② C.②③ D.③例2、过圆上一点可以作圆的______条切线;过圆外一点可以作圆的_____条切线;•过圆内一点的圆的切线______.例3、以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______.例4、下列直线是圆的切线的是()A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆直径外端点的直线例5.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切2、切线的判定:(1)根据切线的定义判定:即与圆有一个公共点的直线是圆的切线.(2)根据圆心到直线的距离来判定:即与圆心的距离等于半径的直线是圆的切线. (3)根据切线的判定定理来判定:即经过半径的外端并且垂直于这条半径的直线是圆的切线.判定切线时常用的辅助线作法:(1)若直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证明直线和半径垂直.(2)当直线与圆并没有明确有公共点时,辅助线的作法是“过圆心向直线作垂线”再证明圆心到直线的距离等于圆的半径.例6、判断下列命题是否正确(1)经过半径的外端的直线是圆的切线(2)垂直于半径的直线是圆的切线;(3)过直径的外端并且垂直于这条直径的直线是圆的切线;(4)和圆有一个公共点的直线是圆的切线;(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.例7.OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,•那么⊙P与OB的位置关系是()A.相离 B.相切 C.相交 D.相交或相切例8、如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,•如果⊙M与y轴所在直线相切,那么m=______,如果⊙M与y轴所在直线相交,那么m•的取值范围是_______.例9、如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC•的延长线于点E,连结BC.(1)求证:BE为⊙O的切线;(2)如果CD=6,tan∠BCD=12,求⊙O的直径.例10、如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=12,∠D=30°.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.例11、如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.3、切线的性质:1、经过切点的半径垂直于圆的切线,经过切点垂直于切线的直线必经过圆心对于切线的性质可分解为:过圆心、过切点、垂直于切线这三个条件中任意两个作为条件,就可以推出第三个作为结论4、切线长定理:切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.例12、如图1,PA、PB是⊙O的两条切线、A、B为切点。

直线与圆、圆与圆位置关系知识点总结、经典例题及高考题和答案

直线与圆、圆与圆位置关系知识点总结、经典例题及高考题和答案

直线与圆、圆与圆位置关系【考纲说明】1、能根据给定直线、圆的方程判断直线与圆的位置关系,能根据给定两个圆的方程判断两圆的位置关系。

2、能用直线和圆的方程解决一些简单的问题。

【知识梳理】一、直线与圆的位置关系1、 直线与圆的位置关系有三种:相交、相切、相离,判断直线与圆的位置关系常见的有两种方法(1)代数法:把直线方程与圆的方程联立成方程组,消去x 或y 整理成一元二次方程后,计算判别式24b ac ∆=-0∆>⇔直线l 与圆C 相交⇔直线l 与圆C 有两交点0∆=⇔直线l 与圆C 相切⇔直线l 与圆C 有一交点0∆<⇔直线l 与圆C 相离⇔直线l 与圆C 无交点(2)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系:r d <⇔直线l 与圆C 相交⇔直线l 与圆C 有两交点r d =⇔直线l 与圆C 相切⇔直线l 与圆C 有一交点r d >⇔直线l 与圆C 相离⇔直线l 与圆C 无交点2、圆的切线方程若圆的方程为222x y r +=,点P 00(,)x y 在圆上,则过P 点且与圆222x y r +=相切的切线方程为2o o x x y y r +=.经过圆22()()x a y b r -+-=上一点P 00(,)x y 的切线方程为222()()22o o x x y y a b r ++-+-=. 3、直线与圆相交直线与圆相交时,若l 为弦长,d 为弦心距,r 为半径,则有2224l r d =+,即l =二、圆与圆的位置关系1、圆与圆的位置关系可分为五种:外离、外切、相交、内切、内含。

2、判断圆与圆的位置关系常用方法(1)几何法:设两圆圆心分别为12,O O ,半径为1212,()r r r r ≠,则1212OO r r >+⇔圆1O与圆2O 相离⇔有4条公切线 1212OO r r =+⇔圆1O与圆2O 外切⇔有3条公切线 121212||r r OO r r -<<+⇔圆1O与圆2O 相交⇔有2条公切线 1212||OO r r =-⇔圆1O与圆2O 内切⇔有1条公切线 1212||OO r r <-⇔圆1O与圆2O 内含⇔有0条公切线. (2)代数法:方程组221112222200x y D x E y F x y D x E y F ⎧++++=⎨++++=⎩ 有两组不同的实数解⇔两圆相交;有两组相同的实数解⇔两圆相切;无实数解⇔两圆外离或内含。

高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

辅导讲义――直线和圆、圆与圆的位置关系圆的切线方程设法:(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为200r y y x x =+.(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为200))(())((r b y b y a x a x =--+--. (3)过圆222r y x =+外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200r y y x x =+.(4)过圆222)()(r b y a x =-+-外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200))(())((r b y b y a x a x =--+--.[例]经过点M (2,-1)作圆522=+y x 的切线,则切线方程为_________________. 2x-y-5=0[巩固] 过点P (3,1)作曲线C :0222=-+x y x 的两条切线,切点分别为A ,B ,则直线AB 的方程为____________. 2x+y-3=01.若两圆的半径分别为r 1,r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下:位置 关系 外离外切相交内切内含图示d 与r 1,r 2 的关系d >r 1+r 2 d =r 1+r 2 |r 1-r 2|< d < r 1+r 2d =|r 1-r 2|d <|r 1-r 2|两圆的公共点个数0个 1个 2个 1个 0个2.两圆的共切线:(1)当两圆内含时,没有公切线; (2)当两圆内切时有一条公切线; (3)当两圆相交时,有两条外公切线;知识模块4圆与圆的位置关系 精典例题透析知识模块3切线及弦所在直线的方程设法∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.[巩固] (2013·江苏)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围. (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2), 于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为 (x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为|MA |=2|MO |,所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤2+1, 即1≤a 2+(2a -3)2≤3. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.题型三:直线与圆相交的问题[例]已知直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为8,求k 的值.设直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为AB ,其中点为C ,则△OCB 为直角三角形.因为圆的半径为|OB |=5,半弦长为|AB |2=|BC |=4,所以圆心到直线kx -y +6=0的距离为3,由点到直线的距离公式得6k 2+1=3,解之得k =±3.[巩固] 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点),所以OM =|0-0+23|12+(-3)2=3,所以AB =2AM =2OA 2-OM 2=222-(3)2=2.圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为___________. 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ).化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2013·山东)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为____________.解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2, ∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.已知直线y =kx +b 与圆O :x 2+y 2=1相交于A ,B 两点,当b =1+k 2时,OA →·OB →等于___________.设A (x 1,y 1),B (x 2,y 2),将y =kx +b 代入x 2+y 2=1得(1+k 2)x 2+2kbx +b 2-1=0,故x 1+x 2=-2kb 1+k 2,x 1x 2=b 2-11+k 2, 从而·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=b 2-1-2k 2b 21+k 2+b 2=2b 21+k 2-1=1. 6.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是______________.由y =3-4x -x 2,得(x -2)2+(y -3)2=4(1≤y ≤3).∴曲线y =3-4x -x 2是半圆,如图中实线所示.当直线y =x +b 与圆相切时,|2-3+b |2=2.∴b =1±2 2. 由图可知b =1-2 2.∴b 的取值范围是[]1-22,3.7.(2014·上海)已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的Q 使得AP →+AO→=0,则m 的取值范围为________.曲线C :x =-4-y 2,是以原点为圆心,2为半径的圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的Q 使得+=0,(1)求矩形ABCD 的外接圆的方程;(2)已知直线l :(1-2k )x +(1+k )y -5+4k =0(k ∈R ),求证:直线l 与矩形ABCD 的外接圆恒相交,并求出相交的弦长最短时的直线l 的方程.(1)∵l AB :x -3y -6=0且AD ⊥AB ,点(-1,1)在边AD 所在的直线上,∴AD 所在直线的方程是y -1=-3(x +1),即3x +y +2=0.由⎩⎪⎨⎪⎧x -3y -6=0,3x +y +2=0,得A (0,-2). ∴|AP |=4+4=22, ∴矩形ABCD 的外接圆的方程是(x -2)2+y 2=8.(2)直线l 的方程可化为k (-2x +y +4)+x +y -5=0,l 可看作是过直线-2x +y +4=0和x +y -5=0的交点(3,2)的直线系,即l 恒过定点Q (3,2),由(3-2)2+22=5<8知点Q 在圆P 内,∴l 与圆P 恒相交.设l 与圆P 的交点为M ,N ,则|MN |=28-d 2(d 为P 到l 的距离),设PQ 与l 的夹角为θ,则d =|PQ |·sin θ=5sin θ,当θ=90°时,d 最大,|MN |最短.此时l 的斜率为PQ 的斜率的负倒数,即-12, 故l 的方程为y -2=-12(x -3),即x +2y -7=0.11.若直线l :y =kx +1 (k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是_________. 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交. 12.设曲线C 的方程为(x -2)2+(y +1)2=9,直线l 的方程为x -3y +2=0,则曲线上的点到直线l 的距离为71010的点的个数为____________.B解析 由(x -2)2+(y +1)2=9,得圆心坐标为(2,-1),半径r =3,圆心到直线l 的距离d =|2+3+2|1+(-3)2=710=71010. 能力提升训练要使曲线上的点到直线l 的距离为71010, 此时对应的点在直径上,故有两个点.13.(2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于____________.∵S △AOB =12|OA ||OB |sin ∠AOB =12sin ∠AOB ≤12. 当∠AOB =π2时, △AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33). 14.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2,即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 15.(2014·重庆)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2,所以(|a +a -2|a 2+1)2+12=22,解得a =4±15.。

《直线和圆的位置关系》典型例题

《直线和圆的位置关系》典型例题

《直线和圆的位置关系》典型例题例1在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆与AB有何种位置关系为什么(1)r=1cm;(2)r= cm;(3)r=2.5cm.例2 在R t△ABC中,∠C=90°,AB=4cm,BC=2cm,以C为圆心,r为半径的圆,若直线AB与⊙C,(1)相交;(2)相切;(3)相离.求半径r的取值.例3如图,在直角梯形ABCD中,AD∥BC,∠C=∠D=90°,若AB=6,AD=4,BC=2,试问:DC上是否存在点P,使R t△PBC∽R t△APD例4如图,直角梯形中,,,,为上的一点,平分,平分 .求证:以为直径的圆与相切.例5已知中,,于,,,以为圆心,为半径画圆.求证直线和⊙相离.参考答案例1分析如图,欲判定⊙C与直线AB的关系,只需先求出圆心C到直线AB的距离CD的长,然后再与r比较即可.解:过C点作CD⊥AB于D,在R t△ABC中,∠C=90°,AB=4,BC=2,∴AC=2,∴AB·CD=AC·BC,∴,(1)当r =1cm时CD>r,∴圆C与AB相离;(2)当r= cm时,CD=r,∴圆C与AB相切;(3)当r=2.5cm时,CD<r,∴圆C与AB相交.说明:从“数”到“形”,判定圆与直线位置关系.例2 解:过C点作CD⊥AB于D,在R t△ABC中,∠C=90°,AB=4,BC=2,∴AC=2,∴AB·CD=AC·BC,∴,(1)∵直线AB与⊙C相离,∴0r<CD,即0<r<;(2)∵直线AB与⊙C相切,∴ r =CD,即r=;(3)∵直线AB与⊙C相交,∴r>CD,即r>.说明:从“形”到“数”,由圆与直线位置关系来确定半径.例3 分析:若R t△PBC∽R t△APD,则∠APD+∠BPC=90°,可知∠APB=90°,所以P点为以AB为直径的圆O与DC的交点,由条件可知为⊙O与DC相切,所以存在一点P,使R t△PBC∽R t△APD.解:设以AB为直径的圆为⊙O,OP⊥DC,则:OP为直角梯形ABCD的中位线,∴OP=(AD+BC)/2=(4+2)/2=3,又∵OA=OB=AB/2=3,∴OP=OA,∴⊙O与DC相切,∴∠APB=90°,∴∠APD+∠BPC=90°.又∵∠PBC+∠BPC=90°,∴∠APD=∠PBC,又∵∠C=∠D=90°,∴R t△PBC∽R t△APD.因此,DC上存在点P,使R t△PBC∽R t△APD.说明:①直线与圆位置关系的应用;②此题目可以变动数值,使DC与⊙O 相交、相离.例4 分析:要证以为直径的圆与相切,只需证明的中点到的距离等于 .证明:过点作于,同理可证:为的中点,即:以为直径的圆与相切.说明:在判定直线是圆的切线时,若条件没有告诉它们有公共点,常用的方法就是“距离判定”法,即先由圆心到该直线作垂线,证明圆心到该直线的距离恰好等于半径,从而得出直线是圆的切线的结论.例5 分析:欲证直线和⊙相离,只需计算点到的距离的长,若,则判定与⊙相离(如图)证明于,是圆心到的距离∽ .又⊙的半径为,故与⊙相离.。

(完整版)直线与圆知识点及经典例题(含答案)

(完整版)直线与圆知识点及经典例题(含答案)

(完整版)直线与圆知识点及经典例题(含答案)圆的方程、直线和圆的位置关系【知识要点】一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆(一)圆的标准方程222()()x a y b r -+-= 这个方程叫做圆的标准方程。

王新敞说明:1、若圆心在坐标原点上,这时0a b ==,则圆的方程就是222x y r +=。

2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要,,a b r 三个量确定了且r >0,圆的方程就给定了。

就是说要确定圆的方程,必须具备三个独立的条件王新敞确定,,a b r ,可以根据条件,利用待定系数法来解决。

(二)圆的一般方程将圆的标准方程222)()(r b y a x =-+-,展开可得02222222=-++--+r b a by ax y x 。

可见,任何一个圆的方程都可以写成 :220x y Dx Ey F ++++= 问题:形如220x y Dx Ey F ++++=的方程的曲线是不是圆?将方程022=++++F Ey Dx y x 左边配方得:22224()()22D E D E Fx x +-+++=(1)当F E D 422-+>0时,方程(1)与标准方程比较,方程022=++++F Ey Dx y x 表示以(,)22D E--为圆 224D E F+-,(3)当F E D 422-+<0时,方程022=++++F Ey Dx y x 没有实数解,因而它不表示任何图形。

圆的一般方程的定义:当224D E F +->0时,方程220x y Dx Ey F ++++=称为圆的一般方程. 圆的一般方程的特点:(1)2x 和2y 的系数相同,不等于零;(2)没有xy 这样的二次项。

(三)直线与圆的位置关系 1、直线与圆位置关系的种类(1)相离---求距离;(2)相切---求切线;(3)相交---求焦点弦长。

圆与直线的位置关系知识点总结及练习

圆与直线的位置关系知识点总结及练习

圆与直线的位置关系知识点总结及练习例1:设圆C :225x y +=,试判断圆C 和下列直线的相交情形。

(1)1:10L x y -+= (2)2:250L x y --= (3)3:34150L x y +-=。

【练习题】设圆C 和直线L 1、 L 2、 L 3的方程式如下: 试判断它们的相交情形。

C :22(1)8x y ++=,1:3L x y +=-, 2:0L x y +=,3:3L x y +=例2:已知圆C 和直线L 的方程式如下: 22:5C x y +=、:10L x y -+=试问圆C 和直线L 是否相交?若相交, 求出它们的交点。

【练习题】设圆C :22(1)8x y ++=,直线:3L x y +=,试问圆C 和直线L 是否相交?若相交, 求出它们的交点例3:试就实数k 的范围,讨论直线L :y x k =+ 和圆22:2C x y += 的相交情形。

【练习题】就实数m 的范围讨论直线L :2y mx =+和圆22:1C x y +=的相交情形。

例4:求通过圆x 2+y 2=5上一点P (1, 2)的切线方程式。

例5:求通过圆(x -1)2+(y+2)2=25上一点P (4, 2)且与圆相切的直线方程式。

【练习题】(1)求通过P (1, -2)且与圆x 2+y 2=5相切的直线方程式。

(2)求通过P (1, 4)且与圆x 2+y 2-2x +2y -23=0相切的直线方程式。

例6:设圆C :(x -3)2+(y -2)2=8,求通过圆外一点P (-1, 2)且与圆C 相切的直线方程式。

例7:求过点P (5, 15)且与圆C : x 2+y 2=25相切的直线方程式。

【练习题】(1)求过(2,4)-P 且与圆2210x y +=相切的直线方程式。

(2)求过(4,3)P 且与圆22(2)4x y -+=相切的直线方程式.例8:有一半径60公尺的圆形碉堡,甲站在碉堡的正北方与碉堡中心距离100公尺的A处,乙从碉堡中心向东走,要走多少公尺才会看到甲?【练习题】有一圆形碉堡,甲站在碉堡的正北方与碉堡中心距离40公尺的A处,乙从碉堡中心向西走,要走30公尺才刚好看到甲,碉堡的半径为多少公尺?。

点、直线、圆与圆的位置关系_知识点+例题+练习()

点、直线、圆与圆的位置关系_知识点+例题+练习()

点、直线、圆与圆的位置关系_知识点+例题+练习()点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外d>r ②点P 在圆上d=r ①点P在圆内d<r点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.符号读作“等价于”,它表示从符号的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.概念说明:①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③矛盾判定假设不正确,从而肯定原命题的结论正确. 5.直线和圆的位置关系直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.1①直线l和⊙O相交d<r ②直线l和⊙O相切d=r ③直线l和⊙O相离d>r.6.切线的性质切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.切线的性质可总结如下:如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.切线性质的运用定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.在应用判定定理时注意:①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理2圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.切线长定理包含着一些隐含结论:①垂直关系三处;②全等关系三对;③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离d>R+r;②两圆外切d=R+r;③两圆相交R-r<d<R+r;④两圆内切d=R-r;⑤两圆内含d<R-r.12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便. 13.相交两圆的性质相交两圆的性质:相交两圆的连心线,垂直平分两圆的公共弦.注意:在习题中常常通过公共弦在两圆之间建立联系.两圆的公切线性质:两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.两个圆如果有两条公切线,则它们的交点一定在连心线上.34. 判断圆的切线的方法及应用判断圆的切线的方法有三种:与圆有惟一公共点的直线是圆的切线;若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=43,D是线段BC的中点.试判断点D与⊙O的位置关系,并说明理. 过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB的延长线上,且有∠BAP=∠BDA.求证:AP是半圆O的切线.4【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:相交r1r2dr1r2;外切dr1r2;内切dr1r2;外离dr1r2;内含0dr1r2 【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O的半径是6,点O到直线a的距离为5,则直线a与⊙O的位置关系为A.相离B.相切 C.相交D.内含例2. 如图1,⊙O内切于△ABC,切点分别为D,E,F.B50°,C60°,连结OE,OF,DE,DF,则EDF等于 A.40°B.55° C.65°D.70°例3. 如图,已知直线L和直线L外两定点A、B,且A、B到直线L的距离相等,则经过A、B两点且圆心在L上的圆有A.0个B.1个C.无数个D.0个或1个或无数个例4.已知⊙O1半径为3cm,⊙O2半径为4cm,并且⊙O1与⊙O2相切,则这两个圆的圆心距为 D. 1cm或7cm 例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为例6.两圆半径R=5,r=3,则当两圆的圆心距d满足___ ___时,两圆相交;当d满足___ ___时,两圆不外离.例7.⊙O半径为,点P为直线L上一点,且OP=,则直线与⊙O的位置关系是____例8.如图,PA、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上,若PA 长为2,则△PEF的周长是_.例9. 如图,⊙M与x轴相交于点A(2,0),B(8,0),与y轴切于点C,则圆心M的坐标是5例10. 如图,四边形ABCD内接于⊙A,AC为⊙O的直径,弦DB⊥AC,垂足为M,过点D作⊙O的切线交BA的延长线于点E,若AC=10,tan∠DAE=43,求DB的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是 A.相离B.外切C.内切D.相交2.⊙A和⊙B相切,半径分别为8cm和2cm,则圆心距AB为 A.10cm B.6cm C.10cm或6cm D.以上答案均不对3.如图,P是⊙O的直径CB延长线上一点,PA切⊙O于点A,如果PA=3,PB=1,那么∠APC等于A. 15B. 30C. 45D. 604. 如图,⊙O半径为5,PC切⊙O于点C,PO交⊙O于点A,PA=4,那么PC的长等于 AA)6 25 210 214 O BDC5.如图,在第3题图10× 6的网格图中第4题图(每个小正方形的边长均为第5题图1 个单位长).⊙第6A题图半径为2,⊙B半径为1,需使⊙A与静止的⊙B相切,那么⊙A图示的位置向左平移个单位长.6. 如图,⊙O为△ABC的内切圆,∠C=90,AO的延长线交BC于点D,AC=4,DC=1,,则⊙O的半径等于A.54 B. 45 C. 354 D. 6 7.⊙O的半径为6,⊙O的一条弦AB长63,以3为半径⊙O的同心圆与直线AB的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在△ABC中,ABAC,A120°,BC23,⊙A与BC 相切于点D,且交AB、AC于M、N两点,则图中阴影部分的面积是.9.如图,B是线段AC上的一点,且AB:AC=2:5,分别以AB、AC为直径画圆,则小圆的面积与大圆的面积之比为_______.O1O2O6第8题图第9题图第10题图第11题图 10. 如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm.则大圆的半径是______cm.12.如图,直线AB切⊙O于C点,D是⊙O上一点,∠EDC=30o,弦EF∥AB,连结OC交EF于H点,连结CF,且CF=2,则HE的长为_________.13. 如图,PA、PB是⊙O的两条切线,切点分别为A、B,若直径AC=12cm。

直线与圆的位置关系(经典)

直线与圆的位置关系(经典)

0 相 交 0 切 0 相
【方法小结】
位置 关系
相 交
图形
几何特征
方程特征
判定方法
几 何 代数 法法
相 切
相 离
硬商品买卖在阿里巴巴 软商品交易在阿里巧巧
【方法小结】
位置 关系
相 交
图形
相 切
几何特征
有两个公共 点
方程特征
判定方法
几 何 代数 法法
方程组有两 个不同实根 d<r △>0
所以 , d<r
所以直线L与圆C相 交
所以方程组有两 解,
直线L与圆C相交
硬商品买卖在阿里巴巴 软商品交易在阿里巧巧
比较:几何法比代数法运算量少,简便。
【典题例证】
求它们的交点坐标。
解:联立方程得:
3x y 6 0

x
2

y2

2
y

4

0
解得:xy

2 0
或xy
【引入新知】 判断直线和圆的位置关系方法
几何方法
代数方法
求圆心坐标及半径r (配方法)
圆心到直线的距离d (点到直线距离公式)
(x a)2 ( y b)2 r 2 Ax By C 0
消去y(或x)
px2 qx t 0
d r 相 交d r 切d r 相 硬商品买卖在阿里巴巴 软商品交易在阿里巧巧
.y 港口
.
O
轮船 x
硬商品买卖在阿里巴巴 软商品交易在阿里巧巧
【小试身手】
试解本节引言中的问题.
解:以台风中心为原点,东西方向为x 轴,建立

圆与直线的位置关系练习题

圆与直线的位置关系练习题

圆与直线的位置关系练习题圆与直线是几何学中常见的图形,它们之间的位置关系有着多种情况。

本文将通过一些练习题来深入探讨圆与直线的位置关系,帮助读者更好地理解和运用相关知识。

练习题一:圆内一点到圆的位置关系设有一个圆C,圆心为O,半径为r。

点P在圆C内部,距离圆心O的距离为d。

现在要画一条直线l通过点P,使得直线l与圆C相交于点A、B两个不同的点。

请问,在给定的条件下,直线l与圆C的位置关系有哪些可能性,并给出相应的解释。

解析:根据给定的条件,直线l必然与圆C相交于两个不同的点。

具体的位置关系取决于点P与圆心O之间的距离d与圆的半径r之间的关系。

以下是三种可能的情况:1. d > r:此时,点P与圆心O的距离大于圆的半径,直线l将穿过圆C的内部,与圆C相交于两个不同的点A、B。

2. d = r:此时,点P与圆心O的距离等于圆的半径,直线l刚好与圆C相切于点P。

3. d < r:此时,点P与圆心O的距离小于圆的半径,直线l将不会与圆C相交,即没有解。

练习题二:圆外一点到圆的位置关系现在考虑一个不同的情况,点P位于圆C的外部,距离圆心O的距离为d。

同样地,画一条直线l通过点P,使得直线l与圆C相交于点A、B两个不同的点。

请问,在给定的条件下,直线l与圆C的位置关系有哪些可能性,并给出相应的解释。

解析:与练习题一类似,直线l与圆C的位置关系取决于点P与圆心O之间的距离d与圆的半径r之间的关系。

以下是三种可能的情况:1. d > r:此时,点P与圆心O的距离大于圆的半径,直线l将与圆C相交于两个不同的点A、B。

2. d = r:此时,点P与圆心O的距离等于圆的半径,直线l将切割圆C并与圆相切于点P。

3. d < r:此时,点P与圆心O的距离小于圆的半径,直线l将穿过圆C的外部,无法与圆C相交。

练习题三:圆与平行直线的位置关系给定一条平行于$x$轴的直线$l$,圆C的圆心为O,半径为r。

直线与圆的位置关系典例+讲解+习题+答案

直线与圆的位置关系典例+讲解+习题+答案

4.2.1 直线与圆的位置关系直线与圆的位置关系(典例)已知圆C:(x-a)2+(y-b)2=r2(r>0),直线L:Ax+By+C=01.位置关系的判定:判定方法1:联立方程组得到关于x(或y)的方程(1)△>0相交;(2)△=0相切;(3)△<0相离。

判定方法2:若圆心(a,b)到直线L的距离为d(1)d<r相交;(2)d=r相切;(3)d>r相离。

例1、判断直线L:(1+m)x+(1-m)y+2m-1=0与圆O:x2+y2=9的位置关系。

法一:直线L:m(x-y+2)+x+y-1=0恒过点,∵点P在圆O内,∴直线L与圆O相交。

法二:圆心O到直线L的距离为当d<3时,(2m-1)2<9(2m2+2),∴14m2+4m+17>0∴m∈R所以直线L与直线O相交。

2.切线问题:例3:(1)已知点P(x0,y)是圆C:x2+y2=r2上一点,求过点P的圆C的切线方程;(xx+yy=r2)法一:∵点P(x,y)是圆C:x2+y2=r2上一点,∴当x≠0且y≠0时,∴切线方程为当P为(0,r)时,切线方程为y=r,满足方程(1);当P为(0,-r)时,切线方程为t=-r,满足方程(1);当P为(r,0)时,切线方程为x=r,满足方程(1);当P为(-r,0)时,切线方程为x=-r,满足方程(1);综上,所求切线方程为x0x+yy=r2法二:设M(x,y)为所求切线上除P点外的任一点,则由图知|OM|2=|OP|2+|PM|2,即x2+y2=r2+(x-x0)2+(y-y)2∴x0x+yy=r2且P(x,y)满足上面的方程。

综上,所求切线方程为x0x+yy=r2。

(2)已知圆O:x2+y2=16,求过点P(4,6)的圆的切线PT的方程。

解:当PT方程为x=4时,为圆O的切线,满足题意:设PT的方程为y-6=k(x-4),即kx-y-4k+6=0则圆心O到PT的距离为所以PT的方程为综上,切线PT的方程为x=4,5x-12y+52=0 例4、求过下列各点的圆C:x2+y2-2x+4y-4=0的切线方程:(1);(2) B(4,5)解:(1)圆C:(x-1)2+(y+2)2=9,圆心C(1,-2),r=3,且点A在圆C上,法一:设切线方程为,则圆心到切线的距离为,∴所求切线方程为法二:∵AC⊥l,∴所求切线方程为(2)点B在圆外,所以过B点的切线有两条设切线方程为y=k(x-4)+5,则圆心C到切线的距离为又直线x=4也是圆的切线方程,∴所求切线方程为例5、设点P(x,y)是圆x2+y2=1上任一点,求的取值范围。

直线与圆的位置关系例题

直线与圆的位置关系例题

直线与圆的位置关系例题例题一:给定直线的方程为:y = 2x + 3,圆的方程为:(x - 1)^2 + (y - 2)^2 = 9,判断该直线与圆的位置关系。

解答一:首先,我们可以观察到圆的圆心坐标为(1, 2),半径为3。

我们可以计算直线在x轴上的截距为3/2,也就是说直线与x轴的交点为(0, 3/2)。

接下来,我们可以将直线代入圆的方程来判断它们的位置关系:(0 - 1)^2 + (3/2 - 2)^2 = 91 + (−1/2)^2 = 91 + 1/4 = 95/4 = 9由于等式左边不等于右边,因此直线和圆没有交点,它们是相离的。

例题二:给定直线的方程为:x + y = 4,圆的方程为:(x - 2)^2 + (y - 2)^2 = 4,判断该直线与圆的位置关系。

解答二:首先,我们观察到圆的圆心坐标为(2, 2),半径为2。

然后,我们可以令x = 0,来计算直线与y轴的截距,即直线与y轴的交点为(0, 4)。

接下来,我们将直线代入圆的方程来判断它们的位置关系:(0 - 2)^2 + (4 - 2)^2 = 44 + 4 = 4由于等式左边等于右边,因此直线和圆有交点,它们是相交的。

例题三:给定直线的方程为:y = -3x + 2,圆的方程为:(x - 1)^2 + (y + 1)^2 = 4,判断该直线与圆的位置关系。

解答三:首先,我们观察到圆的圆心坐标为(1, -1),半径为2。

然后,我们可以计算直线在x轴上的截距为2/3,也就是说直线与x轴的交点为(0, 2/3)。

接下来,我们将直线代入圆的方程来判断它们的位置关系:(0 - 1)^2 + (2/3 + 1)^2 = 41 + (5/3)^2 = 41 + 25/9 = 49/9 + 25/9 = 434/9 = 4.由于等式左边不等于右边,因此直线和圆没有交点,它们是相离的。

例题四:给定直线的方程为:x - 2y = 6,圆的方程为:(x - 3)^2 + (y + 1)^2 = 9,判断该直线与圆的位置关系。

直线与圆位置关系知识点与经典例题

直线与圆位置关系知识点与经典例题

直线与圆位置关系知识点与经典例题直线与圆位置关系⼀. 课标要求1. 能根据给定直线、圆的⽅程,判断直线与圆的位置关系;2. 能⽤直线和圆的⽅程解决⼀些简单的问题;3. 在平⾯解析⼏何初步的学习过程中,体会⽤代数⽅法处理⼏何问题的思想。

⼆. 知识框架〔相切f 代数法'求切线的⽅法J[⼏何法[过圆上⼀点的切线⽅程圆的切线⽅程\' [过圆外⼀点的切线⽅程{三. 直线与圆的位置关系及其判定⽅法1. 利⽤圆⼼O (a,b )到直线Ax + By + C = 0的距离d = P 1 严"+Q 与半径r 的⼤⼩来判ylA 2 + B 2 定。

(1) d 直线与圆相交(2) d = rO 直线与圆相切(3)直线与圆相离2. 联⽴直线与圆的⽅程组成⽅程组,消去其中⼀个未知量,得到关于另外⼀个未知量的⼀元⼆次⽅程,通过解的个数来判定。

(1)有两个公共解(交点),即⼛〉。

直线与圆相交(2)有且仅有⼀个解(交点),也称之为有两个相同实根,即A = 0O 直线与圆相切(3)⽆解(交点),即AvOO 直线与圆相离3. 等价关系相交od 0 相切 <=> J = rOA = 0 相离 Od > rO A <0 练习(位置关系)1.已知动直线l.y = kx+5和圆c :(x-l )2 + r = 1,试问R 为何值时,直线与圆相切、相离、相交?(位置关系)2.已知点在圆OiF + y —l 外,则直线ax+by = 1与圆0的位置关'相离(⼏何法弦长{直线与圆的位置关系{相交{ I 代数法.切割线定理切点弦⽅程直线与圆圆的切线⽅程系是()A.相切B.相交C.相离D.不确定(最值问题)3.已知实数兀、y 满⾜⽅程x 2 + r-4x+l = 0, (1)求2的最⼈值和最⼩值;x (2)求x-y 的最⼤值和最⼩值;(3)求x 2 + r 的最⼤值和最⼩值。

K 分析』考查与圆有关的最值问题,解题的关键是依据题⽬条件将其转化为对应的⼏何问题求解,运⽤数形结合的⽅法,直观的理解。

直线、圆的位置关系 知识点总结及典例

直线、圆的位置关系  知识点总结及典例

4.2 直线、圆的位置关系(2)基础知识梳理1. 判断直线与圆的位置关系的方法有两种①设圆心到直线的距离为d ,圆的半径为r ,若d <r ,直线与圆相交;若r d =,直线与圆相切;若d >r ,直线与圆相离。

②直线与圆的方程组成方程组,若方程组有两个解,则直线与圆相交;若只有一个解,则直线与圆相切;若无解,则直线与圆相离.2.判断圆与圆的位置关系有两种方法,一是代数法,两圆的方程组成的方程组若有两解,则两圆相交;若有一解,则两圆相切,但不能判断是内切还是外切;若无解则两圆相离,但不能判断是外离还是内含。

二是设两圆的半径分别为21,r r ,两圆的圆心距为d ,则21r r d +>时,两圆外离;21r r d +=时,两圆外切;2121r r d r r +<<-时,两圆相交;21r r d -=时,两圆内切;21r r d -<时,两圆内含.习题巩固一、选择题1.点2(,5)P m 与圆2224x y +=的位置关系是( )A .在圆外B .在圆内C .在圆上D .不确定2.以点(5,4)A -为圆心,且与x 轴相切的圆的方程是( )A .22(5)(4)16x y ++-=B .22(5)(4)16x y -++=C .22(5)(4)25x y ++-=D .22(5)(4)25x y -++=3.方程2||11(1)x y -=--所表示的曲线是( )A .一个圆B .两个圆C .半个圆D .两个半圆4.若圆心坐标为(2,1)-的圆被直线10x y --=截得的弦长为22,则圆的方程为( )A .22(2)(1)4x y -++=B .22(2)(1)2x y -++=C .22(2)(1)8x y -++=D .22(2)(1)16x y -++=5.两圆(x +3)2+(y -2)2=4和(x -3)2+(y +6)2=64的位置关系是( )A .外切B .内切C .相交D .相离6.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公切线有( )A .1条B .2条C .3条D .4条7.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A 、B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=08.圆C 1:(x -m )2+(y +2)2=9与圆C 2:(x +1)2+(y -m )2=4外切,则m 的值为( )A .2B .-5C .2或-5D .不确定9.实数x ,y 满足方程x +y -4=0,则x 2+y 2的最小值为( )A .4B .6C .8D .1210.若直线ax +by =1与圆x 2+y 2=1相交,则点P (a ,b )的位置是( )A .在圆上B .在圆外C .在圆内D .都有可能11.如果实数满足(x +2)2+y 2=3,则y x的最大值为( ) A . 3 B .- 3 C .33 D .-3312.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车篷篷顶距离地面的高度不得超过( )A .1.4米B .3.0米C .3.6米D .4.5米二、填空题13.两圆x 2+y 2=1和(x +4)2+(y -a )2=25相切,则实数a 的值为________.14.两圆交于A (1,3)及B (m ,-1),两圆的圆心均在直线x -y +n =0上,则m +n 的值为________.15.两圆x 2+y 2-x +y -2=0和x 2+y 2=5的公共弦长为____________.16.在平面直角坐标系xoy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.17.两圆222x y +=与22240x y x y +--=的公共弦所在直线方程为____________.18.两圆224210x y x y +-++=与224410x y x y ++--=的公切线有 条.19.若直线340x y k ++=与圆22650x y x +-+=相切,则k =____________.三、解答题20.求过点A (0,6)且与圆C :x 2+y 2+10x +10y =0切于原点的圆的方程.21.点M 在圆心为C 1的方程x 2+y 2+6x -2y +1=0上,点N 在圆心为C 2的方程x 2+y 2+2x +4y +1=0上,求|MN |的最大值.22.自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆位置关系一.课标要求1.能根据给定直线、圆的方程,判断直线与圆的位置关系;2.能用直线和圆的方程解决一些简单的问题;3.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。

二.知识框架相离 几何法 弦长 直线与圆的位置关系相交 代数法 切割线定理相切直线与圆 代数法 求切线的方法几何法 圆的切线方程过圆上一点的切线方程 圆的切线方程 切点弦 过圆外一点的切线方程 方程三.直线与圆的位置关系及其判定方法1.利用圆心0),(=++C By Ax b a O 到直线的距离22BA C Bb Aa d +++=与半径r 的大小来判定。

(1)⇔<r d 直线与圆相交 (2)⇔=r d 直线与圆相切 (3)⇔>r d 直线与圆相离2.联立直线与圆的方程组成方程组,消去其中一个未知量,得到关于另外一个未知量的一元二次方程,通过解的个数来判定。

(1)有两个公共解(交点),即⇔>∆0直线与圆相交 (2)有且仅有一个解(交点),也称之为有两个相同实根,即0=∆⇔直线与圆相切 (3)无解(交点),即⇔<∆0直线与圆相离 3.等价关系相交0>∆⇔<⇔r d 相切0=∆⇔=⇔r d 相离0<∆⇔>⇔r d 练习(位置关系)1.已知动直线5:+=kx y l 和圆1)1(:22=+-y x C ,试问k 为何值时,直线与圆相切、相离、相交?(位置关系)2.已知点),(b a M 在圆1:22=+y x O 外,则直线1=+by ax 与圆O 的位置关系是()A.相切B.相交C.相离D.不确定(最值问题)3.已知实数x 、y 满足方程01422=+-+x y x ,(1)求xy的最大值和最小值; (2)求y x -的最大值和最小值;(3)求22y x +的最大值和最小值。

〖分析〗考查与圆有关的最值问题,解题的关键是依据题目条件将其转化为对应的几何问题求解,运用数形结合的方法,直观的理解。

①转化为求斜率的最值;②转化为求直线b x y +=截距的最大值;③转化为求与原点的距离的最值问题。

(位置关系)4.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(22=-+-y x 相切,则n m +的取值围是()(位置关系)5.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线 1250x y c -+=的距离为1,则实数c 的取值围是6.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C )A 、6π B 、4π C 、3π D 、2π(位置关系)7.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+D .221+ (最值问题)8.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______.9.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( ) A .03222=--+x y x B .0422=++x y xC .03222=-++x y xD .0422=-+x y x10.若曲线21x y -=与直线b x y +=始终有两个交点,则b 的取值围是__________. (对称问题)11.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( )A. 4)1()3(22=-++y xB. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x12. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN则k 的取值围是( )A .3[,0]4-B .[C .[D .2[,0]3-13.圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y =7m +4 (m ∈R).(1)证明:不论m 取什么实数,直线l 与圆恒相交于两点; (2)求⊙C 与直线l 相交弦长的最小值.[解析] (1)将方程(2m +1)x +(m +1)y =7m +4,变形为(2x +y -7)m +(x +y -4)=0. 直线l 恒过两直线2x +y -7=0和x +y -4=0的交点,由⎩⎪⎨⎪⎧2x +y -7=0x +y -4=0得交点M (3,1). 又∵(3-1)2+(1-2)2=5<25,∴点M (3,1)在圆C ,∴直线l 与圆C 恒有两个交点. (2)由圆的性质可知,当l ⊥CM 时,弦长最短. 又|CM |=(3-1)2+(1-2)2=5,∴弦长为l =2r 2-|CM |2=225-5=4 5.四.计算直线被圆所截得的弦长的方法1.几何法:运用弦心距、半径、半弦长构成的∆Rt 计算,即222d r AB -= 2.代数法:运用根与系数关系(韦达定理),即[]B A B A B A x x x x k x x k AB 4)()1(1222-++=-+=(注:①当直线AB 斜率不存在时,请自行探索与总结;②弦中点坐标为)(2,2BA B A y y x x ++,求解弦中点轨迹方程。

) 练习1.直线32+=x y 被圆08622=--+y x y x 所截得的弦长等于()2.过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程是( )A.053=--y xB. 073=-+y xC. 053=-+y xD. 053=+-y x3.已知圆C 过点)0,1(,且圆心在x 轴的正半轴上,直线1:-=x y l 被圆C 所截得的弦长为22,则过圆心且与直线l 垂直的直线方程为()4.直线x -2y -3=0与圆C :(x -2)2+(y +3)2=9交于E 、F 两点,则△ECF 的面积为( ) A.32 B.34 C .2 5 D.3555.已知圆4)4()3(:22=-+-y x C 和直线034:=+--k y kx l(1)求证:不论k 取什么值,直线和圆总相交;(2)求k 取何值时,圆被直线截得的弦最短,并求最短弦的长.6.若曲线x 2+y 2+2x -6y +1=0上相异两点P 、Q 关于直线kx +2y -4=0对称,则k 的值为( )A .1 B .-1 C.12 D .27.已知过点()3,3M --的直线l 与圆224210x y y ++-=相交于,A B 两点,(1)若弦AB 的长为l 的方程; (2)设弦AB 的中点为P ,求动点P 的轨迹方程.解:(1)若直线l 的斜率不存在,则l 的方程为3x =-,此时有24120y y +-=,弦()||||268A B AB y y =-=--=,所以不合题意.故设直线l 的方程为()33y k x +=+,即330kx y k -+-=.将圆的方程写成标准式得()22225x y ++=,所以圆心()0,2-,半径5r =.圆心()0,2-到直线l 的距离d =角形,所以()22231251k k -+=+,即()230k +=,所以3k =-.所求直线l 的方程为3120x y ++=.(2)设(),P x y ,圆心()10,2O -,连接1O P ,则1O P ⊥AB .当0x ≠且3x ≠-时,11O P ABk k ⋅=-,又(3)(3)AB MP y k k x --==--,则有()()()23103y y x x ----⋅=----,化简得22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭......(1) 当0x =或3x =-时,P 点的坐标为()()()()0,2,0,3,3,2,3,3------都是方程(1)的解,所以弦AB 中点P 的轨迹方程为22355222x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭.8.已知圆0622=+-++m y x y x 和直线032=-+y x 相交于Q P ,两点,O 为原点,且OQ OP ⊥,数m 的取值.五.已知切点,求切线方程1.经过圆222r y x =+上一点)(00,y x P 的切线方程为200r y y x x =+2.经过圆222)()(r b y a x =-+-上一点)(00,y x P 的切线方程为200))(())((r b y b y a x a x =--+--3.经过圆022=++++F Ey Dx y x 上一点),(00y x P 的切线方程为0220000=++++++F yy E x x Dy y x x 练习1.经过圆上一点)8,4(--P 作圆9)8()7(22++++y x 的切线方程为()2.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x六.切点未知,过园外一点,求切线方程1.k 不存在,验证是否成立;2.k 存在,设点斜式,用圆到直线的距离r d =,即)(00x x k y y -=-1)(200+---=k x a k y b r练习1.求过)5,3(A 且与圆0744:22=+--+y x y x C 相切的直线方程。

七.切线长若圆222)()(:r b y a x C =-+-,则过圆外一点),(00y x P 的切线长22020)()(r b y a x d --+-=练习1.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( B ) (A) 5 (B) 3 (C) 10 (D) 52.自直线y=x 上点向圆x 2+y 2-6x+7=0引切线,则切线长的最小值为八.切点弦方程过圆222)()(:r b y a x C =-+-外一点),(00y x P 作圆C 的两条切线方程,切点分别为B A ,,则切点弦AB 所在直线方程为:200))(())((r b y b y a x a x =--+--1.过点C (6,-8)作圆x 2+y 2=25的切线于切点A 、B ,那么C 到两切点A 、B 连线的距离为( )A .15B .1 C.152D .5九.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项,即PD PC PT ⋅=2练习1.自动点P 引圆1022=+y x 的两条切线PB PA ,,直线PB PA ,的斜率分别为21,k k 。

(1)若12121-=++k k k k ,求动点P 的轨迹方程;(2)若点P 在直线m y x =+上,且PB PA ⊥,数m 的取值围。

相关文档
最新文档