必修2直线与圆典型题型总结

合集下载

直线与圆(典型例题和练习题)

直线与圆(典型例题和练习题)

直线与圆1.本单元知识点本单元的学习重点包括:直线的斜率、直线的方程、直线与直线的位置关系,圆的方程、圆与圆的位置关系,直线与圆的位置关系,直线与圆的距离问题,其中直线与圆的位置关系是高考热点.2.典型例题选讲例1. 过点M (0,1)作直线,使它被两直线082:,0103:21=-+=+-y x l y x l 所截得的线段恰好被M 所平分,求此直线的方程.说明:直线方程有三种基本形式:点斜式、两点式、一般式,求直线方程时应根据题目条件灵活选择,并注意不同形式的适用范围. 如采用点斜式,需要注意讨论斜率不存在的情况. 例2.已知圆0822:221=-+++y x y x C 与圆024102:222=-+-+y x y x C 交于A,B 两点.(1)求直线AB 的方程;(2)求过A 、B 两点且面积最小的圆的方程.说明:应用两圆相减求两圆公共弦的方法,可避免通过求两个交点再求公共弦方程. 另外,在求解与圆有关的问题时,应注意多利用圆的相关几何性质,这样利于简化解题步骤.例3.若过点A (4,0)的直线l 与曲线1)2(22=+-y x 有公共点,求直线l 的斜率k 的取值范围. (一题多解)说明:直线与圆的位置关系问题,可以从几何和代数两方面入手. 相切问题应抓住角度问题求斜率;相交问题应抓住半径r 、弦心距d 、半弦长2l 构造的直角三角形使问题简化. 例4.设定点M (-3,4),动点N 在圆422=+y x 上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.说明:轨迹方程在必修2第122页有例题,求动点的轨迹方程要特别注意考虑轨迹与方程间的等价性,有时求得方程后还要添上或去掉某些点.3.自测题选择题:1.过点A (1,-1)且与线段)11(0323≤≤-=--x y x 相交的直线的倾斜角的取值范围是( )A. ]2,4[ππ B. ],2[ππ C. ],2[]4,0(πππ D.),2[]4,0[πππ2.若直线02)1(2=-++ay x a 与直线012=++y ax 垂直,则=a ( )A.-2B.0C.-1或0D.222±3.若P (2,1)为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y xC.03=-+y xD.052=--y x4.已知圆1)3()2(:221=-+-y x C ,圆9)4()3(:222=-+-y x C ,M ,N 分别是圆上的动点,P 为x 轴上的动点,则PN PM +的最小值为( )A. 425-B.117-C.226-D.175.已知)3,0(),0,3(B A -,若点P 在0222=-+x y x 上运动,则PAB ∆面积的最小值为( )A.6B. 26C. 2236+D.2236-6.曲线241x y -+=与直线4)2(+-=x k y 有两个交点,则实数k 的取值范围是( )A. )125,0(B.),125(+∞C. ]43,31(D.]43,125(填空题:7.圆心在直线02=-y x 上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦长为32,则圆C 的标准方程为______________8.若圆422=+y x 与圆)0(06222>=-++a ax y x 的公共弦长为32,则=a _______9.设圆05422=--+x y x 的弦AB 的中点为P(3,1),则直线AB 的方程为_____________10.已知P 是直线0843=++y x 上的动点,PA 、PB 是圆012222=+--+y x y x 的两切线,A 、B 是切点,C 是圆心,则四边形PACB 的面积的最小值为__________解答题:11. 在ABC ∆中,)1,3(-A ,AB 边上的中线CM 所在直线方程为059106=-+y x ,B ∠的平分线BT 的方程为0104=+-y x .(1)求顶点B 的坐标; (2)求直线BC 的方程.12.已知点)3,2(--P ,圆9)2()4(:22=-+-y x C ,过P 点作圆C 的两条切线,切点分别为A 、B.(1)求过P 、A 、B 三点的圆的方程;(2)求直线AB 的方程.。

高中数学必修2直线与圆常考题型:两直线的交点坐标、两点间的距离(教师版)

高中数学必修2直线与圆常考题型:两直线的交点坐标、两点间的距离(教师版)

两直线的交点坐标、两点间的距离【知识梳理】1.两直线的交点坐标23.(1)公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2.(2)文字叙述:平面内两点的距离等于这两点的横坐标之差与纵坐标之差的平方和的算术平方根.【常考题型】题型一、两条直线的交点问题【例1】 判断下列各组直线的位置关系.如果相交,求出交点的坐标: (1)l 1:5x +4y -2=0,l 2:2x +y +2=0; (2)l 1:2x -6y +3=0,l 2:y =13x +12;(3)l 1:2x -6y =0,l 2:y =13x +12.【类题通法】判断两直线的位置关系,关键是看两直线的方程组成的方程组的解的情况.(1)解方程组的重要思想就是消元,先消去一个变量,代入另外一个方程能解出另一个变量的值.(2)解题过程中注意对其中参数进行分类讨论. (3)最后把方程组解的情况还原为直线的位置关系. 【对点训练】1.判断下列各对直线的位置关系.若相交,求出交点坐标: (1)l 1:2x +y +3=0,l 2:x -2y -1=0; (2)l 1:x +y +2=0,l 2:2x +2y +3=0.题型二、直线恒过定点问题【例2】 求证:不论m 为何实数,直线(m -1)x +(2m -1)y =m -5都过某一定点.【类题通法】解含有参数的直线恒过定点的问题(1)方法一:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)方法二:含有一个参数的二元一次方程若能整理为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是参数,这就说明了它表示的直线必过定点,其定点可由方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0解得.若整理成y -y 0=k (x -x 0)的形式,则表示的所有直线必过定点(x 0,y 0).【对点训练】2.求经过两直线l1:3x+4y-2=0和l2:2x+y+2=0的交点且过坐标原点的直线l的方程.题型三、两点间距离公式的应用【例3】已知点A(1,1),B(5,3),C(0,3),求证:△ABC为直角三角形.【类题通法】1.计算两点间距离的方法(1)对于任意两点P1(x1,y1)和P2(x2,y2),则|P1P2|=(x2-x1)2+(y2-y1)2.(2)对于两点的横坐标或纵坐标相等的情况,可直接利用距离公式的特殊情况求解.2.解答本题还要注意构成三角形的条件.【对点训练】3.已知点A(-1,2),B(2,7),在x轴上求一点P,使|P A|=|PB|,并求|P A|的值.【练习反馈】1.直线3x+2y+6=0和2x+5y-7=0的交点的坐标为()A.(-4,-3)B.(4,3)C.(-4,3) D.(3,4)2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为()A.1 B.-5C.1或-5 D.1-或53.设Q(1,3),在x轴上有一点P,且|PQ|=5,则点P的坐标是________.4.若p,q满足p-2q=1,直线px+3y+q=0必过一个定点,该定点坐标为________.5.分别求经过两条直线2x+y-3=0和x-y=0的交点,且符合下列条件的直线方程.(1)平行于直线l1:4x-2y-7=0;(2)垂直于直线l2:3x-2y+4=0.题型一、两条直线的交点问题【例1】 判断下列各组直线的位置关系.如果相交,求出交点的坐标: (1)l 1:5x +4y -2=0,l 2:2x +y +2=0; (2)l 1:2x -6y +3=0,l 2:y =13x +12;(3)l 1:2x -6y =0,l 2:y =13x +12.[解] (1)解方程组⎩⎪⎨⎪⎧5x +4y -2=0,2x +y +2=0,得⎩⎨⎧x =-103,y =143.所以l 1与l 2相交,且交点坐标为⎝⎛⎭⎫-103,143. (2)解方程组⎩⎪⎨⎪⎧2x -6y +3=0,①y =13x +12,②②×6整理得2x -6y +3=0.因此,①和②可以化成同一个方程,即①和②表示同一条直线,l 1与l 2重合.(3)解方程组⎩⎪⎨⎪⎧2x -6y =0,①y =13x +12,②②×6-①得3=0,矛盾.方程组无解,所以两直线无公共点,l 1∥l 2. 【类题通法】判断两直线的位置关系,关键是看两直线的方程组成的方程组的解的情况.(1)解方程组的重要思想就是消元,先消去一个变量,代入另外一个方程能解出另一个变量的值.(2)解题过程中注意对其中参数进行分类讨论. (3)最后把方程组解的情况还原为直线的位置关系. 【对点训练】1.判断下列各对直线的位置关系.若相交,求出交点坐标:(1)l 1:2x +y +3=0,l 2:x -2y -1=0; (2)l 1:x +y +2=0,l 2:2x +2y +3=0.解:(1)解方程组⎩⎪⎨⎪⎧ 2x +y +3=0,x -2y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-1,所以直线l 1与l 2相交,交点坐标为(-1,-1).(2)解方程组⎩⎪⎨⎪⎧x +y +2=0,①2x +2y +3=0,②①×2-②,得1=0,矛盾,方程组无解.所以直线l 1与l 2无公共点,即l 1∥l 2.题型二、直线恒过定点问题【例2】 求证:不论m 为何实数,直线(m -1)x +(2m -1)y =m -5都过某一定点. [证明] 法一:取m =1时,直线方程为y =-4;取m =12时,直线方程为x =9.两直线的交点为P (9,-4),将点P 的坐标代入原方程左边=(m -1)×9+(2m -1)×(-4)=m -5.故不论m 取何实数,点P (9,-4)总在直线(m -1)x +(2m -1)y =m -5上, 即直线恒过点P (9,-4).法二:原方程化为(x +2y -1)m +(-x -y +5)=0. 若对任意m 都成立,则有⎩⎪⎨⎪⎧ x +2y -1=0,x +y -5=0,得⎩⎪⎨⎪⎧x =9,y =-4.所以不论m 为何实数,所给直线都过定点P (9,-4). 【类题通法】解含有参数的直线恒过定点的问题(1)方法一:任给直线中的参数赋两个不同的值,得到两条不同的直线,然后验证这两条直线的交点就是题目中含参数直线所过的定点,从而问题得解.(2)方法二:含有一个参数的二元一次方程若能整理为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,其中λ是参数,这就说明了它表示的直线必过定点,其定点可由方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0解得.若整理成y -y 0=k (x -x 0)的形式,则表示的所有直线必过定点(x 0,y 0).【对点训练】2.求经过两直线l 1:3x +4y -2=0和l 2:2x +y +2=0的交点且过坐标原点的直线l 的方程.解:法一:由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,即l 1与l 2的交点坐标为(-2,2).∵直线过坐标原点,所以其斜率k =2-2=-1,直线方程为y =-x ,一般式为x +y =0.法二:∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ), 即(3+2λ)x +(4+λ)y +2λ-2=0. 将原点坐标(0,0)代入上式,解得λ=1, ∴l 的方程为5x +5y =0,即x +y =0.题型三、两点间距离公式的应用【例3】 已知点A (1,1),B (5,3),C (0,3),求证:△ABC 为直角三角形. [证明] 法一:∵|AB |=(5-1)2+(3-1)2=25,|AC |=(0-1)2+(3-1)2=5, 又|BC |=(5-0)2+(3-3)2=5,∴|AB |2+|AC |2=|BC |2, ∴△ABC 为直角三角形.法二:∵k AB =3-15-1=12,k AC =3-10-1=-2,∴k AB ·k AC =-1,∴AB ⊥AC ,∴△ABC 是以A 为直角顶点的直角三角形.【类题通法】1.计算两点间距离的方法(1)对于任意两点P 1(x 1,y 1)和P 2(x 2,y 2),则|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)对于两点的横坐标或纵坐标相等的情况,可直接利用距离公式的特殊情况求解. 2.解答本题还要注意构成三角形的条件. 【对点训练】3.已知点A (-1,2),B (2,7),在x 轴上求一点P ,使|P A |=|PB |,并求|P A |的值. 解:设所求点P (x,0),于是由|P A |=|PB |得(x +1)2+(0-2)2=(x -2)2+(0-7)2,即x 2+2x +5=x 2-4x +11,解得x =1. 所以,所求P 点坐标为(1,0),|P A |=(1+1)2+(0-2)2=2 2.【练习反馈】1.直线3x +2y +6=0和2x +5y -7=0的交点的坐标为( ) A .(-4,-3) B .(4,3) C .(-4,3)D .(3,4)解析:选C 由方程组⎩⎪⎨⎪⎧ 3x +2y +6=0,2x +5y -7=0,得⎩⎪⎨⎪⎧x =-4,y =3.2.已知点A (-2,-1),B (a,3),且|AB |=5,则a 的值为( ) A .1 B .-5 C .1或-5 D .1-或5解析:选C ∵|AB |=(a +2)2+(3+1)2=5,∴a =-5或a =1.3.设Q (1,3),在x 轴上有一点P ,且|PQ |=5,则点P 的坐标是________. 解析:由题意设P (a,0),则|PQ |=(a -1)2+(0-3)2=5,解得a -1=±4,即a =5或-3.故点P 的坐标是(5,0)或(-3,0).答案:(5,0)或(-3,0)4.若p ,q 满足p -2q =1,直线px +3y +q =0必过一个定点,该定点坐标为________. 解析:因为p =2q +1代入整理:(2x +1)q +3y +x =0对q 为一切实数恒成立,即2x +1=0,且3y +x =0,所以x =-12,y =16.答案:⎝⎛⎭⎫-12,16 5.分别求经过两条直线2x +y -3=0和x -y =0的交点,且符合下列条件的直线方程. (1)平行于直线l 1:4x -2y -7=0; (2)垂直于直线l 2:3x -2y +4=0.解:解方程组⎩⎪⎨⎪⎧2x +y -3=0,x -y =0,得交点P (1,1).(1)若直线与l 1平行, ∵k 1=2, ∴斜率k =2,∴所求直线方程为y -1=2(x -1) 即:2x -y -1=0. (2)若直线与l 2垂直, ∵k 2=32,∴斜率k =-1k 2=-23,∴y -1=-23(x -1)即:2x +3y -5=0.。

最新人教版高中数学必修2第四章《直线与圆的位置关系》

最新人教版高中数学必修2第四章《直线与圆的位置关系》

4.2.1 直线与圆的位置关系1.知道直线与圆的位置关系的分类.2.能根据方程,判断直线和圆的位置关系. 3.能够解决有关直线和圆的位置关系的问题.直线A x +B y +C =0与圆(x -a)2+(y -b)2=r 2的位置关系及判断【做一做】 直线3x +4y +12=0与圆(x -1)+(y +1)=9的位置关系是( ) A .过圆心 B .相切 C .相离 D .相交答案:两 一 零 < = > > = < 【做一做】 D代数法与几何法的比较剖析:代数法的运算量较大,几何法的运算量较小,并且也简单、直观.受思维定式的影响,看到方程就想解方程组,自然就想到代数法.【例】 若直线4x -3y +a =0与圆x 2+y 2=100:①相交;②相切;③相离,试分别求实数a 的取值范围.解法一:(代数法)由方程组⎩⎪⎨⎪⎧4x -3y +a =0,x 2+y 2=100,消去y ,得25x 2+8a x +a 2-900=0.则Δ=(8a)2-4×25(a 2-900)=-36a 2+90 000.①当直线和圆相交时,Δ>0,即-36a 2+90 000>0,解得-50<a <50; ②当直线和圆相切时,Δ=0,解得a =50或a =-50; ③当直线和圆相离时,Δ<0,解得a <-50或a >50. 解法二:(几何法)圆x 2+y 2=100的圆心为(0,0),半径r =10,则圆心到直线4x -3y +a =0的距离d =|a|32+42=|a|5.①当直线和圆相交时,d<r ,即|a|5<10,所以-50<a <50;②当直线和圆相切时,d =r ,即|a|5=10,所以a =50或a =-50;③当直线和圆相离时,d>r ,即|a|5>10,所以a <-50或a >50.处理直线与圆的位置关系的代数法和几何法,都具有普遍性,都要熟练掌握.由这两种解法可看到,几何法比代数法运算量要小,也比较简单、直观.题型一:直线与圆的相交问题【例1】 过点(-4,0)作直线l 与圆x 2+y 2+2x -4y -20=0交于A ,B 两点,如果|AB|=8,求直线l 的方程.反思:(1)讨论直线与圆的相交问题时,通常情况下不求出交点坐标.利用半径、半弦和弦心距组成的直角三角形,由勾股定理能解决弦长问题.(2)解答本题时易出现漏掉x +4=0的错误结果,导致这种错误的原因是对直线点斜式方程存在的条件理解不透,从而思维不严密,分类不完整.题型二:直线与圆的相切问题【例2】 求经过点(1,-7)且与圆x 2+y 2=25相切的直线方程.反思:解决直线与圆的相切问题时,通常利用圆心到切线的距离等于半径来解决.答案:【例1】 解:将圆的方程配方得(x +1)2+(y -2)2=25,由圆的性质可得,圆心到直线l 的距离d =(25)2-⎝⎛⎭⎫822=3.当l 的斜率不存在时,x =-4满足题意.当l 的斜率存在时,设方程为y =k (x +4),即kx -y +4k =0.由点到直线的距离公式,得3=|-k -2+4k |1+k 2,解得k =-512.所以直线l 的方程为5x +12y +20=0.综上所述,直线l 的方程为x +4=0或5x +12y +20=0.【例2】 解:(1)当直线斜率不存在时,其方程为x =1,不与圆相切;(2)当直线斜率存在时,设斜率为k ,则切线方程为y +7=k (x -1),即kx -y -k -7=0.∴|-k -7|k 2+(-1)2=5,解得k =43或k =-34.∴所求切线方程为y +7=43(x -1)或y +7=-34(x -1),即4x -3y -25=0或3x +4y +25=0.1.(2011·山东济南一模)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1 2.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-683.直线l:3x-4y-5=0被圆x2+y2=5所截得的弦长为__________.4.(2011·北京丰台高三期末)过点(-3,4)且与圆(x-1)2+(y-1)2=25相切的直线方程为__________.5.已知一个圆C与y轴相切,圆心C在直线l1:x-3y=0上,且在直线l2:x-y=0上截得的弦长为C的方程.答案:1.A 2.B 3.4 4.4x-3y+24=05.解:∵圆心C在直线l1:x-3y=0上,∴可设圆心为C(3t,t).又∵圆C与y轴相切,∴圆的半径为r=|3t|.再由弦心距、半径、弦长的一半组成的直角三角形,可得2+2=|3t|2,解得t=±1.∴圆心为(3,1)或(-3,-1),半径为3.故所求圆的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.。

高中数学必修2直线与圆常考题型:倾斜角与斜率

高中数学必修2直线与圆常考题型:倾斜角与斜率

倾斜角与斜率【知识梳理】1.倾斜角的定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.如图所示,直线l 的倾斜角是∠APx ,直线l ′的倾斜角是∠BPx .2.倾斜角的范围:直线的倾斜角α的取值范围是0°≤α<180°,并规定与x 轴平行或重合的直线的倾斜角为0°.3.倾斜角与直线形状的关系的正切值叫做这条直线的斜率.即k =tan_α.5.斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1.当x 1=x 2时,直线P 1P 2没有斜率.6.斜率作用:用实数反映了平面直角坐标系内的直线的倾斜程度. 【常考题型】题型一、直线的倾斜角【例1】 (1)若直线l 的向上方向与y 轴的正方向成30°角,则直线l 的倾斜角为( )A .30°B .60°C .30°或150°D .60°或120°(2)下列说法中,正确的是( )A .直线的倾斜角为α,则此直线的斜率为tan αB .直线的斜率为tan α,则此直线的倾斜角为αC .若直线的倾斜角为α,则sin α>0D .任意直线都有倾斜角α,且α≠90°时,斜率为tan α[解析] (1)如图,直线l 有两种情况,故l 的倾斜角为60°或120°.(2)对于A ,当α=90°时,直线的斜率不存在,故不正确;对于B ,虽然直线的斜率为tan α,但只有0°≤α<180°时,α才是此直线的倾斜角,故不正确;对于C ,当直线平行于x 轴时,α=0°,sin α=0,故C 不正确,故选D.[答案](1)D(2)D【类题通法】求直线的倾斜角的方法及两点注意(1)方法:结合图形,利用特殊三角形(如直角三角形)求角.(2)两点注意:①当直线与x轴平行或重合时,倾斜角为0°,当直线与x轴垂直时,倾斜角为90°.②注意直线倾斜角的取值范围是0°≤α<180°.【对点训练】1.直线l经过第二、四象限,则直线l的倾斜角范围是()A.[0°,90°)B.[90°,180°)C.(90°,180°) D.(0°,180°)解析:选C直线倾斜角的取值范围是[0°,180°),又直线l经过第二、四象限,所以直线l的倾斜角范围是(90°,180°).2.设直线l过原点,其倾斜角为α,将直线l绕坐标原点沿逆时针方向旋转45°,得到直线l1,则直线l1的倾斜角为()A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时为α+45°,当135°≤α<180°时为α-135°解析:选D当0°≤α<135°时,l1的倾斜角是α+45°.当135°≤α<180°时,结合图形和倾斜角的概念,即可得到l1的倾斜角为α-135°,故应选D.题型二、直线的斜率【例2】(1)已知过两点A(4,y),B(2,-3)的直线的倾斜角为135°,则y=________;(2)过点P(-2,m),Q(m,4)的直线的斜率为1,则m的值为________;(3)已知过A(3,1),B(m,-2)的直线的斜率为1,则m的值为________.[解析](1)直线AB的斜率k=tan 135°=-1,又k =-3-y 2-4,由-3-y 2-4=-1,得y =-5. (2)由斜率公式k =4-m m +2=1,得m =1. (3)当m =3时,直线AB 平行于y 轴,斜率不存在.当m ≠3时,k =-2-1m -3=-3m -3=1,解得m =0. [答案] (1)-5 (2)1 (3)0【类题通法】利用斜率公式求直线的斜率应注意的事项(1)运用公式的前提条件是“x 1≠x 2”,即直线不与x 轴垂直,因为当直线与x 轴垂直时,斜率是不存在的;(2)斜率公式与两点P 1,P 2的先后顺序无关,也就是说公式中的x 1与x 2,y 1与y 2可以同时交换位置.【对点训练】3.若直线过点 (1,2),(4,2+3),则此直线的倾斜角是( )A .30°B .45°C .60°D .90°解析:选A 设直线的倾斜角为α,直线斜率k =(2+3)-24-1=33, ∴tan α=33. 又∵0°≤α<180°,∴α=30°.题型三、直线的斜率的应用【例3】 已知实数x ,y 满足y =-2x +8,且2≤x ≤3,求y x的最大值和最小值. [解] 如图所示,由于点(x ,y )满足关系式2x +y =8,且2≤x ≤3,可知点P (x ,y )在线段AB 上移动,并且A ,B 两点的坐标可分别求得为A (2,4),B (3,2).由于y x 的几何意义是直线OP 的斜率,且k OA =2,k OB =23,所以可求得y x的最大值为2,最小值为23.【类题通法】根据题目中代数式的特征,看是否可以写成y 2-y 1x 2-x 1的形式,若能,则联想其几何意义(即直线的斜率),再利用图形的直观性来分析解决问题.【对点训练】4.点M (x ,y )在函数y =-2x +8的图象上,当x ∈[2,5]时,求y +1x +1的取值范围. 解:y +1x +1=y -(-1)x -(-1)的几何意义是过M (x ,y ),N (-1,-1)两点的直线的斜率. ∵点M 在函数y =-2x +8的图象上,且x ∈[2,5],∴设该线段为AB 且A (2,4),B (5,-2).∵k NA =53,k NB =-16, ∴-16≤y +1x +1≤53. ∴y +1x +1的取值范围为[-16,53]. 【练习反馈】1.关于直线的倾斜角和斜率,下列说法正确的是( )A .任一直线都有倾斜角,都存在斜率B .倾斜角为135°的直线的斜率为1C .若一条直线的倾斜角为α,则它的斜率为k =tan αD .直线斜率的取值范围是(-∞,+∞)解析:选D 任一直线都有倾斜角,但当倾斜角为90°时,斜率不存在.所以A 、C 错误;倾斜角为135°的直线的斜率为-1,所以B 错误;只有D 正确.2.已知经过两点(5,m )和(m,8)的直线的斜率等于1,则m 的值是( )A .5B .8 C.132 D .7解析:选C 由斜率公式可得8-m m -5=1,解之得m =132. 3.直线l 经过原点和(-1,1),则它的倾斜角为________.解析:k l =1-0-1-0=-1, 因此倾斜角为135°.答案:135°4.已知三点A (a,2),B (3,7),C (-2,-9a )在同一条直线上,实数a 的值为________. 解析:∵A 、B 、C 三点共线,∴k AB =k BC ,即53-a =9a +75,∴a =2或29. 答案:2或295.已知A (m ,-m +3),B (2,m -1),C (-1,4),直线AC 的斜率等于直线BC 的斜率的3倍,求m 的值.解:由题意直线AC 的斜率存在,即m ≠-1.∴k AC =(-m +3)-4m +1,k BC =(m -1)-42-(-1). ∴(-m +3)-4m +1=3·(m -1)-42-(-1). 整理得:-m -1=(m -5)(m +1),即(m +1)(m -4)=0,∴m =4或m =-1(舍去).∴m =4.。

高中数学必修2直线与圆常考题型:两条直线平行与垂直的判定

高中数学必修2直线与圆常考题型:两条直线平行与垂直的判定

两条直线平行与垂直的判定【知识梳理】1.对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,有l 1∥l 2⇔k 1=k 2.2.如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积等于-1,那么它们互相垂直,即l 1⊥l 2⇔k 1·k 2=-1.【常考题型】题型一、两条直线平行的判定【例1】 根据下列给定的条件,判断直线l 1与直线l 2是否平行.(1)l 1经过点A (2,1),B (-3,5),l 2经过点C (3,-3),D (8,-7);(2)l 1经过点E (0,1),F (-2,-1),l 2经过点G (3,4),H (2,3);(3)l 1的倾斜角为60°,l 2经过点M (1,3),N (-2,-23);(4)l 1平行于y 轴,l 2经过点P (0,-2),Q (0,5).[解] (1)由题意知,k 1=5-1-3-2=-45,k 2=-7+38-3=-45,所以直线l 1与直线l 2平行或重合,又k BC =5-(-3)-3-3=-43≠-45,故l 1∥l 2. (2)由题意知,k 1=-1-1-2-0=1,k 2=3-42-3=1,所以直线l 1与直线l 2平行或重合,k FG =4-(-1)3-(-2)=1,故直线l 1与直线l 2重合.(3)由题意知,k 1=tan 60°=3,k 2=-23-3-2-1=3,k 1=k 2,所以直线l 1与直线l 2平行或重合.(4)由题意知l 1的斜率不存在,且不是y 轴,l 2的斜率也不存在,恰好是y 轴,所以l 1∥l 2.【类题通法】判断两条不重合直线是否平行的步骤【对点训练】1.试确定m 的值,使过点A (m +1,0),B (-5,m )的直线与过点C (-4,3),D (0,5)的直线平行.解:由题意直线CD的斜率存在,则与其平行的直线AB的斜率也存在.k AB=m-0-5-(m+1)=m-6-m,k CD=5-30-(-4)=12,由于AB∥CD,即k AB=k CD,所以m-6-m=12,得m=-2.经验证m=-2时直线AB的斜率存在,所以m=-2.题型二、两条直线垂直的问题【例2】已知直线l1经过点A(3,a),B(a-2,-3),直线l2经过点C(2,3),D(-1,a-2),如果l1⊥l2,求a的值.[解]设直线l1,l2的斜率分别为k1,k2.∵直线l2经过点C(2,3),D(-1,a-2),且2≠-1,∴l2的斜率存在.当k2=0时,a-2=3,则a=5,此时k1不存在,符合题意.当k2≠0时,即a≠5,此时k1≠0,由k1·k2=-1,得-3-aa-2-3·a-2-3-1-2=-1,解得a=-6.综上可知,a的值为5或-6.【类题通法】使用斜率公式判定两直线垂直的步骤(1)一看,就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第一步.(2)二用:就是将点的坐标代入斜率公式.(3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式要对参数进行讨论.总之,l1与l2一个斜率为0,另一个斜率不存在时,l1⊥l2;l1与l2斜率都存在时,满足k1·k2=-1.【对点训练】2.已知定点A(-1,3),B(4,2),以A、B为直径作圆,与x轴有交点C,则交点C的坐标是________.解析:以线段AB为直径的圆与x轴的交点为C,则AC⊥BC.设C(x,0),则k AC=-3x+1,k BC=-2x-4,所以-3x+1·-2x-4=-1,得x=1或2,所以C(1,0)或(2,0).答案:(1,0)或(2,0)题型三、平行与垂直的综合应用【例3】 已知A (-4,3),B (2,5),C (6,3),D (-3,0)四点,若顺次连接A ,B ,C ,D 四点,试判定图形ABCD 的形状.[解] 由题意知A ,B ,C ,D 四点在坐标平面内的位置,如图所示,由斜率公式可得k AB =5-32-(-4)=13, k CD =0-3-3-6=13,k AD =0-3-3-(-4)=-3, k BC =3-56-2=-12. 所以k AB =k CD ,由图可知AB 与CD 不重合,所以AB ∥CD .由k AD ≠k BC ,所以AD 与BC 不平行.又因为k AB ·k AD =13×(-3)=-1, 所以AB ⊥AD ,故四边形ABCD 为直角梯形.【类题通法】1.在顶点确定的情况下,确定多边形形状时,要先画出图形,由图形猜测其形状,为下面证明提供明确目标.2.证明两直线平行时,仅有k 1=k 2是不够的,注意排除两直线重合的情况.【对点训练】3.已知A (1,0),B (3,2),C (0,4),点D 满足AB ⊥CD ,且AD ∥BC ,试求点D 的坐标. 解:设D (x ,y ),则k AB =23-1=1,k BC =4-20-3=-23,k CD =y -4x ,k DA =y x -1.因为AB ⊥CD ,AD ∥BC ,所以,k AB ·k CD =-1,k DA =k BC ,所以⎩⎨⎧ 1×y -4x =-1,y x -1=-23.解得⎩⎪⎨⎪⎧x =10,y =-6.即D (10,-6). 【练习反馈】1.下列说法正确的有( )①若两条直线的斜率相等,则这两条直线平行;②若l 1∥l 2,则k 1=k 2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则这两条直线垂直; ④若两条直线的斜率都不存在且两直线不重合,则这两条直线平行.A .1个B .2个C .3个D .4个解析:选A 若k 1=k 2,则这两条直线平行或重合,所以①错;当两条直线垂直于x 轴时,两条直线平行,但斜率不存在,所以②错;若两直线中有一条直线的斜率不存在,另一条直线的斜率为0时,才有这两条直线垂直,所以③错;④正确.2.直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( )A .平行B .重合C .相交但不垂直D .垂直解析:选D 设l 1,l 2的斜率分别为k 1,k 2,则k 1·k 2=-1.3.已知△ABC 中,A (0,3)、B (2,-1),E 、F 分别为AC 、BC 的中点,则直线EF 的斜率为________.解析:∵E 、F 分别为AC 、BC 的中点,∴EF ∥AB .∴k EF =k AB =-1-32-0=-2. 答案:-24.经过点(m,3)和(2,m )的直线l 与斜率为-4的直线互相垂直,则m 的值是________.解析:由题意可知k l =14,又因为k l =m -32-m ,所以m -32-m =14,解得m =145. 答案:1455.判断下列各小题中的直线l 1与l 2的位置关系.(1)l 1的斜率为-10,l 2经过点A (10,2),B (20,3);(2)l 1过点A (3,4),B (3,100),l 2过点M (-10,40),N (10,40);(3)l 1过点A (0,1),B (1,0),l 2过点M (-1,3),N (2,0);(4)l 1过点A (-3,2),B (-3,10),l 2过点M (5,-2),N (5,5).解:(1)k 1=-10,k 2=3-220-10=110. ∵k 1k 2=-1,∴l 1⊥l 2.(2)l1的倾斜角为90°,则l1⊥x轴.k2=40-4010-(-10)=0,则l2∥x轴,∴l1⊥l2.(3)k1=0-11-0=-1,k2=0-32-(-1)=-1,∴k1=k2.又k AM=3-1-1-0=-2≠k1,∴l1∥l2.(4)∵l1与l2都与x轴垂直,∴l1∥l2.。

必修2直线与圆典型题型汇总

必修2直线与圆典型题型汇总

直线与圆方程复习专题注:标*的为易错题,标**为有一定难度的题。

一:斜率与过定点问题1.已知点(1,3)A 、(2,6)B 、(5,)C m 在同一条直线上,那么实数m 的值为_______直线的斜率=_____. 2.已知0m ≠,则过点(1,1)-)的直线320ax my a ++=的斜率为________**3.已知线段PQ 两端点的坐标分别为(1,1)-、(2,2),若直线:0l mx y m +-=与线段PQ 有交点,求m 的范围.二:截距问题:4.若三点(2,2)A ,B(,0)a ,(0,)C b (0ab ≠)共线,则11a b+=______ **5.已知0,0ab bc <<,则直线ax by c +=通过( )A. 一、二、三象限 B. 一、二、四象限 C. 一、三、四象限 D. 二、三、四象限*6.(1)过点(1,2)A 且在x 轴,y 轴上截距相等的直线方程是 .(2)过点(1,2)A 且在x 轴,y 轴截距互为相反数的直线方程是 .三:平行垂直:7、已知过点()2A m -,和()4B m ,的直线与直线210x y +-=平行,则m =______8、若直线1210l x my ++=: 与直线231l y x =-:平行,则m =___ (若垂直呢)9、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为__________10、已知直线12:(3)453,:2(5)8l m x y m l x m y ++=-++=,(1)若12l l ⊥,则________m =*(2)若12//l l ,则________m =五:交点问题:11、过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.是____________(垂直呢?)**12.若直线:1l y kx =-与直线10x y +-=的交点位于第一象限,求实数k 的取值范围. 六:距离问题13.已知点(3,)m 到直线340x +-=的距离等于1,则m =_________14.已知直线0323=-+y x 和016=++my x 互相平行,则它们之间的距离是_________15. ①平行于直线34120x y +-=,且与它的距离是7的直线的方程是________________________ ②垂直于直线350x y +-=, 且与点(1,0)P -)的距离是1053的直线的方程是___________ 16.过点(1,2)A 且与原点距离最大的直线方程是____________七:圆的方程例1、 若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是圆心坐标是__________________,半径是________________例2、 求过点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程,并判断点)4,2(P 与圆的关系.例3 圆心在直线30x y -=上,与直线0=y 相切,且被直线0x y -=所截得的弦长为的圆的方程.**练习. 方程(0x y +-=所表示的曲线是 ( )A .一个圆和一条直线B . 两个点C . 一个点D .一个圆和两条射线八:点与圆,直线与圆的位置关系:1、直线1=+y x 与圆)0(0222>=-+a ay y x 没有公共点,则a 的取值范围是*2、设点(00,y x )在圆222r y x =+的外部,则直线200r y y x x =+与圆的位置关系是( )A .相交B .相切C . 相离D .不确定*3、原点与圆22(1)()2(01)x y a a a -+-=<<的位置关系是___________ 九:直线与圆的位置关系(一)相交例1、已知圆 042:22=--+y x y x C 和点(0,2)P ,(1)求直线1:360l x y --=被圆C 截得的弦AB 的长;(2)直线2l 与圆 C 交与MN 两点,弦MN 被点P 平分,求2l 的方程(*3)过P点的直线l 截圆C 所得的弦长为4,求直线l 的方程。

高中数学_必修二_圆与方程_经典例题 整理

高中数学_必修二_圆与方程_经典例题  整理

习题精选精讲圆标准方程已知圆心),(b a C 和半径r ,即得圆的标准方程222)()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心),(b a C 和半径r ,进而可解得与圆有关的任何问题.一、求圆的方程例1 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( )(A)3)1()2(22=++-y x (B)3)1()2(22=-++y x(C)9)1()2(22=++-y x (D)9)1()2(22=-++y x二、位置关系问题例2 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+三、切线问题例3 (06重庆卷理) 过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( ) (A)x y 3-=或x y 31=(B)x y 3=或x y 31-= (C)x y 3-=或x y 31-= (D)x y 3=或x y 31=四、弦长问题例4设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a .五、夹角问题例5 从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( ) (A)21 (B)53 (C)23 (D) 0六、圆心角问题例6 过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k .七、最值问题例7 圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( )(A) 30 (B) 18 (C)26 (D)25八、综合问题例8 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( ) (A)]4,12[ππ (B)]125,12[ππ (C)]3,6[ππ (D)]2,0[π圆的方程1. 确定圆方程需要有三个互相独立的条件.圆的方程有两种形式,要注意各种形式的圆方程的适用范围.(1) 圆的标准方程:(x -a)2+(y -b)2=r 2,其中(a ,b)是圆心坐标,r 是圆的半径;(2) 圆的一般方程:x 2+y 2+Dx +Ey +F =0 (D 2+E 2-4F >0),圆心坐标为(2,2E D --),半径为r =2422F E D -+ 2. 直线与圆的位置关系的判定方法.(1) 法一:直线:Ax +By +C =0;圆:x 2+y 2+Dx +Ey +F =0.消元⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 一元二次方程⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆−−→−相离相切相交判别式000 (2) 法二:直线:Ax +By +C =0;圆:(x -a)2+(y -b)2=r 2,圆心(a ,b)到直线的距离为d =⎪⎩⎪⎨⎧⇔>⇔=⇔<→+++相离相切相交r d r d r d B A CBb Aa 22. 3. 两圆的位置关系的判定方法.设两圆圆心分别为O 1、 O 2,半径分别为r 1、 r 2, |O 1O 2|为圆心距,则两圆位置关系如下:|O 1O 2|>r 1+r 2⇔两圆外离;|O 1O 2|=r 1+r 2⇔两圆外切;|r 1-r 2|<|O 1O 2|<r 1+r 2⇔两圆相交;|O 1O 2|=|r 1-r 2|⇔两圆内切;0<|O 1O 2|<|r 1-r 2|⇔两圆内含.●点击双基1.方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0(t ∈R )表示圆方程,则t 的取值范围是A.-1<t <71B.-1<t <21C.-71<t <1 D .1<t <2 2.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是 A.|a |<1 B.a <131C.|a |<51 D .|a |<1313.已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),下列结论错误的是A.当a 2+b 2=r 2时,圆必过原点B.当a =r 时,圆与y 轴相切C.当b =r 时,圆与x 轴相切D .当b <r 时,圆与x 轴相交●典例剖析【例2】 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27,求此圆的方程.夯实基础1.方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的曲线关于x +y =0成轴对称图形,则A.D +E =0B. B.D +F =0C.E +F =0D. D +E +F =02.(2004年全国Ⅱ,8)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有A.1条B.2条C.3条 D .4条3.(2005年黄冈市调研题)圆x 2+y 2+x -6y +3=0上两点P 、Q 关于直线kx -y +4=0对称,则k =____________.4.(2004年全国卷Ⅲ,16)设P 为圆x 2+y 2=1上的动点,则点P 到直线3x -4y -10=0的 距离的最小值为____________.5.(2005年启东市调研题)设O 为坐标原点,曲线x 2+y 2+2x -6y +1=0上有两点P 、Q ,满足关于直线x +my +4=0对称,又满足·=0.(1)求m 的值;(2)求直线PQ 的方程.培养能力7.已知实数x 、y 满足方程x 2+y 2-4x +1=0.求(1)xy 的最大值和最小值;(2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.8.(文)求过两点A (1,4)、B (3,2),且圆心在直线y =0上的圆的标准方程.并判断点M 1(2,3),M 2(2,4)与圆的位置关系.“求经过两圆04622=-++x y x 和028622=-++y y x 的交点,并且圆心在直线04=--y x 上的圆的方程。

苏教版高中数学必修二知识讲解_直线与圆的位置关系_基础

苏教版高中数学必修二知识讲解_直线与圆的位置关系_基础

直线与圆的位置关系::【学习目标】1.依据直线和圆的方程,能熟练求出他们的交点坐标.2.能通过比较圆心到直线的距离和半径之间的大小关系判断直线和圆的位置关系.3.理解直线和圆的三种位置关系(相离、相切、相交)与相应的直线和圆的方程所组成的二元二次方程组的解(无解、有唯一解、有两组解)的对应关系.4.能利用直线和圆的方程研究与圆有关的问题,提高学生的思维能力.【要点梳理】要点一:直线与圆的位置关系1.直线与圆的位置关系:(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点.2.直线与圆的位置关系的判定:(1)代数法:判断直线l与圆C的方程组成的方程组是否有解.如果有解,直线l与圆C有公共点.有两组实数解时,直线l与圆C相交;有一组实数解时,直线l与圆C相切;无实数解时,直线l与圆C相离.(2)几何法:由圆C的圆心到直线l的距离d与圆的半径r的关系判断:<时,直线l与圆C相交;当d r=时,直线l与圆C相切;当d r>时,直线l与圆C相离.当d r要点诠释:(1)当直线和圆相切时,求切线方程,一般要用到圆心到直线的距离等于半径,记住常见切线方程,可提高解题速度;求切线长,一般要用到切线长、圆的半径、圆外点与圆心连线构成的直角三角形,由勾股定理解得.(2)当直线和圆相交时,有关弦长的问题,要用到弦心距、半径和半弦构成的直角三角形,也是通过勾股定理解得,有时还用到垂径定理.(3)当直线和圆相离时,常讨论圆上的点到直线的距离问题,通常画图,利用数形结合来解决. 要点二:圆的切线方程的求法 1.点M 在圆上,如图.法一:利用切线的斜率l k 与圆心和该点连线的斜率OM k 的乘积等于1-,即1O M l k k ⋅=-.法二:圆心O 到直线l 的距离等于半径r .2.点()00,x y 在圆外,则设切线方程:00()y y k x x -=-,变成一般式:000kx y y kx -+-=,因为与圆相切,利用圆心到直线的距离等于半径,解出k .要点诠释:因为此时点在圆外,所以切线一定有两条,即方程一般是两个根,若方程只有一个根,则还有一条切线的斜率不存在,务必要把这条切线补上.常见圆的切线方程:(1)过圆222x y r +=上一点()00,P x y 的切线方程是200x x y y r +=;(2)过圆()()222x a y b r -+-=上一点()00,P x y 的切线方程是()()()()200x a x a y b y b r --+--=.要点三:求直线被圆截得的弦长的方法1.应用圆中直角三角形:半径r ,圆心到直线的距离d ,弦长l 具有的关系2222l r d ⎛⎫=+ ⎪⎝⎭,这也是求弦长最常用的方法.2.利用交点坐标:若直线与圆的交点坐标易求出,求出交点坐标后,直接用两点间的距离公式计算弦长.3.利用弦长公式:设直线:l y kx b =+,与圆的两交点()()1122,,,x y x y ,将直线方程代入圆的方程,消元后利用根与系数关系得弦长:12|l x x =-.【典型例题】类型一:直线与圆的位置关系例1.已知直线y=2x+1和圆x 2+y 2=4,试判断直线和圆的位置关系.【思路点拨】解决本题的方法主要有两个,其一是利用圆心到直线的距离与半径的大小关系;其二是引入一元二次方程,利用方程根来解决. 【答案】相交 【解析】解法一:∵x 2+y 2=4, ∴圆心为(0,0),半径r=2.又∵y=2x+1,∴圆心到直线的距离为2d r ==<=.∴直线与圆相交. 解法二:∵⎩⎨⎧=++=,4,1222y x x y ∴(2x+1)2+x 2=4, 即5x 2+4x-3=0.判别式Δ=42-4×5×(-3)=76>0. ∴直线与圆相交.【总结升华】判断直线与圆的位置关系可以从代数方法和几何意义两个方面加以考虑.例2.已知直线方程mx ―y ―m ―1=0,圆的方程x 2+y 2―4x ―2y+1=0.当m 为何值时,圆与直线 (1)有两个公共点;(2)只有一个公共点; (3)没有公共点. 【答案】(1)m >0或43m <-(2)m=0或43m =-(3)403m -<< 【解析】 解法一:将直线mx ―y ―m ―1=0代入圆的方程化简整理得, (1+m 2)x 2―2(m 2+2m+2)x+m 2+4m+4=0. ∵Δ=4m(3m+4),∴当Δ>0时,即m >0或43m <-时,直线与圆相交,即直线与圆有两个公共点; 当Δ=0时,即m=0或43m =-时,直线与圆相切,即直线与圆只有一个公共点; 当Δ<时,即403m -<<时,直线与圆相离,即直线与圆没有公共点. 解法二:已知圆的方程可化为(x ―2)2+(y ―1)2=4, 即圆心为C (2,1),半径r=2.圆心C (2,1)到直线mx ―y ―m ―1=0的距离d ==.当d <2时,即m >0或43m <-时,直线与圆相交,即直线与圆有两个公共点; 当d=2时,即m=0或43m =-时,直线与圆相切,即直线与圆只有一个公共点; 当d >2时,即403m -<<时,直线与圆相离,即直线与圆没有公共点. 【总结升华】解决此类问题是搞清直线与圆的位置和直线与圆的公共点的个数间的等价关系.在处理直线与圆的位置关系时,常用几何法,即比较圆心到直线的距离和半径的大小,而不用联立方程.举一反三:【变式】求实数m 的范围,使直线30x my -+=与圆22650x y x +-+=分别满足: (1)相交;(2)相切;(3)相离.【答案】(1)m <-m >2)m =±3)m -<<【解析】圆的方程化为标准为22(3)4x y -+=,故圆心(3,0)到直线30x my -+=的距离d =,圆的半径2r =.(1)若相交,则d r <2<,所以m <-m >(2)若相切,则d r =2=,所以m =±(3)若相离,则d r >2>,所以m -<<【总结升华】一般来讲,选择此方法要比选择计算判别式的方法在运算上简单. 类型二:圆的切线问题【与圆有关的位置关系370892 典型例题1】例3.过点(7,1)P 作圆2225x y +=的切线,求切线的方程.【思路点拨】先判断点在圆上或圆外,如果点在圆上则有一条切线.如果点在圆外,则有两条切线.本例中很明显点在圆外.【答案】43250x y --=或34250x y +-= 【解析】因为22715025+=>,所以点在圆外。

高中数学必修2直线与圆常考题型:圆的一般方程

高中数学必修2直线与圆常考题型:圆的一般方程

圆的一般方程【知识梳理】圆的一般方程(1)圆的一般方程的概念:当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0叫做圆的一般方程.(2)圆的一般方程对应的圆心和半径:圆的一般方程x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)表示的圆的圆心为(-D 2,-E 2),半径长为12D 2+E 2-4F . 【常考题型】题型一、圆的一般方程的概念辨析【例1】 若方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求(1)实数m 的取值范围;(2)圆心坐标和半径.[解] (1)据题意知D 2+E 2-4F =(2m )2+(-2)2-4(m 2+5m )>0,即4m 2+4-4m 2-20m >0, 解得m <15, 故m 的取值范围为(-∞,15). (2)将方程x 2+y 2+2mx -2y +m 2+5m =0写成标准方程为(x +m )2+(y -1)2=1-5m , 故圆心坐标为(-m,1),半径r =1-5m .【类题通法】形如x 2+y 2+Dx +Ey +F =0的二元二次方程,判定其是否表示圆时可有如下两种方法: ①由圆的一般方程的定义令D 2+E 2-4F >0,成立则表示圆,否则不表示圆,②将方程配方后,根据圆的标准方程的特征求解,应用这两种方法时,要注意所给方程是不是x 2+y 2+Dx +Ey +F =0这种标准形式,若不是,则要化为这种形式再求解.【对点训练】1.下列方程各表示什么图形?若表示圆,求其圆心和半径.(1)x 2+y 2+x +1=0;(2)x 2+y 2+2ax +a 2=0(a ≠0);(3)2x 2+2y 2+2ax -2ay =0(a ≠0).解:(1)∵D =1,E =0,F =1,∴D 2+E 2-4F =1-4=-3<0,∴方程(1)不表示任何图形.(2)∵D =2a ,E =0,F =a 2,∴D 2+E 2-4F =4a 2-4a 2=0,∴方程表示点(-a,0).(3)两边同除以2,得x 2+y 2+ax -ay =0,D =a ,E =-a ,F =0,∴D 2+E 2-4F =2a 2>0,∴方程(3)表示圆,它的圆心为(-a 2,a 2), 半径r =12 D 2+E 2-4F =22|a |. 题型二、圆的一般方程的求法【例2】 已知△ABC 的三个顶点为A (1,4),B (-2,3),C (4,-5),求△ABC 的外接圆方程、外心坐标和外接圆半径.[解] 法一:设△ABC 的外接圆方程为x 2+y 2+Dx +Ey +F =0,∵A ,B ,C 在圆上,∴⎩⎪⎨⎪⎧ 1+16+D +4E +F =0,4+9-2D +3E +F =0,16+25+4D -5E +F =0,∴⎩⎪⎨⎪⎧ D =-2,E =2,F =-23,∴△ABC 的外接圆方程为x 2+y 2-2x +2y -23=0,即(x -1)2+(y +1)2=25.∴外心坐标为(1,-1),外接圆半径为5.法二:∵k AB =4-31+2=13,k AC =4+51-4=-3, ∴k AB ·k AC =-1,∴AB ⊥AC .∴△ABC 是以角A 为直角的直角三角形,∴外心是线段BC 的中点,坐标为(1,-1),r =12|BC |=5. ∴外接圆方程为(x -1)2+(y +1)2=25.应用待定系数法求圆的方程时:(1)如果由已知条件容易求得圆心坐标、半径或需利用圆心的坐标或半径列方程的问题,一般采用圆的标准方程,再用待定系数法求出a ,b ,r .(2)如果已知条件与圆心和半径都无直接关系,一般采用圆的一般方程,再用待定系数法求出常数D 、E 、F .【对点训练】2.求经过点A (-2,-4)且与直线x +3y -26=0相切于点B (8,6)的圆的方程. 解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝⎛⎭⎫-D 2,-E 2. ∵圆与x +3y -26=0相切,∴6+E 28+D 2·⎝⎛⎭⎫-13=-1,即E -3D -36=0.①∵(-2,-4),(8,6)在圆上,∴2D +4E -F -20=0,②8D +6E +F +100=0.③联立①②③,解得D =-11,E =3,F =-30,故所求圆的方程为x 2+y 2-11x +3y -30=0.题型三、代入法求轨迹方程【例3】 已知△ABC 的边AB 长为4,若BC 边上的中线为定长3,求顶点C 的轨迹方程.[解] 以直线AB 为x 轴,AB 的中垂线为y 轴建立坐标系(如图),则A (-2,0),B (2,0),设C (x ,y ),BC 中点D (x 0,y 0).∴⎩⎨⎧2+x 2=x 0,0+y 2=y 0. ①∵|AD |=3,∴(x 0+2)2+y 20=9. ②将①代入②,整理得(x +6)2+y 2=36.∵点C 不能在x 轴上,∴y ≠0.综上,点C 的轨迹是以(-6,0)为圆心,6为半径的圆,去掉(-12,0)和(0,0)两点. 轨迹方程为(x +6)2+y 2=36(y ≠0).用代入法求轨迹方程的一般步骤【对点训练】3.过点A (8,0)的直线与圆x 2+y 2=4交于点B ,则AB 中点P 的轨迹方程为________________. 解析:设点P 的坐标为(x ,y ),点B 为(x 1,y 1),由题意,结合中点坐标公式可得x 1=2x -8,y 1=2y ,故(2x -8)2+(2y )2=4,化简得(x -4)2+y 2=1,即为所求.答案:(x -4)2+y 2=1【练习反馈】1.圆x 2+y 2-4x +6y =0的圆心坐标是( )A .(2,3)B .(-2,3)C .(-2,-3)D .(2,-3)解析:选D 圆的方程化为(x -2)2+(y +3)2=13,圆心(2,-3),选D.2.已知方程x 2+y 2-2x +2k +3=0表示圆,则k 的取值范围是( )A .(-∞,-1)B .(3,+∞)C .(-∞,-1)∪(3,+∞)D .(-32,+∞) 解析:选A 方程可化为:(x -1)2+y 2=-2k -2,只有-2k -2>0,即k <-1时才能表示圆.3.方程x 2+y 2+2ax -by +c =0表示圆心为C (2,2),半径为2的圆,则a =________,b =________,c =________.解析:∵⎩⎪⎨⎪⎧ -2a 2=2,--b 2=2,12 4a 2+b 2-4c =2,∴⎩⎪⎨⎪⎧ a =-2,b =4,c =4.答案:-2,4,44.设A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线且|P A |=1,则P 点的轨迹方程是________.解析:设P (x ,y )是轨迹上任一点,圆(x -1)2+y 2=1的圆心为B (1,0),则|P A |2+1=|PB |2,∴(x -1)2+y 2=2.答案:(x -1)2+y 2=25.求过点(-1,1),且圆心与已知圆x 2+y 2-6x -8y +15=0的圆心相同的圆的方程. 解:设所求的圆的方程为:x 2+y 2+Dx +Ey +F =0,又圆x 2+y 2-6x -8y +15=0的圆心为(3,4),依题意得⎩⎪⎨⎪⎧2-D +E +F =0,-D 2=3,-E 2=4, 解此方程组,可得⎩⎪⎨⎪⎧D =-6,E =-8,F =0. ∴所求圆的方程为x 2+y 2-6x -8y =0.。

高中数学必修2直线与圆常考题型:直线的两点式方程、直线的一般式方程

高中数学必修2直线与圆常考题型:直线的两点式方程、直线的一般式方程

直线的两点式方程、直线的一般式方程【知识梳理】1.直线的两点式与截距式方程(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x ,y 的二元一次方程表示.(2)每个关于x ,y 的二元一次方程都表示一条直线. 3.直线的一般式方程的定义我们把关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.【常考题型】题型一、利用两点式求直线方程【例1】 三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程.[解] 由两点式,直线AB 所在直线方程为:y -(-1)0-(-1)=x -3-1-3,即x +4y +1=0.同理,直线BC 所在直线方程为: y -3-1-3=x -13-1,即2x +y -5=0. 直线AC 所在直线方程为: y -30-3=x -1-1-1,即3x -2y +3=0.【类题通法】求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系.【对点训练】1.(1)若直线l 经过点A (2,-1),B (2,7),则直线l 的方程为________. (2)若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________.解析:(1)由于点A 与点B 的横坐标相等,所以直线l 没有两点式方程,所求的直线方程为x =2.(2)由两点式方程得,过A ,B 两点的直线方程为y -(-1)4-(-1)=x -2-3-2,即x +y -1=0.又点P (3,m )在直线AB 上,所以3+m -1=0,得m =-2.答案:(1)x =2 (2)-2题型二、直线的截距式方程及应用【例2】 直线l 过点P (43,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点.(1)当△AOB 的周长为12时,求直线l 的方程. (2)当△AOB 的面积为6时,求直线l 的方程.[解] (1)设直线l 的方程为x a +yb=1(a >0,b >0), 由题意知,a +b +a 2+b 2=12. 又因为直线l 过点P (43,2),所以43a +2b=1,即5a 2-32a +48=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎨⎧a 2=125,b 2=92,所以直线l 的方程为3x +4y -12=0 或15x +8y -36=0.(2)设直线l 的方程为x a +yb =1(a >0,b >0),由题意知,ab =12,43a +2b =1,消去b ,得a 2-6a +8=0,解得⎩⎪⎨⎪⎧a 1=4,b 1=3,⎩⎪⎨⎪⎧a 2=2,b 2=6, 所以直线l 的方程为3x +4y -12=0或3x +y -6=0. 【类题通法】用截距式方程解决问题的优点及注意事项(1)由截距式方程可直接确定直线与x 轴和y 轴的交点的坐标,因此用截距式画直线比较方便.(2)在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式. (3)但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中要注意分类讨论.【对点训练】2.求经过点A (-2,2),并且和两坐标轴围成的三角形面积是1的直线方程. 解:设直线在x 轴、y 轴上的截距分别是a 、b , 则有S =12|a ·b |=1.∴ab =±2.设直线的方程是x a +yb=1.∵直线过点(-2,2),代入直线方程得-2a +2b =1,即b =2aa +2.∴ab =2a 2a +2=±2.当2a 2a +2=-2时,化简得a 2+a +2=0,方程无解;当2a 2a +2=2时,化简得a 2-a -2=0, 解得⎩⎪⎨⎪⎧ a =-1,b =-2,或⎩⎪⎨⎪⎧a =2,b =1.∴直线方程是x -1+y -2=1或x 2+y1=1,即2x +y +2=0或x +2y -2=0.题型三、直线方程的一般式应用【例3】 (1)已知直线l 1:2x +(m +1)y +4=0与直线l 2:mx +3y -2=0平行,求m 的值; (2)当a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?[解] (1)法一:由l 1:2x +(m +1)y +4=0. l 2:mx +3y -2=0.①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2, 需2m =m +13≠4-2. 解得m =2或m =-3.∴m 的值为2或-3. 法二:令2×3=m (m +1),解得m =-3或m =2. 当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, l 1与l 2不重合,l 1∥l 2, ∴m 的值为2或-3.(2)法一:由题意,直线l 1⊥l 2,①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0,显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5x -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3,当l 1⊥l 2时,k 1·k 2=-1,即(-a +21-a )·(-a -12a +3)=-1,所以a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 法二:由直线l 1⊥l 2,所以(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1.将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2. 【类题通法】1.直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0,(1)若l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)若l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,(m ≠C ),与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +m =0.【对点训练】3.(1)求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程; (2)求经过点A (2,1)且与直线2x +y -10=0垂直的直线l 的方程. 解:(1)法一:设直线l 的斜率为k , ∵l 与直线3x +4y +1=0平行,∴k =-34.又∵l 经过点(1,2),可得所求直线方程为y -2= -34(x -1),即3x +4y -11=0. 法二:设与直线3x +4y +1=0平行的直线l 的方程为3x +4y +m =0. ∵l 经过点(1,2),∴3×1+4×2+m =0,解得m =-11. ∴所求直线方程为3x +4y -11=0. (2)法一:设直线l 的斜率为k . ∵直线l 与直线2x +y -10=0垂直, ∴k ·(-2)=-1, ∴k =12.又∵l 经过点A (2,1),∴所求直线l 的方程为y -1=12(x -2),即x -2y =0.法二:设与直线2x +y -10=0垂直的直线方程为x -2y +m =0. ∵直线l 经过点A (2,1), ∴2-2×1+m =0, ∴m =0.∴所求直线l 的方程为x -2y =0.【练习反馈】1.直线x 3-y4=1在两坐标轴上的截距之和为( )A .1B .-1C .7D .-7解析:选B 直线在x 轴上截距为3,在y 轴上截距为-4,因此截距之和为-1. 2.直线3x -2y =4的截距式方程是( ) A.3x 4-y2=1 B.x 13-y 12=4 C.3x 4-y-2=1 D.x 43+y-2=1 解析:选D 求直线方程的截距式,必须把方程化为x a +yb =1的形式,即右边为1,左边是和的形式.3.直线l 过点(-1,2)和点(2,5),则直线l 的方程为________. 解析:由题意直线过两点,由直线的两点式方程可得:y -25-2=x -(-1)2-(-1),整理得x -y +3=0.答案:x -y +3=04.斜率为2,且经过点A (1,3)的直线的一般式方程为________. 解析:由直线点斜式方程可得y -3=2(x -1),化成一般式为2x -y +1=0. 答案:2x -y +1=05.三角形的顶点坐标为A (0,-5),B (-3,3),C (2,0),求直线AB 和直线AC 的方程. 解:∵直线AB 过点A (0,-5),B (-3,3)两点, 由两点式方程,得y +53+5=x -0-3-0.整理,得8x +3y +15=0.∴直线AB 的方程为8x +3y +15=0. 又∵直线AC 过A (0,-5),C (2,0)两点, 由截距式得x 2+y-5=1,整理得5x -2y -10=0,∴直线AC 的方程为5x -2y -10=0.。

高中数学必修2直线与圆的位置关系知识题型总结

高中数学必修2直线与圆的位置关系知识题型总结

直线与圆的位置关系一、点与圆的位置关系设),(00y x P 与圆222)()(r b y a x =-+-;若P 到圆心之距为d ;①P 在在圆C 外22020)()(r b y a x r d >-+-⇔>⇔; ②P 在在圆C 内22020)()(r b y a x r d <-+-⇔<⇔; ③P 在在圆C 上22020)()(r b y a x r d =-+-⇔=⇔;二、直线与圆的位置关系:设直线0:=++C By Ax l 和圆222)()(:r b y a x C =-+-,位置关系的判定:判定方法1:联立方程组 得到关于x(或y)的方程(1)△>0相交; (2)△=0相切; (3)△<0相离。

判定方法2:若圆心(a ,b)到直线L 的距离为d (1)d<r 相交; (2)d=r 相切;(3)d>r 相离。

利用∆判定称为代数法,对讨论直线和二次曲线的位置关系都适应。

三、两圆的位置关系:(1)代数法:解两个圆的方程所组成的二元二次方程组;若方程组有两组不同的实数解,则两圆相交;若方程组有两组相同的实数解,则两圆相切;若无实数解,两圆相离。

(2)几何法:设圆1O 的半径为1r ,圆2O 的半径为2r①两圆外离2121||r r O O +>⇔;4条公切线②两圆外切2121||r r O O +=⇔;3条公切线③两圆相交212112||||r r O O r r +<<-⇔;2条公切线④两圆内切||||1221r r O O -=⇔;1条公切线⑤两圆内含||||1221r r O O -<⇔;没有公切线四、两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:① 若1C 与2C 相切,则表示其中一条公切线方程; ② 若1C 与2C 相离,则表示连心线的中垂线方程.五、圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-) 补充:① 上述圆系不包括2C ;② 2)当1λ=-时,表示过两圆交点的直线方程(公共弦)③ 过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=六、 过一点作圆的切线的方程:(1) 过圆外一点的切线: ①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即 ⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y 求解k ,得到切线方程【一定两解】例1. 经过点P(1,—2)点作圆(x+1)2+(y —2)2=4的切线,则切线方程为 。

必修2直线和圆复习题及答案

必修2直线和圆复习题及答案

1.直线方程的几种基本形式及适用条件:(1)点斜式: ,注意斜率k 是存在的.(2)斜截式: ,其中b 是直线l 在 上的截距.(3)两点式: (x 1≠x 2且y 1≠y 2),当方程变形为(y 2-y 1)(x -x 1)-(x 2-x 1)(y -y 1)=0时,对于一切情况都成立.(4)截距式: ,其中a ·b ≠0,a 为l 在x 轴上的截距,b 是l 在y 轴上的截距.(5)一般式: ,其中A 、B 不同时为0.1.判定两条直线的位置关系(1)两条直线的平行①假设l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则l 1∥l 2⇔ 且 ,l 1与l 2重合⇔ .②当l 1,l 2都垂直于x 轴且不重合时,则有 .③假设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1∥l 2⇔A 1B 2=A 2B 1且B 1C 2≠B 2C 1,l 1与l 2重合⇔A 1=λA 2,B 1=λB 2,C 1=(2)两条直线的垂直①假设l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则l 1⊥l 2⇔ . ②假设两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线 .③假设l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2⇔ .(3)直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2相交的条件是 . 直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0相交的条件是 .自测题1.过点M (-1,m ),N (m +1,4)的直线的斜斜角为45° ,则m 的值为2. 以下四个命题中真命题是( )A .经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过任意两个不同点P 1(x 1,y 1),P 2(x 2,y 2)的直线可以用方程(y -y 1)(x 2-x 1)-(x -x 1)(y 2-y 1)=0表示C .不过原点的直线都可以用x a +y b =1表示D .经过定点A (0,b )的直线都可以用方程y =kx +b 表示3.假设三点A (2,3),B (3,-2),C (12,m )共线,则m 的值是________.4.已知直线x +a 2y +6=0与直线(a -2)x +3ay +2a =0平行,则a 的值为________.5.已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于________.例题例1.已知两点A (-1,2),B (m,3),求:(1)求直线AB 的斜率; (2)求直线AB 的方程;例2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是______例3.已知直线:l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)l 1⊥l 2时,求a 的值例4.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0.试确定m 、n 的值,使:(1)l 1与l 2相交于点P (m ,-1); (2)l 1∥l 2; (3)l 1⊥l 2,且l 1在y 轴上的截距为-1.练习题1.以下命题中,正确的选项是( )A .假设直线的斜率为tan α,则直线的倾斜角是αB .假设直线的倾斜角为α,则直线的斜率为tan αC .假设直线的倾斜角越大,则直线的斜率就越大D .直线的倾斜角α∈[0,π2)∪(π2,π)时,直线的斜率分别在这两个区间上单调递增2..假设直线l 1,l 2关于x 轴对称,l 1的斜率是-7,则l 2的斜率是( ) A.7B .-77 C.77 D .-7 3..两直线x m -y n =1与x n -y m =1的图像可能是图中的哪一个( )4..假设点A (a,0),B (0,b ),C (1,-1)(a >0,b <0)三点共线,则a -b 的最小值等于______5..过点M (1,-2)的直线与x 轴、y 轴分别交于P 、Q 两点,假设M 恰为线段PQ 的中点,则直线PQ 的方程为______6..已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,求直线l 的方程.7..已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得到的直线l ′的方程.8..在△ABC 中,已知A (1,1),AC 边上的高线所在直线方程为x -2y =0,AB 边上的高线所在直线方程为3x +2y -3=0.求BC 边所在直线方程.9..设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)假设l 在两坐标轴上截距相等,求l 的方程;(2)假设l 不经过第二象限,求实数a 的取值范围.高中数学必修二直线和圆练习一、选择题1.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为〔 〕A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x2.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为〔 〕A .0B .8-C .2D .103.已知0,0ab bc <<,则直线ax by c +=通过〔 〕A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 4.直线l 与两直线1y =和70x y --=分别交于,A B 两点,假设线段AB 的中点为 (1,1)M -,则直线l 的斜率为〔 〕A .23B .32C .32-D . 23-. 5. 圆C 1:x 2+y 2+4x-4y+7=0和圆C 2:x 2+y 2-4x-10y+13=0的公切线有( )条条条 D.以上均错6. 已知空间两点A(1,3,5)、B(-3,1,3),则线段AB 的中点坐标为( )A.(-1,2,4)B.(2,1,1)C.(1,0,4)D.(3,3,-1)7.假设直线(1+a)x+y+1=0与圆x 2+y 2-2x=0相切,则a 的值为( )、、8.已知圆C :(x-a)2+(y-2)2=4(a>0)及直线l :x-y+3=0,当直线l 被圆C 截得的弦长为32时,则a 等于( ) A.2 B.22- C.12- D.12+二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.经过点P(1,2)与圆x 2+y 2=1相切的直线方程为______________.3. 与两平行直线x+3y-5=0和x+3y-3=0相切,圆心在直线2x+y+3=0上的圆的方程是________.4. 已知圆x 2+y 2-4x+6y-12=0的内部有一点A(4,-2),则以A 为中点的弦所在的直线方程为______________________.三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。

高中数学必修2直线与圆常考题型:点到直线的距离、两条平行线间的距离(教师版)

高中数学必修2直线与圆常考题型:点到直线的距离、两条平行线间的距离(教师版)

点到直线的距离、两条平行线间的距离【知识梳理】点到直线的距离与两条平行线间的距离题型一、点到直线的距离【例1】 求点P (3,-2)到下列直线的距离: (1)y =34x +14;(2)y =6;(3)x =4.【类题通法】应用点到直线的距离公式应注意的三个问题(1)直线方程应为一般式,若给出其他形式应化为一般式. (2)点P 在直线l 上时,点到直线的距离为0,公式仍然适用.(3)直线方程Ax +By +C =0中,A =0或B =0公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.【对点训练】1.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A.2 B .2- 2 C.2-1D.2+12.点P(2,4)到直线l:3x+4y-7=0的距离是________.题型二、两平行线间的距离【例2】求与直线l:5x-12y+6=0平行且到l的距离为2的直线方程.【类题通法】求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l1:y=kx+b1,l2:y=kx+b2,且b1≠b2时,d=|b1-b2|k2+1;当直线l1:Ax+By+C1=0,l2:Ax+By+C2=0且C1≠C2时,d=|C1-C2|A2+B2.但必须注意两直线方程中x,y的系数对应相等.【对点训练】3.两直线3x+y-3=0和6x+my-1=0平行,则它们之间的距离为________.题型三、距离的综合应用【例3】求经过点P(1,2),且使A(2,3),B(0,-5)到它的距离相等的直线l的方程.【类题通法】解这类题目常用的方法是待定系数法,即根据题意设出方程,然后由题意列方程求参数.也可以综合应用直线的有关知识,充分发挥几何图形的直观性,判断直线l的特征,然后由已知条件写出l的方程.【对点训练】4.求经过两直线l1:x-3y-4=0与l2:4x+3y-6=0的交点,且和点A(-3,1)的距离为5的直线l的方程.【练习反馈】1.原点到直线x+2y-5=0的距离为()A.1 B. 3C.2 D. 52.已知直线l1:x+y+1=0,l2:x+y-1=0,则l1,l2之间的距离为()A.1 B. 2C. 3 D.23.直线4x-3y+5=0与直线8x-6y+5=0的距离为________.4.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是________.5.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【例1】 求点P (3,-2)到下列直线的距离: (1)y =34x +14;(2)y =6;(3)x =4.[解] (1)直线y =34x +14化为一般式为3x -4y +1=0,由点到直线的距离公式可得d =|3×3-4×(-2)+1|32+(-4)2=185. (2)因为直线y =6与y 轴垂直,所以点P 到它的距离d =|-2-6|=8. (3)因为直线x =4与x 轴垂直,所以点P 到它的距离d =|3-4|=1. 【类题通法】应用点到直线的距离公式应注意的三个问题(1)直线方程应为一般式,若给出其他形式应化为一般式. (2)点P 在直线l 上时,点到直线的距离为0,公式仍然适用.(3)直线方程Ax +By +C =0中,A =0或B =0公式也成立,但由于直线是特殊直线(与坐标轴垂直),故也可用数形结合求解.【对点训练】1.已知点A (a,2)(a >0)到直线l :x -y +3=0的距离为1,则a =( ) A.2 B .2- 2 C.2-1D.2+1解析:选C 由点到直线的距离公式知 d =|a -2+3|2=|a +1|2=1,得a =-1±2.又∵a >0,∴a =2-1.2.点P (2,4)到直线l :3x +4y -7=0的距离是________. 解析:点P 到直线l 的距离d =|3×2+4×4-7|32+42=155=3.答案:3【例2】 求与直线l :5x -12y +6=0平行且到l 的距离为2的直线方程. [解] 法一:设所求直线的方程为5x -12y +C =0. 在直线5x -12y +6=0上取一点P 0(0,12),则点P 0到直线5x -12y +C =0的距离为|-12×12+C |52+(-12)2=|C -6|13,由题意,得|C -6|13=2,所以C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 法二:设所求直线的方程为5x -12y +C =0, 由两平行直线间的距离公式得2=|C -6|52+(-12)2,解得C =32,或C =-20.故所求直线的方程为5x -12y +32=0,或5x -12y -20=0. 【类题通法】求两平行线间的距离,一般是直接利用两平行线间的距离公式,当直线l 1:y =kx +b 1,l 2:y =kx +b 2,且b 1≠b 2时,d =|b 1-b 2|k 2+1;当直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0且C 1≠C 2时,d =|C 1-C 2|A 2+B2.但必须注意两直线方程中x ,y 的系数对应相等.【对点训练】3.两直线3x +y -3=0和6x +my -1=0平行,则它们之间的距离为________. 解析:因为两直线平行,所以m =2.法一:在直线3x +y -3=0上取点(0,3),代入点到直线的距离公式,得d =|6×0+2×3-1|62+22=104. 法二:将6x +2y -1=0化为3x +y -12=0,由两条平行线间的距离公式得d =⎪⎪⎪⎪-3+1232+12=104. 答案:104题型三、距离的综合应用【例3】 求经过点P (1,2),且使A (2,3),B (0,-5)到它的距离相等的直线l 的方程. [解] 法一:当直线斜率不存在时,即x =1,显然符合题意.当直线斜率存在时,设所求直线的斜率为k ,则直线方程为y -2=k (x -1).由条件得|2k -3-k +2|k 2+1=|5-k +2|k 2+1,解得k =4,故所求直线方程为x =1或4x -y -2=0.法二:由平面几何知识知l ∥AB 或l 过线段AB 的中点. ∵直线AB 的斜率k AB =4,若l ∥AB ,则l 的方程为4x -y -2=0.若l 过AB 的中点(1,-1),则直线方程为x =1, 故所求直线方程为x =1或4x -y -2=0. 【类题通法】解这类题目常用的方法是待定系数法,即根据题意设出方程,然后由题意列方程求参数.也可以综合应用直线的有关知识,充分发挥几何图形的直观性,判断直线l 的特征,然后由已知条件写出l 的方程.【对点训练】4.求经过两直线l 1:x -3y -4=0与l 2:4x +3y -6=0的交点,且和点A (-3,1)的距离为5的直线l 的方程.解:由⎩⎪⎨⎪⎧x -3y -4=0,4x +3y -6=0,解得⎩⎪⎨⎪⎧x =2,y =-23,即直线l 过点B ⎝⎛⎭⎫2,-23. ①当l 与x 轴垂直时,方程为x =2,点A (-3,1)到l 的距离d =|-3-2|=5,满足题意. ②当l 与x 轴不垂直时,设斜率为k , 则l 的方程为y +23=k (x -2),即kx -y -2k -23=0,由点A 到l 的距离为5,得⎪⎪⎪⎪-3k -1-2k -23k 2+(-1)2=5,解得k =43,所以l 的方程为43x -y -83-23=0,即4x -3y -10=0.综上,所求直线方程为x =2或4x -3y -10=0.【练习反馈】1.原点到直线x +2y -5=0的距离为( ) A .1 B. 3 C .2D. 5解析:选D d =|-5|5= 5.2.已知直线l 1:x +y +1=0,l 2:x +y -1=0,则l 1,l 2之间的距离为( ) A .1 B. 2 C. 3D .2 解析:选B 在l 1上取一点(1,-2),则点到直线l 2的距离为|1-2-1|12+12= 2.3.直线4x -3y +5=0与直线8x -6y +5=0的距离为________.解析:直线8x -6y +5=0化简为4x -3y +52=0,则由两平行线间的距离公式得⎪⎪⎪⎪5-5242+32=12. 答案:124.若点(2,k )到直线5x -12y +6=0的距离是4,则k 的值是________. 解析:∵|5×2-12k +6|52+122=4,∴|16-12k |=52,∴k =-3,或k =173.答案:-3或1735.已知△ABC 三个顶点坐标A (-1,3),B (-3,0),C (1,2),求△ABC 的面积S . 解:由直线方程的两点式得直线BC 的方程为 y 2-0=x +31+3, 即x -2y +3=0.由两点间距离公式得 |BC |=(-3-1)2+(0-2)2=25,点A 到BC 的距离为d ,即为BC 边上的高, d =|-1-2×3+3|12+(-2)2=455,所以S =12|BC |·d =12×25×455=4,即△ABC 的面积为4.。

高三高考数学总复习《直线与圆》题型归纳与汇总

高三高考数学总复习《直线与圆》题型归纳与汇总

高考数学总复习题型分类汇《直线与圆》篇经典试题大汇总目录【题型归纳】题型一倾斜角与斜率 (3)题型二直线方程 (3)题型三直线位置关系的判断 (4)题型四对称与直线恒过定点问题 (4)题型五圆的方程 (5)题型六直线、圆的综合问题 (6)【巩固训练】题型一倾斜角与斜率 (7)题型二直线方程 (8)题型三直线位置关系的判断 (9)题型四对称与直线恒过定点问题 (10)题型五圆的方程 (11)题型六直线、圆的综合问题 (12)高考数学《直线与圆》题型归纳与训练【题型归纳】题型一 倾斜角与斜率例1 直线l 310y +-=,则直线l 的倾斜角为( )A. 0150B. 0120C. 060D. 030【答案】 A【解析】由直线l 的方程为310y +-=,可得直线的斜率为33-=k ,设直线的倾斜角为[)πα,0∈,则33tan -=α,∴︒=150α. 故选:A .【易错点】基础求解问题注意不要算错【思维点拨】直线方程的基础问题(倾斜角,斜率与方程,注意倾斜角为α为2π,即斜率k 不存在的情况)应对相关知识点充分理解,熟悉熟练例2 已知三点()0,a A 、()7,3B 、()a C 9,2--在一条直线上,求实数a 的值.【答案】2=a 或92=a 【解析】597,35a k a k CB AB +=-= ∵A 、B 、C 三点在一条直线上,∴BC AB k k =,即59735a a +=-,解得2=a 或92=a .题型二 直线方程例1 经过点()1,1M 且在两坐标轴上截距相等的直线是( ).A. 2x y +=B. 1x y +=C. 1x =或1y =D. 2x y +=或x y =【答案】D【解析】若直线过原点,则直线为y x =符合题意,若直线不过原点设直线为1x y m m+=, 代入点()1,1解得2m =,直线方程整理得20x y +-=,故选D .【易错点】截距问题用截距式比较简单,但截距式1=+n y m x 中要求m ,n 均非零。

高中数学必修二直线与圆的综合问题精选精编版

高中数学必修二直线与圆的综合问题精选精编版

直线与圆一.解答题(共10小题)1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:•=6||(Ⅰ)求点P的轨迹方程;(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.直线与圆参考答案与试题解析一.解答题(共10小题)1.已知直线x﹣y+3=0与圆心为(3,4)的圆C相交,截得的弦长为2.(1)求圆C的方程;(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为常数k(k>0).若动点M的轨迹是一条直线,试确定相应的k值,并求出该直线的方程.【分析】(1)求出圆心C到直线l的距离,利用截得的弦长为2求得半径的值,可得圆C的方程;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)•x2+(k2﹣1)•y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣9=0,若动点M的轨迹方程是直线,则k2﹣1=0,即可得出结论.【解答】解:(1)圆心C到直线l的距离为=,∵截得的弦长为2,∴半径为2,∴圆C:(x﹣3)2+(y﹣4)2=4;(2)设动点M(x,y),则由题意可得=k,即=k,化简可得(k2﹣1)•x2+(k2﹣1)•y2+(6﹣4k2)x+(8﹣6k2)y+13k2﹣21=0,若动点M的轨迹方程是直线,则k2﹣1=0,∴k=1,直线的方程为x+y﹣4=0.【点评】本小题主要考查直线与圆的位置关系,弦长公式的应用,圆的一般式方程,属于中档题.2.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE 的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.【分析】(1)根据直线和圆相交得到的弦长公式求出圆的半径即可求圆C的方程;(2)根据直线和圆相交的位置关系,结合△CDE的面积公式即可得到结论.【解答】解:(1)设直线l与圆C交于A,B两点.∵直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦长等于该圆的半径,∴△CAB为正三角形,∴三角形的高等于边长的,∴圆心C到直线l的距离等于边长的.∵直线方程为x﹣y+2=0,圆心的坐标为(3,2),∴圆心到直线的距离d==,∴r=,∴圆C的方程为:(x﹣3)2+(y﹣2)2=6.(2)设圆心C到直线m的距离为h,H为DE的中点,连结CD,CH,CE.在△CDE中,∵DE=,∴=∴,当且仅当h2=6﹣h2,即h2=3,解得h=时,△CDE的面积最大.∵CH=,∴|n+1|=,∴n=,∴存在n的值,使得△CDE的面积最大值为3,此时直线m的方程为y=x.【点评】本题主要考查直线和圆的位置关系的应用,根据弦长公式是解决本题的关键.3.已知M(4,0),N(1,0),曲线C上的任意一点P满足:•=6||(Ⅰ)求点P的轨迹方程;(Ⅱ)过点N(1,0)的直线与曲线C交于A,B两点,交y轴于H点,设=λ1,=λ2,试问λ1+λ2是否为定值?如果是定值,请求出这个定值;如果不是定值,请说明理由.【分析】(Ⅰ)求出向量的坐标,利用条件化简,即可求点P的轨迹方程;(Ⅱ)分类讨论,利用=λ1,=λ2,结合韦达定理,即可得出结论.【解答】解:(Ⅰ)设P(x,y),则=(﹣3,0),=(x﹣4,y),=(1﹣x,﹣y).∵•=6||,∴﹣3×(x﹣4)+0×y=6,化简得=1为所求点P的轨迹方程.4分(Ⅱ)设A(x1,y1),B(x2,y2).①当直线l与x轴不重合时,设直线l的方程为x=my+1(m≠0),则H(0,﹣).从而=(x1,y1+),=(1﹣x1,﹣y1),由=λ1得(x1,y1+)=λ1(1﹣x1,﹣y1),∴﹣λ1=1+同理由得﹣λ2=1+,∴﹣(λ1+λ2)=2+由直线与椭圆方程联立,可得(4+3m2)y2+6my﹣9=0,∴y1+y2=﹣,y1y2=﹣代入得∴(λ1+λ2)=2+=,∴λ1+λ2=﹣②当直线l与x轴重合时,A(﹣2,0),B(2,0),H(0,0),λ1=﹣.λ2=﹣2,∴λ1+λ2=﹣11分综上,λ1+λ2为定值﹣.12分.【点评】本题考查轨迹方程,考查向量知识的运用,考查直线与椭圆位置关系的运用,考查分类讨论的数学思想,属于中档题.4.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.【分析】(I)由已知条件推导出|PF1|+|PF2|=8>|F1F2|=6,从而得到圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C的方程.(II)由MN∥OQ,知△QMN的面积=△OMN的面积,由此能求出△QMN的面积的最大值.【解答】解:(Ⅰ)设圆P的半径为R,圆心P的坐标为(x,y),由于动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,所以动圆P与圆F1只能内切.…(1分)所以|PF1|+|PF2|=7﹣R+R﹣1=6>|F1F2|=4.…(3分)所以圆心圆心P的轨迹为以F1,F2为焦点的椭圆,其中2a=6,2c=4,∴a=3,c=2,b2=a2﹣c2=5.所以曲线C的方程为=1.…(4分)(Ⅱ)设M(x1,y1),N(x2,y2),Q(x3,y3),直线MN的方程为x=my+2,由可得:(5m2+9)y2+20my﹣25=0,则y1+y2=﹣,y1y2=﹣.…(5分)所以|MN|==…(7分)因为MN∥OQ,∴△QMN的面积=△OMN的面积,∵O到直线MN:x=my+2的距离d=.…(9分)所以△QMN的面积.…(10分)令=t,则m2=t2﹣1(t≥0),S==.设,则.因为t≥1,所以.所以,在[1,+∞)上单调递增.所以当t=1时,f(t)取得最小值,其值为9.…(11分)所以△QMN的面积的最大值为.…(12分)【点评】本题考查椭圆的标准方程、直线、圆、与椭圆等椭圆知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想等.5.已知动圆P过定点且与圆N:相切,记动圆圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.【分析】(Ⅰ)由题意可知丨PM丨+丨PN丨=4>丨MN丨=2,则P的轨迹C是以M,N为焦点,长轴长为4的椭圆,则a=4,c=,b2=a2﹣c2=1,即可求得椭圆方程;(Ⅱ)将直线方程代入椭圆方程,考查韦达定理,直线的斜率公式,当且仅当,解得t=±2,代入即可求得,定点的坐标.【解答】解:(Ⅰ)设动圆P的半径为r,由N:及,知点M在圆N 内,则有,从而丨PM丨+丨PN丨=4>丨MN丨=2,∴P的轨迹C是以M,N为焦点,长轴长为4的椭圆,设曲线C的方程为:(a>b>0),则2a=4,a=4,c=,b2=a2﹣c2=1故曲线C的轨迹方程为;(Ⅱ)依题意可设直线AB的方程为x=my+3,A(x1,y1),B(x2,y2).,由,整理得:(4+m2)y2+6my+5=0,则△=36m2﹣4×5×(4+m2)>0,即m2>4,解得:m>2或m<﹣2,由y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+6=,x1x2=(my1+3)(my2+3)=m2y1y2+m(y1+y2)+9=,假设存在定点Q(t,0),使得直线AQ,BQ的斜率之积为非零常数,则(x1﹣t)(x2﹣t)=x1x2﹣t(x1+x2)+t2=﹣t×+t2=,∴k AQ•k BQ=•==,要使k AQ•k BQ为非零常数,当且仅当,解得t=±2,当t=2时,常数为=,当t=﹣2时,常数为=,∴存在两个定点Q1(2,0)和Q2(﹣2,0),使直线AQ,BQ的斜率之积为常数,当定点为Q1(2,0)时,常数为;当定点为Q2(﹣2,0)时,常数为.【点评】本题考查椭圆标准方程及简单几何性质,椭圆的定义,考查直线与椭圆的位置关系,韦达定理,直线的斜率公式,考查计算能力,属于中档题.6.如图所示,在△ABC中,AB的中点为O,且OA=1,点D在AB的延长线上,且.固定边AB,在平面内移动顶点C,使得圆M与边BC,边AC的延长线相切,并始终与AB的延长线相切于点D,记顶点C的轨迹为曲线Γ.以AB所在直线为x轴,O为坐标原点如图所示建立平面直角坐标系.(Ⅰ)求曲线Γ的方程;(Ⅱ)设动直线l交曲线Γ于E、F两点,且以EF为直径的圆经过点O,求△OEF面积的取值范围.【分析】(Ⅰ)确定点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点,即可求曲线Γ的方程;(Ⅱ)可设直线,进而表示面积,即可求△OEF面积的取值范围.【解答】解:(Ⅰ)依题意得AB=2,BD=1,设动圆M与边AC的延长线相切于T1,与边BC相切于T2,则AD=AT1,BD=BT2,CT1=CT2所以AD+BD=AT1+BT2=AC+CT1+BT2=AC+CT1+CT2=AC+BC=AB+2BD=4>AB=2…(2分)所以点C轨迹Γ是以A,B为焦点,长轴长为4的椭圆,且挖去长轴的两个顶点.则曲线Γ的方程为.…(4分)(Ⅱ)由于曲线Γ要挖去长轴两个顶点,所以直线OE,OF斜率存在且不为0,所以可设直线…(5分)由得,,同理可得:,;所以,又OE⊥OF,所以…(8分)令t=k2+1,则t>1且k2=t﹣1,所以=…(10分)又,所以,所以,所以,所以,所以△OEF面积的取值范围为.…(12分)【点评】本题考查轨迹方程,考查直线与椭圆位置关系的运用,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.7.已知△ABC的顶点A(1,0),点B在x轴上移动,|AB|=|AC|,且BC的中点在y轴上.(Ⅰ)求C点的轨迹Γ的方程;(Ⅱ)已知过P(0,﹣2)的直线l交轨迹Γ于不同两点M,N,求证:Q(1,2)与M,N两点连线QM,QN的斜率之积为定值.【分析】(Ⅰ)利用直接法,求C点的轨迹Γ的方程;(Ⅱ)设直线l的方程为y=kx﹣2,与抛物线方程联立,求出斜率,即可证明结论.【解答】解:(Ⅰ)设C(x,y)(y≠0),因为B在x轴上且BC中点在y轴上,所以B(﹣x,0),由|AB|=|AC|,得(x+1)2=(x﹣1)2+y2,化简得y2=4x,所以C点的轨迹Γ的方程为y2=4x(y≠0).(Ⅱ)直线l的斜率显然存在且不为0,设直线l的方程为y=kx﹣2,M(x1,y1),N(x2,y2),由得ky2﹣4y﹣8=0,所以,,,同理,,所以Q(1,2)与M,N两点连线的斜率之积为定值4.【点评】本题考查轨迹方程,考查直线与抛物线位置关系的运用,考查学生的计算能力,属于中档题.8.已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.(1)求曲线E的方程;(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.【分析】(1)利用圆与圆的位置关系,得出曲线E是M,N为焦点,长轴长为的椭圆,即可求曲线E 的方程;(2)联立方程组得(1+2t2)y2+4mty+2m2﹣2=0,利用韦达定理,结合k1k2=4,得出直线BC过定点(3,0),表示出面积,即可求△ABC面积的最大值.【解答】解:(1)圆M:x2+y2+2y﹣7=0的圆心为M(0,﹣1),半径为点N(0,1)在圆M内,因为动圆P经过点N且与圆M相切,所以动圆P与圆M内切.设动圆P半径为r,则﹣r=|PM|.因为动圆P经过点N,所以r=|PN|,>|MN|,所以曲线E是M,N为焦点,长轴长为的椭圆.由,得b2=2﹣1=1,所以曲线E的方程为…(4分)(Ⅱ)直线BC斜率为0时,不合题意设B(x1,y1),C(x2,y2),直线BC:x=ty+m,联立方程组得(1+2t2)y2+4mty+2m2﹣2=0,又k1k2=4,知y1y2=4(x1﹣1)(x2﹣1)=4(ty1+m﹣1)(ty2+m﹣1)=.代入得又m≠1,化简得(m+1)(1﹣4t2)=2(﹣4mt2)+2(m﹣1)(1+2t2),解得m=3,故直线BC过定点(3,0)…(8分)由△>0,解得t2>4,=(当且仅当时取等号).综上,△ABC面积的最大值为…(12分)【点评】本题考查圆与圆的位置关系,考查椭圆的定义与方程,考查直线与椭圆位置关系的运用,考查韦达定理,属于中档题.9.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.(1)求k的取值范围;(2)请问是否存在实数k使得(其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.【分析】(1)设出直线方程,利用直线与圆的位置关系,列出不等式求解即可.(2)设出M,N的坐标,利用直线与圆的方程联立,通过韦达定理,结合向量的数量积,求出直线的斜率,然后判断直线与圆的位置关系求解|MN|即可.【解答】解:(1)由题设,可知直线l的方程为y=kx+1,因为直线l与圆C交于两点,由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由<1,解得:<k<所以k的取值范围为得(,)(2)设M(x1,y1),N(x2,y2).将y=kx+1代入方程:(x﹣2)2+(y﹣3)2=1,整理得(1+k2)x2﹣4(1+k)x+7=0.所以x1+x2=,x1x2=,•=x1x2+y1y2=(1+k2)(x1x2)+k(x1+x2)+1==12,解得k=1,所以直线l的方程为y=x+1.故圆心C在直线l上,所以|MN|=2.【点评】本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力,是中档题.10.已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.(1)求线段OQ的长;(2)设不经过点P和Q的动直线l2:x=my+b交C交点A和B,交l1于点E,若直线PA,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.【分析】(1)先求出p的值,然后求出在第一象限的函数,结合函数的导数的几何意义求出N的坐标即可求线段OQ的长;(2)联立直线和抛物线方程进行消元,转化为关于y的一元二次方程,根据根与系数之间的关系结合直线斜率的关系建立方程进行求解即可.【解答】解:(Ⅰ)由抛物线y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为,得2+=,∴n=2,抛物线C的方程为y2=2x,P(2,2).…(2分)C在第一象限的图象对应的函数解析式为y=,则y′=,故C在点P处的切线斜率为,切线的方程为y﹣2=(x﹣2),令y=0得x=﹣2,所以点Q的坐标为(﹣2,0).故线段OQ的长为2.…(5分)(Ⅱ)l2恒过定点(2,0),理由如下:由题意可知l1的方程为x=﹣2,因为l2与l1相交,故m≠0.由l2:x=my+b,令x=﹣2,得y=﹣,故E(﹣2,﹣)设A(x1,y1),B(x2,y2)由消去x得:y2﹣2my﹣2b=0则y1+y2=2m,y1y2=﹣2b …(7分)直线PA的斜率为,同理直线PB的斜率为,直线PE的斜率为.因为直线PA,PE,PB的斜率依次成等差数列,所以+=2×…(10分)整理得:=,因为l2不经过点Q,所以b≠﹣2,所以2m﹣b+2=2m,即b=2.故l2的方程为x=my+2,即l2恒过定点(2,0).…(12分)【点评】本题主要考查直线和抛物线的位置关系,利用直线和抛物线方程,转化为一元二次方程,结合韦达定理,利用设而不求的思想是解决本题的关键.。

直线与圆常考6种题型总结(解析板)--2024高考数学常考题型精华版

直线与圆常考6种题型总结(解析板)--2024高考数学常考题型精华版

直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.设MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m -≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P作圆224x y+=的两条切线,切点分别为A、B,则直线AB的方程为_______.题型五:圆中最值问题【例1】已知l:4y x=+,分别交x,y轴于A,B两点,P在圆C:224x y+=上运动,则PAB△面积的最大值为()A.8-B.16-C.8+D.16+【答案】C【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离d =O 的半径2r =,()4,0A -,()0,4B ,则AB =PAB △面积的最大值为()1282⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为的交点以及点【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大PM 3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。

必修二直线方程与圆题型归纳

必修二直线方程与圆题型归纳

必修二直线方程与圆题型归纳(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第1讲 直线与方程 考点一 直线的倾斜角和斜率【例1】 (1)直线x sin α+y +2=0的倾斜角的取值范围是( ).A .[0,180°) B. [0,45°]U[135°,180°] C. [0,45°] D. [0,45°]∪(90°,180°)(2)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ).B .-13C .-32【训练1】 经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,求直线l 的倾斜角α的范围.考点二 求直线的方程【例2】 求适合下列条件的直线方程:(1)经过点P (3,2),且在两坐标轴上的截距相等;(2)过点A (-1,-3),斜率是直线y =3x 的斜率的-14.(3)过点A (1,-1)与已知直线l 1:2x +y -6=0相交于B 点,且|AB |=5.【训练2】 △ABC 的三个顶点为A (-3,0),B (2,1),C (-2,3),求:(1)BC 所在直线的方程;(2)BC 边上中线AD 所在直线的方程;(3)BC 边的垂直平分线DE 的方程.考点三 直线方程的综合应用【例3】 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如右图所示,求△ABO 的面积的最小值及此时直线l 的方程.【训练3】 在例3的条件下,求直线l 在两轴上的截距之和最小时直线l 的方程.【典例】 在平面直角坐标系中,已知矩形ABCD ,AB =2,BC =1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合.将矩形折叠,使A 点落在线段DC 上.若折痕所在直线的斜率为k ,试写出折痕所在直线的方程.【自主体验】1.若直线过点P ⎝⎛⎭⎫-3,-32且被圆x 2+y 2=25截得的弦长是8,则该直线的方程为( ). A .3x +4y +15=0 B .x =-3或y =-32 C .x =-3 D .x =-3或3x +4y +15=0 2.已知两点A (-1,2),B (m,3),则直线AB 的方程为________.3.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是 .4.已知直线x +2y =2分别与x 轴、y 轴相交于A ,B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值为________.5.(2014·临沂月考)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ).(1)若l 在两坐标轴上的截距相等,求l 的方程;(2)若l 不经过第二象限,求实数a 的取值范围.6.已知直线l 过点M (2,1),且分别与x 轴、y 轴的正半轴交于A ,B 两点,O 为原点,是否存在使△ABO 面积最小的直线l 若存在,求出直线l 的方程;若不存在,请说明理由.第2讲 两条直线的位置关系【例1】 已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)l 1⊥l 2时,求a 的值.【训练1】 (2014·长沙模拟)已知过点A (-2,m )和点B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( ).A .-10B .-2C .0D .8【例2】 求经过直线l 1:3x +2y -1=0和l 2:5x +2y +1=0的交点,且垂直于直线l 3:3x -5y +6=0的直线l 的方程.【训练2】 直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段的中点为P (-1,2),求直线l 的方程.【例3】 已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12; ③点P 到l 1的距离与点P 到l 3的距离之比是2∶ 5.若能,求点P 的坐标;若不能,说明理由.【训练3】 (1)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ).A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0(2)已知两条平行直线,l 1:mx +8y +n =0与l 2:2x +my -1=0间的距离为5,则直线l 1的方程为________.思想方法——对称变换思想的应用【典例】 已知直线l :2x -3y +1=0,点A (-1,-2).求:(1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程;(3)直线l 关于点A (-1,-2)对称的直线l ′的方程.【自主体验】1、(2013·湖南卷)在等腰直角三角形ABC 中,AB =AC =4,点P 是边AB 上异于A ,B 的一点.光线从点P 出发,经BC ,CA 反射后又回到点P (如图).若光线QR 经过△ABC 的重心,则AP 等于( ).A .2B .12.(2014·金华调研)当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限3.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2经过定点( ).A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)4.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是:①15°;②30°;③45°;④60°;⑤75°.其中正确答案的序号是________.5.求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)的距离为2的直线方程.第3讲 圆的方程【例1】 根据下列条件,求圆的方程.(1)求过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43的圆的方程.(2)已知圆的半径为10,圆心在直线y =2x 上,圆被直线x -y =0截得的弦长为4 2.【训练1】 (1)(2014·济南模拟)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( ).A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为________.【例2】 已知实数x ,y 满足方程x 2+y 2-4x +1=0.(1)求y x的最大值和最小值; (2)求y -x 的最大值和最小值;(3)求x 2+y 2的最大值和最小值.规律方法 与圆有关的最值问题,常见的有以下几种类型:(1)形如μ=y -b x -a形式的最值问题,可转化为动直线斜率的最值问题; (2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题;(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.【训练2】(2014·金华十校联考)已知P是直线l:3x-4y+11=0上的动点,P A,PB是圆x2+y2-2x-2y+1=0的两条切线,C是圆心,那么四边形P ACB面积的最小值是 ().B.2 2 D.23【例3】在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为22,在y轴上截得线段长为2 3. (1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为22,求圆P的方程.规律方法求与圆有关的轨迹方程时,常用以下方法:(1)直接法:根据题设条件直接列出方程;(2)定义法:根据圆的定义写出方程;(3)几何法:利用圆的性质列方程;(4)代入法:找出要求点与已知点的关系,代入已知点满足的关系式.【训练3】已知直角三角形ABC的斜边为AB,且A(-1,0),B(3,0),求:(1)直角顶点C的轨迹方程;(2)直角边BC中点M的轨迹方程.【典例】在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上,求圆C的方程.【自主体验】1.圆C的半径为1,圆心在第一象限,与y轴相切,与x轴相交于点A,B,若|AB|=3,则该圆的标准方程是________.2.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为________.一、选择题1.(2014·东莞调研)已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为().A.8 B.-4 C. 6 D.无法确定2.(2014·烟台二模)已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点F的距离为5,则以M为圆心且与y轴相切的圆的方程为().A.(x-1)2+(y-4)2=1 B.(x-1)2+(y+4)2=1 C.(x-1)2+(y-4)2=16 D.(x-1)2+(y+4)2=16 3.(2014·银川模拟)圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是().A.x2+y2+10y=0 B.x2+y2-10y=0 C.x2+y2+10x=0 D.x2+y2-10x=04.两条直线y=x+2a,y=2x+a的交点P在圆(x-1)2+(y-1)2=4的内部,则实数a的取值范围是().∪(1,+∞) ∪[1,+∞)5.(2014·东营模拟)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是().A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=1二、填空题6.已知点M(1,0)是圆C:x2+y2-4x-2y=0内的一点,那么过点M的最短弦所在直线的方程是________.7.(2014·南京调研)已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则圆C上各点到l的距离的最小值为______.8.若圆x2+(y-1)2=1上任意一点(x,y)都使不等式x+y+m≥0恒成立,则实数m的取值范围是________.三、解答题9.求适合下列条件的圆的方程:(1)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);(2)过三点A(1,12),B(7,10),C(-9,2).10.已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP⊥OQ(O为坐标原点),求该圆的圆心坐标及半径.第4讲直线与圆、圆与圆的位置关系【例1】 (1)已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是().A.相切 B.相交 C.相离 D.不确定(2)(2013·山东卷)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为().A.2x+y-3=0 B.2x-y-3=0 C.4x-y-3=0 D.4x+y-3=0【训练1】1、(2014·郑州模拟)直线y=-33x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m取值范围是().A.(3,2) B.(3,3)【例2】已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)求m=45时两圆的公共弦所在直线的方程和公共弦的长.【训练2】 (1)圆O1:x2+y2-2x=0和圆O2:x2+y2-4y=0的位置关系是().A.相离 B.相交 C.外切 D.内切(2)设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=().A.4 B.4 2 C.8 D.8 2【例3】 (2013·江苏卷)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.【训练3】 (2013·江西卷)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于 ( ).B .-33 C .±33D .- 3答题模板——与圆有关的探索问题【典例】 (12分)已知圆C :x 2+y 2-2x +4y -4=0.问在圆C 上是否存在两点A 、B 关于直线y =kx -1对称,且以AB 为直径的圆经过原点?若存在,写出直线AB 的方程;若不存在,说明理由.【自主体验】1、在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.2.若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( ).A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)3.(2014·威海期末考试)若直线y =kx 与圆(x -2)2+y 2=1的两个交点关于直线2x +y +b =0对称,则k ,b 的值分别为( ).A .k =12,b =-4B .k =-12,b =4C .k =12,b =4D .k =-12,b =-4 4.(2014·安徽宣城六校联考)已知点P (x 0,y 0),圆O :x 2+y 2=r 2(r >0),直线l :x 0x +y 0y =r 2,有以下几个结论:①若点P 在圆O 上,则直线l 与圆O 相切;②若点P 在圆O 外,则直线l 与圆O 相离;③若点P 在圆O 内,则直线l 与圆O 相交;④无论点P 在何处,直线l 与圆O 恒相切,其中正确的个数是( ).A .1B .2C .3D .411 5.(2013·重庆卷)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ).A .52-4 -1 C .6-2 26.(2014·福建质检)已知直线l :y =-3(x -1)与圆O :x 2+y 2=1在第一象限内交于点M ,且l 与y 轴交于点A ,则△MOA 的面积等于________.7、过点A (2,4)向圆x 2+y 2=4所引切线的方程为________.8.过点M ⎝⎛⎭⎫12,1的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为________.9.求过两圆x 2+y 2+4x +y =-1,x 2+y 2+2x +2y +1=0的交点的圆中面积最小的圆的方程.10.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=22时,求直线l 的方程.11.已知圆M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点.(1)若Q (1,0),求切线QA ,QB 的方程;(2)求四边形QAMB 面积的最小值;(3)若|AB |=423,求直线MQ 的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆方程复习专题注:标*的为易错题,标**为有一定难度的题。

一:斜率与过定点问题1.已知点(1,3)A 、(2,6)B 、(5,)C m 在同一条直线上,那么实数m 的值为_______直线的斜率=_____. 2.已知0m ≠,则过点(1,1)-)的直线320ax my a ++=的斜率为________**3.已知线段PQ 两端点的坐标分别为(1,1)-、(2,2),若直线:0l mx y m +-=与线段PQ 有交点,求m 的范围.二:截距问题:4.若三点(2,2)A ,B(,0)a ,(0,)C b (0ab ≠)共线,则11a b +=______ **5.已知0,0ab bc <<,则直线ax by c +=通过( )A. 一、二、三象限B. 一、二、四象限C. 一、三、四象限D. 二、三、四象限*6.(1)过点(1,2)A 且在x 轴,y 轴上截距相等的直线方程是 .(2)过点(1,2)A 且在x 轴,y 轴截距互为相反数的直线方程是 .三:平行垂直:7、已知过点()2A m -,和()4B m ,的直线与直线210x y +-=平行,则m =______8、若直线1210l x my ++=: 与直线231l y x =-:平行,则m =___ (若垂直呢)9、过点(1,3)P -且垂直于直线032=+-y x 的直线方程为__________10、已知直线12:(3)453,:2(5)8l m x y m l x m y ++=-++=,(1)若12l l ⊥,则________m =*(2)若12//l l ,则________m =五:交点问题:11、过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程.是____________(垂直呢?)**12.若直线:1l y kx =-与直线10x y +-=的交点位于第一象限,求实数k 的取值范围.六:距离问题13.已知点(3,)m 到直线340x +-=的距离等于1,则m =_________14.已知直线0323=-+y x 和016=++my x 互相平行,则它们之间的距离是_________15. ①平行于直线34120x y +-=,且与它的距离是7的直线的方程是________________________②垂直于直线350x y +-=, 且与点(1,0)P -)的距离是1053的直线的方程是___________16.过点(1,2)A 且与原点距离最大的直线方程是____________七:圆的方程例1、 若方程014222=+++-+a y x y x 表示的曲线是一个圆,则a 的取值范围是圆心坐标是__________________,半径是________________例2、 求过点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程,并判断点)4,2(P 与圆的关系.例3 圆心在直线30x y -=上,与直线0=y 相切,且被直线0x y -=所截得的弦长为的圆的方程.**练习. 方程(0x y +-=所表示的曲线是 ( )A .一个圆和一条直线B . 两个点C . 一个点D .一个圆和两条射线 八:点与圆,直线与圆的位置关系:1、直线1=+y x 与圆)0(0222>=-+a ay y x 没有公共点,则a 的取值范围是*2、设点(00,y x )在圆222r y x =+的外部,则直线200r y y x x =+与圆的位置关系是( )A .相交B .相切C . 相离D .不确定*3、原点与圆22(1)()2(01)x y a a a -+-=<<的位置关系是___________ 九:直线与圆的位置关系(一)相交例1、已知圆 042:22=--+y x y x C 和点(0,2)P ,(1)求直线1:360l x y --=被圆C 截得的弦AB 的长;(2)直线2l 与圆 C 交与MN 两点,弦MN 被点P 平分,求2l 的方程(*3)过P点的直线l 截圆C 所得的弦长为4,求直线l 的方程。

**例2、 圆9)3()3(22=-+-y x 上到直线340x y b ++=的距离为1的点有三个,则_____b =, **例3、.已知方程04222=+--+m y x y x 表示圆,(1)求m 的取值范围;(2)若该圆与直线042=-+y x 相交于两点,且OM ⊥ON (O 为坐标原点)求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.**例4. 已知圆22:(1)5C x y +-=,直线:10l mx y m -+-=。

(1) 求证:对m R ∈,直线l 与圆C 总相交;(2)设l 与圆C 交与不同两点A 、B ,求弦AB 的中点M 的轨迹方程;练习、1、直线0323=-+y x 截圆422=+y x 得的劣弧所对的圆心角为 2、已知圆16)1()2(22=++-y x 的一条直径通过直线032=+-y x 被圆所截弦的中点,则该直径所在的直线方程为_____________________3、圆034222=-+++y x y x 上到直线01=++y x 的距离为2的点共有______个(二)相切例1 已知圆422=+y x O :,(1) 求过点M 与圆O 相切的切线方程;(2) *求过点()42,P 与圆O 相切的切线方程并求切线长; (3) 求斜率为2且与圆O 相切的切线方程;(4) **若点(,)x y 满足方程224x y +=,求2y x -的取值范围;(5) **若点(,)x y 满足方程224x y +=,求43y x ++的取值范围。

**例2、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。

**例3、若直线m x y +=与曲线24x y -=有且只有一个公共点,求实数m 的取值范围.若有两个公共点呢?练习:1.求过点(3,1)M ,且与圆22(1)4x y -+=相切的直线l 的方程是____________________________.2、已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为 . 3. 过圆422=+y x 外一点)1,4(-M 引圆的两条切线,则经过两切点的直线方程是______________4.已知P 是直线0843=++y x 上的动点,PB PA ,是圆012222=+--+y x y x 的两条切线,,A B 是切点,C 是圆心,那么四边形PACB 面积的最小值为 .**5、已知对于圆1)1(22=-+y x 上任一点),(y x P ,不等式0≥++m y x 恒成立,求实数m 的取值范围是____________**6.曲线)2|(|412≤-+=x x y 与直线4)2(+-=x k y 有两个交点时,实数k 的取值范围是( )A .]43,125(B .),125(+∞C .)43,31( D .)125,0( (三)相离例1: 圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是 十:圆与圆的位置关系例1、判断圆02662:221=--++y x y x C 与圆0424:222=++-+y x y x C 的位置关系,例2、求两圆0222=-+-+y x y x 和522=+y x 的公共弦所在的直线方程及公共弦长。

例3:圆0222=-+x y x 和圆0422=++y y x 的公切线共有 条。

1、若圆042222=-+-+m mx y x 与圆08442222=-+-++m my x y x 相切,则实数m 的取值集合是 .2、与圆522=+y x 外切于点)2,1(-P ,且半径为52的圆的方程是___________十一:直线与圆中的对称问题例1、(1) 圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是(2)已知圆522=+y x 与圆224430x y x y ++-+=关于直线l 对称,求直线l 的方程。

例2.一束光线从点()33,-A 出发经x 轴反射到圆222690x y x y +--+=的最短路程是 .例3、已知圆074422=+--+y x y x C :,自点()33,-A 发出的光线l 被x 轴反射,反射光线所在的直线与圆C 相切,(1)求反射光线所在的直线方程.(2)光线自A 到切点所经历的路程.例4、 已知直线:33l y x =+,(1)(1,1)P -关于直线l 对称点的坐标是____________(2) 直线2y x =-关于直线l 对称的直线方程是_______________(3) 已知点(1,2)A ,(3,1)B ,则线段AB 的垂直平分线的方程为_________**例5、已知点M(3,5),在直线:220l x y -+=和y 轴上各找一点P 和Q ,使ABC ∆的周长最小.例6. (1)直线:3l y x b =+是圆222690x y x y +--+=的一条对称轴,则b =______(2) 圆222690x y x y +--+=关于点M(3,5)对称的圆的方程是_____________________ 十二:直线与圆中的最值问题例1、已知圆1)4()3(221=-+-y x O :,),(y x P 为圆O 上的动点,则 22x y +的最小值是_________ 例2、已知)0,2(-A ,)0,2(B ,点P 在圆4)4()3(22=-+-y x 上运动,则22PB PA +的最小值是 .例3.点(,)A x y 满足30x y +-=,[]21x ,∈,求x y 的最大值和最小值例4.(1)点A(1,3),(5,1)B -,点P 在x 轴上使||||PA PB +最小,则P 的坐标为( )(2)点A(1,3),(5,1)B ,点P 在x 轴上使||||PA PB +最小,则P 的坐__________(3)点A(1,3),(5,1)B ,点P 在x 轴上使||||PA PB -最大,则P 的坐标为_________例5.点(,)P x y 在直线40x y +-=上,则(1________________(2________________(3)22x y +的最小值是________________(4)222x y x ++的最小值是________________(5)若点Q 在直线2230x y ++=上则||PQ 的最小值是___________练习、1、已知22430x y x +-+=,则22x y +的最小值是______;222x y y +-的最大值是_________2、已知点)2,4(),6,2(),2,2(----C B A ,点P 在圆422=+y x 上运动,求222PC PB PA ++的最大值和最小值.3、已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=上,求22PB PA +取得最小值时P 点的坐标。

相关文档
最新文档