中考数学找规律题型汇总及解析教学内容
初中数学规律题汇总(全部有解析)
初中数学规律题拓展研究“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
中考数学找规律问题归纳及解析
中考数学找规律问题归纳及解析(共7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《找规律》专题训练及解析 一:数式问题1.(湛江)已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b +=⨯(a 、b 为正整数)则a b += .2.(贵阳)有一列数a 1,a 2,a 3,a 4,a 5,…,a n ,其中a 1=5×2+1,a 2=5×3+2,a 3=5×4+3,a 4=5×5+4,a 5=5×6+5,…,当a n =2009时,n 的值等于( ) A .2010 B .2009 C .401 D .3343.(沈阳)有一组单项式:a 2,-a 32,a 43,-a 54,….观察它们构成规律,用你发现的规律写出第10个单项式为 .4.(牡丹江)有一列数1234251017--,,,,…,那么第7个数是 . 5.(南充)一组按规律排列的多项式:a b +,23a b -,35a b +,47a b -,……,其中第10个式子是()A .1019a b +B .1019a b -C .1017a b -D .1021a b -6.(安徽)观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,…… (1)猜想并写出第n 个等式;(2)证明你写出的等式的正确性.7.(绵阳)将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列.第1列 第2列 第3列 第4列 第1行 1 2 3 第2行6548.(台州)将正整数1,2,3,…从小到大按下面规律排列.若第4行第2列的数为32,则①n = ▲ ;②第i 行第j 列的数为 ▲ (用i ,j 表示).第1列 第2列 第3列 … 第n 列第1行 1 2 3 … n 第2行 1+n 2+n 3+n … n 2 第3行 12+n 22+n 32+n … n 3 ………… ……二:定义运算问题1.(定西)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.2.有一列数1a ,2a ,3a ,,n a ,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若12a =,则2007a 为( ) A.2007B.2C.12D.1-三:剪纸问题1. (2004年河南)如图(9),把一个正方形三次对折后沿虚线剪下则得到的图形是( )第3行 7 8 9 第4行 12 11 10 ……2. (2004年浙江湖州)小强拿了一张正方形的纸如图(10)①,沿虚线对折一次得图②,再对折一次得图③,然后用剪刀沿图③中的虚线(虚线与底边平行)剪去一个角,再打开后的形状应是( )3. (2004年浙江衢州)如图(11),将一张正方形纸片剪成四个小正方形,然后将其中的一个正方形再剪成四个小正方形,再将其中的一个正方形剪成四个小正方形,如此继续下去,……,根据以上操作方法,请你填写下表:四:数形结合问题操作次数N 1 2 3 4 5 … N … 正方形的个数4 7 1……图51.(宁德)已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示)3.(莆田)如图,在x 轴的正半轴上依次截取112233445OA A A A A A A A A ====,过点12345A A A A A 、、、、分别作x 轴的垂线与反比例函数()20y x x=≠的图象相交于点12345P P P P P 、、、、,得直角三角形1112233344455OPA A P A A P A A P A A P A 2、、、、,并设其面积分别为12345S S S S S 、、、、,则5S 的值为 .四:图形问题1.(本溪)如图所示,已知:点(00)A ,,(3B ,,(01)C ,在ABC △内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个11AA B △,第2个122B A B △,第3个233B A B △,…,则第n 个等边三角形的边长等y x O P 1 P 2 P 3 P4 P 5A 1 A 2 A 3 A 4 A 5 (第10题2x第2题图C 2D 2C 1D 1CD AB(第4题)2.(大兴安岭)如图,边长为1的菱形ABCD 中,︒=∠60DAB .连结对角线AC ,以AC 为边作第二个菱形11D ACC ,使 ︒=∠601AC D ;连结1AC ,再以1AC 为边作第三个菱形221D C AC ,使 ︒=∠6012AC D ;……,按此规律所作的第n 个菱形的边长为 .3.(湖州)如图,已知Rt ABC △,1D 是斜边AB 的中点,过1D 作11D E AC ⊥于E 1,连结1BE 交1CD 于2D ;过2D 作22D E AC ⊥于2E ,连结2BE 交1CD 于3D ;过3D 作33D E AC ⊥于3E ,…,如此继续,可以依次得到点45D D ,,…,n D ,分别记112233BD E BD E BD E △,△,△,…,n n BD E △的面积为123S S S ,,,…n S .则n S =________ABC S △(用含n 的代数式表示).4.(长春)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个O y x(A )A 1C1 12 B A 2A 3B 3 B 2 B 1 1题图BCAE 1 E 2 E 3 D 4D 1D 2D 3(第3题)数为 (用含n 的代数式表示).5.(丹东)如图6,用同样大小的黑色棋子按图所示的方式摆图案,按照这样的规律摆下去,第100个图案需棋子 枚.6.(抚顺)观察下列图形(每幅图中最小..的三角形都是全等的),请写出第n 个图中最小..的三角形的个数有 个.7.(哈尔滨)观察下列图形:它们是按一定规律排列的,依照此规律,第16个图形共有 个★.第1个图 第2个图第3个图 第4个图(第16题图6图案图案图案……五:对称问题1.(伊春)在平面直角坐标系中,已知3个点的坐标分别为1(11)A ,、2(02)A ,、3(11)A -,. 一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以1A 为对称中心的对称点1P ,第2次电子蛙由1P 点跳到以2A 为对称中心的对称点2P ,第3次电子蛙由2P 点跳到以3A 为对称中心的对称点3P ,…,按此规律,电子蛙分别以1A 、2A 、3A 为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是2009P (_______ ,_______).2.(2004年宁波)仔细观察下列图案,如图(12),并按规律在横线上画出合适的图形。
初中数学找规律题讲解与总结
初中数学找规律题讲解与总结1、新课引入小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
2、合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑵照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?★注意引导学生概括“探索规律”的一般步骤:①寻找数量关系;②用代数式表示规律③验证规律。
★练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑵按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑵教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑶在⑵中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律下面是2000年八月份的日历:⑴日历中的绿色方框中的9个数之和与该方框正中间的数有什么关系?⑵这个关系对其它这样的方框成立吗?你能用代数式表示这个关系吗?⑶这个关系对任何一个月的日历都成立吗?为什么?⑷你还能发现这样的方框中9个数之间的其他关系吗?用代数式表示。
⑸你还能提出那些问题?中考数学探索题训练—找规律1、我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。
在电子数字计算机中用的是二进制,只要两个数码:0和1。
如二进制中101=1×22+0×21+1×20等于十进制的数5,10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23,那么二进制中的1101等于十进制的数。
初中的中考数学找规律题型汇总及解析.doc
精品文档中考数学找律型展及解析“有比才有” 。
通比,可以事物的相同点和不同点,更容易找到事物的化律。
找律的目,通常按照一定的序出一系列量,要求我根据些已知的量找出一般律。
揭示的律,常常包含着事物的序列号。
所以,把量和序列号放在一起加以比,就比容易其中的奥秘。
初中数学考中,常出数列的找律,本文就此的解方法行探索:一、基本方法——看增幅(一)如增幅相等(等差数列):每个数和它的前一个数行比,如增幅相等,第n 个数可以表示: a1+(n-1)b ,其中 a 数列的第一位数, b增幅, (n-1)b 第一位数到第 n 位的增幅。
然后再化代数式 a+(n-1)b 。
例: 4、10、 16、22、 28⋯⋯,求第 n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是 6,所以,第 n 位数是: 4+(n-1) 6 =6n- 2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅等差数列)。
如增幅分 3、5、7、9,明增幅以同等幅度增加。
此种数列第 n 位的数也有一种通用求法。
基本思路是: 1、求出数列的第n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的增幅;3、数列的第 1 位数加上增幅即是第n 位数。
此解法然,但是此的通用解法,当然此也可用其它技巧,或用分析察的方法求出,方法就的多了。
(三)增幅不相等,但是增幅同比增加,即增幅等比数列,如:2、3、5、9,17 增幅 1、 2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此大概没有通用解法,只用分析察的方法,但是,此包括第二的,如用分析察法,也有一些技巧。
二、基本技巧(一)出序列号:找律的目,通常按照一定的序出一系列量,要求我根据些已知的量找出一般律。
找出的律,通常包序列号。
所以,把量和序列号放在一起加以比,就比容易其中的奥秘。
例如,察下列各式数: 0,3,8,15,24,⋯⋯。
按此律写出的第100 个数是 100 2 1 ,第 n 个数是 n 2 1。
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析中考数学常见的规律题的题型分类主要包括数字规律、图形规律和符号规律三大类。
解决这些题目的关键是要观察规律,并推导出具体的解题步骤。
一、数字规律题数字规律题是根据数字的变化规律推导出下一个数字或一组数字的题目。
主要有数字序列、数字替换和数字推理等题型。
1. 数字序列数字序列是指一组数字按照一定规律依次排列的题目。
解决这类题目的关键是观察数字之间的差值是否存在某种规律。
例如,已知序列1、4、7、10、13,下一个数字是多少?观察可以发现每两个数字之间的差值都为3,所以下一个数字是16。
2. 数字替换数字替换是指题目中给出一些数字的替换规律,要求找出其中的规律并进行相应的替换。
解决这类题目的关键是观察数字的替换规律是否存在某种模式。
例如,已知2=4,3=9,4=16,求5的值。
观察可以发现每个数字的值等于该数字的平方,所以5的值为25。
1. 图形序列图形序列是指一组图形按照一定规律依次排列的题目。
解决这类题目的关键是观察图形之间的变化规律,例如图形的旋转、镜像、放大缩小等。
例如,已知△→□→○→⋆,下一个图形是什么?观察可以发现图形依次变成了△、□、○,然后再变成了⋆,所以下一个图形应该是△。
3. 图形推理图形推理是指根据一些已知图形和规律推导出一个或一组图形的题目。
解决这类题目的关键是观察已知图形之间的关系,并找出其中的规律,从而推导出待求的图形。
例如,已知⋆是由3个○组成的,⧄是由4个⋆组成的,求由5个⧄组成的图形是什么?观察可以发现每个图形都是由前一个图形重复组成,所以由5个⧄组成的图形应该是⋆。
综上所述,解决中考数学常见规律题的关键是要观察规律,并推导出具体的解题步骤。
此外,多做练习,提高自己的观察力和分析能力也是重要的。
十道初中数学找规律的题型及解题思路
十道初中数学找规律的题型及解题思路这里有10道初中数学找规律的题目,涵盖了常见的数列、图形等多种类型,希望能帮助学生更好地掌握找规律的技巧:数列找规律1.等差数列:1.1, 4, 7, 10, ... 下一个数是多少?2.100, 97, 94, ... 第10个数是多少?2.等比数列:1.2, 4, 8, 16, ... 第8个数是多少?2.81, 27, 9, ... 第6个数是多少?3.混合数列:1.1, 4, 9, 16, 25, ... 下一个数是多少?(提示:考虑每个数的平方)2.2, 5, 10, 17, ... 下一个数是多少?(提示:观察相邻两数的差)4.周期数列:1.1, 2, 3, 1, 2, 3, ... 第20个数是多少?2.A, B, C, A, B, C, ... 第100个数是多少?图形找规律图形的变化:1.一组图形,每个图形由小方块组成,观察图形的变化规律,画出下一个图形。
图形的旋转:1.一个图形不断旋转,观察旋转的规律,画出旋转后的图形。
图形的翻转:1.一个图形不断翻转,观察翻转的规律,画出翻转后的图形。
数字与图形结合数字与图形对应:1.一组图形,每个图形对应一个数字,找出数字与图形之间的对应关系。
图形中的数字规律:1.一个图形中包含多个数字,找出数字之间的规律。
综合题型1.数字和图形的综合:1.一组图形和数字交替出现,找出数字和图形之间的关系。
解题技巧:•观察:仔细观察数列或图形的变化规律,找出其中的共同点和差异点。
•比较:比较相邻的数或图形,找出它们的递增、递减或其他变化关系。
•联想:将题目与以前学过的知识联系起来,寻找解题思路。
•归纳:根据观察和比较的结果,归纳出一般性的规律。
•验证:将得到的规律代入后面的数或图形中进行验证,确保规律的正确性。
注意事项:•找规律题的答案可能不唯一,只要找到一种合理的规律即可。
•遇到困难时,可以尝试从不同的角度去观察和分析。
2024年中考数学复习重难点题型训练—规律探索题(含答案解析)
2024年中考数学复习重难点题型训练—规律探索题(含答案解析)类型一数式规律1.(2023·云南·统考中考真题)按一定规律排列的单项式:2345,a ,第n 个单项式是()AB1n -CnD1n -【答案】Ca ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第nn ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.2.(2023·山东·统考中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111n n na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .2【答案】A【分析】根据题意可把12a =代入求解23a =-,则可得312a =-,413a =,52a =……;由此可得规律求解.【详解】解:∵12a =,∴212312a +==--,3131132a -==-+,411121312a -==+,51132113a +==-,…….;由此可得规律为按2、3-、12-、13四个数字一循环,∵20234505.....3÷=,∴2023312a a ==-;故选A .【点睛】本题主要考查数字规律,解题的关键是得到数字的一般规律.3.(2023·湖南常德·统考中考真题)观察下边的数表(横排为行,竖排为列),按数表中的规律,分数202023若排在第a 行b 列,则a b -的值为()11122113223114233241……A .2003B .2004C .2022D .2023【答案】C【分析】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致.【详解】观察表中的规律发现,分数的分子是几,则必在第几列;只有第一列的分数,分母与其所在行数一致,故202023在第20列,即20b =;向前递推到第1列时,分数为201912023192042-=+,故分数202023与分数12042在同一行.即在第2042行,则2042a =.∴2042202022.a b -=-=故选:C .【点睛】本题考查了数字类规律探索的知识点,解题的关键善于发现数字递变的周期性和趋向性.4.(2023·四川内江·统考中考真题)对于正数x ,规定2()1xf x x =+,例如:224(2)213f ⨯==+,1212212312f ⨯⎛⎫== ⎪⎝⎭+,233(3)312f ⨯==+,1211313213f ⨯⎛⎫== ⎪⎝⎭+,计算:11111(1)1011009932f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)(3)(99)(100)(101)f f f f f +++++= ()A .199B .200C .201D .202【答案】C【分析】通过计算11(1)1,(2)2,(3)223f f f f f ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭,⋯可以推出11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭结果.【详解】解:2(1)1,11f ==+ 12441212(2),,(2)2,112323212f f f f ⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+122331113(3),,(3)2,113232313f f f f ⨯⨯⎛⎫⎛⎫====+= ⎪ ⎪+⎝⎭⎝⎭+…2100200(100)1100101f ⨯==+,1212100()11001011100f ⨯==+,1(100)(2100f f +=,11111(1)(2)(3)(99)(100)(101)1011009932f f f f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21001=⨯+201=故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则,找到数字变化规律是解本题的关键.5.(2021·湖北鄂州市·中考真题)已知1a 为实数﹐规定运算:2111a a =-,3211a a =-,4311a a =-,5411a a =-,……,111n n a a -=-.按上述方法计算:当13a =时,2021a 的值等于()A.23-B.13C.12-D.23【答案】D 【分析】当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现呈周期性出现,即可得到2021a 的值.【详解】解:当13a =时,计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅,会发现是以:213,,32-,循环出现的规律,202136732=⨯+ ,2021223a a ∴==,故选:D .【点睛】本题考查了实数运算规律的问题,解题的关键是:通过条件,先计算出部分数的值,从中找到相应的规律,利用其规律来解答.6.(2021·湖北随州市·中考真题)根据图中数字的规律,若第n 个图中的143q =,则p的值为()A.100B.121C.144D.169【答案】B 【分析】分别分析n 的规律、p 的规律、q 的规律,再找n 、p 、q 之间的联系即可.【详解】解:根据图中数据可知:1,2,3,4n =,……22221,2,3,4,p =……222221,31,41,51,q =----……则2p n =,2(1)1q n =+-,∵第n 个图中的143q =,∴2(1)1=143q n =+-,解得:11n =或13n =-(不符合题意,舍去)∴2=121p n =,故选:B .【点睛】本题主要考查数字之间规律问题,将题中数据分组讨论是解决本题的关键.7.(2021·山东济宁市·中考真题)按规律排列的一组数据:12,35,□,717,926,1137,…,其中□内应填的数是()A.23B.511C.59D.12【答案】D 【分析】分子为连续奇数,分母为序号的平方1+,根据规律即可得到答案.【详解】观察这排数据发现,分子为连续奇数,分母为序号的平方1+,∴第n 个数据为:2211n n -+当3n =时W 的分子为5,分母为23110+=∴这个数为51102=故选:D .【点睛】本题考查了数字的探索规律,分子和分母分别寻找规律是解题关键.8.(2021·湖北十堰市·)将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A.2025B.2023C.2021D.2019【答案】B 【分析】根据数字的变化关系发现规律第n 行,第n 列的数据为:2n(n-1)+1,即可得第32行,第32列的数据为:2×32×(32-1)+1=1985,再依次加2,到第32行,第13列的数据,即可.解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故选:B.【点睛】本题考查了数字的变化类,解决本题的关键是观察数字的变化寻找探究规律,利用规律解决问题.9.(2020•天水)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S的式子表示这组数据的和是()A.2S2﹣S B.2S2+S C.2S2﹣2S D.2S2﹣2S﹣2【分析】根据已知条件和2100=S,将按一定规律排列的一组数:2100,2101,2102,…,2199,2200,求和,即可用含S的式子表示这组数据的和.【解析】∵2100=S,∴2100+2101+2102+…+2199+2200=S+2S+22S+…+299S+2100S=S(1+2+22+…+299+2100)=S(1+2100﹣2+2100)=S(2S﹣1)=2S2﹣S.10.(2023·湖南岳阳·统考中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是.【答案】()21n n n n -=-【分析】根据等式的左边为正整数的平方减去这个数,等式的右边为这个数乘以这个数减1,即可求解.【详解】解:∵21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…∴第n (n 为正整数)个等式是()21n n n n -=-,故答案为:()21n n n n -=-.【点睛】本题考查了数字类规律,找到规律是解题的关键.11.(2023·山东临沂·统考中考真题)观察下列式子21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律,2n =.【答案】()()111n n -++【分析】根据已有的式子,抽象出相应的数字规律,进行作答即可.【详解】解:∵21312⨯+=;22413⨯+=;23514⨯+=;……∴()()2211n n n ++=+,∴()()2111n n n -++=.故答案为:()()111n n -++【点睛】本题考查数字类规律探究.解题的关键是从已有的式子中抽象出相应的数字规律.12.(2023·四川成都·统考中考真题)定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.【答案】1545【分析】根据新定义,列举出前几个智慧优数,找到规律,进而即可求解.【详解】解:依题意,当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=,当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个,12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=,第23个智慧优数为9,6m n ==时,2296813645-=-=,故答案为:15,45.【点睛】本题考查了新定义,平方差公式的应用,找到规律是解题的关键.13.(2023·山东聊城·统考中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对:.【答案】()221,22n n n n ++++【分析】根据题意单另把每个数对中的第一个或第二个数字按顺序排列起来研究,可发现第n 个数对的第一个数为:()11n n ++,第n 个数对的第二个位:()211n ++,即可求解.【详解】解:每个数对的第一个数分别为3,7,13,21,31,…即:121⨯+,231⨯+,341⨯+,451⨯+,561⨯+,…则第n 个数对的第一个数为:()2111n n n n ++=++,每个数对的第二个数分别为5,10,17,26,37,…即:221+;231+;241+;251+;261+…,则第n 个数对的第二个位:()221122n n n ++=++,∴第n 个数对为:()221,22n n n n ++++,故答案为:()221,22n n n n ++++.【点睛】此题考查数字的变化规律,找出数字之间的排列规律,利用拐弯出数字的差的规律解决问题.14.(2023·内蒙古通辽·统考中考真题)点Q 的横坐标为一元一次方程37322x x +=-的解,纵坐标为a b +的值,其中a ,b 满足二元一次方程组2428a b a b -=⎧⎨-+=-⎩,则点Q 关于y 轴对称点Q '的坐标为___________.【答案】()5,4--【分析】先分别解一元一次方程37322x x +=-和二元一次方程组2428a b a b -=⎧⎨-+=-⎩,求得点Q的坐标,再根据直角坐标系中点的坐标的规律即可求解.【详解】解:37322x x +=-,移项合并同类项得,525x =,系数化为1得,5x =,∴点Q 的横坐标为5,∵2428a b a b -=⎧⎨-+=-⎩①②,由2+⨯①②得,3=12b -,解得:4b =-,把4b =-代入①得,24=4a +,解得:0a =,∴=04=4a b +--,∴点Q 的纵坐标为4-,∴点Q 的坐标为()5,4-,又∴点Q 关于y 轴对称点Q '的坐标为()5,4--,故答案为:()5,4--.【点睛】本题考查解一元一次方程和解二元一次方程组、代数值求值、直角坐标系中点的坐标的规律,熟练掌握解一元一次方程和解二元一次方程组的方法求得点Q 的坐标是解题的关键.15.(2023·湖北恩施·统考中考真题)观察下列两行数,探究第②行数与第①行数的关系:2-,4,8-,16,32-,64,……①0,7,4-,21,26-,71,……②根据你的发现,完成填空:第①行数的第10个数为;取每行数的第2023个数,则这两个数的和为.【答案】1024202422024-+【分析】通过观察第一行数的规律为(2)n -,第二行数的规律为(2)1n n -++,代入数据即可.【详解】第一行数的规律为(2)n -,∴第①行数的第10个数为10(2)1024-=;第二行数的规律为(2)1n n -++,∴第①行数的第2023个数为2023(2)-,第②行数的第2023个数为2023(2)2024-+,∴202422024-+,故答案为:1024;202422024-+.【点睛】本题主要考查数字的变化,找其中的规律,是今年考试中常见的题型.16.(2021·湖南怀化市·中考真题)观察等式:232222+=-,23422222++=-,2345222222+++=-,……,已知按一定规律排列的一组数:1002,1012,1022,……,1992,若1002=m ,用含m 的代数式表示这组数的和是___________.【答案】100(21)m -【分析】根据规律将1002,1012,1022,……,1992用含m 的代数式表示,再计算0199222+++ 的和,即可计算1001011011992222++++ 的和.【详解】由题意规律可得:2399100222222++++=- .∵1002=m∴23991000222222=2m m +++++== ,∵22991001012222222+++++=- ,∴10123991002222222=++++++ 12=2m m m m =+=.102239910010122222222+=++++++ 224=2m m m m m =++=.1032399100101102222222222=++++++++ 3248=2m m m m m m =+++=.……∴1999922m =.故10010110110199992222222m m m ++++=+++ .令012992222S ++++= ①12310022222S ++++= ②②-①,得10021S-=∴10010110110199992222222m m m ++++=+++ =100(21)m -故答案为:100(21)m -.【点睛】本题考查规律问题,用含有字母的式子表示数、灵活计算数列的和是解题的关键.17.(2022·湖南怀化)正偶数2,4,6,8,10,……,按如下规律排列,2468101214161820……则第27行的第21个数是______.【答案】744【分析】由图可以看出,每行数字的个数与行数是一致的,即第一行有1个数,第二行有2个数,第三行有3个数••••••••第n行有n个数,则前n行共有(1)2n n+个数,再根据偶数的特征确定第几行第几个数是几.【详解】解:由图可知,第一行有1个数,第二行有2个数,第三行有3个数,•••••••第n行有n个数.∴前n行共有1+2+3+⋯+n=(1)2n n+个数.∴前26行共有351个数,∴第27行第21个数是所有数中的第372个数.∵这些数都是正偶数,∴第372个数为372×2=744.故答案为:744.【点睛】本题考查了数字类的规律问题,解决这类问题的关键是先根据题目的已知条件找出其中的规律,再结合其他已知条件求解.18.(2021·四川眉山市·中考真题)观察下列等式:1311 212x===+⨯;2711623x ===+⨯;313111234x ===+⨯;……根据以上规律,计算12320202021x x x x ++++-= ______.【答案】12016-【分析】根据题意,找到第n 个等式的左边为1与1n(n 1)+的和;利用这个结论得到原式=112+116+1112+…+1120202021⨯﹣2021,然后把12化为1﹣12,16化为12﹣13,120152016⨯化为12015﹣12016,再进行分数的加减运算即可.【详解】11(1)n n =++,20201120202021x =+⨯12320202021x x x x ++++- =112+116+1112+…+1120202021⨯﹣2021=2020+1﹣12+12﹣13+…+12015﹣12016﹣2021=2020+1﹣12016﹣2021=12016-.故答案为:12016-.【点睛】本题考查了二次根式的化简和找规律,解题关键是根据算式找的规律,根据数字的特征进行简便运算.19.(2022·安徽)观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.【答案】(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯,故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅[][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.20.(2021·贵州铜仁市·中考真题)观察下列各项:112,124,138,1416,…,则第n 项是______________.【答案】12nn +【分析】根据已知可得出规律:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+…即可得出结果.【详解】解:根据题意可知:第一项:1111122=+,第二项:2112242=+,第三项:3113382=+,第四项:41144162=+,…则第n 项是12n n +;故答案为:12nn +.【点睛】此题属于数字类规律问题,根据已知各项的规律得出结论是解决此类题目的关键.0.618≈这个数叫做黄金比,著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设12a =,b =11111S a b =+++,2222211S a b =+++,…,10010010010010011S a b=+++,则12100S S S +++= _______.【答案】5050【分析】利用分式的加减法则分别可求S 1=1,S 2=2,S 100=100,•••,利用规律求解即可.【详解】解: 12a =,b =11122ab =⨯=∴,1112211112a ba ba b b ba bS a a ++++=+==+++++++ ,222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++,…,10101001001001010101010010011100100111a b S a b a b a b +++=+=⨯=+++++∴12100S S S +++= 121005050++⋯⋯+=故答案为:5050【点睛】本题考查了分式的加减法,二次根式的混合运算,求得1ab =,找出的规律是本题的关键.22.(2021·江西中考真题)下表在我国宋朝数学家杨辉1261年的著作《详解九章算法》中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全下表第四行空缺的数字是______.【答案】3【分析】通过观察每一个数字等于它上方相邻两数之和.【详解】解:通过观察杨辉三角发现每一个数字等于它上方相邻两数之和的规律,例如:第3行中的2,等于它上方两个相邻的数1,1相加,即:211=+;第4行中的3,等于它上方两个相邻的数2,1相加,即:321=+;⋅⋅⋅⋅⋅⋅由此规律:故空缺数等于它上方两个相邻的数1,2相加,即空缺数为:3,故答案是:3.【点睛】本题考查了杨辉三角数的规律,解题的关键是:通过观察找到数与数之间的关系,从来解决问题.23.(2022·山东泰安)将从1开始的连续自然数按以下规律排列:若有序数对(),n m 表示第n 行,从左到右第m 个数,如()3,2表示6,则表示99的有序数对是_______.【答案】()10,18【分析】分析每一行的第一个数字的规律,得出第n 行的第一个数字为211n +-(),从而求得最终的答案.【详解】第1行的第一个数字:()2111=+-1第2行的第一个数字:()22121=+-第3行的第一个数字:()25131=+-第4行的第一个数字:()210141=+-第5行的第一个数字:()217151=+-…..,设第n 行的第一个数字为x ,得()211x n =+-设第1n +行的第一个数字为z ,得21z n =+设第n 行,从左到右第m 个数为y 当99y =时221(1)991n n +-≤<+∴22(1)98n n -≤<∵n 为整数∴10n =∴21182x n =+-=()∴9982118m =-+=故答案为:()10,18.【点睛】本题考查数字规律的性质,解题的关键是熟练掌握数字规律的相关性质.24.(2022·浙江舟山)观察下面的等式:111236=+,1113412=+,1114520=+,……(1)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(2)请运用分式的有关知识,推理说明这个结论是正确的.【答案】(1)1111(1)n n n n =+++(2)见解析【分析】(1)根据所给式子发现规律,第一个式子的左边分母为2,第二个式子的左边分母为3,第三个式子的左边分母为4,…;右边第一个分数的分母为3,4,5,…,另一个分数的分母为前面两个分母的乘积;所有的分子均为1;所以第(n+1)个式子为1111(1)n n n n =+++.(2)由(1)的规律发现第(n+1)个式子为1111(1)n n n n =+++,用分式的加法计算式子右边即可证明.(1)解:∵第一个式子()1111123621221=+=+++,第二个式子()11111341231331=+=+++,第三个式子()11111452041441=+=+++,……∴第(n+1)个式子1111(1)n n n n =+++;(2)解:∵右边=111111(1)(1)(1)(1)n n n n n n n n n n n n ++=+==+++++=左边,∴1111(1)n n n n =+++.【点睛】此题考查数字的变化规律,分式加法运算,解题关键是通过观察,分析、归纳发现其中各分母的变化规律.类型二图形规律25.(2023·重庆·统考中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,……,按此规律排列下去,则第⑧个图案用的木棍根数是()A .39B .44C .49D .54【答案】B 【分析】根据各图形中木棍的根数发现计算的规律,由此即可得到答案.【详解】解:第①个图案用了459+=根木棍,第②个图案用了45214+⨯=根木棍,第③个图案用了45319+⨯=根木棍,第④个图案用了45424+⨯=根木棍,……,+⨯=根,第⑧个图案用的木棍根数是45844故选:B.【点睛】此题考查了图形类规律的探究,正确理解图形中木棍根数的变化规律由此得到计算的规律是解题的关键.25.(2023·重庆·统考中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B【分析】根据前四个图案圆圈的个数找到规律,即可求解.=⨯-;【详解】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341…,⨯-=;所以第⑦个图案中圆圈的个数为37120故选:B.【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n个图案的规律为31n -是解题的关键.27.(2023·山东日照·统考中考真题)数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++= (n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A .202340a =B .202443a =C .2(21)26n a n -=-D .2(21)24n a n -=-【答案】B 【分析】利用图形寻找规律()211,1n A n n ---,再利用规律解题即可.【详解】解:第1圈有1个点,即1(0,0)A ,这时10a =;第2圈有8个点,即2A 到()91,1A ;第3圈有16个点,即10A 到()252,2A ,;依次类推,第n 圈,()211,1n A n n ---;由规律可知:2023A 是在第23圈上,且()202522,22A ,则()202320,22A 即2023202242a =+=,故A 选项不正确;2024A 是在第23圈上,且()202421,22A ,即2024212243a =+=,故B 选项正确;第n 圈,()211,1n A n n ---,所以2122n a n -=-,故C 、D 选项不正确;故选B .【点睛】本题考查图形与规律,利用所给的图形找到规律是解题的关键.28.(2022·江西)将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B 【分析】列举每个图形中H 的个数,找到规律即可得出答案.【详解】解:第1个图中H 的个数为4,第2个图中H 的个数为4+2,第3个图中H 的个数为4+2×2,第4个图中H 的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.29.(2022·重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【答案】C 【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.30.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=()A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答31.(2021·黑龙江大庆市·中考真题)如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:1(1)2n n -.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有120191902⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有1(1)2n n -.32.(2023·四川遂宁·统考中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为.【答案】1226C H 【分析】根据碳原子的个数,氢原子的个数,找到规律,即可求解.【详解】解:甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,碳原子的个数为序数,氢原子的个数为碳原子个数的2倍多2个,十二烷的化学式为1226C H ,故答案为:1226C H .【点睛】本题考查了规律题,找到规律是解题的关键.33.(2023·山西·统考中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有个白色圆片(用含n 的代数式表示)【答案】()22n +【分析】由于第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,可得第(1)n n >个图案中有白色圆片的总数为22n +.【详解】解:第1个图案中有4个白色圆片4221=+⨯,第2个图案中有6个白色圆片6222=+⨯,第3个图案中有8个白色圆片8223=+⨯,第4个图案中有10个白色圆片10224=+⨯,⋯,∴第(1)n n >个图案中有()22n +个白色圆片.故答案为:()22n +.【点睛】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.34.(2023·黑龙江绥化·统考中考真题)在求123100++++ 的值时,发现:1100101+=,299101+= ,从而得到123100++++= 101505050⨯=.按此方法可解决下面问题.图(1)有1个三角形,记作11a =;分别连接这个三角形三边中点得到图(2),有5个三角形,记作25a =;再分别连接图(2)中间的小三角形三边中点得到图(3),有9个三角形,记作39a =;按此方法继续下去,则123n a a a a ++++= .(结果用含n 的代数式表示)【答案】22n n -/22n n -+【分析】根据题意得出()14143n a n n =+-=-,进而即可求解.【详解】解:依题意,()1231,5,9,14143n a a a a n n ===⋅⋅⋅=+-=-,,∴123n a a a a ++++= ()21432122n n n n n n +-==-=-,故答案为:22n n -.【点睛】本题考查了图形类规律,找到规律是解题的关键.35.(2022·山东泰安)观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是2(21)32⨯+=,n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:12n n ==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.36.(2022·四川遂宁)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为______.【答案】127【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数.【详解】解:∵第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127.【点睛】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.37.(2021·湖南常德市·中考真题)如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有11⨯个正方形,所有线段的和为4,第二个图形有22⨯个小正方形,所有线段的和为12,第三个图形有33⨯个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为____________.(用含n 的代数式表示)【答案】2n 2+2n【分析】本题要通过第1、2、3和4个图案找出普遍规律,进而得出第n 个图案的规律为S n =4n+2n ×(n-1),得出结论即可.【详解】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数141221,S =⨯=⨯⨯第2个图案由4个小正方形组成,共用的木条根数262232,S =⨯=⨯⨯第3个图案由9个小正方形组成,共用的木条根数383243,S =⨯=⨯⨯第4个图案由16个小正方形组成,共用的木条根数4104254,S =⨯=⨯⨯…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数()22122,n S n n n n =+=+ 故答案为:2n 2+2n.【点睛】本题考查了规律型-图形的变化类,熟练找出前四个图形的规律是解题的关键.38.(2021·黑龙江绥化市·中考真题)下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究.类型三与函数有关规律39.(2023·山东烟台·统考中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为()。
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析数学学科中的规律题一般分为两种类型:数字规律题和图形规律题。
数字规律题要求考生在一系列数字中找出规律,并根据这一规律预测或推算出下一个数字。
图形规律题则需要考生在一系列图形中找出规律,从而预测或推算出下一个图形。
下面将对这两种题型进行具体分析,并提出相关的解题策略。
一、数字规律题1. 线性规律题线性规律题主要是让考生找出数字序列中的等差数列或等比数列,并根据这一规律推算下一个数字。
解题时,首先应将给出的数字序列列出来,然后查看相邻两个数字之间的差值或比值是否相等,如果相等则为等差或等比数列。
例如,给定数字序列12,15,18,21,__,__,问下两个数字是多少?将这些数字排列起来看,可以发现它们之间相差3,因此这是一个等差数列,下两个数字应分别为24和27。
平方规律题也属于数字规律题的范畴,一般要求考生在一系列数字中找出平方数的规律。
解题时,首先应将数字序列列出来,然后分析数字之间的关系,如果能够找出其中的平方数,就可以简单地求出下一个数。
二、图形规律题图形拼接规律题要求考生在一系列图形中找出规律,并按照这种规律进行拼接或组合,从而构造出下一个图形。
解题时,考生应分析每个图形的组成部分,并寻找它们之间的联系,然后根据这种联系构造出下一个图形。
例如,给定以下一系列图形,问下一个图形是什么?将这些图形排列起来看,可以发现下面一个图形是由前面两个图形组合而成的,因此答案应为:2. 图形平移规律题总体来说,对于数字规律题和图形规律题,解题的关键在于仔细观察、分析和归纳。
因此,考生在备考过程中应多加练习,提高自己的观察力和分析能力,以便在考试中能够应对各种类型的规律题。
初中数学,找规律的经典题,解题技巧详细讲解,助力中考复习!
初中数学,找规律的经典题,解题技巧详细讲解,助力中考复习!规律型--图形题的关键:图形的变化类,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论。
数字找规律类型总结:在实际解题过程中,根据相邻数之间的关系分为两大类:(1)相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:相邻两个数加、减、乘、除等于第三数;相邻两个数加、减、乘、除后再加或者减一个常数等于第三数;前一个数的平方等于第二个数;前一个数的平方再加或者减一个常数等于第二个数;前一个数乘一个倍数加减一个常数等于第二个数。
(2)数据中每一个数字本身构成特点形成各个数字之间的规律数据中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成;每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n;数据中每一个数字都是n的倍数加减一个常数;以上是数字推理的一些基本规律,必须掌握.但掌握这些规律后,这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
规律型--数字的变化类解题基本技巧:(1)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘;(2)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关;(3)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(1)、(2)、技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来;(4)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来;(5)同技巧(3)、(4)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见;(6)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析中考数学中,规律题是相对较容易的题型之一。
这种题型中大多数涉及数字和运算符,要求考生通过从数字和运算符中寻找规律,从而推出下一个数字或结果。
下面将介绍常见的几种规律题的题型分类及解题策略。
1. 数列规律题数列规律题是指给出一个数字序列,要求考生根据序列中数字的规律推出下一个或几个数字,或者是补全数字序列。
这类题目虽然看起来有些难,但只要我们能够提炼出序列中的规律,就可以迎刃而解。
解题策略:数列规律题常常让人迷惑的地方在于数字之间似乎没有什么明显的联系。
但是我们可以从以下几个方面来寻找规律:(1)数值之间的关系(比如差值、倍数关系等);(2)数值中的模式(比如交替出现的数字、重复出现的数字等);(3)数值之间的形状(比如数字排列的图形之间存在规律等)。
只要能够从中找出规律,就可以将下一个数字推算出来。
算式规律题是指给出一系列算式或数字,要求考生发现这些算式或数字之间的规律,从而推出下一个数字或算式的结果。
解题策略:算式规律题需要我们通过观察算式或数字之间的关系,然后根据规律进行推导。
常见的规律包括:(1)加减乘除的规律;(2)数值之间的逻辑关系(比如奇偶数等);(3)数值位数之间的关系。
如果我们能够找出数值之间的规律,就可以利用这些关系来推算下一个数字或算式的结果。
图形规律题是指给出一些图形或图案,要求考生发现图形或图案之间的规律,从而推算下一个图形或图案的样子。
这种题目涉及到图形的形状、大小、颜色、方向等多个方面。
解题策略:图形规律题通常需要我们观察形状之间的规律,这些规律可能体现在图形的大小、颜色、位置、方向、数量等多个方面。
常用的解题方法包括:(1)观察图形之间是否存在重复模式;(2)通过翻转、旋转、倒置等变换来找出图形之间的规律;(3)观察图形的大小、数量、颜色等变化来寻找图形之间的规律。
总结来说,规律题的解题策略就是观察和发现规律。
对于不同类型的规律题,我们需要从不同的方面来寻找规律。
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析中考数学中,常见的规律题型主要有数字规律题、图形规律题、字母规律题等。
下面将分别对这几类题型进行解题策略分析。
一、数字规律题数字规律题是指给出一个数列,要求找出其中的规律,根据规律推算出后面的数。
解题策略:1. 观察数列的前几项,并找出其中的规律。
如果数列是等差数列或等比数列,可以通过计算公式来求得后面的数;2. 如果数列没有明显的规律,可以尝试逐项进行计算,观察相邻的数之间的关系,再进行推算。
例如:1. 找出下列数列的规律,并写出下一个数:2, 4, 6, 8, 10, ...解答:观察数列可以发现,每一个数都比前一个数大2,因此下一个数为12。
解题策略:1. 观察图形的形状、线条、颜色等特征,寻找相邻图形之间的关系;2. 如果图形之间的关系不明显,可以尝试对每个图形进行具体的计数,观察每个图形的部分与整体的关系;3. 对于复杂的图形,可以利用分解法,将图形拆解成简单的几何形状进行分析。
例如:1. 下面的图形中,哪个图形是多余的?为什么?解答:观察图形可以发现,每两个圆之间的扇形线条都是由上一个图形顺时针旋转45度得到的,因此D图是多余的。
2. 绘制下一个图形:*********解答:观察图形可以发现,每一行的星号个数满足一个规律,即n(n+1)/2,下一行应该有4(4+1)/2=10个星号,因此下一个图形为:*************************2. 找出下列字母序列的规律,并写出下一个字母:F, E, D, G, F, O, N, I, U, ...解答:观察字母可以发现,前四个字母是逆序的,再接下来的四个字母是顺序的,因此下一个字母应该是顺序的,即V。
在解答规律题时,需要有耐心和细心观察,并通过不断尝试和分析寻找规律。
掌握一些常用的解题策略,对于解决规律题会有很大帮助。
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析数学中的规律题是中考数学中常见的题型之一,这类题目通常要求考生根据已知条件找出其中的数学规律或者进行数学推理。
解决规律题要求考生对数学知识有一定的掌握和抽象思维能力,下面我们来分析一下中考数学常见规律题的题型分类及解题策略。
一、题型分类1. 数列规律题数列规律题是中考数学中常见的规律题型之一,通常要求考生根据已知的数列中的规律,选出下一个数或者填入缺失的数。
示例题目:已知数列1, 3, 5, 7, 9,下一个数是()。
A. 10B. 11C. 12D. 13解题策略:对于此类题目,考生需要观察数列中相邻数之间的差或者比的规律,然后推测出下一个数是什么。
2. 几何图形规律题几何图形规律题是要求考生根据已知几何图形的特征找出其中的规律,常见的形式有找出图形中的对称轴、旋转轴、相似图形等。
示例题目:如图所示,依次连接图中各角的两个端点,依次得到等腰直角三角形,下图中的等腰直角三角形的边长之和等于()。
A. 6B. 7C. 8D. 9解题策略:对于此类题目,考生需要根据几何图形的特征,观察图形中的对称、旋转等规律,然后进行推理。
3. 数字运算规律题数字运算规律题是要求考生根据一定的数字运算找出其中的规律,常见的形式有对数进行奇偶性、大小关系等判断,或者找出数字之间的特定关系。
示例题目:已知a=5,b=8,c=11,则下一次的数字为()。
A. 13B. 14C. 15D. 16解题策略:对于此类题目,考生需要根据数字之间的关系进行推理,常见的方法有找出数字之间的差或者积的规律,然后推测下一个数字是什么。
二、解题策略1. 观察法解决规律题的基本方法是观察,观察题目中已有的条件,找出其中的规律。
在观察的过程中,考生需要细心、耐心,并且善于总结和归纳。
2. 数学推理法在观察的基础上,考生需要进行数学推理,即根据观察到的规律,进行数学推理和逻辑推演,找出题目中的规律。
3. 多种解题方法对于一道规律题,常常存在多种解题方法,考生可以灵活运用不同的数学知识和技巧,进行多种解题尝试,从而找出题目中的规律。
中考数学找规律问题归纳及解析
中考数学找规律问题归纳及解析多练出技巧,巧思出硕果本文是一篇数学题目集,包含了数式问题、定义运算问题和剪纸问题三个部分。
数式问题部分包括了五个题目,需要运用数学知识进行计算和推理。
其中第一个题目需要根据已知条件求解多个未知数,需要进行代数运算;第二个题目需要根据已知数列的规律求解未知项,需要进行数列的推理;第三个题目需要观察一组单项式的规律并推理出第十个单项式,需要进行代数推理;第四个题目需要观察一列数的规律并求解第七个数,需要进行数列的推理;第五个题目需要观察一组按规律排列的多项式并求解第十个式子,需要进行多项式的推理。
定义运算问题部分包括两个题目,需要根据已定义的运算法则进行计算和推理。
第一个题目需要求解一个方程,需要进行代数运算;第二个题目需要根据已知数列的定义进行推理,需要进行数列的推理。
剪纸问题部分只有一道题目,需要根据已知的剪纸图案进行推理并回答问题,需要进行几何推理。
练这些数学题目可以帮助我们巩固数学知识,培养数学思维和推理能力。
只有多练,才能巧思出硕果。
1.在边长为1的菱形ABCD中,通过连接对角线AC,按照规律制作菱形ACC1D1,再制作菱形AC1C2D2,使得每个菱形的内角都为60度。
求第n个菱形的边长。
2.按照规律,从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形。
求第n个图案中正三角形的个数。
3.按照规律摆放同样大小的黑色棋子,第100个图案需要多少枚棋子。
4.观察一系列图形,每个图形中最小的三角形都是全等的。
求第n个图形中最小的三角形的个数。
5.在平面直角坐标系中,已知三个点的坐标分别为A1(1,2)、A2(0,0)、A3(-1,1)。
一只电子蛙从原点开始,按照规律跳到以A1、A2、A3为对称中心的对称点,问电子蛙跳了2009次后,落点的坐标是多少?6.观察图案,按照规律在横线上画出合适的图形,缺少的是字母E的对称。
7.分析图中阴影部分的分布规律,按照规律在图中画出其中的阴影部分。
中考数学找规律题型汇总及解析.doc
中考数学找规律题型扩展及解析“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第 n 个数可以表示为: a1+(n-1)b,其中 a 为数列的第一位数, b 为增幅, (n-1)b 为第一位数到第 n 位的总增幅。
然后再简化代数式 a+(n-1)b。
例:4、10、 16、22、28,求第 n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是 6,所以,第 n 位数是: 4+(n-1) 6=6n- 2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、 5、 7、 9,说明增幅以同等幅度增加。
此种数列第 n 位的数也有一种通用求法。
基本思路是: 1、求出数列的第n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的总增幅;3、数列的第 1 位数加上总增幅即是第n 位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17 增幅为 1、2、 4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析中考数学中,常见的规律题可分为数字规律、图形规律和函数规律三类。
一、数字规律题数字规律题要求考生观察一组数字之间的关系,找出其中的规律,并根据规律进行推理或填空。
1. 算法题算法题是比较常见的数字规律题。
题目给出一组数字,要求考生根据特定的规则进行计算。
解题策略是观察数字之间的运算规律,找出规律后依次进行运算。
例题:已知1×9=9,2×9=18,3×9=27,那么9×8=?解析:观察可以发现,每个数依次与9相乘,得到的结果是依次递增的。
所以9×8=72。
例题:32,18,42,26,60,?解析:观察可以发现,每两个数之间的差是14,60-26=34,所以空位上的数字应该是34。
1. 旋转题旋转题是比较常见的图形规律题。
题目给出一组图形,要求考生观察图形中的旋转规律,并根据规律选出相应的答案。
解题策略是观察图形的旋转角度和旋转方式,找出规律后根据规律选择正确的答案。
例题:下面是一组图形,其中有一个图形的旋转角度和其他的不同,请选出该图形。
图形:* *** *解析:观察可以发现,第二个图形是将第一个图形按照顺时针方向旋转45°得到的,第三个图形是将第一个图形逆时针旋转45°得到的。
所以正确的答案是第二个图形。
2. 缺失题缺失题是要求考生观察一组图形之间的缺失规律,找到缺失的图形并填入正确的位置。
解题策略是观察图形中的缺失部分,找到缺失部分的规律后填入相应的位置。
解析:观察可以发现,缺失的图形应该是由两条线组成,并且与其他的图形相连,所以正确的答案是下面这个图形:1. 给定函数求值题给定函数求值题是比较常见的函数规律题。
题目给出一个函数的表达式和数值,要求考生根据给定的函数表达式计算数值。
解题策略是将给定的数值代入函数表达式,按照运算顺序进行计算。
例题:如果函数y=3x+1,那么当x=2时,y的值是多少?解析:将x=2代入函数y=3x+1,得到y=3×2+1=7。
初中数学找规律题型归纳
初中数学找规律题型归纳一、题型归纳找规律是初中数学中常见的一种题型,主要考察学生的观察、归纳和推理能力。
这种题型通常会给出一些数字、图形或其他信息,要求学生找出其中的规律,并据此解答相关问题。
找规律题型可以分为以下几种类型:1. 数字规律:给出一些数字,要求学生找出其中的规律,如数列中的递推关系、周期性等。
2. 图形规律:给出一些图形或图案,要求学生找出其中的规律,如对称性、旋转等。
3. 综合性规律:结合数字和图形等元素,考察学生的综合分析能力。
二、例题解析1. 数字规律例题:题目:数列1,4,9,16,…的下一个数是_______.解析:观察数列1,4,9,16,…可以发现,每一个数都是某个整数的平方。
具体来说,1是1的平方,4是2的平方,9是3的平方,16是4的平方。
因此,下一个数应该是5的平方,即25。
答案:25。
2. 图形规律例题:题目:观察下列图形,它们有共同点,请写出其中两条:_______.解析:观察给出的图形可以发现,它们都是轴对称图形。
具体来说,每一个图形都可以沿一条直线折叠,使得两侧的图形完全重合。
此外,每一个图形都有两个顶点关于这条直线对称。
因此,答案可以是“轴对称图形”和“两个顶点关于某一直线对称”。
答案:轴对称图形;两个顶点关于某一直线对称(答案不唯一)。
3. 综合性规律例题:题目:观察下列图形和数字:(1)找出其中的规律,并填写空白处的数字。
(2)按照这种规律,第8个图形中有多少个三角形?解析:观察给出的图形和数字可以发现,每一个图形中的三角形数量与图形的序号有关。
具体来说,第1个图形中有1个三角形,第2个图形中有3个三角形(1+2),第3个图形中有6个三角形(1+2+3),以此类推。
因此,空白处的数字应该是1+2+3+4=10。
对于第2个问题,由于第8个图形中的三角形数量是1+2+3+4+5+6+7+8=36个三角形。
答案:(1)10;(2)36。
中考数学常见规律题的题型分类及解题策略分析
中考数学常见规律题的题型分类及解题策略分析
中考数学中常见的规律题主要包括数字规律题和图形规律题两大类。
下面将分别对这两类题型及解题策略进行分析。
一、数字规律题
1. 数列题
数列题是中考数学中常见的数字规律题的一种形式。
解题策略一般包括找出数列的规律,确定递推公式,求出数列中的第n项或前n项和。
对于相对简单的等差数列,可以直接使用公式an=a1+(n-1)d进行求解,其中an表示第n项,a1表示首项,d表示公差。
2. 叠加题
叠加题是指给出一串数字,要求对其进行特定运算后得到结果的题型。
解题策略一般包括找出运算规律,并计算出运算结果。
常见的叠加题有数字之和、数字替换等。
3. 逻辑推理题
逻辑推理题是指给出一部分数字,要求根据一定的逻辑规则推理出另外一部分数字。
解题策略一般包括观察数字间的关系,找出规律,并根据规律进行推理。
常见的逻辑推理题有数字填空、数字排列等。
二、图形规律题
1. 图形填空题
图形填空题是指给出一部分图形,要求根据一定的规律填入正确的图形。
解题策略一般包括观察图形间的关系,找出规律,并根据规律填入正确的图形。
常见的图形填空题有图案填空、菱形填空等。
解决数字规律题和图形规律题的关键在于观察和找出规律。
在解题过程中,可以通过列出数列、运算、排列等方式来梳理思路,找出规律,并应用到具体问题中。
多做一些类似的练习题可以提高解题能力和速度,培养对数字和图形的敏感性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学找规律题型扩展及解析“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a1+(n-1)b,其中a为数列的第一位数,b 为增幅,(n-1)b为第一位数到第n位的总增幅。
然后再简化代数式a+(n-1)b。
例:4、10、16、22、28……,求第n位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n位数是:4+(n-1) 6=6n-2(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等)。
此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。
二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
找出的规律,通常包序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
例如,观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是 10021- ,第n 个数是 n 12-。
解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数。
我们把有关的量放在一起加以比较:给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
容易发现,已知数的每一项,都等于它的序列号的平方减1。
因此,第n 项是2n -1,第100项是2100—1(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,或2n 、3n 有关。
例如:1,9,25,49,(81),(121),的第n 项为( 2)12(-n ),1,2,3,4,5.。
,从中可以看出n=2时,正好是2×2-1的平方,n=3时,正好是2×3-1的平方,以此类推。
(三)看例题:A : 2、9、28、65.....增幅是7、19、37....,增幅的增幅是12、18答案与3有关且是n 的3次幂,即:n 3+1B :2、4、8、16.......增幅是2、4、8.. .....答案与2的乘方有关即:n 2(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。
再在找出的规律上加上第一位数,恢复到原来。
例:2、5、10、17、26……,同时减去2后得到新数列: 0、3、8、15、24……, 序列号:1、2、3、4、5,从顺序号中可以看出当n=1时,得1*1-1得0,当n=2时,2*2-1得3,3*3-1=8,以此类推,得到第n 个数为12-n 。
再看原数列是同时减2得到的新数列,则在12-n 的基础上加2,得到原数列第n 项12+n(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来。
例 : 4,16,36,64,?,144,196,… ?(第一百个数)同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方,得到新数列第n 项即n 2,原数列是同除以4得到的新数列,所以求出新数列n 的公式后再乘以4即,4 n 2,则求出第一百个数为4*1002=40000(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。
当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。
(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。
三、基本步骤1、 先看增幅是否相等,如相等,用基本方法(一)解题。
2、 如不相等,综合运用技巧(一)、(二)、(三)找规律3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例1:一道初中数学找规律题0,3,8,15,24,······ 2,5,10,17,26,····· 0,6,16,30,48······(1)第一组有什么规律?答:从前面的分析可以看出是位置数的平方减一。
(2)第二、三组分别跟第一组有什么关系?答:第一组是位置数平方减一,那么第二组每项对应减去第一组每项,从中可以看出都等于2,说明第二组的每项都比第一组的每项多2,则第二组第n 项是:位置数平方减1加2,得位置数平方加1即12+n 。
第三组可以看出正好是第一组每项数的2倍,则第三组第n 项是:()122-⨯n(3)取每组的第7个数,求这三个数的和?答:用上述三组数的第n 项公式可以求出,第一组第七个数是7的平方减一得48,第二组第七个数是7的平方加一得50,第三组第七个数是2乘以括号7的平方减一得96,48+50+96=1942、观察下面两行数2,4,8,16,32,64, ...(1)5,7,11,19,35,67...(2)根据你发现的规律,取每行第十个数,求得他们的和。
(要求写出最后的计算结果和详细解题过程。
)解:第一组可以看出是2n ,第二组可以看出是第一组的每项都加3,即2n +3, 则第一组第十个数是210=1024,第二组第十个数是210+3得1027,两项相加得2051。
3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?解:从数列中可以看出规律即:1,1,1,2,1,3,1,4,1,5,…….,每二项中后项减前项为0,1,2,3,4,5……,正好是等差数列,并且数列中偶项位置全部为黑色珠子,因此得出2002除以2得1001,即前2002个中有1001个是黑色的。
4、2213-=8 2235-=16 2257-=24 ……用含有N 的代数式表示规律 解:被减数是不包含1的奇数的平方,减数是包括1的奇数的平方,差是8的倍数,奇数项第n 个项为2n-1,而被减数正是比减数多2,则被减数为2n-1+2,得2n+1,则用含有n 的代数式表示为:()()221212--+n n =8n 。
写出两个连续自然数的平方差为888的等式解:通过上述代数式得出,平方差为888即8n=8X111,得出n=111,代入公式:(222+1)2-(222-1)2=888五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差六、数字推理基本类型按数字之间的关系,可将数字推理题分为以下几种类型:1.和差关系。
又分为等差、移动求和或差两种。
(1)等差关系。
12,20,30,42,( 56 )127,112,97,82,( 67 )3,4,7,12,( 19 ),28(2)移动求和或差。
从第三项起,每一项都是前两项之和或差。
1,2,3,5,( 8 ),13A.9B.11C.8D.7选C。
1 +2=3,2+ 3=5,3+ 5=8,5+ 8=130,1,1,2,4,7,13,( 24)A.22B.23C.24D.25选C。
注意此题为前三项之和等于下一项。
一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。
5,3,2,1,1,(0 )A.-3B.-2C.0D.2选C。
前两项相减得到第三项。
2.乘除关系。
又分为等比、移动求积或商两种(1)等比,从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。
8,12,18,27,(40.5)后项与前项之比为1.5。
6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3(2)移动求积或商关系。
从第三项起,每一项都是前两项之积或商。
2,5,10,50,(500)100,50,2,25,(2/25)3,4,6,12,36,(216) 从第三项起,第三项为前两项之积除以21,7,8,57,(457)第三项为前两项之积加 13.平方关系1,4,9,16,25,(36),49 为位置数的平方。
66,83,102,123,(146) ,看数很大,其实是不难的,66可以看作64+2,83可以看作81+2,102可以看作100+2,123可以看作121+2,以此类推,可以看出是8,9,10,11,12的平方加24.立方关系1,8,27,(81),125 位置数的立方。
3,10,29,(83),127 位置数的立方加 20,1,2,9,(730) 后项为前项的立方加15.分数数列。
关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分,则可得出答案21 34 49 516 625 (736)分子为等比即位置数的平方,分母为等差数列,则第n 项代数式为:21+n n 2/3 1/2 2/5 1/3 (1/4) 将1/2化为2/4,1/3化为2/6,可得到如下数列:2/3, 2/4, 2/5, 2/6, 2/7, 2/8 …….可知下一个为2/9,如果求第n 项代数式即:22+n ,分解后得:21+-n n 6.、质数数列2,3,5,(7),11 质数数列4,6,10,14,22,(26) 每项除以2得到质数数列20,22,25,30,37,(48) 后项与前项相减得质数数列。
7.、双重数列。
又分为三种:(1)每两项为一组,如1,3,3,9,5,15,7,(21) 第一与第二,第三与第四等每两项后项与前项之比为32,5,7,10,9,12,10,(13)每两项中后项减前项之差为31/7,14,1/21,42,1/36,72,1/52,(104 )两项为一组,每组的后项等于前项倒数*2(2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。