铸造基础知识(二)

合集下载

铸造工艺基础知识及理论

铸造工艺基础知识及理论

铸造工艺基础知识及理论目录一、基础概念 (2)1.1 铸造的定义与意义 (3)1.2 铸造工艺的种类与应用 (4)二、铸造材料 (6)三、铸造设备 (7)3.1 熔炼设备 (9)3.2 锻造设备 (10)3.3 后处理设备 (11)四、铸造工艺过程 (12)五、铸造工艺设计 (13)5.1 工艺方案的确定 (15)5.2 工艺参数的选择 (16)5.3 工艺文件的编制 (18)六、铸造质量与控制 (20)6.1 铸造缺陷的产生原因及防止措施 (22)6.2 铸造质量检测方法与标准 (23)七、铸造生产与环境 (24)7.1 铸造生产的环保要求 (26)7.2 环保设备的应用与管理 (27)八、现代铸造技术的发展趋势 (28)8.1 快速凝固与近净形铸造技术 (30)8.2 数字化与智能化铸造技术 (31)8.3 生物铸造与绿色铸造技术 (33)一、基础概念铸造工艺是指将熔炼好的液态金属浇入铸型,待其凝固后获得所需形状和性能的金属制品的过程。

它是制造业中非常重要的工艺之一,广泛应用于汽车、航空、建筑、电子等领域。

铸造工艺的基础知识主要包括液态金属的性质、铸型(即模具)的设计与制造、浇注系统、凝固过程以及后处理等。

这些知识是理解和掌握铸造工艺的基本前提。

液态金属的性质:液态金属在铸造过程中的流动性、填充能力、冷却速度等对其最终的产品质量有着决定性的影响。

了解液态金属的成分、温度、粘度等基本性质对于铸造工艺的设计和实践都是非常重要的。

铸型的设计与制造:铸型是形成金属制品形状和内部结构的重要工具。

铸型的设计需要考虑到金属液的流动性和凝固特性,以及制品的精度和表面质量要求。

铸型的制造也需要选用合适的材料,并经过精密加工才能达到设计要求。

浇注系统:浇注系统是连接铸型和液态金属的通道,包括浇口杯、直浇道、横浇道和内浇道等部分。

合理的浇注系统设计可以确保金属液均匀地注入铸型,并有利于热量和气体的排出,从而提高制品的质量和生产效率。

铸造基础知识

铸造基础知识

铸造基础知识铸造是一种古老而重要的金属加工工艺,它通过将液态金属注入模具中,待其冷却凝固后获得具有特定形状和性能的铸件。

铸造技术在工业生产中有着广泛的应用,从汽车零部件到航空航天部件,从机械制造到艺术雕塑,都离不开铸造工艺。

一、铸造的分类铸造的方法多种多样,常见的有砂型铸造、熔模铸造、金属型铸造、压力铸造等。

砂型铸造是最传统也是应用最广泛的铸造方法。

它以砂为主要造型材料,制作铸型。

砂型铸造成本低,适应性强,可生产各种形状和尺寸的铸件,但铸件的精度和表面质量相对较低。

熔模铸造则适用于生产形状复杂、精度要求高的小型铸件。

它首先用易熔材料制成模样,然后在模样上涂挂耐火材料,经过硬化和干燥后,将模样熔去,形成铸型。

熔模铸造的铸件尺寸精度高,表面光洁,但工艺复杂,成本较高。

金属型铸造采用金属模具进行铸造,模具可以反复使用,生产效率高,铸件的组织致密,力学性能好。

但金属型铸造的模具成本高,且不适合生产形状复杂的铸件。

压力铸造是在高压下将液态金属快速压入模具中成型。

这种方法生产效率极高,铸件精度高,表面质量好,但设备投资大,主要用于生产薄壁、形状复杂的有色金属铸件。

二、铸造工艺流程无论采用哪种铸造方法,其基本工艺流程都包括模具制造、熔炼金属、浇注、凝固冷却和铸件清理等环节。

模具制造是铸造的关键步骤之一。

模具的质量和精度直接影响到铸件的质量和尺寸精度。

在制造模具时,需要根据铸件的形状和尺寸要求,选择合适的造型材料和制造工艺。

熔炼金属是将原材料(如金属锭、废钢等)加热至液态,并调整其化学成分和温度,使其符合铸造要求。

熔炼过程中需要严格控制温度、化学成分和杂质含量,以保证金属液的质量。

浇注是将熔炼好的金属液倒入模具中。

浇注的速度、温度和方式都对铸件的质量有着重要影响。

过快或过慢的浇注速度可能导致铸件出现缺陷,如气孔、夹渣等。

在浇注完成后,金属液在模具中逐渐凝固冷却。

凝固过程中的冷却速度会影响铸件的组织和性能。

合理控制冷却速度可以获得理想的组织和性能。

铸造培训-铸造基本知识

铸造培训-铸造基本知识

前一页
后一页
回主页
三、铸型充填条件
(1)铸型的材料
(2)铸型温度 铸型温度越高,液态金属与铸型的
温差越小,充型能力越强。 (3)铸型中的气体
前一页
后一页
回主页
§1-2 铸件的凝固与收缩
一、铸件的凝固方式
温度
1. 逐层凝固
2. 糊状凝固 3. 中间凝固 影响铸件凝固方 式的主要因素:
温度
a b c
前一页 后一页 回主页
金属型铸造
金属型铸造是在重力作用下将金属液体浇入金属铸型以 获得铸件的方法。铸型用金属制成,可反复使用,故又称永久 型铸造。
前一页
后一页
回主页
金属型铸造
特点: •节省造型材料, “一型多铸” •精度高,IT12~IT16,Ra<12.5μm •生产率高 •周期长,成本高,工艺参数严格 •无透气性,浇不到、裂纹等缺陷。
这些有别于砂型铸造的其他铸造方法通称为特种铸造。 金属型铸造
挤压铸造 离心铸造 七 种 常 见 的 特 种 铸 造 方 法
回主页
压力铸造
特种铸造 陶瓷型铸造 低压铸造
前一页 后一页
熔模铸造
熔模铸造
在易熔模样表面包覆若干层耐火材料,待其硬化干燥后, 将模样熔去制成中空型壳,经浇注而获得铸件的一种 成形工艺方法。模样材料多位蜡质,又称为失蜡铸造。
前一页
后一页
回主页
低压铸造
1、低压铸造的工艺过程 :
1)准备合金液和铸型 2)升液,浇注。
3)增压凝固。 4)减压、降液。 5)开型取出铸件。
前一页
后一页
回主页
低压铸造
特点:
•充型压力和速度便于控制,适用于各种铸型;

铸造基础知识分享

铸造基础知识分享

铸造基础知识分享一、浇注位置的确定原则1、铸件的重要加工面、主要工作面和受力面应尽量放在底部或侧面,以防止这些表面上产生砂眼、气孔和夹渣等铸造缺陷2、浇注位置应有利于所确定的凝固顺序。

对于收缩较大的合金浇注位置应尽量满足顺序凝固的原则。

铸件厚实部分一般应置于浇注位置上方,以利于设置冒口补缩3、浇注位置应有利于砂芯的定位和稳固支撑,使排气通畅。

尽量避免吊芯、悬臂砂芯4、铸件的大平面应放置于下部或倾斜放置,以防止夹砂等缺陷。

有时为了方便造型,采用“横做立浇”、“平做斜浇”的方法5、铸件的薄壁部位应置于浇注位置的下部或侧面,以防止浇不到、冷隔的等铸造缺陷6、在大批量生产中,应使铸件的毛刺、飞翅易于清理7、要避免厚实铸件的冒口下面的主要工作面产生偏析二、分型面的确定原则1、尽可能将铸件的全部或大部分放在同一箱内,以减少因错型造成的尺寸偏差2、应尽量把铸件的加工定位面和主要加工面放在同一箱内,以减少加工定位的尺寸偏差3、要尽量减少分型面的数量。

在机器铸造中一般采用一个分型面。

4、在机器铸造中,选择分型面时,应尽量避免使用活块,必要时用砂芯代替活块5、应尽量减少砂芯的数量6、应尽量使分型面为平面,必要时也可不做成平面7、为方便起模,分型面应选在铸件的最大截面处。

对于较高的铸件,尽量不使铸件在一箱内过高8、在考虑造型、浇注、制芯的基础上,分型面的选择还应有利于清理9、选择分型面时应考虑到造型方法。

高压造型与震击造型和射压造型相比,砂型紧实度较高,狭小吊砂处易坏型,故在高压造型中应避免狭小吊砂三、合型前的准备1、熟悉铸造工艺图,了解铸型结构特点,准备好芯撑、过滤网、浇口杯及所需的砂芯等一、浇注位置的确定原则1、铸件的重要加工面、主要工作面和受力面应尽量放在底部或侧面,以防止这些表面上产生砂眼、气孔和夹渣等铸造缺陷2、浇注位置应有利于所确定的凝固顺序。

对于收缩较大的合金浇注位置应尽量满足顺序凝固的原则。

铸件厚实部分一般应置于浇注位置上方,以利于设置冒口补缩3、浇注位置应有利于砂芯的定位和稳固支撑,使排气通畅。

铸造知识(全)汇总

铸造知识(全)汇总

第一章铸造工艺基础§1 液态合金的充型充型: 液态合金填充铸型的过程.充型能力: 液态合金充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力充型能力不足:易产生: 浇不足: 不能得到完整的零件.冷隔:没完整融合缝隙或凹坑, 机械性能下降.一合金的流动性液态金属本身的流动性----合金流动性1 流动性对铸件质量影响1) 流动性好,易于浇出轮廓清晰,薄而复杂的铸件.2) 流动性好,有利于液态金属中的非金属夹杂物和气体上浮,排除.3) 流动性好,易于对液态金属在凝固中产生的收缩进行补缩.2 测定流动性的方法:以螺旋形试件的长度来测定: 如灰口铁:浇铸温度1300℃试件长1800mm.铸钢: 1600℃100mm3 影响流动性的因素主要是化学成分:1) 纯金属流动性好:一定温度下结晶,凝固层表面平滑,对液流阻力小2) 共晶成分流动性好:恒温凝固,固体层表面光滑,且熔点低,过热度大.3) 非共晶成分流动性差: 结晶在一定温度范围内进行,初生数枝状晶阻碍液流二浇注条件1 浇注温度: t↑合金粘度下降,过热度高. 合金在铸件中保持流动的时间长,∴t↑提高充型能力. 但过高,易产生缩孔,粘砂,气孔等,故不宜过高2 充型压力: 液态合金在流动方向上所受的压力↑充型能力↑如砂形铸造---直浇道,静压力. 压力铸造,离心铸造等充型压力高.三铸型条件1 铸型结构: 若不合理,如壁厚小, 直浇口低, 浇口小等充↓2 铸型导热能力: 导热↑金属降温快,充↓如金属型3 铸型温度: t↑充↑如金属型预热4 铸型中气体: 排气能力↑充↑减少气体来源,提高透气性, 少量气体在铸型与金属液之间形成一层气膜,减少流动阻力,有利于充型.§2 铸件的凝固和收缩铸件的凝固过程如果没有合理的控制,铸件易产生缩孔,缩松一铸件的凝固1 凝固方式:铸件凝固过程中,其断面上一般分为三个区: 1—固相区2—凝固区3—液相区对凝固区影响较大的是凝固区的宽窄,依此划分凝固方式.1) 逐层凝固:纯金属,共晶成分合金在凝固过程中没有凝固区,断面液,固两相由一条界限清楚分开,随温度下降,固相层不断增加,液相层不断减少,直达中心.2) 糊状凝固合金结晶温度范围很宽,在凝固某段时间内,铸件表面不存在固体层,凝固区贯穿整个断面,先糊状,后固化.3) 中间凝固大多数合金的凝固介于逐层凝固和糊状凝固之间.2 影响铸件凝固方式的因素1) 合金的结晶温度范围范围小: 凝固区窄,愈倾向于逐层凝固如: 砂型铸造, 低碳钢逐层凝固, 高碳钢糊状凝固2) 铸件的温度梯度合金结晶温度范围一定时,凝固区宽度取决于铸件内外层的温度梯度.温度梯度愈小,凝固区愈宽.(内外温差大,冷却快,凝固区窄)二合金的收缩液态合金从浇注温度至凝固冷却到室温的过程中,体积和尺寸减少的现象---.是铸件许多缺陷(缩孔,缩松,裂纹,变形,残余应力)产生的基本原因.1 收缩的几个阶段1) 液态收缩: 从金属液浇入铸型到开始凝固之前. 液态收缩减少的体积与浇注温度质开始凝固的温度的温差成正比.2) 凝固收缩: 从凝固开始到凝固完毕. 同一类合金,凝固温度范围大者,凝固体积收缩率大.如: 35钢,体积收缩率3.0%, 45钢 4.3%3) 固态收缩: 凝固以后到常温. 固态收缩影响铸件尺寸,故用线收缩表示.2 影响收缩的因素1) 化学成分: 铸铁中促进石墨形成的元素增加,收缩减少. 如: 灰口铁C, Si↑,收↓,S↑收↑.因石墨比容大,体积膨胀,抵销部分凝固收缩.2) 浇注温度: 温度↑液态收缩↑3) 铸件结构与铸型条件铸件在铸型中收缩会受铸型和型芯的阻碍.实际收缩小于自由收缩.∴铸型要有好的退让性.3 缩孔形成在铸件最后凝固的地方出现一些空洞,集中—缩孔. 纯金属,共晶成分易产生缩孔*产生缩孔的基本原因: 铸件在凝固冷却期间,金属的液态及凝固受缩之和远远大于固态收缩.4 影响缩孔容积的因素(补充)1) 液态收缩,凝固收缩↑缩孔容积↑2) 凝固期间,固态收缩↑,缩孔容积↓3) 浇注速度↓缩孔容积↓4) 浇注速度↑液态收缩↑易产生缩孔5 缩松的形成由于铸件最后凝固区域的收缩未能得到补足,或者,因合金呈糊状凝固,被树枝状晶体分隔开的小液体区难以得到补缩所至.1) 宏观缩松肉眼可见,往往出现在缩孔附近,或铸件截面的中心.非共晶成分,结晶范围愈宽,愈易形成缩松.2) 微观缩松凝固过程中,晶粒之间形成微小孔洞---凝固区,先形成的枝晶把金属液分割成许多微小孤立部分,冷凝时收缩,形成晶间微小孔洞. 凝固区愈宽,愈易形成微观缩松,对铸件危害不大,故不列为缺陷,但对气密性,机械性能等要求较高的铸件,则必须设法减少.(先凝固的收缩比后凝固的小,因后凝固的有液,凝,固三个收缩,先凝固的有凝,固二个收缩区----这也是形成微观缩松的基本原因.与缩孔形成基本原因类似)6 缩孔,缩松的防止办法基本原则: 制定合理工艺—补缩, 缩松转化成缩孔.顺序凝固: 冒口—补缩同时凝固: 冷铁—厚处. 减小热应力,但心部缩松,故用于收缩小的合金.l 安置冒口,实行顺序凝固,可有效的防止缩孔,但冒口浪费金属,浪费工时,是铸件成本增加.而且,铸件内应力加大,易于产生变形和裂纹.∴主要用于凝固收缩大,结晶间隔小的合金.l 非共晶成分合金,先结晶树枝晶,阻碍金属流动,冒口作用甚小.l 对于结晶温度范围甚宽的合金,由于倾向于糊状凝固,结晶开始之后,发达的树枝状骨状布满整个截面,使冒口补缩道路受阻,因而难避免显微缩松的产生.显然,选用近共晶成分和结晶范围较窄的合金生产铸件是适宜的.§3 铸造内应力,变形和裂纹凝固之后的继续冷却过程中,其固态收缩若受到阻碍,铸件内部就发生内应力,内应力是铸件产生变形和裂纹的基本原因.(有时相变膨胀受阻,负收缩)一内应力形成1 热应力: 铸件厚度不均,冷速不同,收缩不一致产生.塑性状态: 金属在高于再结晶温度以上的固态冷却阶段,受力变形,产生加工硬化,同时发生的再结晶降硬化抵消,内应力自行消失.(简单说,处于屈服状态,受力—变形无应力)弹性状态: 低于再结晶温度,外力作用下,金属发生弹性变形,变形后应力继续存在.举例: a) 凝固开始,粗细处都为塑性状态,无内应力∵两杆冷速不同,细杆快,收缩大,∵受粗杆限制,不能自由收缩,相对被拉长,粗杆相对被压缩,结果两杆等量收缩.b) 细杆冷速大,先进如弹性阶段,而粗杆仍为塑性阶段,随细杆收缩发生塑性收缩,无应力.c) 细杆收缩先停止,粗杆继续收缩,压迫细杆,而细杆又阻止粗杆的收缩,至室温, 粗杆受拉应力(+),(-) 由此可见,各部分的温差越大,热应力也越大,冷却较慢的部分形成拉应力,冷却较快的部分形成压应力.预防方法: 1 壁厚均匀2 同时凝固—薄处设浇口,厚处放冷铁优点: 省冒口,省工,省料缺点: 心部易出现缩孔或缩松,应用于灰铁锡青铜,因灰铁缩孔、缩松倾向小,锡青铜糊状凝固,用顺序凝固也难以有效地消除其显微缩松。

铸造知识讲座(基础知识)

铸造知识讲座(基础知识)
(2)组成: 耐火填料、载体、悬浮剂、粘结剂和添加剂等。
(3)分类: 水基涂料、有机溶剂涂料、特种涂料。
(4)常用: 硅石粉、锆英粉、铬铁矿粉
四、凝固与收缩
1、顺序(逐层)凝固方式 窄结晶温度范围合金(工业
用铜、低碳钢)
2、糊状(体积)凝固方式
• 液态收缩:自浇注温度冷却到 液相线温度,金属完全处于液 态
八、熔炼设备
1、铸铁:冲天炉、感应电炉、双联熔炼 2、铸钢: (1)电弧炉炼钢:碱性电弧炉、酸性电弧炉
(不能脱磷、脱硫,被淘汰)
(2)感应电炉炼钢: 高频——电流频率200-300Hz 中频——电流频率1000-2500Hz
工频——电流频率50/60Hz 真空感应电炉——真空状态下熔炼 (3)炉外精炼(发展方向)
石砂、铬铁矿砂、刚玉砂等等。 铬铁矿砂主要用作大型铸钢件和各种合金钢
铸件的型、芯面砂和抗粘砂涂料、涂膏。 壳体,摇臂内腔等容易粘砂的位置等
2、粘结材料 粘土、水玻璃、油类粘结剂、合成树脂粘结剂、
水泥、其他铸造用粘结剂等。
3、辅助材料 煤粉及其复合添加剂、重油和渣油、淀粉类材
料、石墨粉、滑石粉、有机溶剂等。
二、铸造的分类
⑴普通砂型铸造:包括粘土砂、水玻璃砂和 水泥砂、油砂、树脂砂、特种砂等。
⑵特种铸造 常用的特种铸造方法有熔模精密铸造、
石膏型精密铸造、陶瓷型精密铸造、消失 模铸造、金属型铸造、压力铸造、真空吸 铸、离心铸造等。
三、造型材料
1、原材料 (1)硅砂:硅的氧化物,主要是石英,化学
成分为SiO2. (2)特种砂:石灰石砂、锆砂、镁砂、橄榄
• 凝固收缩:自液相线温度冷却 到固相线温度
宽结晶温度范围合金(球铁、 液态收缩和凝固收缩是铸件产

铸造基础知识及常见铸造缺陷简介

铸造基础知识及常见铸造缺陷简介

熔模铸造的特点
1. 铸件精度高,表面光洁高; 2.可以直接铸造出复杂的组合零件,外形和内腔形
状几乎不受限制 3.可以铸造出各种薄壁铸件及重量很小的铸件,重
量可以小到几克; 4.生产工序繁多,生产周期长,铸件不能太大。
9
消失模铸造
消失模铸造,又称实型铸造,采用可气化的材 料制得的模型来造型,不用起模直接将金属液 浇注到气化模上,使其燃烧、气化并形成空腔 来容纳金属液,从而获得铸件的方法。
30
气孔
31
气孔
32
气孔
33
气孔
34
气孔
35
缩孔的产生
1.金属液具有液态收缩、凝固收缩、固态收缩特 征
2.金属液的化学成分(碳、硅含量)与凝固温度 范围
3.浇注系统设置不合理,需补缩部位的得不到有 效补缩
4.铸件结构不合理,壁厚变化突然,孤立的热节 得不到有效补缩
5.砂型紧实度差,型壁迁移导致缩孔
16
离心铸造
离心铸造是将液体金属浇入旋转的铸型 中,使液体金属在离心力的作用下充填铸型 和凝固形成的一种铸造方法。
离心铸造的特点
1、适用于旋转体铸件的生产,不用型芯,简化 套筒和管类铸件的生产过程,省去浇冒口;
2、铸件致密度高,缺陷少,机械性能较好; 3、便于制造筒、套类复合金属铸件,如钢背铜
套、双金属轧辊等; 4、易产生偏析,内表面粗糙,尺寸不易控制。 5、用于生产异型铸件时有一定的局限性。
36
缩孔
37
缩孔
38
缩孔
39
缩孔
40
缩陷
41
壁厚悬殊导致缩孔
42
内部缩孔
43
错箱(偏芯)的产生
1.固定在型板上的模样发生松动 2.模具定位销、套,砂箱定位销、套磨损 3.合型后砂箱受外力碰撞,或敲卡箍时,用力不

铸造基础知识

铸造基础知识

a)明缩孔
b)凹角缩孔
c)芯面缩孔
d)内部缩孔
产生原因
一、铸件结构方面的原因:由于铸件断面过厚,造成补缩不良形成缩孔。铸 件壁厚不均匀,在壁厚部分热节处产生缩孔或缩松。 由于铸孔直径太小形成铸孔的砂芯被高温金属液加热后,长期处于高 温状态,降低了铸孔表面金属的凝固速度,同时,砂芯为气体或大气压提供 了信道,导致了孔壁产生缩孔和绣松。 铸件的凹角圆角半径太小,使尖角处型砂传热能力降低,凹角处凝固 速度下降,同时由于尖角处型砂受热作用强,发气压力大,析出的气体可向 未凝固的金属液渗入,导致铸件产生气缩孔。 二、工艺设计的原因 (1)浇注系统设计不合理: 浇注系统设计与铸件的凝 固原则相矛盾时,可能会导致铸件产生缩孔或缩松。主要表现为浇注位置不 合适,不利于顺序凝固,内浇口的位置及尺寸不正确。 (2)冒口设计不合理:冒口位置、数量、尺寸及冒口颈尺寸未能促进铸件 顺序凝固,都可能导致铸件产生缩孔和缩松。如果在暗冒口顶部未放置出气 冒口,或冷铁使用不当,也会导致铸件产生缩孔和缩松。 (3)浇注方面的原因: 浇注速度越快,缩孔体积越大。浇注温度太高,使 液态金属的液态收缩量增加;太低时,又会降低冒口的补缩能力,特别是采 用底注式浇注系统时更明显,铸件往往在下部产生缩孔和缩松。当冒口没有 浇满或对大中型铸件没有用金属液对明冒口进行补浇时,这将降低冒口的补 缩能力,引起铸件产生缩孔或缩松。
缩松
定义:缩松是指铸件最后凝固的区域没有得到液态金属或合金的补缩形成分 散和细小的缩孔。 特征:常分散在铸件壁厚的轴线区域、厚大部位、冒口根部和内浇口附近。 当缩松与缩孔容积相同时,缩松的分布面积要比缩孔大得多。缩松隐藏于铸 件的内部,外观上不易被发现。
产生的部位: 缩松总是产生在铸件上冷却相对缓慢的部位,如铸件的热节处、壁的转接 R处、距离很近的夹壁处、内浇口附近或紧挨缩孔的下面。

铸造基本知识及理论

铸造基本知识及理论

程中,其体积或尺寸缩减的现象。
分类:分为三类,液态收缩、凝固收缩和固态收缩。
浇注温度
铸 液态收缩
件 温
开始凝固温度

度 降
凝固收缩
积 收


凝固终止温度
固态收缩
室温
线收缩
收缩率:
体积收缩是指单位体积的收缩量(体积收缩率)。 线收缩是指单位长度上的收缩量(线收缩率)。
体积收缩率:
V
V0 V1 100% V1
2、型砂的影响: 1)原砂、粘结剂和稀释剂的成分配比; 型砂
原砂
稀释剂
粘结剂




















2)原砂的形状、粒度状况
一般认为:粒度在小尺寸范围呈正态分布,有利于
砂型强度的提高,但透气性较差。

工 艺 过 程
特点及应用:
1、不受铸件材质、尺寸、质量和生产批量的限制; 2、属于一次性铸造成形,造型工作量大; 3、铸件精度和表面质量差; 4、砂型铸造缺陷多,废品率高,机械性能较差; 5、设备简单、投资少,价格低廉,应用广泛。
连续铸造:
➢ 定义:是指将熔融金属连续不断地浇注到被成为结晶
器的特殊容器中,凝固的铸件不断从结晶器的另一端被引 出,从而获得任意长度的等横截面铸件的铸造方法。
➢ 工艺过程:如右图所示。
➢ 特点和应用:
1、冷却速度快,组织致密, 机械性能好;
2、工艺简单,生产效率高; 3、适于横截面一定的钢材、
铝材和铸铁管等铸件的生产。
阶 段 主要影响因素

铸造必备基础知识

铸造必备基础知识

铸造必备基础知识在进行铸造工艺之前,了解铸造必备的基础知识是非常重要的。

本文将介绍铸造工艺的基本概念、材料选择、铸造方法、设计和工艺控制等方面的知识。

一、铸造的基本概念铸造是指将熔化的金属或非金属材料,通过浇筑或其他注入方式,借助于一定形状的模具,在其冷却过程中制成所需的零件或产品的工艺过程。

铸造是制造业中最常用的成型方法之一,具有形状复杂、尺寸精确、材料多样化等优点。

二、材料选择在铸造中,常用的金属材料包括铁、铜、铝、锌等。

选择合适的材料取决于产品的需求,如机械性能、耐腐蚀性、导电性等。

此外,还要考虑材料的可铸造性,如熔点、流动性等特性。

三、铸造方法铸造方法主要分为砂型铸造、金属型铸造和持续铸造等几种。

砂型铸造是最常见的一种,通过在模具中填充湿砂,形成铸型,然后在铸型中浇注熔化的金属。

金属型铸造主要用于高温合金和特殊材料的铸造。

持续铸造适用于大量生产和连续铸造的情况。

四、设计和工艺控制在进行铸造产品的设计时,需要考虑模具的结构、冷却方式、缩孔和气孔等缺陷的预防。

同时,还需要进行合理的工艺控制,如控制熔化温度、浇注速度、冷却时间等,来保证产品的质量。

五、常见问题和解决方法在铸造过程中,常见的问题包括缺陷、变形和裂纹等。

要解决这些问题,可以采用改进模具设计、增加冷却措施、调整工艺参数等方法。

六、铸造在工业中的应用铸造广泛应用于机械制造、汽车、航空航天、建筑等领域。

铸造的发展还推动了材料科学和工艺技术的进步。

七、总结铸造是一种常见且重要的制造方法,它具有成本低、生产效率高等特点。

在进行铸造前,了解铸造的基本概念、材料选择、铸造方法、设计和工艺控制等方面的知识是必不可少的,有助于提高产品的质量和生产效率。

随着科技的不断进步,铸造技术也在不断革新,为各行各业的发展做出了重要贡献。

中职教育-铸工工艺与技能训练(劳动版)课件:第一单元铸造生产基础知识(二)秦正超 编.ppt

中职教育-铸工工艺与技能训练(劳动版)课件:第一单元铸造生产基础知识(二)秦正超 编.ppt

图1-6 沙舂
图1-7 舂砂姿势
4. 风动捣固器
风动捣固器也称风冲子,用来舂实较大的砂型和砂芯, 如图1-8所示。风动捣固器的操作姿势如图1-9所示。
图1-8 风动捣固器
图1-9 风动捣固器的操作姿势
5. 刮板
刮板也称刮尺,用来刮去高出砂箱的型砂,如图1-10 所示。
6. 通气针
通气针也称气眼针,扎砂型通气孔用,如图1-11所示。
4. 评分标准
评分标准见下表。
1. 铸造生产的分类、特点是什么? 2. 试以常见典型零件为例,说明砂型铸造的工艺过程。 3. 常用铸造材料的一般性能是什么? 4. 阐述铸型基本结构及各部分作用。 5. 常用造型工具、辅具、铸造工艺装备有哪些? 6. 手工造型操作一般步骤有哪些?
图1-35 沙箱
三、手工造型操作一般步骤
1、按考虑好的方案,将模样放在底板上的适当位置。 2、套好下砂型,使模样与砂箱内壁之间留有合适的 吃砂量,留出开挖浇注系统的位置。 3、向砂箱内铲入一层背砂进行舂实,砂,用砂舂平头舂实,用刮板刮 去多余的背砂,使砂型表面和砂箱边缘齐平。
图1-23 半圆
图1-24 圆头
17. 法兰梗
法兰梗也称光槽镘刀,供修理砂型或砂芯的深窄底面 及管子两端法兰边用,由钢或青铜制成,如图1-25所示。
18.水平仪
水平仪又称水平尺,是用来检测被测平面是否水平、 立面是否垂直的一种测量工具,如图1-26所示。
图1-25 法兰梗
图1-23 水平仪
19.卡钳
图1-33 芯盒
4.芯盒的定位与锁紧装置
操作时,将芯盒的两半按定位销合成一体并放到 平板上,如图1-34所示,然后用钢夹子夹紧,之后就 可以装入芯砂进行制芯,稍大的金属芯盒一般应用蝶 形螺母锁紧。

《铸造基础知识》课件

《铸造基础知识》课件

铸造工艺能够生产出形状复杂 的零件,且具有节约金属材料 、生产成本较低等优点。
02 铸造材料
铸造用金属材料
01
02
03
铸钢
用于生产承受较大载荷和 要求高强度、高耐磨性的 机械零件,如齿轮、曲轴 等。
铸铁
具有良好的铸造性能、减 震性能和耐磨性能,广泛 应用于制造各种铸件,如 汽缸体、底座等。
铝合金
流程
主要包括造型、制芯、熔炼、浇注 、冷却和落砂等步骤。
特种铸造
定义
特种铸造是一种采用特殊工艺和 材料的铸造方法,如消失模铸造
、金属型铸造、压力铸造等。
特点
特种铸造能够提高铸件质量、减 少废品率、提高生产效率,适用 于生产复杂、高精度和高质量的
铸件。
流程
各种特种铸造工艺的流程略有不 同,但通常包括模具设计、材料
质量轻、耐腐蚀、导热性 好,常用于制造轻量化要 求的零件,如汽车发动机 缸体、缸盖等。
铸造用非金属材料
树脂砂
以树脂为粘结剂的型砂,具有较高的强度和耐热 性,主要用于生产复杂形状的铸件。
陶瓷砂
具有高强度、高硬度和耐高温特性,适用于生产 耐磨、耐腐蚀的铸件,如轴承、密封件等。
石墨
具有良好的耐高温、耐腐蚀和润滑性能,常用于 生产高温、高压环境下工作的铸件。
《铸造基础知识》ppt课件
目录
• 铸造简介 • 铸造材料 • 铸造工艺 • 铸造缺陷与质量控制 • 铸造技术的发展趋势与展望
01 铸造简介
铸造的定义
01
铸造是一种通过将液态金属倒入 模具中,待其冷却凝固后形成固 态零件的工艺。
02
铸造工艺广泛应用于机械、汽车 、航空、船舶、轻工等工业领域 。

铸造工艺基础知识及理论

铸造工艺基础知识及理论
金属液态成形(铸造)工艺
4
铸造材料
1
工艺基础 工艺性能
2
铸件生产
铸造工艺
3 工艺方法
1. 金属液态成形(铸造)工艺基础
什么是金属的液态成形:
将熔炼好的液态金属浇入与零件形 状相适应的铸型空腔中,待其冷却凝固, 以获得毛坯或零件的工艺方法,亦称铸造.
金属的液态成形的方法:
金属的液态成形是制造毛坯、零件的重要方法之一。按铸型材 料的不同,金属液态成形可分为砂型铸造和特种铸造(包括压力铸 造、金属型铸造等).其中砂型铸造是最基本的液态成形方法,所生 产的铸件要占铸件总量的80%以上.特种铸造较适用于大批量生产, 应用范围逐渐增加。

的 方
方法
合理布置内浇道及确定浇铸工艺。

合理应用冒口、冷铁和补贴等工艺措施。
3. 铸件的生产工艺
整模造型
分模造型
手工造型
砂型铸造
活块造型 三箱造型

挖砂造型

机器造型
刮板造型

铸造工艺图的绘制

砂型铸造的工艺设计
分型面的选择

工艺参数的确定 浇注位置的确定

金属型铸造
熔模铸造
压力铸造
特种铸造
低压铸造 陶瓷型铸造
内是由表及里的逐层凝固。在凝固过程中,如得不到合金液的 补充,在铸件最后凝固的地方就会产生缩孔.
2. 铸件的生产—缩松的形成 缩松的形成原因:
铸件最后凝固的收缩未能得到补充,或者结晶温度范围宽的 合金呈糊状凝固,凝固区域较宽,液、固两相共存,树枝晶发 达,枝晶骨架将合金液分割开的小液体区难以得到补缩所致。
合金的收缩的过程:
合金从液态冷却至室温的过程中,其体积或尺寸缩减的 现象。合金的收缩给液态成形工艺带来许多困难,会造成许 多铸造缺陷。(如:缩孔、缩松、裂纹、变形等)。

机械制造2-1 铸造工艺基础知识

机械制造2-1 铸造工艺基础知识

10
2.1
铸造的工艺基础知识
• 2.1.1 液态合金的充型 合金流动性的定义
流动性是指液态(熔融)金属的流动能力。 它是影响液态金属充型能力的主要因素之一, 也是合金的主要铸造性能之一。
11
2.1
铸造的工艺基础知识
• 2.1.1 液态合金的充型 合金流动性的测量方法
常用浇注标准螺旋形试样的方法进行测定。 螺旋形试样的长度越长,则液态合金的流动性越好。 常用合金的螺旋形试样的长度数值见P11表2-1。
22
充型能力的影响因素
主要影响因素:铸型条件和浇注条件 2.浇注条件:
浇注条件又与浇注系统结构、浇注温度和充型压力有关。 (2)浇注温度: 浇注温度越高,合金保持液态的时 间越长,金属液粘度降低,杂质容 易上浮或溶解,故合金流动性好, 充型能力强。但浇注温度过高,液 态合金收缩增大,吸收气体多,氧 化严重,流动性反而会下降。因此 在保证流动性的前提下,浇注温度 应尽可能低一些。
25
砂型铸造的充型压力由 直浇道的静压力产生。
2.1
铸造的工艺基础知识
• 2.1.2 铸件的凝固与收缩
浇入铸型型腔的液态金属在冷凝过程中,如果其 液态收缩和凝固收缩得不到补充,铸件将产生缩孔 或缩松等铸造缺陷。因此,必须合理地控制铸件的 凝固过程。 1. 铸件的凝固方式 铸件的凝固: 液态合金转变为固态铸件的过程称为铸件的凝固。
阶段的收缩。用体收缩率表示。合金的结晶温度范围越大, 体收缩率也越大。液态收缩和凝固收缩时金属液体积缩小, 是形成缩孔和缩松的基本原因。
a)
a) 合金状态图
b)
c)
b) 一定温度范围合金 c) 共晶合金
图2-6 铸造合金收缩过程示意图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铸造基础知识铸造的定义——铸造是将通过熔炼的金属液体浇注入铸型内,经冷却凝固获得所需形状和性能的零件的制作过程,是制造业常用的制造方法之一。

铸造是一种古老的制造方法,在我国可以追溯到6000年前。

随着工业技术的发展,铸大型铸件的质量直接影响着产品的质量,因此,铸造在机械制造业中占有重要的地位。

铸造工艺种类:铸造工艺可分为重力铸造、压力铸造、砂型铸造、压铸、熔模铸造和消失模铸造。

铸造方法常用的是砂型铸造,其次是特种铸造方法,如:金属型铸造、熔模铸造、石膏型铸造等。

各种特种铸造方法均有其突出的特点和一定的局限性,对铸件结构也各有各自的特殊要求。

重力铸造重力铸造是指金属液在地球重力作用下注入铸型的工艺,也称浇的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造,泥模铸造等;窄义的重力铸造专指金属型浇铸。

压力铸造压力铸造是指金属液在其他外力(不含重力)的作用下注入铸型的工艺。

广义的压力铸造包括压铸机的压力铸造和真空铸造、低压铸造、离心铸造等;窄义的压力铸造专指压铸机的金属型压力铸造,简称压铸。

这几种铸造工艺是目前有色金属铸造中最常用的、也是相对价格最低的。

砂型铸造砂型铸造是一种以砂作为主要造型材料,制作铸型的传统铸造工艺。

砂型一般采用重力铸造,有特殊要求时也可采用低压铸造、离心铸造等工艺。

砂型铸造的适应性很广,小件、大件,简单件、复杂件,单件、大批量都可采用。

砂型铸造用的模具,以前多用木材制作,通称木模。

木模缺点是易变形、易损坏;除单件生产的砂型铸件外,可以使用尺寸精度较高,并且使用寿命较长的铝合金模具或树脂模具。

虽然价格有所提高,但仍比金属型铸造用的模具便宜得多,在小批量及大件生产中,价格优势尤为突出。

此外,砂型比金属型耐火度更高,因而如铜合金和黑色金属等熔点较高的材料也多采用这种工艺。

但是,砂型铸造也有一些不足之处:因为每个砂质铸型只能浇注一次,获得铸件后铸型即损坏,必须重新造型,所以砂型铸造的生产效率较低;又因为砂的整体性质软而多孔,所以砂型铸造的铸件尺寸精度较低,表面也较粗糙。

压铸压铸是在压铸机上进行的金属型压力铸造,是目前生产效率最高的铸造工艺。

压铸机分为热室压铸机和冷室压铸机两类。

热室压铸机自动化程度高,材料损耗少,生产效率比冷室压铸机更高,但受机件耐热能力的制约,目前还只能用于锌合金、镁合金等低熔点材料的铸件生产。

当今广泛使用的铝合金压铸件,由于熔点较高,只能在冷室压铸机上生产。

压铸的主要特点是金属液在高压、高速下充填型腔,并在高压下成形、凝固,压铸件的不足之处是:因为金属液在高压、高速下充填型腔的过程中,不可避免地把型腔中的空气夹裹在铸件内部,形成皮下气孔,所以铝合金压铸件不宜热处理,锌合金压铸件不宜表面喷塑(但可喷漆)。

否则,铸件内部气孔在作上述处理加热时,将遇热膨胀而致使铸件变形或鼓泡。

此外,压铸件的机械切削加工余量也应取得小一些,一般在0.5mm左右,既可减轻铸件重量、减少切削加工量以降低成本,又可避免穿透表面致密层,露出皮下气孔,造成工件报废。

熔模铸造所谓熔模铸造工艺,简单说就是用易熔材料(例如蜡料或塑料)制成可熔性模型(简称熔模或模型),在其上涂覆若干层特制的耐火涂料,经过干燥和硬化形成一个整体型壳后,再用蒸汽或热水从型壳中熔掉模型,然后把型壳置于砂箱中,在其四周填充干砂造型,最后将铸型放入焙烧炉中经过高温焙烧(如采用高强度型壳时,可不必造型而将脱模后的型壳直接焙烧),铸型或型壳经焙烧后,于其中浇注熔融金属而得到铸件。

失蜡法铸造现称熔模精密铸造,是一种少切削或无切削的铸造工艺,是铸造行业中的一项优异的工艺技术,其应用非常广泛。

它不仅适用于各种类型、各种合金的铸造,而且生产出的铸件尺寸精度、表面质量比其它铸造方法要高,甚至其它铸造方法难于铸得的复杂、耐高温、不易于加工的铸件,均可采用熔模精密铸造铸得消失模铸造消失模铸造技术(EPC或LFC)是用泡沫塑料制作成与零件结构和尺寸完全一样的实型模具,经浸涂耐火粘结涂料,烘干后进行干砂造型,振动紧实,然后浇入金属液使模样受热气化消失,而得到与模样形状一致的金属零件的铸造方法。

消失模铸造是一种近无余量、精确成形的新技术,它不需要合箱取模,使用无粘结剂的干砂造型,减少了污染,被认为是21世纪最可能实现绿色铸造的工艺技术。

铸造生产的工艺流程:铸造主要工艺过程包括:金属熔炼、模型制造、浇注凝固和脱模清理等。

铸造用的主要材料是铸钢、铸铁、铸造有色合金(铜、铝、锌、铅等)等。

铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序:1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图;2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备;3)造型与制芯;4)熔化与浇注;5)落砂清理与铸件检验等主要工序。

成形原理铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。

铸件一般作为毛坯经切削加工成为零件。

也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求直接作为零件使用。

型砂的性能及组成:1、型砂的性能型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。

2、型砂的组成型砂由原砂、粘接剂和附加物组成。

铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。

铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。

为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。

工艺特点铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。

与其它加工方法相比,铸造工艺具有以下特点:1)铸件可以不受金属材料、尺寸大小和重量的限制。

铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。

2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。

3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。

4)铸件一般使用的原材料来源广、铸件成本低。

5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。

铸件的手工造型手工造型的主要方法砂型铸造分为手工造型(制芯)和机器造型(制芯)。

手工造型是指造型和制芯的主要工作均由手工完成;机器造型是指主要的造型工作,包括填砂、紧实、起模、合箱等由造型机完成。

手工造型的主要方法:手工造型因其操作灵活、适应性强,工装备简单,无需造型设备等特点,被广泛应用于单件小批量生产。

但手工造型生产率低,劳动强度较大。

手工造型的方法很多,常用的有以下几种: 1.整模造型对于形状简单,端部为平面且又是最大截面的铸件应采用整模造型。

整模造型操作简便,造型时整个模样全部置于一个砂箱内,不会出现错箱缺陷。

整模造型适用于形状简单、最大截面在端部的铸件,如齿轮坯、轴承座、罩、壳等。

2.分模造型当铸件的最大截面不在铸件的端部时,为了便于造型和起模,模样要分成两半或几部分,这种造型称为分模造型。

当铸件的最大截面在铸件的中间时,应采用两箱分模造型,模样从最大截面处分为两半部分(用销钉定位)。

造型时模样分别置于上、下砂箱中,分模面(模样与模样间的接合面)与分型面(砂型与砂型间的接合面)位置相重合。

两箱分模造型广泛用于形状比较复杂的铸件生产,如水管、轴套、阀体等有孔铸件。

铸件形状为两端截面大、中间截面小,如带轮、槽轮、车床四方刀架等,为保证顺利起模,应采用三箱分模造型。

此时分模面应选在模样的最小截面处,而分型面仍选在铸件两端的最大截面处,由于三箱造型有两个分型面,降低了铸件高度方向的尺寸精度,增加了分型面飞边毛刺的清整工作量,操作较复杂,生产率较低,不适用于机器造型,因此,三箱造型仅用于形状复杂、不能用两箱造型的铸件生产。

铸件高度方向的尺寸精度,增加了分型面处飞边毛刺的清整工作量,操作较复杂,生产率较低,不适用于机器造型,因此,三箱造型仅用于形状复杂、不能用两箱造型的铸件生产。

3.活块模造型铸件上妨碍起模的部分(如凸台、筋条等)做成活块,用销子或燕尾结构使活块与模样主体形成可拆连接。

起模时先取出模样主体,活块模仍留在铸型中,起模后再从侧面取出活块的造型方法称为活块模造型。

活块模造型主要用于带有突出部分而妨碍起模的铸件、单件小批量、手工造型的场合。

如果这类铸件批量大,需要机器造型时,可以用砂芯形成妨碍起模的那部分轮廓。

4.挖砂造型当铸件的外部轮廓为曲面(如手轮等)其最大截面不在端部,且模样又不宜分成两半时,应将模样做成整体,造型时挖掉妨碍取出模样的那部分型砂,这种造型方法称为挖砂造型。

挖砂造型的分型面为曲面,造型时为了保证顺利起模,必须把砂挖到模样最大截面处。

由于是手工挖砂,操作技术要求高,生产效率低,只适用于单件、小批量生产。

铸造铸件金属液的浇注生产中,浇注时应遵循高温出炉,低温浇注的原则。

因为提高金属液的出炉温度有利于夹杂物的彻底熔化、熔渣上浮,便于清渣和除气,减少铸件的夹渣和气孔缺陷;采用较低的浇注温度,则有利于降低金属液中的气体溶解度、液态收缩量和高温金属液对型腔表面的烘烤避免产生气孔、粘砂和缩孔等缺陷。

因此,在保证充满铸型型腔的前提下,尽量采用较低的浇注温度。

把金属液从浇包注入铸型的操作过程称为浇注。

浇注操作不当会引起浇不足、冷隔、气孔、缩孔和夹渣等铸造缺陷,和造成人身伤害。

为确保铸件质量、提高生产率以及做到安全生产,浇注时应严格遵守下列操作要领:(1)浇包、浇注工具、炉前处理用的孕育剂、球化剂等使用前必须充分烘干,烘干后才能使用。

(2)浇注人员必须按要求穿好工作服,并配戴防护眼镜,工作场地应通畅无阻。

浇包内的金属液不宜过满,以免在输送和浇注时溢出伤人。

(3)正确选择浇注速度,即开始时应缓慢浇注,便于对准浇口,减少熔融金属对砂型的冲击和利于气体排出;随后快速浇注,以防止冷隔;快要浇满前又应缓慢浇注,即遵循慢、快、慢的原则。

(4)对于液态收缩和凝固收缩比较大的铸件,如中、大型铸钢件,浇注后要及时从浇口或冒口补浇。

(5)浇注时应及时将铸型中冒出的气体点燃顺气,以免由于铸型憋气而产生气孔,以及由于气体的不完全燃烧而损害人体健康和污染空气。

铸造的坩埚炉熔化常用的铸造有色金属有铸造铝合金、铸造铜合金、铸造镁合金和铸造锌合金等。

相关文档
最新文档