概率论与统计原理复习资料

合集下载

山东省考研数学复习资料概率论与数理统计重点知识点整理

山东省考研数学复习资料概率论与数理统计重点知识点整理

山东省考研数学复习资料概率论与数理统计重点知识点整理概率论与数理统计是数学的重要分支,广泛应用于各个领域。

在山东省考研的数学科目中,概率论与数理统计是必考内容之一。

为了帮助考生复习,本文将针对概率论与数理统计的重点知识点进行整理,并提供相应的考点解析和习题练习。

一、概率论基础知识1. 随机事件与概率:事件的概念、随机事件的概率、事件的运算(包括事件的和、积,互斥事件,逆事件等)2. 条件概率与独立性:条件概率的概念、乘法定理、全概率公式、贝叶斯公式、独立事件的概念与性质3. 随机变量与分布函数:随机变量的概念、离散型随机变量、连续型随机变量、随机变量函数的分布4. 数学期望与方差:随机变量的数学期望、方差的性质与计算、条件期望、协方差与相关系数的定义与计算二、概率分布1. 离散型随机变量的分布:伯努利分布、二项分布、泊松分布等,包括分布的概率函数、分布函数、数学期望和方差的计算2. 连续型随机变量的分布:均匀分布、指数分布、正态分布等,包括分布的密度函数、分布函数、数学期望和方差的计算3. 两个随机变量的分布:随机变量之和的分布、两个随机变量的函数的分布三、大数定律与中心极限定理1. 大数定律:切比雪夫不等式、大数定律的独立同分布条件、伯努利大数定律、辛钦大数定律2. 中心极限定理:中心极限定理的独立同分布条件、独立同分布情况下的林德伯格-列维定理、棣莫弗-拉普拉斯中心极限定理四、参数估计与假设检验1. 点估计:估计量与矩估计、最大似然估计、无偏性与有效性、均方误差2. 区间估计:置信区间的构造与解释、枢轴变量法构造置信区间、大样本置信区间与小样本置信区间3. 假设检验:假设检验的基本原理与步骤、拒绝域与接受域、显著性水平与p值、参数检验与非参数检验五、相关分析与方差分析1. 相关分析:相关系数的计算与解释、相关系数的性质与应用、线性回归与最小二乘法2. 方差分析:单因素方差分析、双因素方差分析、方差分析的假设条件与检验方法六、样本调查与抽样分布1. 随机抽样:简单随机抽样、分层抽样、整群抽样、多阶段抽样等抽样方法2. 样本调查:样本容量的确定、调查问卷设计与分析、样本误差与抽样误差3. 抽样分布:统计量与抽样分布、正态分布与t分布、卡方分布与F分布通过对概率论与数理统计的重点知识点进行整理,希望能够帮助山东省考研数学的考生有一个清晰的复习框架。

概率论与统计原理复习资料

概率论与统计原理复习资料

一、填空题1、设A,B,C为三个事件,则下列事件“B发生而A与C至少有一个发生”,“A,B,C中至少有两个发生”,“A,B,C中至少有一个发生”,“A,B,C中不多于一个发生”,“A,B,C中恰好有一个发生”,“A,B,C中恰好有两个发生”分别可表示为、、、、、。

参考答案:B(A+C,AB+AC+BC,A +B+C,CB+BA+CA,AB C+AC B+A BC,A+CABBA+CBC考核知识点:事件的关系及运算2、从0,1,2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为、、。

参考答案:,,考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为,恰好有2枚正面向上的概率为。

参考答案:1/8,3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为。

参考答案:考核知识点:古典型概率5、假设某商店获利15万元以下的概率为,获利10万元以下的概率为,获利5万元以下的概率为,则该商店获利5~10万元的概率为,获利10~15万元的概率为。

参考答案:,考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。

用不放回两种方法取球,则取到的两个球都是白球的概率为;取到的两个球颜色相同的概率为;取到的两个球中至少有一个是白球的概率为。

参考答案:,7/15,14/15考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P(A)= ,P(B)= ,则P(A+B)= ;P(A+B)= ;P(A B)= ;P(BA)= 。

参考答案:,,,考核知识点:概率的性质8、甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为,,,则恰有一人中靶的概率为;至少有一人中靶的概率为。

参考答案:(1);(2)考核知识点:事件的独立性9、每次试验的成功率为p(0< p <1),则在5次重复试验中至少成功一次的概率为。

概率论与数理统计复习资料(二) (1)

概率论与数理统计复习资料(二) (1)

<概率论>试题一、填空题1.设1621,,,X X X 是来自总体X ),4(~2σN 的简单随机样本,2σ已知,令∑==161161i i X X ,则统计量σ-164X 服从分布为 (必须写出分布的参数)。

2.设),(~2σμN X ,而1.70,1.75,1.70,1.65,1.75是从总体X 中抽取的样本,则μ的矩估计值为 。

3.设]1,[~a U X ,n X X ,,1 是从总体X 中抽取的样本,求a 的矩估计为 。

4.已知2)20,8(1.0=F ,则=)8,20(9.0F 。

5.θˆ和βˆ都是参数a 的无偏估计,如果有 成立 ,则称θˆ是比βˆ有效的估计。

6.设样本的频数分布为则样本方差2s =_____________________。

7.设总体X~N (μ,σ²),X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则D (X )=________________________。

8.设总体X 服从正态分布N (μ,σ²),其中μ未知,X 1,X 2,…,X n 为其样本。

若假设检验问题为1H 1H 2120≠↔σσ:=:,则采用的检验统计量应________________。

9.设某个假设检验问题的拒绝域为W ,且当原假设H 0成立时,样本值(x 1,x 2, …,x n )落入W 的概率为0.15,则犯第一类错误的概率为_____________________。

10.设样本X 1,X 2,…,X n 来自正态总体N (μ,1),假设检验问题为:,:=:0H 0H 10≠↔μμ 则在H 0成立的条件下,对显著水平α,拒绝域W 应为______________________。

11.设总体服从正态分布(,1)N μ,且μ未知,设1,,n X X 为来自该总体的一个样本,记11nii X X n ==∑,则μ的置信水平为1α-的置信区间公式是 ;若已知10.95α-=,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。

概率论与数理统计复习题带答案

概率论与数理统计复习题带答案
解:
6.设随机变量 的概率分布率如下表
1
2
3
求X的分布函数和 。
解:
7.设随机变量 的概率密度函数为 ,求 (1)常数c; (2) 。
解:(1)
(2)
第三章
一、填空题
1.设连续型随机变量 的概率密度分别为 ,且 与 相互独立,则 的概率密度 ( )。
2.已知 ,且 与 相互独立,则 ( )
二、计算题
A. B. 41 C. 21 D. 20
8. 是互相独立的随机变量, ,则 =( D )。
A. 9 B. 15 C. 21 D. 27
三、计算题
1.设二维随机变量的联合概率分布为
XY
0
1
1
0
2
0
求:(1)X与Y的边缘分布,(2)E(X),D(Y)。
X
-1 1 2
Y
-2 0 1
2.已知 ,求Z的期望与方差,求X与Z的相关系数。
9.甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为,乙击中敌机的概率为.求敌机被击中的概率为( );
10.若事件A与事件B互不相容,且P(A)=, P(B) = ,则P( )=( )
11.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为,,,则这三台机器中最多有一台发生故障的概率为( )。
3.设(X,Y)服从分布
X Y
0
1
2
0
3/28
9/28
3/28
1
3/14
3/14
0
2
1/28
0
0
,试求cov(X,Y)及 。
4.设随机变量(X,Y)具有密度函数 ,其中区域G由曲线 围成,求cov(X,Y)及 。

概率论与数理统计总复习

概率论与数理统计总复习

概率论与数理统计总复习1、研究和揭示随机现象 统计规律性的科学。

随机现象:是在个别试验中结果呈现不确定性,但在大量重复试验中结果又具有统计规律性的现象。

2、互斥的或互不相容的事件:A B φ⋂=3、逆事件或对立事件:φ=⋂=⋃B A S B A 且4、德∙摩根律:B A B A ⋂=⋃,B A B A ⋃=⋂5、在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值/A n n 称为事件A 发生的频率,并记为()n f A 。

6、概率的性质(1)非负性:(A)0P ≥; (2)规范性:(S)1P =;(3)有限可加性:设A 1,A 2,…,A n ,是n 个两两互不相容的事件,即A i A j =φ,(i ≠j), i , j =1, 2, …, n , 则有∑==ni i n A P A A P 11)()...((4)()0P φ=;(5)单调不减性:若事件A ⊂B ,则P(B)≥P(A) (6)对于任一事件A ,P(A)≤1 (7)差事件概率:对于任意两事件A 和B ,()()()P B A P B P AB -=-(8)互补性(逆事件的概率):对于任一事件A ,有 P(A )=1-P(A) (9)加法公式:P(A ⋃B)=P(A)+P(B)-P(AB))()()()()()()()(321323121321321A A A P A A P A A P A A P A P A P A P A A A P +---++=⋃⋃7、古典概型中的概率: ()()()N A P A N S =①乘法原理:设完成一件事需分两步, 第一步有n 1种方法,第二步有n 2种方法, 则完成这件事共有n 1n 2种方法。

例:从甲、乙两班各选一个代表。

②加法原理:设完成一件事可有两类方法,第一类有n 1种方法,第二类有n 2种方法,则完成这件事共有n 1+n 2种方法。

概率论及数理统计要点复习

概率论及数理统计要点复习

概率论与数理统计 复习资料第一章随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃). (2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,nA A A 中至少有一事件发生”这一事件称为1,2,,nA A A 的和,记作12nA A A ⋃⋃⋃(简记为1nii A =). (4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,nA A A 同时发生”这一事件称为1,2,,nA A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12nA A A 或1nii A =). (5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B互不相容(或互斥),若n 个事件1,2,,nA A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件 1,2,,n A A A 互不相容. (6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .2.运算规则 (1)交换律:BA AB A B B A =⋃=⋃(2)结合律:)()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)分配律))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)德摩根(De Morgan )法则:B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率: 如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|((5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k n k -⎛⎫=-= ⎪⎝⎭,7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)下列四个命题是等价的:(i) 事件A 与B 相互独立;(ii) 事件A 与B 相互独立;(iii) 事件A 与B 相互独立;(iv) 事件A 与B 相互独立.8、思考题1.一个人在口袋里放2盒火柴,每盒n 支,每次抽烟时从口袋中随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了.问:“这时另一盒中恰好有m 支火柴”的概率是多少?2.设一个居民区有n 个人,设有一个邮局,开c 个窗口,设每个窗口都办理所有业务.c 太小,经常排长队;c 太大又不经济.现设在每一指定时刻,这n 个人中每一个是否在邮局是独立的,每个人在邮局的概率是p .设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过m ”这个事件的概率要不小于a (例如,0.8,0.9.95a o =或),问至少须设多少窗口? 3.设机器正常时,生产合格品的概率为95%,当机器有故障时,生产合格品的概率为50%,而机器无故障的概率为95%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P3. 几个常用随机变量名称与记号分布列或密度数学期望 方差0—1分布 两点分布 ),1(p B p X P ==)1(,p q X P -===1)0(p pq二项式分布),(p n Bn k q p C k X P k n k kn ,2,1,0,)(===-,np npq泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλλλ几何分布)(p G,2,1 ,)(1===-k p qk X P kp1 2p q 均匀分布),(b a Ub x a a b x f ≤≤-= ,1)(,2ba + 12)(2a b - 指数分布)(λE 0 ,)(≥=-x e x f x λλλ1 21λ正态分布),(2σμN222)(21)(σμσπ--=x ex fμ2σ标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dtπ--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; 特别的 ()()(0)P X a F a F a ==-- (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

概率论与数理统计复习汇总

概率论与数理统计复习汇总
3 个患者的治疗中,至少有一个是有效的概率. 设对各个患者的治疗效果是相 互独立的.
第二章:随机变量及其相关内容
基本概念:随机变量、分布律、概率密度、分布函数 随机变量:设随机试验的样本空间为 S = {e}, X = X (e) 是定义在样本空间 S 上的
实值单值函数,称 X = X (e) 为随机变量. ( 样本点到数的对应法则) 随机变量的分类:离散型随机变量和连续型随机变量(基于 r.v. 的取值类型) 离散型随机变量 取值为有限个或者无限可列个的随机变量 分布律 若 r.v. X 的取值为 x1, x2 , , xn , 对应概率值为 p1, p2 , , pn , ,即
(1) 任取一件产品为次品的概率是多少? (2) 已知取得的产品为次品,求此次品来自甲厂生产的概率是多少? 2. 人们为了了解一支股票未来一定时期内价格的变化,往往会去分析影响股票 价格的基本因素,比如利率的变化. 现假设人们经分析评估知利率下降的概率为 60%,利率不变的概率为 40%.根据经验,人们估计,在利率下调的情况下,该
一个划分.或者 B1, B2 , , Bn 为一个完备事件组.
全概率公式:设设 S 为随机试验 E 的样本空间, B1, B2, , Bn 为一个完备事件组,
则有 P( A) = P(B1)P( A B1) + P(B2 )P( A B2 ) + + P(Bn )P( A Bn )
Bi 称为原因, A 称为结果;全概率公式由原因找结果; 贝叶斯公式: 由结果找造成的原因
运算规律:德摩根律 AB = A ∪ B; A ∪ B = AB
加法原理: n1 + n2 + + nm (分类),乘法原理: n1 ⋅ n2 ⋅ ⋅ nm (分步)

概率论与数理统计复习资料

概率论与数理统计复习资料

概率论与数理统计复习资料### 概率论与数理统计复习资料#### 第一章:概率论基础1. 概率的定义与性质- 事件的概率定义- 概率的公理化体系- 概率的加法和乘法规则2. 条件概率与事件独立性- 条件概率的计算- 事件独立性的定义与性质- 贝叶斯定理3. 随机变量及其分布- 离散型随机变量及其分布律- 连续型随机变量及其概率密度函数- 随机变量的期望值与方差4. 多维随机变量及其分布- 联合分布函数- 边缘分布函数- 协方差与相关系数5. 大数定律与中心极限定理- 切比雪夫不等式- 伯努利大数定律- 中心极限定理的应用#### 第二章:数理统计基础1. 样本与统计量- 样本均值、方差与标准差- 样本矩- 顺序统计量2. 参数估计- 点估计与区间估计- 估计量的优良性准则- 极大似然估计3. 假设检验- 假设检验的基本原理- 单样本假设检验- 双样本假设检验4. 方差分析- 单因素方差分析- 双因素方差分析- 方差分析的计算步骤5. 回归分析- 一元线性回归- 多元线性回归- 回归模型的诊断#### 第三章:概率分布与随机过程1. 常见概率分布- 二项分布- 泊松分布- 正态分布2. 随机过程的基本概念- 随机过程的定义- 马尔可夫链- 泊松过程3. 随机过程的参数估计- 随机过程的均值与方差估计- 随机过程的回归分析4. 随机过程的模拟- 蒙特卡洛方法- 随机模拟的应用5. 随机过程的统计推断- 随机过程的假设检验- 随机过程的参数估计#### 第四章:统计决策与贝叶斯统计1. 统计决策理论- 损失函数- 风险函数- 决策规则2. 贝叶斯统计- 贝叶斯后验概率- 贝叶斯估计- 贝叶斯决策3. 贝叶斯网络- 贝叶斯网络的结构- 贝叶斯网络的推理- 贝叶斯网络的应用4. 统计推断的贝叶斯方法- 贝叶斯假设检验- 贝叶斯参数估计5. 贝叶斯模型选择- 贝叶斯信息准则- 交叉验证通过以上内容的复习,可以对概率论与数理统计的基本概念、理论及其应用有一个系统的理解。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

计量经济学之-概率论和统计学知识习题解析复习资料

计量经济学之-概率论和统计学知识习题解析复习资料
μ=0,σ=1 : 标准正态分布
随机变量标准化:
2
Ch2:概率统计复习 概率论复习
随机变量的统一定义:(1)取一切实数;(2)用概率函数描述概率分布 概率函数:
F(x) P( x)
连续随机变量:
离散随机变量:
3
Ch2:概率统计复习 概率论复习
随机变量的数字特征: 数学期望(Expectation,mean)Ec:随机变量取值的概率加权平均。 方差(Variance) Var(c):随机变量的随机性。方差等于0?
联合密度函数 (2)矩
数学期望向量:
方差-协方差矩阵:
概率论复习
8
Ch2:概率统计复习
随机向量: 协方差和相关系数:
概率论复习
相关系数等于0意味着什么?相关系数等于1呢? (3)条件分布
条件概率分布函数: 条件概率密度函数: 乘法公式:
9
Ch2:概率统计复习
随机向量: (3)条件分布 条件矩: 条件数学期望:
14
Ch2:概率统计复习
参数估计:
总体
X ~ F(x, )
统计学复习
θ为未知参数,用样本提供的信息估计出θ
(1)矩估计:
1
n
n i1
X
r i
p E( X r ) r ( ),
r 1,2,
,k

1
n
n i1
X
r i
ˆr ( )
r (ˆ),
r 1,2, , k
从中解出估计量ˆ
15
Ch2:概率统计复习
条件方差:
概率论复习
条件数学期望和条件方差都是条件随机变量(ξ)的函数,是随机变量。
10
Ch2:概率统计复习 概率论复习

成人高考数学复习教案—概率论与统计初步

成人高考数学复习教案—概率论与统计初步

第二部分概率与统计初步
第七章排列与组合
本章知识
◆分类计数原理和分布计数原理
◆排列、组合的意义,排列组合数的计算公式
◆排列、组合的简单应用
◆二项式定理
7.1两个基本原理
7.2排列与组合
1.随机事件
在一定条件下可能发生,也可能不发生的事件,例如交通事故
必然事件
在一定条件下一定发生的事件,如:太阳东升西落
不可能事件
在一定条件下不可能发生的事件,如:公鸡生蛋
2.随机事件的概率(统计的定义)
在相同条件下大量重复同一个实验,事件A 出现m 次,增加实验的次数,事件A 出现的频率总是接近m/n ,并在他附件摆动,则称m/n 为事件A 的概率:
()10,≤≤=p m m A P
二、等可能事件及其概率
如果一次实验中可能出现n 个结果,这n 个结果出现的可能性都相等,则每一个结果所对应的时间是基本事件,其概率为,如果实验中的事件A 包含其中m 个结果,那么事件A 的概率记为:
()n
m A P = 三、互斥事件及其概率。

概率论与数理统计期末复习资料

概率论与数理统计期末复习资料

概率统计、概率论与数理统计、随机数学课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考;1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质;5、理解随机变量的概念,能熟练写出0—1分布、二项分布、泊松分布的分布律;6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质;7、掌握指数分布参数λ、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度;9、会求分布中的待定参数;10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性;11、掌握连续型随机变量的条件概率密度的概念及计算;12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率;13、了解求二维随机变量函数的分布的一般方法;14、会熟练地求随机变量及其函数的数学期望和方差;会熟练地默写出几种重要随机变量的数学期望及方差;15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念;会用独立正态随机变量线性组合性质解题;17、了解大数定理结论,会用中心极限定理解题;18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握χ2分布及性质、t分布、F分布及其分位点概念;19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数;20、掌握极大似然估计法,无偏性与有效性的判断方法;21、会求单正态总体均值与方差的置信区间;会求双正态总体均值与方差的置信区间;23、明确假设检验的基本步骤,会U检验法、t检验、2χ检验法、F检验法解题;24、掌握正态总体均值与方差的检验法;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法;2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;3.准确地选择和运用全概率公式与贝叶斯公式;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;5.会用中心极限定理解题;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理;4.会求未知参数的矩估计、极大似然估计; 5.掌握无偏性与有效性的判断方法; 6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;概率论部分必须要掌握的内容以及题型1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率; 例2:袋中有a 个白球,b个黑球,c 个红球,从中任意取出mm ≤a +b个球,求取出的m 个球中有k 1≤a 个白球、k 2≤b 个黑球、k 3≤c 个红球k 1+k 2+k 3=m 的概率. 占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质;如对于事件A ,B ,A 或B ,已知P A ,PB ,P AB ,P A B ,P A |B ,PB |A 以及换为A 或B 之中的几个,求另外几个; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 3.准确地选择和运用全概率公式与贝叶斯公式;若已知导致事件A 发生或者是能与事件A 同时发生的几个互斥的事件B i ,i =1,2,…,n ,…的概率PB i ,以及B i 发生的条件下事件A 发生的条件概率P A |B i ,求事件A 发生的概率P A 以及A 发生的条件下事件B i 发生的条件概率PB i | A ;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;4.一维、二维离散型随机变量的分布律,连续型随机变量的密度函数性质的运用;分布中待定参数的确定,分布律、密度函数与分布函数的关系,联合分布与边缘分布、条件分布的关系,求数学期望、方差、协方差、相关系数,求函数的分布律、密度函数及期望和方差;1已知一维离散型随机变量X 的分布律PX =x i =p i ,i =1,2,…,n ,… 确定参数 求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的分布律及期望EgX 例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E2已知一维连续型随机变量X 的密度函数fx确定参数求概率Pa <X <b 求分布函数Fx 求期望EX ,方差DX求函数Y =gX 的密度函数及期望EgX例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k求概率}31{<<X P 求分布函数Fx 求期望EX ,方差DX求函数X Y =的密度及期望)(X E3已知二维离散型随机变量X ,Y 的联合分布律PX =x i ,Y =y j =p ij ,i =1,2,…,m ,…;j =1,2,…,n ,… 确定参数求概率P {X ,Y ∈G }求边缘分布律PX =x i =p i.,i =1,2,…,m ,…;PY =y j =, j =1,2,…,n ,… 求条件分布律PX =x i |Y =y j ,i =1,2,…,m ,…和PY =y j |X =x i , j =1,2,…,n ,… 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的分布律及期望EgX , Y 例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X =1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律4已知二维连续型随机变量X 的联合密度函数fx , y 确定参数求概率P {X ,Y ∈G }求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求函数Z =gX , Y 的密度函数及期望EgX , Y例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率.例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率;6.熟记0-1分布、二项分布、泊松分布的分布律、期望和方差,指数分布参数λ、均匀分布、正态分布的密度函数、期望和方差;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;对于来自总体X 的样本n X X X ,,,21 ,由样本构成的各种函数是否是统计量; 2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;对于来自总体X 的样本n X X X ,,,21 ,判断估计量是否无偏,比较哪个更有效; 例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;对于正态总体,由样本结合给出条件,导出参数的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤; 对于单、双正态总体根据给定条件,确定使用什么检验方法,明确基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤;1.古典概型中计算概率用到的基本的计数方法; 古典概型例子 摸球模型例1:袋中有a 个白球,b个黑球,从中接连任意取出mm ≤a +b个球,且每次取出的球不再放回去,求第m 次取出的球是白球的概率;分析:本例的样本点就是从a +b中有次序地取出m 个球的不同取法;第m 次取出的球是白球意味着:第m次是从a 个白球中取出一球,再在a +b-1个球中取出m-1个球; 解:设B ={第m 次取出的球是白球}样本空间的样本点总数: mb a A n +=事件B 包含的样本点: 111--+=m b a a AC r ,则 b a a A aA n r B P mba mb a +===+--+11)( 注:本例实质上也是抽签问题,结论说明按上述规则抽签,每人抽中白球的机会相等,同抽签次序无关;例2:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1 个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数: 915C n ==5005事件B 包含的样本点: 563514C C C r ==240,则 PB =120/1001=占位模型例:n 个质点在N 个格子中的分布问题.设有n 个不同质点,每个质点都以概率1/N 落入N 个格子N ≥n 的任一个之中,求下列事件的概率:1 A ={指定n 个格子中各有一个质点};2 B ={任意n 个格子中各有一个质点};3 C ={指定的一个格子中恰有mm ≤n 个质点}. 解:样本点为n 个质点在N 个格子中的任一种分布,每个质点都有N 种不同分布,即n 个质点共有N n 种分布;故样本点总数为:N n1在n 个格子中放有n 个质点,且每格有一个质点,共有n 种不同放法;因此,事件A 包含的样本点数:n,则n Nn A P !)(=2先在N 个格子中任意指定n 个格子,共有nN C 种不同的方法;在n 个格子中放n 个质点,且每格一个质点,共有n 种不同方法;因此,事件B 包含的样本点数: n Nn NA C n =!,则n n NNA B P =)(3在指定的一个格子中放mm ≤n 个质点共有mn C 种不同方法;余下n-m 个质点任意放在余下的N-1个格子中,共有mn N --)1(种不同方法.因此,事件C 包含的样本点数:m n C mn N --)1(, 则mn m m n nm n m n N N N C NN C C P ---=-=)1()1()1()( 抽数模型例:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数} ;若允许千位数为0,此时千位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个;其中,千位数为0的“四位偶数”有多少个 此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A种选法;从而共有428A=224个; 因此410283945)(A A A B P -==2296/5040= 2.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质; 例1:事件A 与B 相互独立,且P A =,PB =,求:P AB ,P A -B ,P A B 解:P AB = P APB =,P A -B = P A -P AB =,P A B = P A +PB -P AB =例2:若P A =,PB =,P AB =,求: P A -B ,P A B ,)|(B A P ,)|(B A P ,)|(B A P 解:P A -B =,P A B =,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,)|(B A P =)(1)()()(B P B A P B P B A P -= =2/33.准确地选择和运用全概率公式与贝叶斯公式;例:玻璃杯成箱出售,每箱20只;假设各箱含0、1、2只残次品的概率相应为、和,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回;试求:1顾客买下该箱的概率;2在顾客买下的该箱中,没有残次品的概率;解:设事件A 表示“顾客买下该箱”,i B 表示“箱中恰好有i 件次品”,2,1,0=i ;则8.0)(0=B P ,1.0)(1=B P ,1.0)(2=B P ,1)|(0=B A P ,54)|(4204191==C C B A P ,1912)|(4204182==C C B A P ;由全概率公式得 ∑==⨯+⨯+⨯==294.019121.0541.018.0)|()()(i i i B A P B P A P ; 由贝叶斯公式 85.094.018.0)()|()()|(000=⨯==A PB A P B P A B P ; 4.1例:随机变量X 的分布律为.确定参数k求概率P 0<X <3,P 1<X <3 求分布函数Fx 求期望EX ,方差DX求函数2)3(-=X Y 的分布律及期望2)3(-X E 解:由1=∑iip,有 k +2 k +3 k +4 k =1 得 k =P 0<X <3= PX =1+PX =2=,P 1<X <3= PX =2=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<=41436.0323.0211.010)(x x x x x x F∑=ii i p x X E )(=3,∑=i i p x X E 22)(=10,DX =22))(()(X E X E -=12)3(-X E =12例:已知随机变量X 的概率密度为()⎩⎨⎧<<=其他202x kx x f ,确定参数k 求概率P 1<X <3 求分布函数Fx 求期望EX ,方差DX 求函数X Y =的密度函数及期望)(X E 解:由⎰+∞∞-dx x f )(=1,有⎰+∞∞-dx x f )(=k dx kx 38202=⎰=1,得 k =3/8P 1<X <3=⎰31)(dx x f =⎰21283dx x =7/8. ⎪⎩⎪⎨⎧≥<<≤=2120800)(3x x x x x F⎰+∞∞-=dx x xf X E )()(=⎰2383dx x =3/2,⎰+∞∞-=dx x f x X E )()(22=⎰20483dx x =12/5DX =22))(()(X E X E -=3/20⎪⎩⎪⎨⎧<<=其他02043)(5y y y f)(X E =⎰+∞∞-dx x f x )(=⎰202583dx x =726 3例求概率PX <Y 求边缘分布律PX =k k =0,1,2 和PY =k k =0,1,2,3求条件分布律PX =k |Y =2 k =0,1,2和PY =k |X=1 k =0,1,2,3 求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 求Z =X +Y ,W =max{X ,Y },V =min{X ,Y }的分布律 解:PX <Y =, PX =Y =YXY =iij ji p x X E )(=,=iij ji p x X E )(=,DX =))(()(X E X E -=∑∑=i ij j j p y Y E )(=2,∑∑=i ij jj p y Y E 22)(=5,DY =22))(()(Y E Y E -=1∑∑=iij jj i p y x XY E )(=,cov X ,Y =)()()(Y E X E XY E -=XY ρ=)()(),cov(Y D X D Y X = 相关V =min{X ,Y }4例:已知二维随机变量X ,Y 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f ,确定常数c 的值;求概率PX <Y求边缘密度)(x f X ,)(y f Y ,判断Y X ,是否相互独立 求条件密度)|(|y x f Y X ,)|(|x y f X Y求期望EX ,EY ,方差DX ,DY求协方差 cov X ,Y ,相关系数XY ρ,判断是否不相关 解:由⎰⎰+∞∞-+∞∞-dxdy y x f ),(=1,有⎰⎰+∞∞-+∞∞-dxdy y x f ),(=⎰⎰-11212ydy x c dx x=1,得 c =21/4PX <Y =⎰⎰-12421ydx x dy y y = ⎪⎩⎪⎨⎧≤≤--==⎰其它011)1(821421)(42122x x x ydy x x f x X ⎪⎩⎪⎨⎧≤≤==⎰-其它1027421)(252y y ydx x y f yy Y X 与Y 不独立⎪⎩⎪⎨⎧≤≤-==-其它023)(),()|(232|yx y y x y f y x f y x f YY X⎪⎩⎪⎨⎧≤≤-==其它0118)(),()|(24|y x x y x f y x f x y f X X Y⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(=⎰⎰-11312421ydy x dx x =0⎰⎰+∞∞-+∞∞-=dxdy y x f x X E ),()(22=⎰⎰-11412421ydy x dx x =7/15DX =22))(()(X E X E -=7/15⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(=⎰⎰-112212421dy y x dx x =7/9⎰⎰+∞∞-+∞∞-=dxdy y x f y Y E ),()(22=⎰⎰-113212421dy y x dx x =7/11DY =22))(()(Y E Y E -=28/891⎰⎰+∞∞-+∞∞-=dxdy y x f xy XY E ),()(=⎰⎰-112312421dy y x dx x =0cov X ,Y =0, XY ρ=0,X 与Y 不相关5.会用中心极限定理解题;例1:每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次射击中有180到220发炮弹命中目标的概率. 解:例2:设从大批发芽率为的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率; 解:设这批种子发芽数为X ,则)9.0,1000(~B X ,由中心极限定理得所求概率为}880{≥X P 9826.0)108.2()108.2(1)90900880(1=Φ=-Φ-=-Φ-=;数理统计部分必须要掌握的内容以及题型 1.统计量的判断;2.计算样本均值与样本方差及样本矩;3.熟记正态总体样本均值与样本方差的抽样分布定理; 4.会求未知参数的矩估计、极大似然估计;例:设总体X 的概率密度为()()⎩⎨⎧<<+=其它,010,1x x x f θθ,n X X ,,1 是来自总体X 的一个样本,求未知参数θ的矩估计量与极大似然估计量.5.掌握无偏性与有效性的判断方法;例:设321,,X X X 是来自总体X 的一个样本,下列统计量是不是总体均值的无偏估计3212110351X X X ++;)(31321X X X ++;321X X X -+;)(2121X X +;3211214331X X X ++求出方差,比较哪个更有效;6.会求正态总体均值与方差的置信区间;7.理解假设检验的基本思想和原理,明确正态总体均值与方差的假设检验的基本步骤;例:设),(~2σu N X ,u 和2σ未知,X 1,…,X n 为样本,x 1,…,x n 为样本观察值;1试写出检验u 与给定常数u 0有无显著差异的步骤;2试写出检验2σ与给定常数20σ比较是否显著偏大的步骤; 解: 1 1.提出假设 u u H u u H ≠=:,:12.选取统计量nS u X t /)(0-=3.对给定的显著性水平α,查表得)1(2-n t α4.计算 ns u x t /)(0-=5.判断 若),1(2->n t t α拒绝; H 反之,接受. H21.提出假设2021202:,:σσσσ>≤H H2.选取统计量2022)1(σχS n -=3.对给定的显著性水平α,查表得)1(2-n αχ4.计算.)1(2022σχs n -=5.判断 若),1(22-<n αχχ拒绝; H 反之,接受. H。

概率论与数理统计期末考试复习

概率论与数理统计期末考试复习

j 1
此公式即为贝叶斯公式;
P(Bi ) ,i 1,2 ,…,n ,通常叫先验概率; P(Bi / A) ,i 1,2 ,…,n ,通常 称为后验概率;贝叶斯公式反映了“因果”的概率规律,并作出了“由
果朔因”的推断;
我们作了n 次试验,且满足
每次试验只有两种可能结果, A 发生或 A 不发生;
n 次试验是重复进行的,即 A 发生的概率每次均一样;
称事件 A 与事件 B 互不相容或者互斥;基本事件是互不相容的;
-A 称为事件A 的逆事件,或称A 的对立事件,记为 A ;它表示A 不发生 的事件;互斥未必对立;
②运算:
结合率:ABC=ABC A∪B∪C=A∪B∪C
分配率:AB∪C=A∪C∩B∪C A∪B∩C=AC∪BC
7 概率 的公 理化 定义
2° PΩ =1
3° 对于两两互不相容的事件 A1, A2 ,…有 常称为可列完全可加性;
则称 PA 为事件 A 的概率;
1° 1,2 n ,

P(1 )
P( 2
)
P( n
)
1 n
;
设任一事件 A ,它是由1,2 m 组成的,则有
PA=(1) (2 ) (m ) = P(1) P(2 ) P(m )
则称 X 为连续型随机变量; f (x) 称为 X 的概率密度函数或密度函
数,简称概率密度;
密度函数具有下面 4 个性质:
1° f (x) 0 ;
2° f (x)dx 1;
3 离散与 积分元 f (x)dx 在连续型随机变量理论中所起的作用与
连续型 P(X xk) pk 在离散型随机变量理论中所起的作用相类似; 随机变
用;
Φ-x=1-Φx 且 Φ0= 1 ;

概率论与数理统计复习题

概率论与数理统计复习题

概率论与数理统计复习题(一)判断题第一章 随机事件与概率 1.写出下列随机试验的样本空间(1) 一枚硬币掷三次,观察硬币字面朝上的次数,样本空间为S={}0,123,,. √ (2)袋中有编号为1、2、3的3个球,从中随机取2个,样本空间为{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}S = . ╳2. 袋中有编号为1、2、3、4、5的5个球,从中随机取一个.设A =(取到1、2、3号球),B =(取到奇数号球),C =(取到3、4、5号球),D =(取到4、5号球),E =(取到2号球),则(1)A B +=(取到1、1、2、3、3、5号球);╳ (2)\A B E ≠(取到2号球); ╳ (3)CD = (取到1、2、3、4、5号球); ╳ (4)\C D = (取到3号球); √ (5)A D +=(取到1、2、3、4、5号球); √ (6)AD =(取到1、2、3、4、5号球). ╳ 3. 甲、乙二人打靶,每人射击一次,设A ,B 分别为甲、乙命中目标,用A 、B 事件的关系式表示下列事件,则(1)(甲没命中目标)AB = ; ╳ (2)(甲没命中目标)A = ; √ (3)(甲、乙均命中目标)A B =+; ╳ (4)(甲、乙均命中目标)AB = . √ 4.一批产品中有3件次品,从这批产品中任取5件检查,设i A =(5件中恰有i 件次品),i=0,1,2,3 叙述下列事件,则(1)0A =(5件中恰有0件次品)=(5件中没有次品);√(2)0A =(5件中恰有1件次品); ╳(3)0A =(5件中至少有1件次品); √ (4)3A =(5件中最多有2件次品); ╳ (5)23A A + =(5件中至少有3件次品); ╳ (6)23A A + =(5件中至少有2件次品). √ 5.指出下列命题中哪些成立,哪些不成立(1)B A A B A +≠+;╳(2)A B AB AB AB +=++ ;√(3)AB A B A -=-;√(4)A B AB -≠;╳ (5)ABC A B C =;╳ (6)ABC A B C =++ . √6. 袋中有编号为1、2、3、4、5的5个球,从中随机取一个.设A =(取到1、2、3号球),B =(取到奇数号球),C =(取到3、4、5号球),D =(取到4、5号球),E =(取到2号球),则(1)3()5P A =; √ (2)4()()()5P B E P B P E +=+= ; √ (3)4()()()5P A E P A P E +=+= ;╳ (4)3()()5P A E P A +== ; √(5) ()()()P A B P A P B +=+; ╳ (6)4()5P A B += . √7.(1)设事件A 、B 互斥,2.0)(=A P , )(B P = ,则 5.0)(=+B A P . √ (2) 设事件A 、B 互斥,2.0)(=A P ,5.0)(=+B A P 则)(B P = . ╳(3) 设()0.5P A =,()0.4P B =,()0.7P A B +=, 则()0.2P AB = . √ 8. 设事件,()0.5,A B P A ⊃=()0.2P B = ,则(1)(\)()()0.3P A B P A P B =-= ;√ (2)()()()0.7P A B P A P B +=+= ; ╳ (3)()()0.5P A B P A +== ;√ (4)()0.5P AB = ; ╳ (5)()0.2P AB =; √(6)(\)()()0.3P B A P B P A =-= . √9. 箱中有2件次品与3件正品,一次取出两个,则 (1)恰取出2件次品的概率为251C ;√ (2)恰取出2件次品的概率为251A ; ╳ (3)恰取出1件次品1件正品的概率为112325C C C ; √ (4)恰取出1件次品1件正品的概率为112325C C A . ╳10.上中下三本一套的书随机放在书架上,则 (1)恰好按上中下顺序放好的概率为3311321A =⨯⨯;√ (2)恰好按上中下顺序放好的概率为13; ╳ (3)上下两本放在一起的概率为3322A ⨯ ; √(4)上下两本放在一起的概率为332A . ╳ 11. 若111(),(),()234P A P B P AB === 则 (1) 1()2P B A = √ (2) 2()3P B A = ╳(3) 3()4P A B = √ (4) ()()P A B P A = ╳12. 已知10只电子元件中有2只是次品,在其中取2次,每次任取一只,作不放回抽样,则(1)(P 第一次取到正品8)10= √ (2)(P 第一次取到次品12110)C C = ╳(3)(P 第一次取到正品,第二次取到次品1182210)C C A = ; √ (4)(P 第一次取到正品,第二次取到次品1182210)C C C = ; ╳ (5)(P 第一次取到正品,第二次取到次品82)109=⨯ ; √ (6)(P 一次取到正品,一次取到次品82)109=⨯. ╳13.设甲袋中有6只红球,4只白球,乙袋中有7只红球,3只白球,现在从甲袋中随机取一球,放入乙袋,再从乙袋中随机取一球,则(1)两次都取到红球的概率为⨯681011;√ (2)两次都取到红球的概率为⨯671010; ╳ (3)已知从甲袋取到红球,从乙袋中取到红球的概率为710 ; ╳(4)已知从甲袋取到白球,从乙袋中取到红球的概率为⨯371011. ╳14.某人打靶,命中率为,则下列事件的概率为(1)第一枪没打中的概率为;√ (2)第二枪没打中的概率为; √ (3)第二枪没打中的概率为 ;╳(4)第一枪与第二枪全打中的概率为0.20.20.4+= . ╳ (5)第一枪与第二枪全打中的概率为0.20.20.04⨯= √ (6)第三枪第一次打中的概率为20.80.2⨯. √15 .几点概率思想(1)概率是刻画随机事件发生可能性大小的指标;√ (2)随机现象是没有规律的现象; ╳(3)随机现象的确定性指的是频率稳定性,也称统计规律性;√(4)频率稳定性指的是随着试验次数的增多,事件发生的频率接近一个常数;√ (5)实际推断原理为:一次试验小概率事件一般不会发生;√ (6)实际推断原理为:一次试验小概率事件一定不会发生. ╳第二章 随机变量及其分布16.随机变量X 的分布律为1231133p ⎛⎫⎪ ⎪ ⎪⎝⎭,则(1)13p = ;√ (2)23p = ╳17.在6只同类产品中有2只次品,4只正品.从中每次取一只,共取5次,每次取出产品立即放回,再取下一只,设X 为5次中取出的次品数,则(1)第3次取到次品的概率为0. ╳ (2)第3次取到次品的概率为13. √ (3)5次中恰取到2只次品的概率{}2522512233P X C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭√(4)5次中恰取到2只次品的概率{}25212233P X -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭╳(5)最少取到1只次品的概率{}0505121133P X C ⎛⎫⎛⎫≥=- ⎪ ⎪⎝⎭⎝⎭√(6)最少取到1只次品的概率{}141512133P X C ⎛⎫⎛⎫≥= ⎪ ⎪⎝⎭⎝⎭╳ 18.某交通路口一个月内发生交通事故的次数X 服从参数为3的泊松分布(3)P ,则(1)该交通路口一个月内发生3次交通事故的概率{}31P X ==. ╳(2)该交通路口一个月内发生2次交通事故的概率{}23322!e P X -==. √(3)该交通路口一个月内最多发生1次交通事故的概率{}13311!e P X -==. ╳(4)该交通路口一个月内最多发生1次交通事故的概率为{}{}031333010!1!e e P X P X --=+==+. √19. 袋中有2个红球3个白球,从中随机取一个球,当取到红球令1X =,取到白球令0X =,则 (1)称X 为服从01-分布. √ (2)X 为连续型随机变量. ╳(3)X 的分布律为103255⎛⎫ ⎪ ⎪ ⎪⎝⎭. ╳ (4)X 的分布律为102355⎛⎫⎪⎪ ⎪⎝⎭. √ 20. 设随机变量X 的分布函数为⎪⎩⎪⎨⎧=1310)(x F 1100≥<≤<x x x ,则 (1)X 的分布律为⎪⎪⎭⎫⎝⎛323110. √ (2)X 的分布律为012133⎛⎫⎪ ⎪⎝⎭ ╳ (3){0.5}0P X ≤= ╳ (4)1{0.5}3P X ≤=√ (5){0.5}0P X ==√ (6)1{0.5}3P X == ╳(7)2{0.5 1.5}3P X <≤= √ (8){0.5 1.5}1P X <≤= ╳21.设随机变量X 的概率密度01()0Ax x f x ≤≤⎧=⎨⎩其它 , 则(1)常数A =2 . √ (2)常数A =1 . ╳ (3)由积分21Ax dx =⎰可以计算常数A. ╳ (4)由积分1Ax dx +∞-∞=⎰可以计算常数A. ╳(5) 由积分11Axdx =⎰可以计算常数A. √22.设随机变量X 的概率密度⎩⎨⎧=02)(x x f 其它10≤≤x , 则 (1)1{01}2P X xdx <<=⎰√ (2) 10.5{0.51}2P X xdx <<=⎰ √(3)2{02}2P X xdx <<=⎰╳ (4) 0.5{0.5}2P X xdx +∞>=⎰ ╳23.设随机变量X 的分布函数200()0111x F x xx x <⎧⎪=≤≤⎨⎪>⎩,则X 的概率密度 (1)201()0xx f x <<⎧=⎨⎩其它 √ (2)201()0x x f x ⎧<<=⎨⎩其它╳(3)()2f x x x R =∈ ╳ (4)00()20111x f x xx x <⎧⎪=≤≤⎨⎪>⎩╳ 24.公共汽车站每隔10分钟有一辆汽车通过,乘客随机到车站等车,则 (1)乘客候车时间不超过5分钟的概率为12;√ (2)乘客候车时间超过5分钟的概率为12√ (3)乘客候车时间不超过3分钟的概率为310;√(4)乘客候车时间超过3分钟的概率为310. ╳25. 随机变量~(0,1)X N 则 (1){}102P X ≥=√ (2) {}102P X ≤= √ (3) {}{}00P X P X ≥=≤ √ (4){}{}00P X P X ≥≠≤ ╳ 26. 随机变量)2,3(~2N X 则(1){}52≤<X P =)2/1()1(Φ+Φ ╳ (2) {}104≤<-X P =2)5.3(Φ–1 √ 27. 设01~0.40.6X ⎛⎫⎪⎝⎭,则(1)2Y X =的分布律为020.40.6⎛⎫ ⎪⎝⎭ √ (2)21Y X =+的分布律为130.40.6⎛⎫ ⎪⎝⎭√ 28.设随机变量X 的概率密度为⎩⎨⎧=02)(xx f 其它10<<x ,则X e Y =的概率密度为(1)⎩⎨⎧<<=其它01ln )(e y y y f Y ╳ (2)2ln 1()0Y yy e yf y ⎧<<⎪=⎨⎪⎩其它√第三章多维随机变量及其分布29.设二维随机变量(X ,Y )的分布函数为F x y (,),则(1){}2,1≤≤Y X P = F (1,2) √ (2){}1123131213P X Y F F F -<≤<≤=---,(,)(,)(,) ╳ 30. 设二维随机变量(X ,Y )的分布律为(1)Y 的边缘分布律为012020404...⎛⎫⎪⎝⎭╳ (2)X ,Y 不独立 ╳(3)(X ,Y )的分布函数在116(,.)点的值1610(.,)F = ╳(4)20016{,}.P X Y === √ (5)概率1012{}.P X Y +== ╳(6)Z X Y =-的分布律为101201203204016....-⎛⎫⎪⎝⎭√(7)072().E XY = √ (8)相关系数0XY ρ≠ ╳ 31. 设二维随机变量(X ,Y )的分布律为则 (1){}Y X M ,max =的分布律为⎪⎪⎭⎫⎝⎛167163166210 √(2){}Y X N ,min =的分布律为⎪⎪⎭⎫⎝⎛--167163166012√第四章 随机变量的数字特征32.设随机变量X 的分布律为⎪⎪⎭⎫ ⎝⎛-41212116121610311 则(1))(X E =31 √(2))(2X E = 4/55/]21)2/1(0)1[(22222=++++- ╳ (3)X 的方差D (X )=7297 √33.设随机变量X 的概率密度⎪⎩⎪⎨⎧-=02)(x xx f 其它2110≤<≤≤x x则(1) )(X E =1 √ (2))(X E =⎰⎰-+211)2(dx x dx x ╳(3))()(22X E X E -=61 √ (4)X 的方差61)(≠X D ╳34.一批产品中有一、二、三等品,等外品及废品五种,分别占产品总数的70%,10%,10%,6%,4%。

概率论与数理统计复习

概率论与数理统计复习

《概率论与数理统计》复习©基本内容和要求第一章随机事件及其概率1、掌握样本空间、随机事件、事件的概率等基本概念,了解频率的稳定性;2、掌握事件的关系与运算、熟悉概率的一些性质,会利用其计算概率;3、掌握古典概型的概率计算;4、掌握条件概率、乘法公式、事件的独立性,会利用其计算概率;5、掌握全概率公式和贝叶斯公式,会利用其计算概率。

第二章随机变量及其分布1、理解随机变量及其概率分布的概念;2、掌握离散型随机变量的分布律的概念与性质,掌握重要的常见分布:0-1,二项,Poisson分布;3、掌握分布函数和概率密度的概念及性质,熟悉均匀分布和正态分布,会查表计算正态分布随机变量的概率;4、掌握随机变量函数的分布。

5、掌握二维随机变量与联合分布,掌握联合分布与概率密度;6、理解边缘分布与条件分布,掌握边缘分布与条件分布公式;7、理解随机变量的独立性,会用其计算概率;8、掌握两个随机变量的函数的分布:Z=X+Y的分布,M=max(X,Y)、N=min(X,Y)的分布。

第三章随机变量的数字特征1.掌握数学期望和方差的概率意义和基本性质,并能熟练计算随机变量的数学期望和方差;2.记住常见分布的数学期望和方差;3.理解并掌握随机变量的协方差及相关系数,了解矩。

第四章大数定律与中心极限定理1.掌握切比雪夫不等式;2.了解贝努里大数定律,理解频率稳定性的含义;3.理解独立同分布的中心极限定律及德莫弗—拉普拉斯定理,会近似计算。

第五章统计估计1.理解总体、个体、样本、统计量等概念;2.熟记几个常见的统计量及分布:2 分布,t分布,F分布,3.正态总体的样本均值与样本方差的分布,临界值查法。

4.理解估计量与估计值的概念,会计算未知参数的矩估计和极大似然估计;5.了解估计量的评选标准;6.理解置信区间、置信度的概念,掌握单(双)正态总体均值和方差的区间估计。

第六章 假设检验1.两类错误2.掌握假设检验的一般步骤;3.掌握正态总体的均值和方差的双侧假设检验(z 检验,t 检验, 2χ检验)方法。

概率论和数理统计期末考试复习题库

概率论和数理统计期末考试复习题库

概率论和数理统计期末考试复习题库数理统计练习一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。

2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。

3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。

4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。

5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时,成功次数的方差的值最大,最大值为 25 。

6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。

7、已知随机向量(X ,Y )的联合密度函数≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。

8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。

9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。

设Z =2X -Y +5,则Z ~ N(-2, 25) 。

10、θθθ是常数21? ,?的两个无偏估计量,若)?()?(21θθD D <,则称1?θ比2?θ有效。

1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。

2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。

3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。

4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料

《概率论与数理统计》总复习资料概率论部分1.古典概型中计算概率用到的基本的计数方法。

例1:袋中有4个白球,5个黑球,6个红球,从中任意取出9个球,求取出的9个球中有1个白球、3个黑球、5个红球的概率.解:设B ={取出的9个球中有1个白球、3个黑球、5个红球}样本空间的样本点总数:915C n ==5005事件B 包含的样本点:563514C C C r ==240,则P (B )=240/5005=0.048例2:在0~9十个整数中任取四个,能排成一个四位偶数的概率是多少?解:考虑次序.基本事件总数为:410A =5040,设B ={能排成一个四位偶数}。

若允许千位数为0,此时个位数可在0、2、4、6、8这五个数字中任选其一,共有5种选法;其余三位数则在余下的九个数字中任选,有39A 种选法;从而共有539A =2520个。

其中,千位数为0的“四位偶数”有多少个?此时个位数只能在2、4、6、8这四个数字中任选其一,有4种选法;十位数与百位数在余下的八个数字中任选两个,有28A 种选法;从而共有428A =224个。

因此410283945)(A A A B P -==2296/5040=0.4562.概率的基本性质、条件概率、加法、乘法公式的应用;掌握事件独立性的概念及性质。

例1:事件A 与B 相互独立,且P (A )=0.5,P (B )=0.6,求:P (AB ),P (A -B ),P (A B )解:P (AB )=P (A )P (B )=0.3,P (A -B )=P (A )-P (AB )=0.2,P (A B )=P (A )+P (B )-P (AB )=0.8例2:若P (A )=0.4,P (B )=0.7,P (AB )=0.3,求:P (A -B ),P (A B ),)|(B A P ,)|(B A P ,)|(B A P 解:P (A -B )=0.1,P (A B )=0.8,)|(B A P =)()(B P AB P =3/7,)|(B A P =)()()()()(B P AB P B P B P B A P -==4/7,|(B A P =)(1)()()(B P B A P B P B A P -==2/33.准确地选择和运用全概率公式与贝叶斯公式。

SUES概率论与数理统计A复习纲要

SUES概率论与数理统计A复习纲要

SUES概率论与数理统计A复习纲要概率论与数理统计复习纲要第⼀部分:知识点学好⽤好数学的关键是概念清楚,正确使⽤公式和法则,把握基本的解题思路和⽅法。

以下的知识点是基本的,请你结合课本认真复习、总结。

1.随机试验,样本点,样本空间,随机事件。

P1-P22.⼦事件,和事件,积事件,差事件,逆事件。

⼀组事件两两互不相容。

P3-P4 3.和、差、积、逆的运算及其交换律、结合律、分配率、对偶律。

P3-P4 4.概率的⾮负性、规范性、可加性;逆事件的概率,加法公式。

P7-P8 5.等可能概型的概念,等可能概型的概率计算公式。

P9-P10 6.条件概率的意义,条件概率的定义式,乘法定理。

P15-P177.全概率公式,贝叶斯公式。

什么情况下⽤全概率公式,什么情况下⽤贝叶斯公式?P18-P19 8.多个事件相互独⽴。

P22-P249.n 重贝努利试验的概念,概率()n P k 的计算公式。

P27 10.怎样⽤随机变量表⽰随机事件?P4-P511.离散型随机变量的分布律及其性质。

三种常⽤分布:(01),(,),().X X B n p X πλ-Poisson 定理(⽤Poisson 分布近似⼆项分布,条件、近似等式)。

P34-P3812.随机变量的分布函数()F x 的定义,基本性质。

P40 13.怎样利⽤分布函数()F x 求以下随机事件的概率?{},{},{},{}x a a x b x a x a ≤<≤>=.P4114.怎样由离散型随机变量X 的分布律求X 的分布函数()F x ?P4115.连续型随机变量的分布函数()F x 与概率密度函数()f x 之间是什么关系?已知其中⼀个,怎样求出另⼀个?P43-P46 16.连续型随机变量的概率密度函数()f x 都有哪些性质?怎样利⽤概率密度函数()f x 求以下随机事件的概率?{},{},{}x a a x b x a ≤<≤>.{}?P x a == P44-P4617.连续型随机变量的三种常⽤分布:2(,),(),(,).X U a b X E X N λµσ P47-P5018.怎样将⼀般正态分布的概率计算转化并通过标准正态分布来计算?请写出转化公式。

概率论与数理统计期末复习知识点

概率论与数理统计期末复习知识点

fZ(z)
f (z y, y)dy
f (x, z x)dx
当X 和Y 相互独立:卷积公式
fZ (z) f X ( x) fY (z x)dx
f X (z y) fY ( y)dy
(2) 当X 和Y 相互独立时:
M = max(X,Y ) 的分布函数
Fmax(z) P{M z} FX (z)FY (z)
E(Y ) E[g( X )] g( xk )pk k 1
(1-3)设( X,Y ) 离散型随机变量. 分布律为:
P{X xi , Y y j } pij i, j 1,2,
若 Z=g(X,Y)(g为二元连续函数)
则 E(Z ) E[g( X ,Y )]
g( xi , y j )pij
(2) 连续型随机变量的分布函数的定义
x
F ( x) f (t)dt
f(x)的性质
1. f (x) 0
2. f ( x)dx 1
3. P{x1 X x2}
x2 f ( x)dx
x1
4. F( x) f ( x),在f ( x)的连续点.
⁂ 三种重要的连续型随机变量
(一)均匀分布
pi1
p•1
pi2
p•2
pij pi•
p• j 1
性质:
1 0 pij 1
2
pij 1.
j 1 i1
2.边缘分布律
3. 独立性
pij pi• p• j , ( i, j 1,2, )
4.分布函数 ( x, y) R2
F ( x, y) pij xi x yjy
n
n

Ai Ai
Ai Ai
i 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1、设A B, C为三个事件,则下列事件“ B发生而A与C至少有一个发生”,“A,B, C中至少有两个发生”,“A, B, C中至少有一个发生”,“A,B, C中不多于一个发生”,“A,B, C中恰好有一个发生” ,“ A , B , C中恰好有两个发生”分别可表示丿为、、、、、。

参考答案:B ( A+C AB+AC+BCA + B+C, AC + BC +AB , AB C +AC B + A BC, ABC + ABC +ABC考核知识点:事件的关系及运算2、从0, 1, 2,…,9这10个数中可重复取两个数组成一个数码,则“两个数之和为3”、“两个数之和为17”、“两个数相同”的概率分别为___________ 、______ 、______ 。

参考答案:,,考核知识点:古典型概率3、同时抛掷3枚均匀的硬币,则3枚正面都向上的概率为_____________ ,恰好有2枚正面向上的概率为__________________ 。

参考答案:1/8 , 3/8考核知识点:古典型概率4、箱中有60个黑球和40个白球,从中任意连接不放回取出k个球,则第k次取出黑球的概率为_____________________ 。

参考答案:考核知识点:古典型概率5、假设某商店获利15万元以下的概率为,获利10万元以下的概率为,获利5万元以下的概率为,则该商店获利5~10万元的概率为_____________ ,获利U 10~15万元的概率为_____________ 。

参考答案:,考核知识点:概率的性质6、设袋中有6个球,其中4白2黑。

用不放回两种方法取球,则取到的两个球都是白球的概率为______________ ;取到的两个球颜色相同的概率为_____________ ;取到的两个球中至少有一个是白球的概率为_____________ 。

参考答案:,7/15, 14/15考核知识点:古典型概率和概率的性质7、设事件A,B互不相容,已知P( A= ,P( B)二,则P( A+B= ________ ; P( A +B) = _______ ;P( A B) = _______ ;P( AB) = _______ 。

参考答案:,,考核知识点:概率的性质8甲、乙、丙三人各射一次靶子,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为,,,则恰有一人中靶的概率为__;至少有一人中靶的概率为__________ 。

参考答案:(1);(2)考核知识点:事件的独立性9、每次试验的成功率为p(0< p <1),则在5次重复试验中至少成功一次的概率为____________________ 。

参考答案:1 (1 p)5考核知识点:事件的独立性10、设随机变量X~( 1,4),则P{0 <X v}= _______ ;P{X v 1}= _____ ; P{X=X o}= ____ 。

参考答案:,,0考核知识点:正态分布,参见P61 ;概率密度的性质11、____________________________________________________________ 设随机变量X〜B (n, p),已知E X=, *,则n二__________________________ , p = ___________ 。

参考答案:3,考核知识点:随机变量的数学期望和方差12、设随机变量X服从参数为(100,)的二项分布,则EX _____________ ,D X= ______ 。

参考答案:20, 16考核知识点:随机变量的数学期望和方差13、设随机变量X服从正态分布N(,),则攻二_______________ , D(2X3 ) = ___________ 。

参考答案:,1考核知识点:随机变量的数学期望和方差及其性质14、设由来自正态总体N( ,92)的容量为9的简单随机样本,得样本均值X=5,则未知参数的最大似然估计值为 __________________ , 的置信度为的置信区间为_____________________ 。

参考答案:5,(,)考核知识点:正态总体参数的极大似然估计以及区间估计15、设由来自正态总体N( ,102)的容量为25的简单随机样本,得样本均值X=15,则未知参数的最大似然估计值为______________________ ,的置信度为的置信区间长度为_________________ 。

参考答案:15,考核知识点:正态总体参数的极大似然估计以及区间估计16、从自动车床加工的一批零件中随机抽取了16件,测得零件长度的平均值为2.125cm,标准差为0.017cm。

假设零件的长度服从正态分布,则零件长度均值的点估计值为_____________________ ;零件长度标准差的点估计值为______________________ ;零件长度标准差的置信区间为___________________________ 。

参考答案:,,(,)考核知识点:正态总体标准差的点估计以及区间估计17、设总体X服从正态分布N( , 2),从X中随机抽取一个容量为36 的样本,设X为样本均值,S2为样本方差。

当总体方差 /已知时,检验假设H0:[1 = ^0的统计量为_______________ ,当总体方差/未知时,检验假设H0: 1 = 10的统计量为_____________________ 。

参考答案:X 0 X 0 /、36 ' S/ .. 36考核知识点: 正态总体均值的假设检验18、设总体X服从正态分布N( , 2),从X中随机抽取一个容量为n的样本,设S2为样本方差,则检验假设H0: 20的统计量为。

参考答案: 2 (n 1)S22考核知识点:正态总体方差的假设检验19、假设检验时若增大样本容量,则犯两类错误的概率都将。

参考答案:减少考核知识点:假设检验的两类错误20、设随机变量X在区间[1,3]上服从均匀分布,则X的概率密度函数为 ________________ ;事件{v X v}的概率为__________________参考答案:-,1x32 ,0, 其他考核知识点:连续型随机变量的密度函数和概率21、设随机变量X〜B(3,),则E X= ____________ , D X= ___________ 参考答案:,考核知识点:二项分布的数字特征22、总体X服从正态分布N ( 1, /),从X中随机抽取一个容量为n的样本,X 为样本均值,S为样本方差。

当总体方差(T2已知时,考核知识点:假设检验23、对于随机试验:观察一台电脑的使用寿命,则其样本空间可表示 为 ;事件“使用寿命超过 600小时”可表示为 ________________________ 。

参考答案:(0, +乂); (600, +乂) 考核知识点:随机试验的样本空间24、设随机变量X 的概率密度为f(x)A C0SX,0 x2,贝S 常数A ________ , P ( X -) = _____________ 0,X 的分布函数 F (x )6= _____________ 。

参考答案:0,x 0 1 ,, F (x) Asin x,0 x —2 1,x2考核知识点:连续型随机变量的分布函数25、 对于随机试验:记录一段时间内某城市110报警次数,则其样本空间可表示为 __________________________ ;事件“报警次数小于 5次” 可表示为 __________________________ 。

参考答案:{0,1, 2,-} ; {0,1, 2, 3, 4} 考核知识点:随机试验的样本空间26、 同时抛掷3枚均匀的硬币,则恰好有 2枚正面都向上的概率为,至少有1枚正面向上的概率为。

参考答案:3/8 , 7/8 考核知识点:古典概率27、 从0, 1, 2,…,9这10个数中可重复取两个数组成一个数码,令X 为两个数之和,则P{X < 3}=。

假设H 0:卩二卩o 的检验统计量为 假设H 0:卩=卩o 的检验统计量为 __________ ,当总体方差彷$未知时,。

参考答案:X o X o/ . nS/ n参考答案:考核知识点:古典概率28、 每次试验的成功率为p (0< p <1 ),则在3次重复试验中至少失败一次的概率为 ____________ 。

3参考答案:1 P考核知识点:古典概率29、 在假设检验中,一般情况下会犯 _______________________________ 错误。

参考答案:第一类错误和第二类错误 考核知识点:假设检验30、袋中有50个球,其中有20个是红球,其余为白球,不放回抽样 从中任取3次,一次取一个球,则第5次取到红球的概率 为 。

参考答案:考核知识点:古典概率31、设随机变量X 在区间[2,7]上服从均匀分布,则随机变量 X 的 概率密度函数为 ______________________________ ;随机变量X 的分布函数 为 ______________ ; P{ v X< }= ____________考核知识点:连续型随机变量的性质32、设随机变量X 服从参数为(100,)的二项分布,则E X = _____________ D X = ______ 。

参考答案:40, 24考核知识点:二项分布的数字特征33、设由来自正态总体N ( ,102)的容量为25的简单随机样本,得样本 均值X =5,则未知参数 的最大似然估计值为 , 的置信度为的置信区间长度为 。

参考答案:5,考核知识点:正态分布的估计值和置信区间参考答案:f (x)0, 2x7x 2 其他,F (x )51,x 2 2x7 , x 70.2, 0,34 、 在假设检验中,第一类错误是扌旨 ________________________________ 。

参考答案:原假设本来正确,却被错误地拒绝了 考核知识点:假设检验35、袋中有100个球,其中有30个是红球,其余为白球,不放回抽 样从中任取4次,一次 取一个球,则第二次 取到红 球的概率 为 。

参考答案:考核知识点:古典概率36、设随机变量X 在区间[2,6]上服从均匀分布,则随机变量 X 的 概率密度函数为 ______________________________ ;随机变量X 的分布函数为;P{ v X k }=。

0,x 2参考答案: 0.25, 2x6 f (x)F(x) 口: , 2x6 , 0,其他41,x 6考核知识点: 连续型随机变量的概率37、设随机变量X 服从参数为(10,)的二项分布, 则EX=D X = ______ 。

相关文档
最新文档