高三数学高考考试复习知识点归纳

合集下载

高三数学知识点及公式归纳总结

高三数学知识点及公式归纳总结

高三数学知识点及公式归纳总结高三是学生们迎接人生中重要考试的一年,数学作为其中一门必修科目,是考生们需要重点关注和复习的内容之一。

在这一年里,基础知识的掌握和数学公式的灵活运用都是至关重要的。

本文将对高三数学的知识点和公式进行归纳总结,希望能够对广大高三学生有所帮助。

一、函数与方程1. 一次函数与二次函数一次函数的一般式为y = kx + b,其中k表示斜率,b表示截距。

二次函数的一般式为y = ax² + bx + c,其中a, b, c分别表示二次、一次和常数项。

此外,二次函数还有顶点坐标公式、判别式等相关知识点。

2. 指数函数与对数函数指数函数的一般式为y = a^x,其中a>0且a≠1。

对数函数的一般式为y = loga⁡ x,其中a>0且a≠1。

在相关的知识点中,要掌握指数与对数的互为反函数关系、指数律和对数律以及常见的性质。

3. 三角函数三角函数包括正弦、余弦和正切等函数,要熟练掌握其定义、性质、特殊角的值以及相关的和差角公式、倍角公式和半角公式等。

4. 方程与不等式方程包括一元一次方程、一元二次方程等,要学会根据具体情况选择合适的解法。

不等式包括一元一次不等式、一元二次不等式等,要注意解集的表示方法和解题步骤。

二、平面几何1. 直线与平面要掌握直线和平面的方程和性质,了解直线与平面的位置关系和交点的求解方法。

2. 三角形与四边形要熟悉三角形和四边形的性质,包括三角形的内角和外角和为180°、等腰三角形、等边三角形以及四边形的各种性质和判定条件。

3. 圆与圆锥曲线要了解圆的相关属性,包括圆心角公式、弧长公式等。

圆锥曲线包括椭圆、双曲线和抛物线,要熟悉其定义、方程和特点。

三、立体几何1. 空间几何体包括立方体、长方体、正方体、圆柱体、圆锥体和球体等,要了解其性质、表面积和体积的计算公式。

2. 空间向量要学会向量的定义、性质和运算法则,以及向量共线、垂直的相关概念和判断方法。

2024年高考数学高频考点(新高考通用)柯西不等式(精讲+精练)解析版

2024年高考数学高频考点(新高考通用)柯西不等式(精讲+精练)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)
素养拓展01柯西不等式(精讲+精练)
1.二维形式的柯西不等式
.),,,,,()())((22222等号成立时当且仅当bc ad R d c b a bd ac d c b a =∈+≥++2.二维形式的柯西不等式的变式
bd ac d c b a +≥+⋅+2222)1( .),,,,,(等号成立时当且仅当bc ad R d c b a =∈bd ac d c b a +≥+⋅+2222)2(
.),,,,,(等号成立时当且仅当bc ad R d c b a =∈.)
,0,,,(())()(3(2等号成立,时当且仅当bc ad d c b a bd ac d c b a =≥+≥++3.
二维形式的柯西不等式的向量形式
.),,,(等号成立时使或存在实数是零向量当且仅当βαβk k =≤注:有条件要用;没有条件,创造条件也要用。

比如,对2
2
2
c b a ++,并不是不等式的形状,但变成
()()
2222221113
1
c b a ++∙++∙就可以用柯西不等式了。

4.扩展:()()233221122322212
2322
21)(n n n n b a b a b a b a b b b b a a a a ++++≥++++++++ ,当且仅当n n b a b a b a :::2211=== 时,等号成立.
【题型训练1-刷真题】
二、题型精讲精练
一、知识点梳理。

最新高考高三数学知识点总结5篇

最新高考高三数学知识点总结5篇

最新高考高三数学知识点总结5篇第一篇:高三数学知识点总结-函数函数是高中数学的基础,高三数学中也是重中之重。

重要的函数知识点有:函数的定义、函数的分类、函数的性质、函数的图像和函数的应用等。

1. 函数的定义函数是数学中一个非常基本和重要的概念,它是一种对应关系,将一个自变量对应一个因变量。

一个函数通常写作f(x) = y,其中x为自变量,y为因变量,f(x)表示函数名称。

函数的定义域是指所有能够被输入到函数中的自变量的值,而值域则是函数所有可能的因变量的值。

2. 函数的分类函数可以按照其输入和输出的类型分类为以下几种:一次函数、二次函数、指数函数、对数函数、三角函数以及复合函数等。

3. 函数的图像函数的图像就是在平面直角坐标系内把对应关系中的自变量和因变量的值画出来的结果。

通过画出函数的图像,我们可以更容易地理解函数的性质。

例子:考虑函数f(x) = x²,其图像可以描述为一个抛物线,开口朝上,顶点坐标为(0, 0)。

第二篇:高三数学知识点总结-三角函数三角函数是高中数学中另一个重要的知识点。

三角函数包括正弦、余弦、正切、余切、正割和余割等。

1. 正弦、余弦和正切函数正弦、余弦和正切函数是最基本的三角函数。

它们可以用三角形中各条边的比例去定义。

正弦函数f(x) = sin(x)定义为对边(x)除以斜边(h),余弦函数f(x)=cos(x)定义为邻边(a)除以斜边(h),正切函数f(x)=tan(x)定义为对边(x)除以邻边(a)。

2. 逆三角函数可以通过三角函数的函数关系,如sin²(x)+cos²(x)=1,推出三角函数的逆函数。

这些逆三角函数的命名包括反正弦、反余弦、反正切和反余切函数等。

用记号arcsin(x)、arccos(x)、arctan(x)和arcctan(x)等表示。

例子:cos(π/4) = sin(π/4) = 1/√2,因为90度的等腰直角三角形斜边长和两边之一的长度是相等的。

2024年高三数学高考知识点总结

2024年高三数学高考知识点总结

2024年高三数学高考知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义及函数关系的表示方法- 函数的定义域、值域和区间- 函数的奇偶性、周期性及单调性2. 一次函数与二次函数- 一次函数的性质及图像- 二次函数的性质及图像- 一次函数与二次函数的应用3. 指数函数与对数函数- 指数函数的性质及图像- 对数函数的性质及图像- 指数函数与对数函数的应用4. 三角函数- 正弦函数、余弦函数、正切函数的性质及图像- 三角函数之间的关系及图像的性质- 三角函数的应用5. 幂函数与反比例函数- 幂函数的性质及图像- 反比例函数的性质及图像- 幂函数与反比例函数的应用6. 方程和不等式- 一元一次方程与一元一次不等式的解法- 一元二次方程与一元二次不等式的解法- 方程与不等式的应用7. 绝对值方程与绝对值不等式- 绝对值方程与绝对值不等式的解法及应用- 带有绝对值的一元二次方程的解法二、数列与数学归纳法1. 数列的概念与性质- 数列的定义及常见数列的形式- 等差数列与等比数列的性质及通项公式2. 数列的通项公式与求和公式- 等差数列的通项公式及前n项和公式- 等比数列的通项公式及前n项和公式- 递推数列的通项公式及前n项和公式3. 数学归纳法- 数学归纳法的基本思想及应用- 利用数学归纳法证明不等式4. 递归数列与逼近法- 递归数列的定义及应用- 逼近法解决数学问题三、三角恒等变换1. 三角函数的和差化积与积化和差- 正弦、余弦、正切的和差化积公式- 正弦、余弦、正切的积化和差公式2. 三角函数的倍角化半角与半角化倍角- 正弦、余弦、正切的倍角化半角公式- 正弦、余弦、正切的半角化倍角公式3. 三角方程的基本解法- 使用三角函数的恒等变换解三角方程- 利用等效代换解三角方程4. 三角函数的图像与性质- 三角函数图像的性质及平移、伸缩、翻转操作- 三角函数图像的综合性质及应用四、平面几何与立体几何1. 二维几何相关知识- 平面几何基本概念及性质- 二维几何形状的性质与判定2. 三角形相关知识- 三角形的内角和与外角和的性质- 三角形的中线、高线、角平分线的性质及应用3. 圆相关知识- 圆的基本概念及性质- 弧长与扇形面积的计算- 切线与切线定理的应用4. 直线与圆的位置关系- 直线与圆的位置关系的判定及性质- 直线与圆的切线与切点的性质与计算5. 空间几何相关知识- 空间几何基本概念及性质- 空间几何形状的性质与判定6. 空间几何立体的计算- 空间几何立体的体积与表面积的计算- 立体的展开图与折叠图的应用五、概率与统计1. 概率的基本概念与性质- 随机事件与样本空间的概念- 概率的定义及性质- 概率的计算方法2. 排列、组合与概率计算- 排列与组合的基本概念与计算方法- 包含条件的排列与组合的计算方法- 概率计算中的排列与组合问题的应用3. 随机变量与概率分布- 随机变量的定义及性质- 离散型和连续型随机变量的概率分布- 随机变量的数学期望与方差的计算4. 概率统计与抽样调查- 总体与样本的概念及表示方法- 抽样调查的基本方法与误差分析- 统计量的计算与应用六、向量与矩阵1. 向量的基本概念与性质- 向量的定义及表示方法- 向量的数量乘法、加法、减法与向量的线性相关性2. 向量的线性组合与线性方程组- 向量的线性组合与线性方程组概念- 线性方程组的解的判定与求解3. 矩阵的基本概念与运算- 矩阵的定义及表示方法- 矩阵的乘法、加法、减法与矩阵的性质4. 矩阵的转置、行列式与逆矩阵- 矩阵的转置运算与性质- 矩阵的行列式及其性质与应用- 矩阵的逆矩阵的定义与求解5. 矩阵的秩与线性方程组- 矩阵的秩的定义及性质- 秩与线性方程组解的存在性与唯一性的关系这只是对____年高三数学高考知识点进行的一个预测总结,具体内容还需要参考教材或高考大纲进行复习和学习。

人教版高三数学复习知识点总结(2篇)

人教版高三数学复习知识点总结(2篇)

人教版高三数学复习知识点总结高中数学是一门关于数与形的科学,是培养学生逻辑思维和分析问题能力的重要学科。

在高三阶段,数学的学习内容相对较多,需要对前几年的数学知识进行深入的复习和巩固。

接下来,我将对人教版高三数学的复习知识点进行总结,帮助学生们进行整理和复习。

一、函数与方程1. 二次函数- 二次函数的概念与性质- 图像的性质(开口方向、对称轴等)- 平移、伸缩与翻折- 二次函数的一般式、顶点式、交点式- 判别式与根的性质- 解二次不等式- 二次函数与其他函数的关系(函数的复合、反函数等)2. 指数和对数函数- 指数函数和对数函数的概念与性质- 指数函数和对数函数的图像特点- 指数幂的性质和运算法则- 对数运算的性质和运算法则- 指数方程和指数不等式的解法- 对数方程和对数不等式的解法3. 三角函数- 弧度制与角度制的换算- 三角函数的图像与周期性- 三角函数的基本关系式与恒等式- 三角函数的运算性质与运算法则- 三角函数方程与三角函数不等式的解法- 解三角形的实际问题4. 高次方程和不等式- 一元高次方程的解法- 二元高次方程的解法- 一元高次不等式的解法- 二元高次不等式的解法- 高次方程和不等式的应用(实际问题的建立和解决)二、数列与数学归纳法1. 等差数列- 等差数列的概念与性质- 等差数列的通项公式和前n项和公式- 等差数列特殊求和公式的推导和应用- 等差数列简单应用(等差中项、等差平均项等)2. 等比数列- 等比数列的概念与性质- 等比数列的通项公式和前n项和公式- 等比数列特殊求和公式的推导和应用- 等比数列简单应用(等比中项、等比平均项等)3. 等差数列与等比数列的综合应用- 等差数列与等比数列的综合应用(数列的运算、数列的混合应用)4. 数学归纳法- 数学归纳法的基本思想与步骤- 数学归纳法与数列的联系- 数学归纳法的简单应用(证明不等式、性质等)三、三角恒等变换1. 三角函数的基本关系式与恒等式- 三角函数的基本关系式(同角三角函数值之间的关系)- 三角函数的恒等变换(三角函数的和差化积、积化和差等)2. 三角恒等式的证明- 三角恒等式的证明方法和技巧- 三角恒等式的应用(证明不等式、求解方程等)四、数学推理与解题方法1. 数学证明- 数学证明的基本思路和方法- 数学证明的常用技巧(对称性、反证法、递推关系等)2. 数学建模与解题方法- 数学建模的基本流程和方法- 数学建模中的常用工具(函数图像、数列和方程)3. 解决问题的思维方法与策略- 解决数学问题的思维方法(逻辑推理、归纳演绎等)- 解决数学问题的策略(抽象化、归纳思考、逆向思维等)以上是人教版高三数学复习知识点的总结,希望能够对同学们的复习提供帮助。

高三数学必考知识点和分数

高三数学必考知识点和分数

高三数学必考知识点和分数高三学生在备考期间,数学作为一门重要学科,必须要掌握的知识点众多。

本文将为大家梳理高三数学必考的知识点和分数,并为大家提供一些备考建议。

一、函数与方程1. 一次函数一次函数是高三数学必考的基础知识点,需要掌握函数的定义、图像的性质以及相关的计算方法。

2. 二次函数二次函数也是高考数学中的重要内容,需要熟练掌握顶点坐标的求解、图像的性质以及与一次函数的比较等。

3. 指数函数与对数函数指数函数与对数函数在高考数学中占有较大比重,需要理解其性质、图像和运算法则,以及解相关的方程与不等式等。

4. 幂函数与反比例函数幂函数与反比例函数也是高考数学中的重要内容,需要了解其图像和性质,并能够运用它们解决实际问题。

5. 三角函数三角函数是高考数学中比较复杂的知识点,需要熟悉基本公式、图像的性质以及运算法则,能够解决相关的方程和不等式等。

二、几何与向量1. 平面几何平面几何是高考数学中的重要内容,需要熟练掌握各种几何性质、判定方法和运算法则,能够解决相关的几何问题。

2. 空间几何空间几何是高考数学中的难点,需要掌握空间图形的投影方法、向量的性质和空间坐标系等。

3. 三视图与旋转体三视图与旋转体也是高考数学中的重要内容,需要熟悉投影的方法、旋转体的性质和相关的计算方法。

4. 向量与平面向量与平面是高考数学中的难点,需要了解向量的性质、平面的方程和相交关系等。

三、概率与统计1. 随机事件与概率随机事件与概率是高考数学中的重要内容,需要熟悉随机事件的定义和性质,掌握概率的计算方法并能够解决相关的问题。

2. 排列组合与选择问题排列组合与选择问题需要熟练掌握各种计数方法、概率与统计的运用,并能够解决相关的问题,如排队问题、选课问题等。

3. 统计与抽样统计与抽样是高考数学中的重点内容,需要了解样本数据的统计特征、统计图表的分析和抽样方法等。

四、推理与证明1. 数学归纳法数学归纳法是高考数学中的重要证明方法,需要熟悉归纳法的基本思路和步骤,并能够灵活运用于解决相关的问题。

高三数学考前必预习的知识点(推荐4篇)

高三数学考前必预习的知识点(推荐4篇)

高三数学考前必预习的知识点(推荐4篇)篇1:高考数学考前必背知识点2023选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。

高考必考,10分2、随机变量及其分布:不单独命题3、统计:高考的知识板块集合与简单逻辑:5分或不考函数:高考60分:①、指数函数②对数函数③二次函数④三次函数⑤三角函数⑥抽象函数(无函数表达式,不易理解,难点)平面向量与解三角形立体几何:22分左右不等式:(线性规则)5分必考数列:17分(一道大题+一道选择或填空)易和函数结合命题平面解析几何:(30分左右)计算原理:10分左右概率统计:12分----17分复数:5分理科生如何在最后阶段提高数学成绩一、科目复习方法复习思路要很清楚,分成两条线:一条,跟紧老师的复习进度,及时巩固,这一条其实上课认真听,作业质量高再加上自己练习一些就能保证,说起来简单的几个字,可是它要求你能坚持,一次认真听课不难,难的是次次认真,无论你觉得老师讲的这些内容你觉得你掌握的有多好,认真听绝对是有必要的,养成习惯,不认真也难了,现在我大一,目前为止因为有重要的事只翘过一次课,还是没有老师的那种英语听力课,不是学霸也没有多刻苦,仅仅是因为习惯。

听课重要,作业重要,做题重要。

关于听课不在这里赘述。

作业,刚开始复习一天半张卷子,后来一天一张卷子的量,再后来一天两张卷子也能很快写完而且保证质量,你看到了,循序渐进,提高速度,这对高考帮助很大,高考数学卷我记得我都写完了还有时间翻过去把所有选择填空再算一遍。

每次做题都当成最后一遍,因为你不知道有没有时间来返工,所以这样的作业完成量,当时觉得好多,现在看来真的有用。

晚自习数学课代表经常报来一堆卷子,发下来,十分钟后收上去,十分钟内你要写完选择题前六道填空题前两道正确率达100%不然惩罚做同类型的题一种十道,我们先不说这种惩罚的好坏毕竟当时“残害”了一堆同学,就练习本身是很好的。

高三数学知识点总结(15篇)

高三数学知识点总结(15篇)

高三数学知识点总结(15篇)高三数学知识点总结1考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。

重点考查集合间关系的理解和认识。

近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。

在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。

简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。

考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。

导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面向量一般是2道小题,1道综合解答题。

小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。

大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。

向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型、考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和简单线性规划问题、基本不等式的应用等,通常会在小题中设置1到2道题。

对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进行考查、在选择、填空题中考查等差或等比数列的概念、性质、通项公式、求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数、方程、不等式等解决问题的能力,它们都属于中、高档题目、考点五:立体几何与空间向量一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直、求空间角等(文科不要求)、在高考试卷中,一般有1~2个客观题和一个解答题,多为中档题。

高三数学高考知识点总结

高三数学高考知识点总结

高三数学高考知识点总结1. 函数与方程1.1 一元二次函数及应用1.2 二次函数与一元二次方程1.3 三角函数与解三角形1.4 指数、对数与幂函数1.5 不等式1.6 等式与方程的应用1.7 参数方程与函数的图形2. 数列与数列极限2.1 数列的概念与性质2.2 等差数列与等比数列2.3 数列极限的定义与性质2.4 数列极限的计算方法2.5 无穷数列极限3. 三角函数与三角恒等变换3.1 三角函数的定义与性质3.2 三角函数的图像与变换3.3 三角函数的复合与反函数3.4 三角恒等式的证明与应用3.5 三角函数的基本计算4. 几何与空间几何4.1 平面几何基本概念与定理4.2 平面图形的性质与计算4.3 立体图形的基本概念与定理4.4 空间图形的性质与计算4.5 空间几何的向量与坐标表示4.6 空间几何的相交与平行关系5. 三角函数与向量5.1 向量的概念与性质5.2 平面向量的基本运算5.3 向量的数量积与向量积5.4 向量与空间图形的应用5.5 三角函数与向量的关系6. 概率与统计6.1 随机事件与概率6.2 概率的计算与性质6.3 组合与排列6.4 统计图与频率分布表6.5 参数估计与假设检验7. 导数与微分7.1 导数的概念与性质7.2 导数的计算及应用7.3 高阶导数与隐函数求导7.4 微分的概念与性质7.5 微分中值定理与泰勒展开7.6 极值与最值的判定8. 不定积分与定积分8.1 不定积分及其基本性质8.2 常用的积分公式与方法8.3 定积分的定义及性质8.4 定积分的计算方法8.5 定积分在几何与物理中的应用9. 空间解析几何9.1 空间直线与面的方程9.2 空间几何的两点形式与一般方程9.3 空间几何的交点、距离与投影9.4 空间直线与面的位置关系9.5 空间曲线及其方程10. 数学建模10.1 建模的基本思路与方法10.2 建模中的数学工具与技巧10.3 建模中的数据处理与分析10.4 建模中的模型建立与求解这些都是高中数学高考的核心知识点,在备考过程中需要掌握这些知识点的概念、性质、计算方法和应用。

高考数学基础知识点归纳总结

高考数学基础知识点归纳总结

高考数学基础知识点归纳总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!高考数学基础知识点归纳总结高考数学基础知识点归纳总结_高三数学知识点有很多的同学是非常的想知道,高三数学知识点有哪些,如何学好数学呢,那我们知道高考数学基础知识点归纳总结有哪些吗?下面是本店铺整理的高考数学基础知识点归纳总结,希望能够帮助到大家。

数学高三容易得分的知识点

数学高三容易得分的知识点

数学高三容易得分的知识点在高三数学学习中,对于学生来说,掌握一些容易得分的知识点可以提高成绩,增强自信。

下面将介绍一些数学高三容易得分的知识点,帮助同学们在备考中有针对性地进行复习。

一、函数与导数1. 函数的概念与性质:了解函数的定义以及常见函数的性质,如奇偶性、周期性等,可以帮助同学们解决函数相关的题目。

2. 导数的定义与基本性质:理解导数的几何和物理意义,熟悉导数的基本性质,掌握常用函数导数的求法,如多项式函数、指数函数、对数函数等。

3. 函数的单调性与曲线的凹凸性:掌握函数单调性的判定方法和曲线凹凸性的判断条件,能够快速判断函数图像的趋势和曲线的凹凸区间。

4. 函数的极值与最值:熟练应用函数导数的性质求函数的极值和最值,注意分析临界点和区间端点。

二、数列与数学归纳法1. 数列的概念与常见数列:了解数列的定义和常见数列的特点,如等差数列、等比数列等。

熟悉数列的通项公式和求和公式,掌握应用数列的性质解决相关问题。

2. 数学归纳法的应用:掌握数学归纳法的基本思想和步骤,能够熟练运用数学归纳法证明数学命题。

三、概率与统计1. 随机事件与概率:了解随机事件的基本概念和概率计算的方法,熟练掌握加法原理、乘法原理和条件概率的计算。

2. 排列与组合:掌握排列组合的基本概念和计算方法,能够解决与排列组合相关的问题,如抽奖、选课等。

3. 统计与统计图表的解读:熟悉统计学的基本概念和统计图表的类型,能够正确理解和分析图表中的数据信息。

四、立体几何与解析几何1. 空间几何体的性质:理解立体几何体的基本概念和性质,熟悉球、棱柱、棱锥等几何体的特点和计算公式。

2. 平面几何与向量几何:掌握平面几何的基本性质,包括平行、相交、垂直等关系,了解向量的定义和基本运算,熟练应用平面几何与向量几何解决几何问题。

五、三角函数与解三角形1. 三角函数的基本关系式:掌握正弦、余弦、正切等三角函数之间的基本关系式,运用它们来解决三角函数的相关问题。

高三数学必考知识点归纳

高三数学必考知识点归纳

高三数学必考知识点归纳1、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。

组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。

元素常用小写字母a、b、c、…来表示。

集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。

2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a?A。

3、集合中元素的特性(1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

例如A={0,1,3,4},可知0∈A,6?A。

(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。

(3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。

4、集合的分类集合科根据他含有的元素个数的多少分为两类:有限集:含有有限个元素的集合。

如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。

无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的三角形”,组成上述集合的元素不可数的,因此他们是无限集。

特别的,我们把不含有任何元素的集合叫做空集,记错F,如{_?R|+1=0}。

5、特定的集合的表示为了书写方便,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示,请牢记。

(1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。

(2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。

(3)全体整数的集合通常简称为整数集Z。

(4)全体有理数的集合通常简称为有理数集,记做Q。

(5)全体实数的集合通常简称为实数集,记做R。

高三数学知识点总结归纳三篇

高三数学知识点总结归纳三篇

高三数学知识点总结归纳三篇高三数学知识点总结高三数学是一个非常重要的阶段,它是数学学习的最后一步,也是数学知识体系的顶峰。

在高三学习数学,需要掌握一些基本的数学知识,例如三角函数、导数、微积分等。

本文将对高三数学知识点进行总结归纳,以便考生快速复习。

一、三角函数三角函数是高中数学的一个重要知识点,它包括正弦函数、余弦函数、正切函数和余切函数。

在高三学习三角函数时,需要掌握以下内容:1.1 角度制和弧度制角度制是平面直角坐标系中采用度作为单位,度数用符号“°”表示。

弧度制是以半径等于1的圆的周长作为单位,弧长用符号“rad”表示。

1.2 基本三角函数正弦函数是y=sin(x)函数,x表示的是弧度,y表示的是一个三角形的对边与斜边的比例关系。

余弦函数、正切函数和余切函数的定义方法类似,具体可以参考教材的讲解。

1.3 三角函数的性质三角函数有很多性质,例如周期性、奇偶性和单调性等。

加强对这些性质的认识,可以帮助我们更好地理解三角函数的图像和解题方法。

二、导数导数是数学中一个非常重要的概念,它与函数的变化率有关。

在高三学习导数时,需要掌握以下内容:2.1 导数的定义导数是函数y=f(x)在某一点x0的切线斜率。

它的定义式为:f'(x)=lim(f(x+Δx)-f(x))/Δx (Δx趋近于0)。

2.2 导数的求法导数可以通过求导公式或导数的定义来求。

其中,求导公式较为常用,掌握各类函数的求导公式可以帮助我们在解题时高效地计算导数。

2.3 导数的应用导数是解决一些实际问题时的强有力工具,例如最值问题和曲线的凹凸性等。

加强对导数的应用能力,可以帮助我们更好地应对高考试题。

三、微积分微积分是高中数学一个比较高级的知识点,主要包括微分和积分。

在高三学习微积分时,需要掌握以下内容:3.1 微分的定义微分是函数y=f(x)在某一点x0处的变化量。

它的定义式为:dy=f'(x0)dx。

3.2 微分的求法微分可以通过公式法或差值法来求。

高三数学知识点归纳总结

高三数学知识点归纳总结

高三数学知识点归纳总结高三数学知识点归纳总结6篇高三数学知识点归纳总结11.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

3.两个平面平行的主要性质:(1)由定义知:“两平行平面没有公共点”;(2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”;(3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”;(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;(5)夹在两个平行平面间的平行线段相等;(6)经过平面外一点只有一个平面和已知平面平行。

高三数学知识点归纳总结2一个推导利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2++a1qn-1,同乘q得:qSn=a1q+a1q2+a1q3++a1qn,两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).两个防范(1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.三种方法等比数列的判断方法有:(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),则{an}是等比数列.(2)中项公式法:在数列{an}中,an≠0且a=an・an+2(n∈N_),则数列{an}是等比数列.(3)通项公式法:若数列通项公式可写成an=c・qn(c,q均是不为0的常数,n∈N_),则{an}是等比数列.注:前两种方法也可用来证明一个数列为等比数列.高三数学知识点归纳总结3不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。

高三数学高考知识点总结大全

高三数学高考知识点总结大全

高三数学高考知识点总结大全高三数学高考知识点总结大全第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;(2)注意:讨论的时候不要遗忘了的情况。

第二部分函数与导数1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。

2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性;⑨导数法3、复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出。

②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。

(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

注意:外函数的'定义域是内函数的值域。

4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。

5、函数的奇偶性(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;(2)是奇函数;(3)是偶函数;(4)奇函数在原点有定义,则;(5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;高三数学知识点小结最新1、数列的定义、分类与通项公式(1)数列的定义:①数列:按照一定顺序排列的一列数。

②数列的项:数列中的每一个数。

(2)数列的分类:分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列an+1>an其中n∈N递减数列an+1常数列an+1=an(3)数列的通项公式:如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。

江苏高考高三数学知识点归纳总结

江苏高考高三数学知识点归纳总结

江苏高考高三数学知识点归纳总结数学作为一门重要的科学学科,对于高中生来说尤为重要。

江苏高考作为中国高考的重要组成部分之一,数学也是其中的一项必考科目。

为了帮助同学们更好地备考江苏高考数学,下面对高三数学知识点进行归纳总结,希望对同学们有所帮助。

1. 函数与方程1.1 一次函数1.2 二次函数1.3 分式函数1.4 指数与对数函数1.5 三角函数1.6 方程与不等式2. 三角函数2.1 弧度制与角度制的转化2.2 三角函数的概念与性质2.3 基本变换公式与和角、差角公式2.4 三角函数的图像与性质2.5 三角恒等式的证明与应用2.6 正弦、余弦、正切函数的定义域与值域3. 数列与数列求和3.1 等差数列与等比数列的概念与性质3.2 通项公式与求和公式3.3 数列分项求和的应用4. 平面几何4.1 直线和角的性质(平行、垂直、异面)4.2 三角形及其性质(角度、边长关系、中线与高线、外接、内切圆)4.3 四边形及其性质(平行四边形、矩形、正方形、菱形、梯形)4.4 圆的性质与圆的常见判定4.5 二次曲线的图像与性质(抛物线、双曲线、椭圆)5. 空间几何5.1 空间图形的投影与截面5.2 点、线、面的位置关系(共面、平行、垂直)5.3 空间向量的概念及运算规律5.4 空间几何体的体积与表面积计算以上仅为高三数学知识点的简要总结,具体每个知识点的内容还需同学们在课堂上进行学习与掌握。

在备考过程中,同学们可以通过大量的练习题来巩固知识,提高解题能力。

同时,也要重视对于考试大纲中的重点、难点知识点的学习,特别是一些常见的考点,重点进行强化训练。

在备考过程中,注意合理安排时间,充分利用好课外的复习时间,多进行知识的梳理与总结。

同时,查漏补缺也是备考的重要环节之一,及时了解自己的薄弱环节并加以强化。

合理的备考策略和方法将有助于同学们取得更好的成绩。

最后,希望同学们能够保持积极的学习态度,坚持不懈地努力备考,相信通过自己的努力和老师的指导,一定能够在江苏高考数学科目中取得优异的成绩。

数学高三知识点大全集江西

数学高三知识点大全集江西

数学高三知识点大全集江西高三是学生们备战高考的重要阶段,其中数学课程的学习尤为重要。

为了帮助江西的高三学生更好地复习数学知识,本文将为大家整理数学高三知识点的大全集。

以下将按照数学的各个分支逐一介绍。

1. 高等代数1.1. 向量和平面几何- 向量的概念和运算法则- 向量点乘和叉乘的应用- 平面几何中的直线和平面方程1.2. 矩阵与行列式- 矩阵的概念和运算法则- 线性方程组和矩阵方程- 行列式的性质与求解1.3. 数学归纳法与数列- 数学归纳法的原理和应用- 等差数列与等比数列的性质与求和公式 - 递推数列与特殊数列的分析与求解2. 数学分析2.1. 极限与连续性- 极限的定义及性质- 无穷小量和无穷大量的概念与运算- 连续函数的性质与应用2.2. 导数与微分- 导数的定义及运算法则- 高阶导数和隐函数求导- 微分的概念和几何应用2.3. 积分与定积分- 积分的定义与运算法则- 不定积分和定积分的计算方法- 牛顿-莱布尼兹公式及其应用3. 几何与立体几何3.1. 几何的基本概念- 点、线、面和体的概念和性质- 角的概念和相关定理- 相似与全等的判定与性质3.2. 平面几何- 平面图形的性质与判定- 平面几何中的平行与垂直关系- 平面几何中的相交线和角的性质 3.3. 空间几何- 空间图形的性质与判定- 空间几何中的位置关系和垂直关系 - 空间几何中的相交线和面的性质4. 概率与统计4.1. 随机事件与概率- 随机事件的定义和性质- 概率的定义和运算法则- 条件概率和事件独立性的概念与应用4.2. 统计和抽样调查- 统计量的定义和性质- 参数估计和假设检验- 抽样调查的设计和数据分析方法以上是数学高三知识点的大全集,包括高等代数、数学分析、几何与立体几何以及概率与统计四个主要分支。

希望江西的高三学生能够认真复习,并在高考中取得好成绩!加油!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学高考考试复习知识点归纳
要提高复习效率,必须使自己的思维与老师的思维同步。

而预习则是达到这一目的的重要途径,要做到“两先两后” ,即先预习后听课,先复习后作业。

以提高听课的主动性,减少听课的盲目性。

以下是小编给大家整理的高三数学高考考试复习知识点归纳,希望大家能够喜欢!
1.数列的定义
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.
(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列 1,2,3,4,5 与数列 5,4,3,2,1 是不同的数列.
(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1 的 1 次幂,2 次幂,3 次幂,4 次幂,…构成数列:-1,1,-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于 f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于 f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别. 如:2,3,4,5,6 这 5 个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
2.数列的分类
(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列. 在写数列时,对于有穷数列,要把末项写出,例如数列 1,3,5,7,9,…,
2n-1 表示有穷数列,如果把数列写成 1,3,5,7,9,…或 1,3,5,7,9,… ,2n-1,… ,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
3.数列的通项公式
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子 f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列 1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集 N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用 1,2,3,…去替代公式中的n 就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如 2 的不足近似值,精确到 1,0.1,0.01,0.001,0.0001,…所构成的数列 1,1.4,1.41,1.414,1.4142,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.
4.数列的图象
对于数列 4,5,6,7,8,9,10 每一项的序号与这一项有下面的对应关系:
这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集 N_ (或它的有限子集{1,2,3,… ,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.
由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.
数列是一种特殊的函数,数列是可以用图象直观地表示的.
数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图
来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.
把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以 1 为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.
一、函数的定义域的常用求法:
1、分式的分母不等于零;
2、偶次方根的被开方数大于等于零;
3、对数的真数大于零;
4、指数函数和对数函数的底数大于零且不等于 1 ;
5、三角函数正切函数 y=tanx 中x≠kπ+π/2;
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:
1、定义法;
2、换元法;
3、待定系数法;
4、函数方程法;
5、参数法;
6、配方法
三、函数的值域的常用求法:
1、换元法;
2、配方法;
3、判别式法;
4、几何法;
5、不等式法;
6、单调性法;
7、直接法
四、函数的最值的常用求法:
1、配方法;
2、换元法;
3、不等式法;
4、几何法;
5、单调性法
五、函数单调性的常用结论:
1、若 f(x),g(x)均为某区间上的增(减)函数,则 f(x)+g(x)在这个区间上也为增(减)函数。

2、若 f(x)为增(减)函数,则-f(x)为减(增)函数。

3、若 f(x)与 g(x)的单调性相同,则 f[g(x)]是增函数;若 f(x)与 g(x)的单调性不同,则 f[g(x)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:
1、如果一个奇函数在 x=0 处有定义,则 f(0)=0,如果一个函数 y=f(x)既是奇函数又是偶函数,则 f(x)=0(反之不成立)。

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数 y=f(u)和 u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数 f(x)的定义域关于原点对称,则 f(x)可以表示为
f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

立体几何初步
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

相关文档
最新文档