第十章 回归分析
回归分析概述
例 1:某保险公司承保汽车 x 万辆,每辆保费
为 1000 元,如果记保险公司的承保总收入为
y ,则 y 与 x 之间表现为一种确定性的关系:
y 1000x
变量之间具有密切关联而又不能由一个 或若干个变量唯一确定另外一个变量, 这样 的一种联系称为变量之间的相关关系.
例如,父亲身材较高时儿子的身材也较高,但是 父子身高之间的关系不能用一个确定的函数关系 来表达.又如,人的血压与年龄之间有密切的关 系,但是两者之间的关系不能用一个确定的函数 关系来表达.
回归分析是考察两个变量之间统计联系的一种重要 方法,它在许多领域中都有极其广泛的应用。本章 主要介绍回归分析中最基本的部分 — —(线性)回 归分析,内容包括一元(线性)回归分析与多元 (线性)回归分析,以及某些可以线性化的非线性 回归分析问题,回归分析的基本形式仍然是估计与 检验。因此,不妨把本章的内容视作估计与检验方 法在特殊的一类统计问题中的应用。
概率论中简化处理随机变量的常用方法是求其
数学期望.因此,我们来研究自变量 x 与因变量
Y 的均值E Y 之间的关系.当自变量x 的值给定 时,相应的均值E Y 跟着确定,即x 与给定 x 时
Y 的均值 E Y x ˆ y 之间存在一种函数关系, 记
这个函数关系为 y f x,并称它为回归函数.
回归函数反映了自变量 x 与因变量 Y 的均值E Y
之间的函数关系, 因此它近似地描述了自变量 x 与 因变量Y 之间的数量关系.
回归函数f x是未知的,为了数学上处理的方便,
首先假定回归函数是线性的,即 y 0 1x, 其中 0 , 1 待定, 称1 为这个一元线性回归函数的回归
系数.也即E Y 0 1x, 引进随机误差项 ,那么
第十章 直线回归与相关分析
115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5
图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)
第十章_logit回归
第十章 logitic 回归本章导读:Logitic 回归模型是离散选择模型之一,属于多重变数分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销、会计与财务等实证分析的常用方法。
10.1 logit 模型和原理Logistic 回归分析是对因变量为定性变量的回归分析。
它是一种非线性模型。
其基本特点是:因变量必须是二分类变量,若令因变量为y ,则常用y=1表示“yes ”,y=0表示“no ”。
[在发放股利与不发放股利的研究中,分别表示发放和不发放股利的公司]。
自变量可以为虚拟变量也可以为连续变量。
从模型的角度出发,不妨把事件发生的情况定义为y=1,事件未发生的情况定义为0,这样取值为0、1的因变量可以写作:⎩⎨⎧===事情未发生事情发生01y 我们可以采用多种方法对取值为0、1的因变量进行分析。
通常以P 表示事件发生的概率(事件未发生的概率为1-P ),并把P 看作自变量x 的线性函数。
由于y 是0-1型Bernoulli 分布,因此有如下分布:P=P (y=1|x ):自变量为x 时y=1的概率,即发放现金股利公司的概率1-P=P (y=0|x ):自变量为x 时y=0的概率,即不发放现金股利公司的概率 事件发生和不发生的概率比成为发生比,即相对风险,表现为PP odds -=1.因为是以 对数形式出现的,故该发生比为对数发生比(log odds ),表现为)1ln(P P odds -=。
对数发生比也是事件发生概率P 的一个特定函数,通过logistic 转换,该函数可以写成logistic 回归的logit 模型:)1(log )(log PP P it e -= Logit 一方面表达出它是事件发生概率P 的转换单位;另一方面,它作为回归的因变量就可以自己与自变量之间的依存关系保持传统回归模式。
根据离散型随即变量期望值的定义,可得:E(y)=1(P)+0(1-P)=P进而得到x P y E 10)(ββ+==因此,从以上分析可以看出,当因变量的取值为0、1时,均值x y E 10)(ββ+=总是代表给定自变量时y=1的概率。
第十章_logit回归
第十章 logitic 回归本章导读:Logitic 回归模型是离散选择模型之一,属于多重变数分析范畴,是社会学、生物统计学、临床、数量心理学、市场营销、会计与财务等实证分析的常用方法。
10.1 logit 模型和原理Logistic 回归分析是对因变量为定性变量的回归分析。
它是一种非线性模型。
其基本特点是:因变量必须是二分类变量,若令因变量为y ,则常用y=1表示“yes ”,y=0表示“no ”。
[在发放股利与不发放股利的研究中,分别表示发放和不发放股利的公司]。
自变量可以为虚拟变量也可以为连续变量。
从模型的角度出发,不妨把事件发生的情况定义为y=1,事件未发生的情况定义为0,这样取值为0、1的因变量可以写作:⎩⎨⎧===事情未发生事情发生01y 我们可以采用多种方法对取值为0、1的因变量进行分析。
通常以P 表示事件发生的概率(事件未发生的概率为1-P ),并把P 看作自变量x 的线性函数。
由于y 是0-1型Bernoulli 分布,因此有如下分布:P=P (y=1|x ):自变量为x 时y=1的概率,即发放现金股利公司的概率1-P=P (y=0|x ):自变量为x 时y=0的概率,即不发放现金股利公司的概率 事件发生和不发生的概率比成为发生比,即相对风险,表现为PP odds -=1.因为是以 对数形式出现的,故该发生比为对数发生比(log odds ),表现为)1ln(P P odds -=。
对数发生比也是事件发生概率P 的一个特定函数,通过logistic 转换,该函数可以写成logistic 回归的logit 模型:)1(log )(log PP P it e -= Logit 一方面表达出它是事件发生概率P 的转换单位;另一方面,它作为回归的因变量就可以自己与自变量之间的依存关系保持传统回归模式。
根据离散型随即变量期望值的定义,可得:E(y)=1(P)+0(1-P)=P进而得到x P y E 10)(ββ+==因此,从以上分析可以看出,当因变量的取值为0、1时,均值x y E 10)(ββ+=总是代表给定自变量时y=1的概率。
(DLu)第10章两变量间相关与回归分析PPT课件
2.34
YY
3.26
XY
blXY 3.26 0.1698 lXX 19.20
a Y b X 0 .9 9 4 8 0 .1 6 9 8 4 .0 4 8 0 .3 0 7 5
3、绘制回归直线
Y0.30750.1698X
二、直线回归中的统计推断
样本回归系数b是总体回归系数
是否有 0
b X x (Y y ) X YX Yn lXY
(X x )2
X 2 ( X )2n lXX
aybx
实例求解回归方程
例10.1 计算甘油三酯(Y)对血清胆固醇(X)的 直线回归方程 。
1、绘制散点图 2、计算
XX85.014.048
n 21
YY20.890.9948 n 21
l l l 19.20 XX
简单相关系数(simple correlation coefficient)等;
符号r表示样本相关系数,ρ表示总体相关系数。
它说明具有直线关系的两个变量,相关关系的密 切程度与相关方向的指标。其值为-1≤r≤1。
条件:双变量正态分布
二、计算公式
r XxYy lX Y Xx2 Yy2 lX X lY Y
Yˆ abX
a称为截距, b称之为斜率或回归系数, 表示当自变量X每改变一个单位,因变量Y平 均变动的单位数。
I型回归 II型回归 直线回归(linear regression) 或简单线性回归(simple linear regression)
总体和
YX X
a称为常数项, b称为样本回归系数
FSS回回=MS回=0.55361=5.888
SS剩
b与=0
(一)方差分析
1、回归系数的假设检验——方差分析
生物统计学:第10章 多元线性回归分析及一元非线性回归分析
H0 : 1 2 k 0 H A : 至少有一个i 0
拒绝H0意味着至少有一个自变量对因变量是有影 响的。
检验的程序与一元的情况基本相同,即用方差
胸围X2 186.0 186.0 193.0 193.0 172.0 188.0 187.0 175.0 175.0 185.0
体重Y 462.0 496.0 458.0 463.0 388.0 485.0 455.0 392.0 398.0 437.0
序号 体长X1 胸围X2 体重Y 11 138.0 172.0 378.0 12 142.5 192.0 446.0 13 141.5 180.0 396.0 14 149.0 183.0 426.0 15 154.2 193.0 506.0 16 152.0 187.0 457.0 17 158.0 190.0 506.0 18 146.8 189.0 455.0 19 147.3 183.0 478.0 20 151.3 191.0 454.0
R r Y•1,2,,k
yp yˆ p
,
p 1,2,, n
对复相关系数的显著性检验,相当于对整个回 归的方差分析。在做过方差分析之后,就不必再检 验复相关系数的显著性,也可以不做方差分析。
例10.1的RY·1,2为:
RY •1,2
24327 .8 0.9088 29457 .2
从附表(相关系数检验表)中查出,当独立
表示。同样在多元回归问题中,可以用复相关系数表 示。对于一个多元回归问题,Y与X1,X2,… ,Xk 的线性关系密切程度,可以用多元回归平方和与总平 方和的比来表示。因此复相关系数由下式给出,
应用回归分析 第十章
第10章 含定性变量的回归模型10.1 一个学生使用含有季节定性自变量的回归模型,对春夏秋冬四个季节引入4个0-1型自变量,用SPSS 软件计算的结果中总是自动删除了其中的一个自变量,他为此感到困惑不解。
出现这种情况的原因是什么? 答:假如这个含有季节定性自变量的回归模型为:其中含有k 个定量变量,记为x i 。
对春夏秋冬四个季节引入4个0-1型自变量,记为D i ,只取了6个观测值,其中春季与夏季取了两次,秋、冬各取到一次观测值,则样本设计矩阵为:显然,(X,D)中的第1列可表示成后4列的线性组合,从而(X,D)不满秩,参数无法唯一求出。
这就是所谓的“虚拟变量陷井”,应避免。
当某自变量x j 对其余p-1个自变量的复判定系数2j R 超过一定界限时,SPSS 软件将拒绝这个自变量x j 进入回归模型。
称Tol j =1-2j R 为自变量x j 的容忍度(Tolerance ),SPSS 软件的默认容忍度为0.0001。
也就是说,当2j R >0.9999时,自变量x j 将被自动拒绝在回归方程之外,除非我们修改容忍度的默认值。
而在这个模型中出现了完全共线性,所以SPSS 软件计算的结果中总是自动删除了其中的一个定性自变量。
10.2对自变量中含有定性变量的问题,为什么不对同一属性分别建立回归模型,而采取设虚拟变量的方法建立回归模型?答:原因有两个,以例10.1说明。
一是因为模型假设对每类家庭具有相同的斜率和误差方差,把两类家庭放在一起可以对公共斜率做出最佳估计;二是对于其tt t t kt k t t D D D X X Y μαααβββ++++++=332211110 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=000110010110001010010010100011)(616515414313212111k k k k k k X X X X X X X X X X X XD X,⎪⎪⎪⎪⎪⎭⎫⎝⎛=k βββ 10β⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4321ααααα他统计推断,用一个带有虚拟变量的回归模型来进行也会更加准确,这是均方误差的自由度更多。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第10章 时间序列数据的基本回归分析【圣才出
第10章时间序列数据的基本回归分析10.1复习笔记一、时间序列数据的性质时间序列数据与横截面数据的区别:(1)时间序列数据集是按照时间顺序排列。
(2)时间序列数据与横截面数据被视为随机结果的原因不同。
①横截面数据应该被视为随机结果,因为从总体中抽取不同的样本,通常会得到自变量和因变量的不同取值。
因此,通过不同的随机样本计算出来的OLS估计值通常也有所不同,这就是OLS统计量是随机变量的原因。
②经济时间序列满足作为随机变量是因为其结果无法事先预知,因此可以被视为随机变量。
一个标有时间脚标的随机变量序列被称为一个随机过程或时间序列过程。
搜集到一个时间序列数据集时,便得到该随机过程的一个可能结果或实现。
因为不能让时间倒转重新开始这个过程,所以只能看到一个实现。
如果特定历史条件有所不同,通常会得到这个随机过程的另一种不同的实现,这正是时间序列数据被看成随机变量之结果的原因。
(3)一个时间序列过程的所有可能的实现集,便相当于横截面分析中的总体。
时间序列数据集的样本容量就是所观察变量的时期数。
二、时间序列回归模型的例子1.静态模型假使有两个变量的时间序列数据,并对y t和z t标注相同的时期。
把y和z联系起来的一个静态模型(staticmodel)为:10 1 2 t t t y z u t nββ=++=⋯,,,,“静态模型”的名称来源于正在模型化y 和z 同期关系的事实。
若认为z 在时间t 的一个变化对y 有影响,即1t t y z β∆=∆,那么可以将y 和z 设定为一个静态模型。
一个静态模型的例子是静态菲利普斯曲线。
在一个静态回归模型中也可以有几个解释变量。
2.有限分布滞后模型(1)有限分布滞后模型有限分布滞后模型(finitedistributedlagmodel,FDL)是指一个或多个变量对y 的影响有一定时滞的模型。
考察如下模型:001122t t t t ty z z z u αδδδ--=++++它是一个二阶FDL。
第十章双变量回归与相关
(9-3) (9-4)
式中 lXY 为 X 与 Y 的离均差积和:
l
XY
(X
X
)(Y
Y
)
XY
(
X
)( n
Y
)
(9 5)
除了图中所示两变量呈直线关系外,一 般还假定每个 X 对应Y 的总体为正态分布, 各个正态分布的总体方差相等且各次观测 相互独立。这样,公式(9-1)中的 Yˆ 实际上 是 X 所对应 Y 的总体均数 Y|X 的一个样本估 计值,称为回归方程的预测值(predicted value), 而 a 、 b 分别为 和 的样本估计。
(Y Y ) 2 (Yˆ Y ) 2 (Y Yˆ ) 2
数理统计可证明:
å (Yˆ - Y )(Y - Yˆ ) = 0
上式用符号表示为
SS总 SS回 SS残
(9-6)
式中
SS总 即 (Y Y)2 , 为 Y 的 离 均 差 平 方
和,表示未考虑 X 与Y 的回归关系时Y 的 总变异。
离 Y Yˆ 。
➢ 求解a、b实际上就是“合理 地”找到一条能最好地代表
数据点分布趋势的直线。
最小二乘法(least sum of squares)原则:即保证各实 测点至直线的纵向距离的 平方和最小。
(X,Y)
b lXY lXX
( X X )(Y Y ) (X X )2
a Y bX
5.列出回归方程(回归直线绘制见图 9-1)
Yˆ 1.6617 0.1392X
此直线必然通过点( , )X且与Y 纵坐标轴相交于 截距 a 。如果散点图没有过坐标系原点,可在 自变量实测范围内远端取易于读数的 X 值代入 回归方程得到一个点的坐标,连接此点与点 ( , )也可X绘Y出回归直线。
第十章时间序列数据的基本回归分析-2
基期的变化;
价格指数:可用于计算通胀率,和将名义值换算为实际 值
大多数经济行为受真实变量而非名义变量的影响 工作时间与小时工资
Hale Waihona Puke log(hours)= 0+ 1log(w/p)+u log(hours)= 0+ 1log(w)+ 2log(p)+u
对华反倾销: 交互影响
R2 1 SSR SST
R21SSSS/R(n/T( nk1)1)
y的方差y2不等于SST/(n-1)
更合理的拟合优度度量:
R2 1
SSR
n t1
yt2
R2
1
SSR/(nk1) tn1yt2 (n2)
Var(yt)=Var(et)= e2
指数趋势
log(yt)=0+1t+et 参数1的经济含义:
1=log(yt) (yt-yt-1)/yt-1
回归分析中的趋势变量
若因变量y和自变量x1和x2含有线性趋势,引入趋势变 量:
yt=0+1x1t+2x2t+3t+ut
估计模型:
yˆt ˆ1x1t +ˆ2x2t
这与包含线性趋势的回归模型是等同的:
yt=0+1x1t+2x2t+3t+ut
包含线性趋势时的可决系数R2
yt=0+1x1t+2x2t+3t+ut
总体可决系数:
R2=1-(u2/y2)
样本可决系数和调整可决系数:
可以将线性趋势t理解为除x1和x2外,导致y中线性趋势 的其他不可观测因素。
回归分析学习课件PPT课件
为了找到最优的参数组合,可以使用网格搜索方 法对参数空间进行穷举或随机搜索,通过比较不 同参数组合下的预测性能来选择最优的参数。
非线性回归模型的假设检验与评估
假设检验
与线性回归模型类似,非线性回归模型也需要进行假设检验,以检验模型是否满足某些统计假 设,如误差项的独立性、同方差性等。
整估计。
最大似然法
03
基于似然函数的最大值来估计参数,能够同时估计参数和模型
选择。
多元回归模型的假设检验与评估
线性假设检验
检验回归模型的线性关系 是否成立,通常使用F检 验或t检验。
异方差性检验
检验回归模型残差的异方 差性,常用的方法有图检 验、White检验和 Goldfeld-Quandt检验。
多重共线性检验
检验回归模型中自变量之 间的多重共线性问题,常 用的方法有VIF、条件指数 等。
模型评估指标
包括R方、调整R方、AIC、 BIC等指标,用于评估模 型的拟合优度和预测能力。
05
回归分析的实践应用
案例一:股票价格预测
总结词
通过历史数据建立回归模型,预测未来股票 价格走势。
详细描述
利用股票市场的历史数据,如开盘价、收盘价、成 交量等,通过回归分析方法建立模型,预测未来股 票价格的走势。
描述因变量与自变量之间的非线性关系,通过变 换或使用其他方法来适应非线性关系。
03 混合效应回归模型
同时考虑固定效应和随机效应,适用于面板数据 或重复测量数据。
多元回归模型的参数估计
最小二乘法
01
通过最小化残差平方和来估计参数,是最常用的参数估计方法。
加权最小二乘法
02
适用于异方差性数据,通过给不同观测值赋予不同的权重来调
简单回归分析-沈晓丽
表10-1 14名健康中年妇女的基础代谢与体重的测量值
编号
1 2 3 4 5 6 7
基础代谢 (kj/d)
4175.6 4435.0 3460.2 4020.8 3987.4 4970.6 5359.7
体重 (kg)
50.7 53.7 37.1 51.7 47.8 62.8 67.3
编号
8 9 10 11 12 13 14
4800
4300
Yˆ abx
3800
3300
2800 30 35 40 45 50 55 60 65 70 75
体重(kg)
利用回归方程,只要给定一个40-60岁的健康妇女的体重值,
就可估计出该体重个体的基础代谢值的平均值。
h
Yˆ
11
基础代谢(kJ/d)
线性回归关系的特点:
5800
5300 4800
h
5
线性回归(linear regression )又称简单回归
(simple regression ) :讨论两个变量间的数量依存关
系的统计方法,即研究一个变量如何随另一个变量变化 的常用方法。
两个变量:
因变量dependent variable 反应变量 response variable
:非独立的、受其它变量影响的变量,常用“Y”表 示。
在所有直线中找出 Y Yˆ 2 (残差平方和,记为 SS残差 )达最小值时所对应的直线作为回归线。
h
21
回归参数的估计方法:
按照最小二乘法原则,可得到:
n
(1b ) i1( Xi( XiX )X Y (i) 2Y)= L Lx x y x ,(i1,2,..n).,
(2)a Y bX
相关与回归分析课件
截距(intercept),直线与Y轴交点的纵坐标。
斜率(slope),回归系数(regression coefficient)。 意义:X每改变一个单位,Y平均改变b个单位。
0,Y随X的增大而增大(减少而减少)—— 斜上;
b<0,Y随X的增大而减小(减少而增加)—— 斜下;
b=0,Y与X无直线关系 —— 水平。 |b|越大,表示Y随X变化越快,直线越陡峭。
2
4
11
16
121
44
3
6
11
36
121
66
4
8
14
64
196
112
5
10
22
100
484
220
6
12
23
144
529
276
7
14
32
196
1024
448
8
16
29
256
841
464
9
18
32
324
1024
576
10
20
34
400
1156
680
11
22
33
484
1089
726
合计
132
246
2024
第十章 线性相关与回归 regression and correlation
叶孟良
—— 相关分析
06
—— 回归分析
04
变量间关系问题:年龄~身高、肺活量~体重、药物剂量与动物死亡率等。
01
依存关系:应变量(dependent variable) Y 随自变量(independent variable) X变化而变化。
时间序列数据的基本回归分析
例10.1 静态菲利普斯曲线 研究失业和通货膨胀之间是否存在替代关系。
H0: 1 0 H1: 1 0 文件:PHILLIPS.RAW 命令:reg inf unem 结果:
上述方程并没有表明unem和inf之间存在替代关系 (因为 ˆ1 0 ) 分析中可能存在的问题: (1)CLM假定不成立(12章);(2)静态菲利普斯 曲线不是最佳模型(附加预期的菲利普斯曲线)
yt 0 1zt ut , t 1,2,, n
• “静态模型”的名称来源于我们正在模型化y和z的 同期关系的事实。
• 在一个静态回归模型中也可以有几个解释变量。 2、有限分布滞后模型 在有限分布滞后模型(finite distributed lag
model,FDL)中,我们容许一个或多个变量对y的 影响有一定时滞。
一个q阶有限分布滞后模型可写成:
yt 0 0 zt 1zt1 q ztq ut
静态模型是上式的一种特例,当1, 2 ,, q 都为0
即可。
冲击倾向总是同期z的系数 0 。
长期倾向便是所有变量 zt j 的系数之和。
LRP 0 1 q
该假定意味着,Var(ut X ) 不能依赖于X(只要ut 和X相互独立就
足够了—满足TS.3即可),且在所有时期都保持不变。
假定 TS.5(无序列相关): Corr(ut ,us X ) 0,t s
【提问:我们为什么不假定不同横截面观测的误差是无关的呢? 答:前述有随机抽样的假定,则以样本中所有解释变量为条件, 不同观测的误差是独立的。因此,就我们当前目的而言,序列 相关只是时间序列和回归中的一个潜在问题。】
ቤተ መጻሕፍቲ ባይዱ
第10章 回归分析
7
解: 依题意,实验次数n=5,y~x为一元线性关系y=a+bx。根据最小二乘 法原理,有:
i 1 2 3 4 5
xi 2 4 5 8 9 28
yi 2.01 2.98 3.50 5.02 5.07 18.58
x i2 4 16 25 64 81 190
yi2 4.04 8.88 12.25 25.20 25.70 76.07
xiyi 4.02 11.92 17.50 40.16 45.63 119.23
解得a=1.155,b=0.4573。 因此关系式为:y=1.155+0.4573x。
如果用简化算法,则有:
故关系式为:y=1.155+0.4573x,即两种计算方法结果是一致的。 可见,根据实验数据建立回归方程,可采用最小二乘法,基本步骤为: ① 根据实验数据画出散点图; ② 确定经验公式的函数类型; ③ 通过最小二乘法得到正规方程组; ④ 求解正规方程组,得到回归方程的表达式。 其实①②两点正是第9章建立数学模型的过程,所以建立数学模型是回 归分析的前提。
13
[例10-2] 试用相关系数检验法对例10-l中得到的经验公式进行显著性检验 (α=0.05)。 解:
当α=0.05,n=5时,查得相关系数临界值 r0.05,3=0.8783。所以r>r, f, 所得的经验公式有意义。
14
应当指出的是,相关系数r有一个明显的缺点:即它接近于1的程度与实 验数据组数n有关。当n较小时,|r|容易接近于1;当n较大时,|r| 容易偏小。特别是当n=2时,因两点确定一条直线,|r|总等于1。所 以,只有当实验次数n较多时,才能得出真正有实际意义的回归方程。
2
回归分析的主要内容: 确定回归方程,检验回归方程的可信性 10.2 一元线性回归分析 10.2.1 一元线性回归方程的建立 一元线性回归分析又称直线拟合,是处理两个变量x和y之间关系的方法。 所谓一元是指只有一个自变量x,因变量y在某种程度上是随x变化的。 设有一组实验数据,实验值为 (xi, yi) (i=1,2,…,n)。若x,y符合线性关 系,或已知经验公式为直线形式,就可拟合为直线方程,即:
线性回归分析
注意: 逐步添加法或逐步剔除法, 都应当强调“逐步” . 不 能一次按照各个变量的统计量的值 fj 的显著性概率 p 是否 小于等于选定的显著性水平 , 来决定是否作为 Y 的自变 量. 因为每添加或剔除一个变量, 都会引起所有回归系数的 变化和统计量的值 fj 的变化. 一次处理会造成误判, 只有逐 步处理, 才是恰当的.
= ( 1, 2, …, k)T
若估计出, ˆ (ˆ1, ˆ2 ,, ˆk )T 则有 Yˆ Xˆ
所以
Y Yˆ e
于是有 Y Yˆ e Xˆ e
两边左乘XT, 得 X T Y X T Xˆ X T e
由几何解释XT e , 故有XTe = 0, 所以可以求出:
Y 1 2X u
其中 ˆ1, ˆ2 为1, 2 的估计值, 则 Y 的计算值Ŷ, 可以
用下式表达:
Yˆ ˆ1 ˆ2 X
所要求出待估参数 ˆ1, ˆ2, 要使 Y 与其计算值Ŷ之间 的“误差平方和”最小. 即: 使得
Q
(Y
Yˆ
2
)
ei2
(4) u ~ N(0, 2u In )
(5) E(XTu) =0 , 或者, X 为确定矩阵
1 X12 X1k
X
1 1
X 22
X n2
X2k
X nk
(6) 秩 ( X ) = k, ( k<n)
2. 普通最小二乘法估计式
在模型中, 代入样本观测值之后, 可得
人均收入X
这两个变量之间的不确定关系,大致可以用下式表示:
Y 1 2 LnX u
生物统计学第十章可直线化的非线性回归分析
y = 0.1457e-0.0304x
15
30
45
60
R2 = 0.7333
r r0.01(9) 0.735
第五节:Logistic生长曲线
特点
开始增长缓慢,而在以后的某一范围内 迅速增长,达到某限度后,增长又缓慢 下来,曲线略呈拉长的“S”,因此,也 称为S型曲线。
y
yˆ
1
K aeb
x
K
0
x0
x
yˆ K 1 a
yˆ K
K 2 K 1+a
x
起始量
终极量
yˆ
1
K a eb x
y随x的增加而增加。
y
K
下凹
上凸
0
ln( 1 ) x a
b
yˆ K 2
K 2 K 1+a x
拐点
(x,y) y=a+bx y-y
y-y y
二、线性化的方法
直接引入新变量。
yˆablgx
x'lgx
yˆ abx'
数学变换后,引入新变量。
yˆ axb
lg y ˆlg ablg x
y'a'bx'
三、常见的可线性化的曲线类型
对数函数 yˆablgx
指数函数
yˆ aebx
幂函数
yˆ axb
双曲线
1 ab
yˆ
x
yˆ
a
1 bex
S形曲线
四、常用曲线模型的直线化方法
一、确定曲线类型的方法
一、确定曲线类型的方法
(1)不能对变量间的关系有一个整体上的认识。
数学变换后,引入新变量。
第五节:Logistic生长曲线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元线性回归模型假设
根据统计关系特征,可以进行下述假设:
(1)对于自变量的每一水平X,存在着Y的一个概率分布 假设 (2)这些Y的概率分布的均值,有规律的随X变化而变化
一元线性回归模型
建立 回归模型
Y与X具有统计 关系而且是线性
Yi=β0+β1Xi+εi (i=1,2,···,n)
其中,(X i,Yj)表示(X,Y)的第i个观测值,β0 , β1 为参数,β0+β1Xi为反映统计关系直线的分量, ε i为反映在统计关系直线周围散布的随机分量 ε i~N (0,σ2)。
nb0 b1 X i Yi
n
n
令偏导数为0
i 1
i 1
解方程
b0 X i b1 X i X i Yi
2 i 1 i 1 i 1
n
n
n
9.2.4 一元线性回归方程
b1
(X
i 1 n i 1
n
i
X )(Yi Y )
2 ( X X ) i
b1 i 1
( X i X )(Yi Y )
i 1
n
(Xi
n
i 1
n
( X i X )Yi ( X i X )2
n
X )2
i 1
令
Ci
Xi X
则
(X
i 1
n
i
X )2
b1 Ci Yi
i 1
n
表明b1是Yi 的线性组合
9.2.5 最小二乘估计量b0,b1的特性
9.3.2 自由度的分解
SSTO
i 1
(Y
i 1
n
n
i
ˆ )(Y ˆ Y) 0 Y i i
(Yi Y )
i 1
2
2 ˆ ˆ ( Y Y ) ( Y Y ) i i i 2 i 1 i 1
n
n
9.3.1 总平方和分解
图9-5 总平 和分解图
9.3.1 总平方和分解
2 SSTO ( Y Y ) 总离差平方和 i i 1 n
例如:微积分学中所研究的一般变量之间的 函数关系就属于此种类型。
因变量(Y)与自变量(X)之间的关系
统计关系 即当X值确定后,Y值不是唯一确定的,但大量统计资 料表明,这些变量之间还是存在着某种客观的联系。
例如:图9.1在直角坐标平面上,标出了10个观测点 的坐标位置,他们表示以家庭为单位,某种商品年需 求量与该商品价格之间的10对调查数据。
9.2.4 一元线性回归方程
图9-4 回归方程原理图
9.2.4 一元线性回归方程
令
Q [Yi (b0 b1 X i )]
i 1 n 2
Q达到最小值 b0和b1称为最小二乘估计量
n Q 2[Yi (b0 b1 X i )] b0 i 1
微积分中极值 的必要条件
n Q 2[Yi (b0 b1 X i )]X i b1 i 1
9.2.3 一元线性回归模型
对于任意Xi值有:
⑴ Yi服从正态分布
⑵E(Yi)=β0+β1Xi; ⑶
2 (Yi ) 2
⑷各Yi间相互独立 Yi~N(β0+β1Xi,σ2) 。
9.2.3 一元线性回归模型
图9-2
9.2.4 一元线性回归方程
选出一条最能反 映Y与X之间关系 规律的直线
X Y
i 1 i n i 1
n
i
2
( X i )( Yi ) n ( X i ) 2 n
(9-5)
Xi
b0 Y b1 X
(9-6)
9.2.5 最小二乘估计量b0,b1的特性
线性性 b0,b1的特性 无偏性
9.2.5 最小二乘估计量b0,b1的特性
(1) 线性特性 由(9-5)得
回归分析
图8-1
回归分析
回归分析(Regression Analysis)
就是应用统计方法,对大量的观测数据进行整 理、分析和研究,从而得出反映事物内部规律 性的一些结论。
一元线性回归模型
统计关系的特征
统计关系 特征 因变量Y随自变量X有规律的变化,而统 计关系直线描述这一变化的趋势。 观测点散布在统计关系直线的周围,此 种情况说明Y的变化除了受自变量X 影响以外,还受其他因素的影响。 因此试图建立这样一个回归模型,通过对此模型 所作的一些假设,可以体现出上述统计关系所刻划的特征。
b0 k i Yi
同理,可得
i 1 n
1 k i Ci X n
b0 是Yi 线 性组合
9.2.5 最小二乘估计量b0,b1的特性
(2) 无偏性
可以证明b0和b1分别是β0 和β1的无偏估计
9.3 总平方和分解
9.3.1 总平方和分解
ˆ Y ˆ Y Yi Y Yi Y i i
它表示没有X的影响, 单纯考察数据中Y的变动情况。
9.3.1 总平方和分解
回归平方和
2 ˆ SSR (Yi Y ) i 1 n
表示各 的变动程度,该变动是由于回归直线 中各Xi 的变动所引起的,并且通过X对Y 的线性影响表现出来。
ˆ Y i
9.3.1 总平方和分解
误差平方和
SSE
第9章 回归分析
回归分析基本概念 一元线性回归模型 多元线性回归模型
回归分析
基本概念 因变量(Y)与自变量(X)之间的关系
根据因变量与自变量之间的关系不同,可以分为两种类型 函数关系
统计关系
因变量(Y)与自变量(X)之间的关系
函数关系
即对两个变量X,Y来说,当X值确定后,Y值按照一定的 规律唯一确定,即形成一种精确的关系。
2 ˆ ( Y Y ) i i i 1
n
表示各Yi围绕所拟合的回归直线的变动程度
SSTO=SSR+SSE
9.3.1 总平方和分解
( Yi ) 2
i 1 n
SSTO Yi
2 i 1
n
n
SSR b1 [ X i
2 2 i 1
n
( X i ) 2
i 1
n
n
]
SSE=SSTO-SSR
Y与X之间 为线性关系
最小二乘法
9.2.4 一元线性回归方程
Yi=β0+β1Xi+εi β0和β1均未知 根据样本数据 对β0 和β1 进行估计
β0和β1的估计
值为 b b X Y 0 1
一般而言,所求的b0和b1应能使每个样本观测点(X i,Y i) 与回归直线之间的偏差尽可能小,即使观察值与拟 合值的误差平方和Q达到最小。