2021年高考数学总复习全套必考知识点梳理汇总(通用版)
高三数学考纲复习知识点总结2021
高三数学考纲复习知识点总结2021学习是一次独立的行动,需要探索琢磨积极应战顽强应战,艰辛由你独自承担,胜利由你独立争取。
以下是小编整理的有关高考考生必看的高三数学考纲复习知识点总结,希望对您有所帮助,望各位考生能够喜欢。
高三数学考纲复习知识点总结1任一xÎA,xÎB,记做ABAB,BAA=BAB={x|xÎA,且xÎB}AB={x|xÎA,或xÎB}Card(AB)=card(A)+card(B)-card(AB)(1)命题原命题若p则q逆命题若q则p否命题若p则q逆否命题若q,则p(2)AB,A是B成立的充分条件BA,A是B成立的必要条件AB,A是B成立的充要条件1.集合元素具有①确定性;②互异性;③无序性2.集合表示方法①列举法;②描述法;③韦恩图;④数轴法(3)集合的运算①A∩(B∪C)=(A∩B)∪(A∩C)②Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB(4)集合的性质n元集合的字集数:2n真子集数:2n-1;非空真子集数:2n-2高三数学考纲复习知识点总结21、集合的概念集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。
组成集合的对象叫元素,集合通常用大写字母A、B、C、…来表示。
元素常用小写字母a、b、c、…来表示。
集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。
2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做a∈A;元素a不属于集合A,记做a∉A。
3、集合中元素的特性(1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
例如A={0,1,3,4},可知0∈A,6ÎA。
(2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。
2021高考数学必考知识点归纳
2021⾼考数学必考知识点归纳⾼考数学的难度⽐例⼤致为7:2:1,也就是说80%都是基础知识题型。
数学是⾮常重要的⼀科,知识结构清晰,通常是由⼏条主线贯穿。
以下是⼩编给⼤家收集的关于⾼考数学必考知识点归纳,欢迎⼤家前来参阅。
⾼考数学必考知识点归纳⼀.知识归纳:1.集合的有关概念。
1)集合(集):某些指定的对象集在⼀起就成为⼀个集合(集).其中每⼀个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平⾯⼏何中的点与直线的概念类似。
②集合中的元素具有确定性(a?A和a?A,⼆者必居其⼀)、互异性(若a?A,b?A,则a≠b)和⽆序性({a,b}与{b,a}表⽰同⼀个集合)。
③集合具有两⽅⾯的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表⽰⽅法:常⽤的有列举法、描述法和图⽂法3)集合的分类:有限集,⽆限集,空集。
4)常⽤数集:N,Z,Q,R,N2.⼦集、交集、并集、补集、空集、全集等概念。
1)⼦集:若对x∈A都有x∈B,则A B(或A B);2)真⼦集:A B且存在x0∈B但x0 A;记为A B(或,且 )3)交集:A∩B={x| x∈A且x∈B}4)并集:A∪B={x| x∈A或x∈B}5)补集:CUA={x| x A但x∈U}注意:①? A,若A≠?,则? A ;②若,,则 ;③若且,则A=B(等集)3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。
4.有关⼦集的⼏个等价关系①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集运算的性质①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;6.有限⼦集的个数:设集合A的元素个数是n,则A有2n个⼦集,2n-1个⾮空⼦集,2n-2个⾮空真⼦集。
高三数学知识点梳理整合2021
高三数学知识点梳理整合20211、直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α180°2、直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即。
斜率反映直线与轴的倾斜程度。
②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
3、直线方程点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
一个推导利用错位相减法推导等比数列的前n项和:Sn=a1a1a12…a1n-1,同乘得:Sn=a1a12a13…a1n,两式相减得(1-)Sn=a1-a1n,∴Sn=(≠1).两个防范(1)由an1=an,≠0并不能立即断言{an}为等比数列,还要验证a1≠0.(2)在运用等比数列的前n项和公式时,必须注意对=1与≠1分类讨论,防止因忽略=1这一特殊情形导致解题失误.三种方法等比数列的方法有:(1)定义法:若an1/an=(为非零常数)或an/an-1=(为非零常数且n≥2且n∈N_),则{an}是等比数列.(2)中项公式法:在数列{an}中,an≠0且a=an·an2(n∈N_),则数列{an}是等比数列.(3)通项公式法:若数列通项公式可写成an=c·n(c,均是不为0的常数,n∈N_),则{an}是等比数列.注:前两种方法也可用来证明一个数列为等比数列.a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)r=a(n-2)2r=...=a[n-(n-1)](n-1)r=a(1)(n-1)r=a(n-1)r.可用归纳法证明。
2021高考数学必考知识点归纳
2021高考数学必考知识点归纳高三数学重要知识点总结1.数列的定义按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.2.数列的分类(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.3.数列的通项公式数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.再强调对于数列通项公式的理解注意以下几点:(1)数列的通项公式实际上是一个以正整数集N_它的有限子集{1,2,…,n}为定义域的函数的表达式.(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n 就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式.(4)有的数列的通项公式,形式上不一定是的,正如举例中的:(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.4.数列的图象对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系:这就是说,上面可以看成是一个序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_或它的有限子集{1,2,3,…,n})的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特殊的函数,它的自变量只能取正整数.由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式.数列是一种特殊的函数,数列是可以用图象直观地表示的.数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为方便起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的变化情况,但不精确.把数列与函数比较,数列是特殊的函数,特殊在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点.高考数学考点归纳考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。
2021年高考数学知识点总结知识点总结
2021年高考数学知识点总结知识点总结1、混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
2、忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
4、函数零点定理使用不当致误如果函数y=f(_)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f (b)0,那么,函数y=f(_)在区间(a,b)内有零点,但f(a)f(b)0时,不能否定函数y=f(_)在(a,b)内有零点。
函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
5、函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
6、三角函数的单调性判断致误对于函数y=Asin(ω_+φ)的单调性,当ω0时,由于内层函数u=ω_+φ是单调递增的,所以该函数的单调性和y=sin _的单调性相同,故可完全按照函数y=sin _的单调区间解决;但当ω0时,内层函数u=ω_+φ是单调递减的,此时该函数的单调性和函数y=sin_的单调性相反,就不能再按照函数y=sin_的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。
对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
2021高考数学核心知识点总结
(答:f (x)是周期函数,T 2a为f (x)的一个周期)
又如:若f (x)图象有两条对称轴x a,x b
即f (a x) f (a x),f (b x) f (b x)
则f (x)是周期函数,2 a b 为一个周期
如:
18. 你掌握常用的图象变换了吗?
22. 掌握求函数值域的常用方法了吗? (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调
性法,导数法等。) 如求下列函数的最值:
(1)y 2x 3 13 4x
(2)y 2 x 4 x 3
(3)x 3,y 2x2 x3
- 9 - / 43
(4)y x 4 9 x2 设x 3cos, 0,
x 利用它的单调性求最值与利用均值不等式求最值的区别是什么?
y
k
Ok
x
20. 你在基本运算上常出现错误吗?
指数运算:a 0
1 (a
0),a p
1 ap
(a
0)
- 8 - / 43
m
an
n
am
m
(a 0),a n
1
(a 0)
n am
对数运算: loga M·N loga M loga N M 0,N 0
5. 可以判断真假的语句叫做命题,逻辑连接词有“或” (),“且” () 和 “非”().
- 1 - / 43
若p q为真,当且仅当p、q均为真
若p q为真,当且仅当p、q至少有一个为真
若p为真,当且仅当p为假 6. 命题的四种形式及其相互关系是什么?
(互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型?
高考数学知识点归纳(完整版)
高考数学知识点归纳(完整版)高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考数学知识点高考数学必考知识点归纳必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 高考数学必考知识点归纳必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程高考数学必考知识点归纳必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
高考数学必考知识点归纳必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
高考数学必考知识点归纳必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考数学复习资料重要知识点归纳
2021高考数学复习资料重要知识点归纳2021年高考就要到了,小编在这里为考生们精选准备了2021高考数学复习资料重要知识点归纳,供大家参考学习,希望对大家有所帮助!第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2021年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
2021年高三数学复习重要知识点总结三篇
2021年1年年高三数学复习重要知识点总结三篇高三数学复习重要知识点总结(一)考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题.重点考查集合间关系的理解和认识.近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力.在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简.简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系.逻辑联结词.〝充要关系〞.命题真伪的判断.全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理.考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域.函数的性质.函数与方程.基本初等函数(一次和二次函数.指数.对数.幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质.导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间.极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数.不等式.方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题.参数的取值范围问题.方程根的个数问题.不等式的证明等问题.考点三:三角函数与平面向量一般是2道小题,1道综合解答题.小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充.大题中如果没有涉及正弦定理.余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像.性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用.向量重点考查平面向量数量积的概念及应用,向量与直线.圆锥曲线.数列.不等式.三角函数等结合,解决角度.垂直.共线等问题是〝新热点〞题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法.一元二次不等式组和简单线性规划问题.基本不等式的应用等,通常会在小题中设置1到2道题.对不等式的工具性穿插在数列.解析几何.函数导数等解答题中进行考查.在选择.填空题中考查等差或等比数列的概念.性质.通项公式.求和公式等的灵活应用,一道解答题大多凸显以数列知识为工具,综合运用函数.方程.不等式等解决问题的能力,它们都属于中.高档题目.考点五:立体几何与空间向量一是考查空间几何体的结构特征.直观图与三视图;二是考查空间点.线.面之间的位置关系;三是考查利用空间向量解决立体几何问题:利用空间向量证明线面平行与垂直.求空间角等(文科不要求).在高考试卷中,一般有1_2个客观题和一个解答题,多为中档题.考点六:解析几何一般有1_2个客观题和1个解答题,其中客观题主要考查直线斜率.直线方程.圆的方程.直线与圆的位置关系.圆锥曲线的定义应用.标准方程的求解.离心率的计算等,解答题则主要考查直线与椭圆.抛物线等的位置关系问题,经常与平面向量.函数与不等式交汇,考查一些存在性问题.证明问题.定点与定值.最值与范围问题等.考点七:算法复数推理与证明高考对算法的考查以选择题或填空题的形式出现,或给解答题披层〝外衣〞.考查的热点是流程图的识别与算法语言的阅读理解.算法与数列知识的网络交汇命题是考查的主流.复数考查的重点是复数的有关概念.复数的代数形式.运算及运算的几何意义,一般是选择题.填空题,难度不大.推理证明部分命题的方向主要会在函数.三角.数列.立体几何.解析几何等方面,单独出题的可能性较小.对于理科,数学归纳法可能作为解答题的一小问.高三数学复习重要知识点总结(二)不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性.灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设与结论的结构特点.内在联系.选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角.数列.复数.立体几何.解析几何中的值.最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明.知识整合1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根.函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数.数形结合,则可将不等式的解化归为直观.形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次.二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式.绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类.换元.数形结合是解不等式的常用方法.方程的根.函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观.形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.4.证明不等式的方法灵活多样,但比较法.综合法.分析法仍是证明不等式的最基本方法.要依据题设.题断的结构特点.内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商) 变形判断符号(值).高三数学复习重要知识点总结(三)1.有关平行与垂直(线线.线面及面面)的问题,是在解决立体几何问题的过程中,大量的.反复遇到的,而且是以各种各样的问题(包括论证.计算角.与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决〝平行与垂直〞的有关问题着手,通过较为基本问题,熟悉公理.定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直).线面平行(垂直).面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力.2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线.3.两个平面平行的主要性质:(1)由定义知:〝两平行平面没有公共点〞;(2)由定义推得:〝两个平面平行,其中一个平面内的直线必平行于另一个平面〞;(3)两个平面平行的性质定理:〝如果两个平行平面同时和第三个平面相交,那么它们的交线平行〞;(4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面;(5)夹在两个平行平面间的平行线段相等;(6)经过平面外一点只有一个平面和已知平面平行.高三数学知识点总结归纳三篇在高考这场没有硝烟的战场上,得数学者得天下!数学可以帮助同学们与其他人拉开一大段最全高三数学重点知识点总结三篇有一个正确的学习方法对学好数学是起到关键性作用的,例如时常总结知识点,复习起来就_最新高三数学知识点总结归纳三篇数学这个科目一直是同学们又爱又恨的科目,学的好的同学靠它来与其它同学拉开分数,学_高三数学知识点归纳总结三篇对于很多高三的同学们来说,高三数学的复习就是噩梦一般的存在,其知识点非常的繁琐复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考数学总复习全套必考知识点梳理汇总(通用版)1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C======|lg |lg (,)|lg 中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301若,则实数的值构成的集合为B A a ⊂(答:,,)-⎧⎨⎩⎫⎬⎭1013 3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和∨∧()()⌝“非”().∧p q p q若为真,当且仅当、均为真p q p q∨若为真,当且仅当、至少有一个为真⌝p p若为真,当且仅当为假6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象)8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域?[]>->=+-0义域f x a b b a F(x f x f x如:函数的定义域是,,,则函数的定())()()是_。
[](答:,)a a -11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗?(①反解x ;②互换x 、y ;③注明定义域) ()()如:求函数的反函数f x xx xx ()=+≥-<⎧⎨⎪⎩⎪1002()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110() 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;14. 如何用定义证明函数的单调性?(取值、作差、判正负)如何判断复合函数的单调性?∴……)15. 如何利用导数判断函数的单调性?()≥0'()()在区间,内,若总有则为增函数。
(在个别点上导数等于a b f x f x'()≤0f x零,不影响函数的单调性),反之也对,若呢?值是()A. 0B. 1C. 2D. 3由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤ ∴a 的最大值为3)16. 函数f (x )具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称) 若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
17. 你熟悉周期函数的定义吗?函数,T是一个周期。
)如:18. 你掌握常用的图象变换了吗?与的图象关于轴对称-()()f x f x y-与的图象关于轴对称()()f x f x x--与的图象关于原点对称f x f x()()f x f x y x ()()与的图象关于直线对称-=1f x f a x x a ()()与的图象关于直线对称2-= f x f a x a ()()()与的图象关于点,对称--20将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00上移个单位下移个单位b b b b y f x a b y f x a b()()()()>−→−−−−−−−−>=++=+-00 注意如下“翻折”变换:y=log 2x19. 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠()()()反比例函数:推广为是中心,200y k x k y b k x ak O a b =≠=+-≠'()的双曲线。
()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a=++≠=+⎛⎝ ⎫⎭⎪+-应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程②求闭区间[m ,n ]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
如:二次方程的两根都大于ax bx c k b a k f k 20020++=⇔≥->>⎧⎨⎪⎪⎩⎪⎪∆()由图象记性质! (注意底数的限定!)()()“对勾函数”60y x kxk =+> 利用它的单调性求最值与利用均值不等式求最值的区别是什么?20. 你在基本运算上常出现错误吗?log log log log log aa a a n a M N M N M nM =-=,121. 如何解抽象函数问题?(赋值法、结构变换法)∈=+()()()()()2x R f x f xy f x f y f x(),满足,证明是偶函数。
22. 掌握求函数值域的常用方法了吗?(二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。
)如求下列函数的最值:23. 你记得弧度的定义吗?能写出圆心角为α,半径为R的弧长公式和扇形面积公式吗?24. 熟记三角函数的定义,单位圆中三角函数线的定义又如:求函数的定义域和值域。
y x =--⎛⎝ ⎫⎭⎪122cos π (∵)122120--⎛⎝ ⎫⎭⎪=-≥cos sin πx x∴,如图:sin x ≤2225. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?()y x k k k Z =-+⎡⎣⎢⎤⎦⎥∈sin 的增区间为,2222ππππ()减区间为,22232k k k Z ππππ++⎡⎣⎢⎤⎦⎥∈()()图象的对称点为,,对称轴为k x k k Z πππ02=+∈[]()y x k k k Z =+∈cos 的增区间为,22πππ[]()减区间为,222k k k Z ππππ++∈()图象的对称点为,,对称轴为k x k k Z πππ+⎛⎝ ⎫⎭⎪=∈20 y x k k k Z =-+⎛⎝ ⎫⎭⎪∈tan 的增区间为,ππππ22()()[]26. y =Asin x +正弦型函数的图象和性质要熟记。
或ωϕωϕy A x =+cos()振幅,周期12||||A T =πω ()若,则为对称轴。
f x A x x 00=±=()()若,则,为对称点,反之也对。
f x x 0000=()五点作图:令依次为,,,,,求出与,依点202322ωϕππππx x y +(x ,y )作图象。
()根据图象求解析式。
(求、、值)3A ωϕ解条件组求、值ωϕ()∆正切型函数,y A x T =+=tan ||ωϕπω27. 在三角函数中求一个角时要注意两个方面——先求出某一个三角函数值,再判定角的范围。
28. 在解含有正、余弦函数的问题时,你注意(到)运用函数的有界性了吗?29. 熟练掌握三角函数图象变换了吗? (平移变换、伸缩变换) 平移公式: ()点(,),平移至(,),则1P x y a h k P x y x x h y y k→=−→−−−−−=+=+⎧⎨⎩()''''' ()曲线,沿向量,平移后的方程为,200f x y a h k f x h y k ()()()==--=→如:函数的图象经过怎样的变换才能得到的y x y x =-⎛⎝ ⎫⎭⎪-=2241sin sin π图象?30. 熟练掌握同角三角函数关系和诱导公式了吗?“·”化为的三角函数——“奇变,偶不变,符号看象限”,k παα2±“奇”、“偶”指k 取奇、偶数。
()如:costan sin 947621πππ+-⎛⎝ ⎫⎭⎪+=又如:函数,则的值为y y =++sin tan cos cot ααααA. 正值或负值B. 负值C. 非负值D. 正值31. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗? 理解公式之间的联系:应用以上公式对三角函数式化简。
(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。
) 具体方法:()()角的变换:如, (1222)βαβααβαβαβ=+-+=-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪ (2)名的变换:化弦或化切 (3)次数的变换:升、降幂公式(4)形的变换:统一函数形式,注意运用代数运算。
()()如:已知,,求的值。
sin cos cos tan tan ααααββα121232-=-=--(由已知得:,∴sin cos sin cos sin tan αααααα221122===()()[]()()∴··)tan tan tan tan tan tan βαβααβααβαα-=--=--+-=-+=212312123121832. 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?(应用:已知两边一夹角求第三边;已知三边求角。
) 正弦定理:a A b B c C R a R Ab R Bc R Csin sin sin sin sin sin ===⇔===⎧⎨⎪⎩⎪2222()求角;1C()(()由已知式得:112112-++-=cos cos A B C()由正弦定理及得:212222a b c =+33. 用反三角函数表示角时要注意角的范围。
[]反正弦:,,,arcsin x x ∈-⎡⎣⎢⎤⎦⎥∈-ππ2211[][]反余弦:,,,arccosx x ∈∈-011π()反正切:,,arctan x x R ∈-⎛⎝ ⎫⎭⎪∈ππ22 34. 不等式的性质有哪些?答案:C35. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注 意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()值?(一正、二定、三相等) 注意如下结论:当且仅当时等号成立。