勾股定理的证明教案

合集下载

勾股定理教案(表格式)

勾股定理教案(表格式)

勾股定理教案(表格式)教学目标:1. 了解勾股定理的定义及其在几何学中的应用。

2. 学会使用勾股定理计算直角三角形的长度。

3. 培养学生的观察、分析和解决问题的能力。

教学重点:1. 勾股定理的定义及应用。

2. 学会使用勾股定理计算直角三角形的长度。

教学难点:1. 理解并应用勾股定理解决实际问题。

教学准备:1. 教学PPT或黑板。

2. 直角三角形模型或图片。

3. 练习题。

教学过程:一、导入(5分钟)1. 向学生介绍勾股定理的背景和重要性。

2. 展示直角三角形模型或图片,引导学生观察并提问:你们能发现什么规律吗?二、探索勾股定理(15分钟)1. 引导学生通过观察和实验,发现直角三角形两条直角边的平方和等于斜边的平方。

2. 学生分组讨论,总结出勾股定理的表达式:a^2 + b^2 = c^2。

三、验证勾股定理(15分钟)1. 学生使用三角板或直角三角形模型,进行实际测量和计算,验证勾股定理。

2. 学生展示验证结果,教师点评并总结。

四、应用勾股定理(15分钟)1. 教师提出实际问题,引导学生运用勾股定理解决问题。

2. 学生分组讨论并解答问题,展示解题过程和结果。

五、总结与评价(5分钟)1. 教师引导学生总结本节课的学习内容,强调勾股定理的重要性和应用。

2. 学生评价自己的学习成果,提出疑问和困惑。

教学延伸:1. 引导学生进一步探究勾股定理的证明方法。

2. 布置课后作业,巩固勾股定理的应用。

教学反思:本节课通过引导学生观察、实验、讨论和应用,让学生深入了解勾股定理的定义和应用。

在教学过程中,注意关注学生的学习情况,及时解答疑问,帮助学生克服学习难点。

通过实际问题的解决,培养学生的观察、分析和解决问题的能力。

总体来说,本节课达到了预期的教学目标。

六、实践练习(15分钟)1. 教师提供一系列有关勾股定理的练习题,让学生独立完成。

2. 学生展示解题过程和结果,教师点评并给予反馈。

七、拓展活动(15分钟)1. 学生分组,每组设计一个关于勾股定理的有趣活动,如小游戏、演示实验等。

勾股定理的证明及应用(教案)

勾股定理的证明及应用(教案)
举例解释:
在讲解勾股定理的应用时,重点强调如何将实际问题转化为数学模型,例如给出一个直角三角形的两个直角边长度,要求计算斜边的长度,学生需要明确应用勾股定理的公式a² + b² = c²来解决问题。
2.教学难点
-难点内容:勾股定理的证明过程理解,以及在实际问题中的应用。
-难点突破:
-证明过程的理解:学生对数学归纳法和图形面积法的证明过程可能感到抽象和难以理解,需要通过具体图形的演示和步骤的详细解释来帮助学生。
-对于应用题的难点,可以采取以下策略:
-设计不同类型的练习题,如选择题、填空题和解答题,让学生在不同情境下应用勾股定理,增强其解决问题的灵活性。
-在小组合作中,鼓励学生相互讨论解题思路,通过同伴互助来理解和掌握勾股定理的应用方法。
-对于难以理解的问题,教师应提供详细的解题步骤和思路分析,帮助学生建立解题的框架和思维模式。
三、教学难点与重点
1.教学重点
-核心内容:勾股定理的发现、证明和应用。
-重点讲解:
-勾股定理的概念及其表述,即直角三角形两个直角边的平方和等于斜边的平方。
-勾股定理的数学证明,包括数学归纳法和图形面积法的步骤和逻辑。
-勾股定理在实际问题中的应用,如求斜边或直角边的长度,以及判断一个三角形是否为直角三角形。
(2)已知直角三角形的一个直角边和斜边,求另一个直角边;
(3)判断一个三角形是否为直角三角形。
二、核心素养目标
本节课旨在培养学生以下核心素养:
1.培养学生的逻辑推理能力:通过勾股定理的证明过程,使学生掌握数学归纳法和图形面积法的推理方法,提高逻辑思维水平。
2.培养学生的空间想象力和直观想象力:通过观察直角三角形的图形,引导学生发现勾股定理,并能够运用定理解决实际问题。

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)

勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。

八年级数学上册《勾股定理》教案、教学设计

八年级数学上册《勾股定理》教案、教学设计
3.勾股定理的应用:结合实际例子,如测量旗杆高度、计算三角形面积等,让学生了解勾股定理在实际问题中的应用。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对勾股定理的证明和应用进行讨论。鼓励学生发表自己的观点,分享解题思路。
2.交流展示:每个小组选派代表进行成果展示,其他小组成员认真倾听,互相学习,共同进步。
-通过实际操作,如拼图、构造三角形等,让学生直观感受逆定理的应用。
-设计开放性问题,如“如何确定一个三角形是直角三角形?”鼓励学生多角度思考问题。
5.情感态度与价值观的培养:在教学过程中,注重渗透数学文化,介绍勾股定理的历史背景和我国古代数学家的贡献。
-增强学生的民族自豪感,激发学生对数学文化的兴趣。
5.能够运用勾股定理推导出相似直角三角形的边长比例关系。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.通过实际问题引入勾股定理,激发学生的学习兴趣,培养学生的观察力和思考能力。
2.采用探究式教学方法,引导学生通过观察、实验、归纳等方法发现勾股定理,并理解其内涵。
3.运用数形结合的方法,将勾股定理与图形相结合,培养学生的空间想象能力和几何直观。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,分享自己的收获和感悟。
2.教师总结:强调勾股定理的重要性,概括本节课的重点和难点,提醒学生课后巩固。
3.情感态度与价值观的渗透:引导学生认识到勾股定理在几何学中的重要地位,激发学生对数学的热爱和探索精神。
五、作业布置
为了巩固学生对勾股定理的理解和应用,以及培养学生的独立思考和解决问题的能力,特布置以下作业:
-培养学生严谨、踏实的科学态度,认识到数学知识在实际生活中的广泛应用。

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。

2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。

3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。

重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。

2.已知直角三角形的两边长为3、4,则另一条边长是______________。

3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。

4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。

求点F和点E坐标。

6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。

勾股定理的优秀教案5篇

勾股定理的优秀教案5篇

勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。

勾股定理的优秀教案

勾股定理的优秀教案

勾股定理的优秀教案教案标题:探索勾股定理教学目标:1. 了解勾股定理的历史和背景2. 理解勾股定理的概念和原理3. 能够应用勾股定理解决实际问题4. 培养学生的逻辑思维和数学推理能力教学重点和难点:重点:勾股定理的概念和应用难点:如何引导学生自主发现勾股定理教学准备:1. PowerPoint课件2. 黑板、彩色粉笔3. 勾股定理的几何模型4. 练习题和实例教学过程:一、导入(5分钟)通过展示一些古希腊数学家的图片和介绍,引出勾股定理的历史和背景,激发学生对数学的兴趣。

二、概念讲解(15分钟)1. 通过PowerPoint课件介绍勾股定理的概念和公式2. 通过几何模型和实例讲解勾股定理的证明过程三、示范演练(15分钟)老师在黑板上进行几个勾股定理的示范演练,引导学生理解和掌握勾股定理的应用方法。

四、小组讨论(10分钟)学生分成小组,通过老师提供的实际问题,讨论如何运用勾股定理进行解答。

五、展示分享(10分钟)每个小组派代表进行展示,分享他们的解题思路和方法。

六、概念强化(10分钟)老师对勾股定理的概念进行强化和总结,帮助学生理清思路。

七、课堂练习(10分钟)老师布置几道勾股定理的练习题,让学生在课堂上进行解答。

八、作业布置(5分钟)布置相关的作业,巩固学生对勾股定理的理解和运用能力。

教学反思:通过本节课的教学,学生能够了解勾股定理的历史和背景,掌握勾股定理的概念和应用方法,培养了学生的逻辑思维能力和数学推理能力。

同时,通过小组讨论和展示分享,增强了学生的团队合作意识和表达能力。

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本 勾股定理教案教学方法优秀6篇

勾股定理教案范本勾股定理教案教学方法优秀6篇初中数学《勾股定理》教学设计篇一一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动。

学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础。

二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节。

具体内容是运用勾股定理及其逆定理解决简单的实际问题。

当然,在这些具体问题的解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力。

三、本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念。

2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性。

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的`重点也是难点。

四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程。

2.课前准备教具:教材、电脑、多媒体课件。

学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具五、教学过程分析本节课设计了七个环节。

第一环节:情境引入;第二环节:合作探究;第三环节:做一做;第四环节:小试牛刀;第五环节:举一反三;第六环节:交流小结;第七环节:布置作业。

勾股定理全章教案

勾股定理全章教案

17.1勾股定理(1)一、教学目标:1.体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题。

2.在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。

3.通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。

二、教学重点、难点:重点:探索和验证勾股定理过程; 难点:通过面积计算探索勾股定理。

三、教学方法及教学手段:采用探究发现式的教学方法,通过计算面积为学生设计一个数学实验的平台,结合多媒体课件的演示,培养学生动手实践能力和合作交流的意识。

四、教学过程:1.创设情境,导入课题多媒体演示勾股树图片,激发学生求知欲,成功导入本节课题。

2.自主探索,合作交流 活动一:动脑想一想小明用一边长为cm 1的正方形纸片,沿对角线折叠,你知道折痕有多长吗?①这个问题你是怎样想的?请说出你的想法。

②若把折叠后的直角三角形纸片放在如图所示的格点图中(每个小正方形边长为cm 1),你能知道斜边的长吗?③观察图形,并填空:⑴正方形P 的面积为2cm , 正方形Q 的面积为2cm , 正方形R 的面积为2cm 。

⑵你能发现图中正方形P 、Q 、R 的面积之间有什么关系?从中你发现了什么?活动二:动手做一做其它一般的直角三角形,是否也有类似的性质呢?(你打算用什么方法来研究?共同讨论方法后再确立研究方向) (图中每一小方格表示21cm )⑴正方形P 的面积为2cm ,正方形Q 的面积为2cm , 正方形R 的面积为2cm 。

⑵正方形P 、Q 、R 的面积之间的关系 是什么?⑶你会用直角三角形的边长表示正方形P 、Q 、R 的面积吗?你能发现直角三角形三边长度之间存在什么关系吗?与你的同伴进行交流。

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇

八年级数学《勾股定理》教案优秀10篇年级数学《勾股定理》教案1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。

它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。

教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。

本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。

关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。

之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。

[教学目标]一、知识与技能1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。

2、应用勾股定理解决简单的实际问题3学会简单的合情推理与数学说理二、过程与方法引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。

通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。

三、情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。

四、重点与难点1、探索和证明勾股定理2熟练运用勾股定理[教学过程]一、创设情景,揭示课题1、教师展示图片并介绍第一情景以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇

八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。

勾股定理全章教案全

勾股定理全章教案全

第五讲 探索勾股定理一、【基础知识精讲】1.勾股定理:如果直角三角形两直角边分别为a 、b,斜边为c ,那么222a b c += 即:直角三角形两直角边的平方和等于斜边的平方。

我国古代把直角三角形较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。

2.用面积法证明勾股定理:(1)如图,将四个全等的直角三角形拼成正方形。

(Ⅰ)ab c b a S ABCD 214)(22⨯+=+=正方形。

(Ⅱ) ab b a c S EFGH 214)(22⨯+-==正方形。

∴222b a c +=. ∴222c b a =+3.勾股定理各种表达式:在ABC Rt ∆中,︒=∠90C ,∠A 、∠B 、∠C 的对边分别为a.b.c则222b a c +=,222b c a -=,222a c b -=4.勾股定理的作用: (1)已知直角三角形的两边求第三边 (2)用于证明平方关系的问题。

二、【例题精讲】例1:在△ABC 中,∠C=90°,(1)若a=3,b=4,则c=_______; (2)若a=6,c=10,则b=_________;(3)若c=34,a :b=8:15,则a=________,b=________;(4)△ABC 中,∠ACB=90°,CD 是高,若AB=13cm ,AC=5cm ,则CD 的长__________. 例2. 如图1-1,在△ABC 中,AB=15,BC=14,CA=13,求BC 边上的高AD .例3. 已知:如图,在△ABC 中,∠A=90°,DE 为BC 的垂直平分线,求证:222AC AE BE =-例题5、已知如图,在△ABC中,AB=20,AC=15,BC边上的高为12,求△ABC的周长。

【变式练习】1、如图,在△ABC中,∠ACB=90°,AB=50,BC=30,CD⊥AB于D,求CD的长。

2、如右图所示,在四边形ABCD中,∠B=90°,AB=3,BC=4,CD=5,AD=6。

勾股定理的优秀教案

勾股定理的优秀教案

勾股定理的优秀教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、合同协议、规章制度、策划方案、讲话致辞、条据书信、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, job reports, contract agreements, rules and regulations, planning plans, speeches, evidence letters, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案勾股定理的优秀教案作为一名老师,总归要编写教案,借助教案可以让教学工作更科学化。

勾股定理优秀教学设计模板(精选11篇)

勾股定理优秀教学设计模板(精选11篇)

勾股定理优秀教学设计模板(精选11篇)勾股定理优秀教学设计模板(精选11篇)作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。

我们应该怎么写教学设计呢?以下是小编精心整理的勾股定理优秀教学设计模板,欢迎阅读与收藏。

勾股定理优秀教学设计篇1一、教案背景概述:教材分析:勾股定理是直角三角形的重要性质,它把三角形有一个直角的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。

它可以解决许多直角三角形中的计算问题,它是直角三角形特有的性质,是初中数学教学内容重点之一。

本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。

学生分析:1、考虑到三角尺学生天天在用,较为熟悉,但真正能仔细研究过三角尺的同学并不多,通过这样的情景设计,能非常简单地将学生的注意力引向本节课的本质。

2、以与勾股定理有关的人文历史知识为背景展开对直角三角形三边关系的讨论,能激发学生的学习兴趣。

设计理念:本教案以学生手中舞动的三角尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学生对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富文化内涵,体验勾股定理的探索和运用过程,激发学生学习数学的兴趣,特别是通过向学生介绍我国古代在勾股定理研究和运用方面的成就,激发学生热爱祖国,热爱祖国悠久文化的思想感情,培养他们的民族自豪感和探究创新的精神。

教学目标:1、经历用面积割、补法探索勾股定理的过程,培养学生主动探究意识,发展合理推理能力,体现数形结合思想。

2、经历用多种割、补图形的方法验证勾股定理的过程,发展用数学的眼光观察现实世界和有条理地思考能力以及语言表达能力等,感受勾股定理的文化价值。

3、培养学生学习数学的兴趣和爱国热情。

4、欣赏设计图形美。

二、教案运行描述:教学准备阶段:学生准备:正方形网格纸若干,全等的直角三角形纸片若干,彩笔、直角三角尺、铅笔等。

北师大版八年级数学上册第一章《勾股定理》教案

北师大版八年级数学上册第一章《勾股定理》教案

第一章勾股定理1 探索勾股定理第1课时勾股定理(1)1.经历测量和用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力.3.利用勾股定理,已知直角三角形的两边求第三边长.4.在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.5.经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.6.通过对勾股定理历史的了解,感受数学变化,激发学习热情.7.在探究活动中,体现解决问题方法的多样性,培养学生的合作交流意识和探索精神.【教学重点】探索勾股定理.【教学难点】用测量和数格子的方法探索勾股定理.一、创设情境,导入新课我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边.对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系.那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理.出示投影1(章前的图文P1),介绍数学家曾用这个图形作为与“外星人”联系的信号.【教学说明】通过复习旧知识,引入新课.出示投影,介绍与勾股定理有关的背景,激发学生的学习兴趣.二、思考探究,获取新知勾股定理做一做:1.在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?与同伴交流.【教学说明】学生根据教师的要求完成这个问题,自主交流发现直角三角形的性质.2.观察教材图1—2,正方形A中有个小方格,即A的面积为个面积单位.正方形B中有个小方格.即B的面积为个面积单位.正方形C中有个小方格,即C的面积为个面积单位.你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问.教材图1—2中,A、B、C之间的面积之间有什么关系?【教学说明】通过观察特殊图形下方格数与正方形面积之间的转化,进一步体会探索勾股定理.归纳得出结论:S A+S B=S C.3.教材图1—3中,A、B、C之间是否还满足上面的关系?你是如何计算的?【教学说明】通过观察计算一般情况下方格数与正方形面积之间的转化,进一步加强对勾股定理的理解.4.如果直角三角形两直角边分别是1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由.【教学说明】渗透从特殊到一般的数学思想,充分发挥学生的主体地位,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题、解决问题的能力得到了提高.议一议:你能发现直角三角形三边长度之间的关系吗?【教学说明】学生自主探究,发现直角三角形的性质,并整合成精确的语言将之表达出来,有利于培养学生综合概括能力和语言表达能力.【归纳结论】直角三角形的两直角边的平方和等于斜边的平方.这就是著名的“勾股定理”.也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2.我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这便是勾股定理的由来.三、运用新知,深化理解1.在直角三角形ABC中,∠C=90°,若a=5,b=12,则c= .2.在直角三角形的ABC中,它的两边长的比是3∶4,斜边长是20,则两直角边长分别是.【教学说明】学生的完成,加深对勾股定理的理解和检测对勾股定理的简单运用,对学生的疑惑或出现的错误及时指导,并进行强化.【答案】1.13;2.12,16四、师生互动,课堂小结通过本节课的学习,你掌握了哪些新知识,还有什么困惑?【教学说明】教师引导学生回顾新知识,加强对勾股定理的理解,进一步完善了学生对知识的梳理.完成练习册中本课时相应练习.本节内容重在探索与发现,要给充分的时间让学生讨论与交流.适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容再加深加广.第2课时勾股定理(2)1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.2.掌握勾股定理和它的简单应用.3.通过从实际问题中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想方法.4.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.5.在数学活动中发展了学生的探究意识和合作交流的习性;体会勾股定理的应用价值,通过本节课学习,让学生体会到数学来源于生活,又应用到生活中,增加学生应用数学知识解决实际问题的经验和感受.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.一、创设情境,导入新课我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容.【教学说明】让学生经历从特殊到一般的数学方法,明白数学问题是需要通过一定的论证才能说明它的正确性,为后面学习证明打下埋伏.二、思考探究,获取新知勾股定理的验证及简单运用做一做:1.画一个直角三角形,分别以这个直角三角的三边为边长向外作正方形,你能利用这个图证明勾股定理的正确性吗?你是如何做的?与同伴进行交流.【教学说明】让学生进一步体会探索勾股定理的过程,体会数形结合的思想.2.为了计算教材图1—4中大正方形的面积,小明对这个大正方形适当割补后,得到教材P51—5、1—6图.(1)将所有三角形和正方形的面积用a,b,c的关系式表示出来;(2)教材图1—5、1—6中正方形ABCD的面积分别是多少?你们有哪些表示方式?与同伴进行交流.(3)你能分别利用教材图1—5、1—6验证勾股定理吗?【教学说明】学生通过各种方法验证勾股定理的正确性,加深对勾股定理的理解,又让学生体会到一题多解.【归纳结论】勾股定理的证明方法达300多种,请同学们利用业余时间探究、讨论并阅读教材P7-8的其它证明勾股定理的方法,以开阔事学们的视野.三、运用新知,深化理解1.一块长3m,宽2.2m的薄木板能否从一个长2m,宽1m的门框内通过,为什么?2.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?【教学说明】让学生从实际生活的角度大胆的去考虑,用生活经验和学过的知识去解答.并学会把实际问题抽象为直角三角形的数学模型的过程,能够熟练地将勾股定理应用到现实生活中去.【答案】1.能,让薄木板的宽从门框的对角线斜着通过.2.分析:根据题意,可以先画出符合题意的图形.如图,图中△ABC的∠C=90°,AC=4000米,AB=5000米欲求飞机每时飞行多少千米,就要知道20秒时间里飞行的路程,即图中的CB的长,由于△ABC的斜边AB=5000米,AC=4000米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算.解:由勾股定理得BC2=AB2-AC2=52-42=9(km2)即BC=3千米飞机20秒飞行3千米.那么它1小时飞行的距离为:3600/20×3=540(千米/时)答:飞机每小时飞行540千米.四、师生互动,课堂小结通过这节课的学习,你学会了哪几种证明勾股定理的方法?还有哪些疑问?【教学说明】总结归纳帮助学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.完成练习册中本课时相应练习.了解多种证明勾股定理的方法,有助于加深对勾股定理内容的理解,但这需要花一定的时间,可以让学生课外了解.并运用所学知识解决实际问题,体验数学来源于生活,生活中也蕴含着许多数学道理.2 一定是直角三角形吗1.掌握直角三角形的判别条件,并能进行简单应用.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.3.敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.【教学重点】探索并掌握直角三角形的判别条件.【教学难点】运用直角三角形判别条件解题.一、创设情境,导入新课展示一根用13个等距的结把它分成等长的12段的绳子,请三个同学上台,按老师的要求操作.甲:同时握住绳子的第一个结和第十三个结.乙:握住第四个结.丙:握住第八个结.拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角.发现这个角是多少度?古埃及人曾经用这种方法得到直角,这三边满足了什么条件?怎样的三角形才能成为直角三角形呢?这就是我们今天要研究的内容.【教学说明】利用古埃及人得到直角的方法,学生亲自动手实践,体验从实际问题中发现数学,同时明确了本节课的研究问题.既进行了数学史的教育,又锻炼了学生的动手实践、观察探究的能力.二、思考探究,获取新知直角三角形的判别做一做:下面的三组数分别是一个三角形的三边a、b、c.5、12、137、24、258、15、171.这三组数都满足a2+b2=c2吗?2.分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?3.如果三角形的三边长为a、b、c,并满足a2+b2=c2.那么这个三角形是直角三角形吗?【教学说明】鼓励学生大胆发言,让他们体验通过实际的计算和探究得到结论的乐趣,增强了他们勇于探索的精神.【归纳结论】如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.大家可以想这样的勾股数是很多的.今后我们可以利用“三角形三边a、b、c满足a2+b2=c2时,三角形为直角三角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法.三、运用新知,深化理解1.下列几组数能否作为直角三角形的三边长?说说你的理由.(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,22.2.已知△ABC中BC=41,AC=40,AB=9,则此三角形为三角形,是最大角.3.四边形ABCD中已知AB=3,BC=12,CD=13,DA=4,且∠DAB=90°,求这个四边形的面积.【教学说明】学生独立完成,能够加深判断一个三角形是直角三角形的条件的理解,帮助学生答疑解惑,及时指导,矫正强化.在完成上述题目后,引导学生完成《创优作业》中本课时的“课堂自主演练”部分.【答案】1.(1)(2)两组能作为直角三角形的三边长.∵92+122=152,152+362=392.∴这两个三角形都是直角三角形.2.直角,∠A3.解:连结BD,在△ABD中,∠DBA=90°,BD2=AB2+AD2=32+42,BD=5.在△DBC中,∵52+122=132,即DB2+BC2=DC2,∴△DBC为直角三角形,∠DBC=90°,∴S四边形ABCD=S△DAB+S△DBC=12×3×4+12×5×12=36.四、师生互动,课堂小结1.判断一个三角形是直角三角形的条件.2.今天的学习,你有哪些收获?还有哪些困惑?与同学交流.【教学说明】及时反馈教与学双边活动的结果,查漏补缺,让学生养成系统整理知识的好习惯.1.教材P10-11习题1.3第2、3、4题.2.完成练习册中本课时相应练习.这是勾股定理的逆向应用.大部分同学只要能正确掌握勾股定理的话,都不难理解.当然勾股定理的理解是关键.3勾股定理的应用1.能运用勾股定理及直角三角形的判别条件解决简单的实际问题.2.学生观察图形,勇于探索图形间的关系,培养学生的空间观念.3.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.4.在不同条件,不同环境中反复运用勾股定理及直角三角形的判定条件,使学生达到熟练、灵活运用的程度.在解决问题的过程中,培养学生的空间观念,提高学生建立数学模型的能力.5.通过解决实际问题,提高了学生应用数学的意识和锻炼了学生与他人交流合作的意识,再次感悟勾股定理和直角三角形判定的应用价值.【教学重点】探索发现给定事物中隐含的勾股定理及直角三角表判定条件,并用它们解决生活中的实际问题.【教学难点】利用数学中的建模思想构造直角三角形,灵活运用勾股定理及直角三角形的判定,解决实际问题.一、创设情境,导入新课勾股定理的应用前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?日常生活当中,我们还会遇到下面的问题.【教学说明】回忆勾股定理,巩固旧知识,解决实际问题,完成知识的过渡,为学生学习新知识又一次打下了坚实的基础.二、思考探究,获取新知蚂蚁怎么走最近?出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?(π的取值3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱的侧面爬行的最短路程是多少?【教学说明】让学生经历把曲面上两点之间的距离转化为平面上两点之间线段最短更为直观,再次利用勾股定理解决生活中较为复杂的实际问题,使所学的知识得到充分运用.【归纳结论】我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.三、运用新知,深化理解1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1小时后乙出发,他以5千米/时的速度向北进行,上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?【教学说明】学生独立解决,把生活中的实际问题转化为解直角三角形,对学生所学的知识进行强化,以利于教师及时纠正.【答案】1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在2~3米之间(包含2米、3米).四、师生互动,课堂小结通过本节课的学习,你掌握了哪些知识?还有哪些疑问?【教学说明】学生梳理知识,加强教与学的互通,进一步提高课堂教学的效果.1.教材P14~15第1、2、3、4题.2.完成练习册中本课时相应练习.这节课的内容综合性比较强,可能有些同学掌握得不是太好,今后要继续加强这方面的训练.本章归纳总结1.掌握勾股定理和如何判断一个三角形是直角三角形,能灵活运用它们解决实际问题.2.通过梳理本章知识点,回顾解决实际问题中所涉及的数形合的思想和逆向思维思考问题,以便能熟练灵活运用.3.让学生养成把已有的知识建立联系的思维习性,积极参与数学活动,在活动中学会思考、讨论、交流和合作,激发他们的求知欲望.4.用勾股定理和如何判断一个三角形是直角三角形解决简单问题.【教学难点】能理解运用勾股定理解题的基本过程;掌握在复杂图形中确定相应的直角三角形,根据勾股定理建立方程.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,构建知识结构框架,让学生比较系统地了解本章知识及它们之间的相互联系.二、释疑解惑,加深理解1.勾股定理的证明勾股定理的证明方法有多种,一般是采用剪拼的方法,它把“数与形”巧妙地联系起来,是几何与代数沟通的桥梁,同时也为后面的四边形、圆、圆形变换、三角函数等知识的学习提供了方法和依据.说明:利用面积相等是证明勾股定理的关键所在.2.勾股定理中的分类讨论在勾股定理的实际运用中,如果不明给出直角三角形中有两条边的长,要求第三条边的长就需要分两种情况讨论,即第一种情况是告诉两条直角边长求斜边,第二种情况是告诉一条直角边和斜边长求另一条直角边.3.曲面两点间的距离问题在解决曲面中两点间的距离时,往往是要将曲面问题转化为同一平面内两点之间的距离,这是解决问题的关键.三、典例精析,复习新知例1 一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕是DE(如图所示),求CD的长.【分析】设CD为x,∵AD=BD,∴AD=8-x. ∴在△ACD中,根据勾股定理列出关于x的方程即可求解.解:由折叠知,DA=DB.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,若设CD=xcm,则AD=DB=(8-x)cm,代入上式得62+x2=(8-x)2,解得x=7/4=1.75(cm),即CD的长为1.75cm.例2有一个立方体礼盒如图所示,在底部A处有一只壁虎,C′处有一只蚊子,壁虎急于捕捉到蚊子充饥.(1)试确定壁虎所走的最短路线;(2)若立方体礼盒的棱长为20cm,则壁虎如果想在半分钟内捕捉到蚊子,每分钟至少要爬行多少厘米?(保留整数)【分析】求几何表面的最短距离时,通常可以将几何体表面展开,把立体图形转化为平面图形.解:(1)若把礼盒上的底面A′B′C′D′竖起来,如图所示,使它与立方体的正面(ABB′A′)在同一平面内,然后连接AC′,根据“两点间线段最短”知线段AC′就是壁虎捕捉蚊子所走的最短路线.(2)由(1)得,△ABC′是直角三角形,且AB=20,BC′=40.根据勾股定理,得AC′2=AB2+BC′2=202+402,AC′≈44.7(cm),44.7÷0.5≈90(cm/min).所以壁虎要想在半分钟内捕捉到蚊子,它每分钟至少爬行90厘米(只入不舍).【教学说明】师生共同回顾本章主要知识,对于例题中需要注意的事项教师可以适当点评,便于学生熟练加以运用.四、复习训练,巩固提高1.已知在△ABC中,∠B=90°,一直角边为a,斜边为b,则另一条直角边c满足c2= .2.在Rt△ABC中,∠C=90°,若a=12,c-b=8,则b= ,c= .3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB的长;(3)斜边AB上的高CD的长;(4)斜边被分成的两部分AD和BD的长.【答案】1.b2-a2;2.5,13;3.解:(1)S△ABC=12AC×BC=12×2.1×2.8=2.94.(2)AB2=AC2+BC2=2.12+2.82=12.5,∴AB=3.5.(3)由三角形的面积公式得12AC×BC=12AB×CD,所以12×2.1×2.8=12×3.5×CD,解得CD=1.68.(4)在Rt△ACD中,由勾股定理得AD2+CD2=AC2,∴AD2=AC2-CD2=2.12-1.682=(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.214×0.21.∴AD=2×3×0.21=1.26.∴BD=AB-AD=3.5-1.26=2.24.五、师生互动,课堂小结本节复习课你能灵活运用勾股定理和如何判断一个三角形是直角三角形的解决问题吗?还有哪些不足?【教学说明】教师引导学生归纳本章主要的知识点,对于遗漏或需要强调的地方,教师应及时补充和点拨.1.复习题4.5第11、12题.2.完成练习册中本课时相应练习.勾股定理是解决线段计算问题的主要依据,它单独命题比较少见,更多时候是与其他知识综合应用,在综合题中如何找到适当的直角三角形是解题的关键.。

勾股定理的证明16种方法教案

勾股定理的证明16种方法教案

勾股定理的证明做8个全等的直角三角形,设它们的两条直角边长分别为a 、b,斜边长为c, 再做三个边长分别为冬b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是d + b,所以面积相等.即a 2 +b 2 +4x — ab =c 2 +4x — ab n, 22 ,整理得 cr+b 2=c\ 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于㊁".把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G. D三点在一条直线上./ ZAEH+ ZAHE = 90°,•・ ZAEH+ ZBEF = 90° ・•- ZHEF= 180°-90° = 90°.・・四边形EFGH 是一个边长为c 的正方形.它的面积等于c?.•• Rt A GDH 今 Rt A HAE,•• ZHGD= ZEHA.I Rt A HAE 已 Rt A EBF,••• ZAHE= ZBEF ・•• ZHGD+ ZGHD = 90°,乂 ••• ZGHE = 90°,【证法1】(课本的证明)•• ZEHA+ ZGHD = 90°.•• ZDHA = 90°+90°= 180°.•• ABCD是一个边长为a + b的正方形,它的面积等于@ +方)1••• a2 +b2 =c2.【证法3】(赵爽证明)以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角丄ab三角形的面积等于2 .把这四个直角三角形拼成如图所示形状.•・• Rt A DAH 仝Rt A ABE,・•・ ZHDA= ZEAB.I ZHAD+ ZHAD = 90°,・•・ ZEAB+ ZHAD = 90°,・・・ABCD是一个边长为c的正方形,•・• EF = FG =GH =HE = b-a,ZHEF = 90°・・・・EFGH是一个边长为b-a的正方形,它的面积等于.・.a~ =c\【证法4] (1876年美国总统Garfield证明)以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于空".把这两个直角三角形拼成如图所示形状,使A、E-B三点在一条直线上.•・• Rt A EAD 今Rt A CBE,・・・ ZADE= ZBEC.T ZAED+ ZADE = 90°,・•・ ZAED+ ZBEC = 90°・・•・ ZDEC= 180°-90°=90°・・・・A DEC是一个等腰直角三角形, 丄2它的面积等于㊁"・又•・• ZDAE = 90°, ZEBC = 90°,・•・AD/7BC・・・・ABCD是一个直角梯形,它的面积等于+a2 +b2 =c2.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c.把它们拼成如图那样的一个多边形,使D、E、F在一条直线上.过C作AC 的延长线交DF于点P・•・• D、E、F在一条直线上,且Rt A GEF今Rt A EBD,・•・ ZEGF= ZBED,I ZEGF+ ZGEF = 90° ,・•・ ZBED+ ZGEF = 90° ,・•・ ZBEG=180o-90°=90°・XV AB = BE = EG = GA=c,・・・ABEG是一个边长为c的正方形.・•・ ZABC+ ZCBE = 90°・•・• Rt A ABC 仝Rt A EBD,・・・ ZABC= ZEBD.・・・ ZEBD+ ZCBE = 90°・即ZCBD= 90°・乂・・• ZBDE = 90°, ZBCP=90°,BC = BD = a.••• BDPC是一个边长为a的正方形. 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则a2 +b2 =S + 2x-ab,2cr +b2 =c\【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a、b (b>a),斜边长为c・再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP〃BC,交AC于点P・过点B作BM丄PQ,垂足为M:再过点F作FN丄PQ,垂足为N・•・• ZBCA = 90°, QP〃BC,・•・ ZMPC = 90° ,I BM 丄PQ,・•・ ZBMP = 90°,・•・BCPM是一个矩形,即ZMBC = 90°.•・• ZQBM+ ZMBA= ZQBA = 90°,ZABC+ ZMBA= ZMBC = 90°,・・・ ZQBM= ZABC,乂・・• ZBMP = 90°, ZBCA = 90°, BQ =BA = c, ・•・ Rt A BMQ 9 Rt A BCA・同理可证Rt A QNF 9 Rt A AEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明) 做三个边长分别为a 、b 、c 的正方形,B 三点在一条直线上,连结 BF 、 CD ・过C 作CL 丄DE, 交AB 于点交DE于点 L.•・• AF= AC, AB = AD, ZFAB=ZGAD,・•・ A FAB £ A GAD,丄2•・• A FAB 的面积等于㊁", AGAD 的面积等于矩形ADLM 的面积的一半,・•・矩形ADLM 的面积二/・同理可证,矩形MLEB 的面积二沪.I 正方形ADEB 的面积=矩形ADLM 的面积+矩形MLEB.・.c 2 =a~ +b 2 ,即 a 2 +b 2 =c 2. 【证法8】(利用相似三角形性质证明)如图,在Rt A ABC 中,设直角边AC 、BC 的长度分别为a 、b,斜边AB 的长为c,过点C 作CD 丄AB,垂足是D ・ 在AADC 和AACB 中,I ZADC= Z ACB = 90° , ZCAD= ZBAC,・•・ A ADC s A ACB.AD : AC=AC : AB,即 AC 2 =AD^AB,同理可证,ACDB s A ACB,从而有 .IAC 2 + BC 2 = (AD + AB = AB 2 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边 长为C ・再做一个边长为c 的正方形.把它们拼成如图所示的多边形.过A 作AF 丄AC, AF 交GT 于F, AF 交DT 于R.过B 作BP 丄AF ,垂足为P.过D 作DE 与CB 的延长线垂直,垂足为E, DE 交AF 于H ・••• ZBAD = 90°, ZPAC = 90° ,・•・ ZDAH= ZB AC ・乂 •・・ ZDHA = 90°, ZBCA = 90°, AD = AB = c,・•・ Rt A DHA £ Rt A BCA ・/• DH = BC = AH = AC = b.舟面积L 把它们拼成如图所示形状,使H 、C 、 F b BEBC ,=BD ・AB.即 a 2 +b 2 =c \由作法可知,PBCA是一个矩形, 所以Rt A APB 9 Rt A BCA・ B|J PB = CA = b, AP= a»从而PH = b—a.•・• Rt A DGT £ Rt A BCA ,Rt A DHA 今Rt A BCA・・•・ Rt A DGT £ Rt A DHA ・・•・ DH = DG = a, ZGDT= ZHDA ・XV ZDGT = 90°, ZDHF = 90°,ZGDH= ZGDT+ ZTDH = ZHDA+ ZTDH = 90° ,・•・DGFH是一个边长为a的正方形.・•・ GF = FH = a ・TF丄AF, TF = GT-GF = b-a ・TFPB是一个直角梯形,上底TF=b—a,下底BP二b,高FP=a + (b—a)・用数字表示面积的编号(如图),则以c为边长的正方形的面积为c,= S] + + S] + S4 + S5・.S8+S3+S4 =;[b + (b-d)]・[d + 0i)] 庆-如b• 2 = Z ,... S3+S4 "-抄7二胪_S|_S8把②代入①,得c2 =S\ +S2 +b2 -Si -S8+S s+S g=戾+S2+S9 _ (j2 +a2, a2 +b2 =c\【证法10](李锐证明)设直角三角形两直角边的长分别为a、b (b>a),斜边的长为c・做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使A、E、G三点在一条直线上.用数字表示面积的编号(如图)・I ZTBE= ZABH = 90°,・•・ ZTBH= ZABE.XV ZBTH= ZBEA = 90°,BT = BE = b,・•・ Rt A HBT £ Rt A ABE・・°・ HT = AE = a.・・・ GH = GT-HT = b-a.乂T ZGHF+ ZBHT = 90°,ZDBC+ ZBHT= ZTBH+ ZBHT = 90°,・•・ ZGHF= ZDBC.•・• DB = EB-ED = b-a,ZHGF= ZBDC = 90°,・•・ Rt A HGF 9 Rt △ BDC.即.过Q作QM丄AG,垂足是M•由ZBAQ= ZBEA = 90°,可知ZABE=ZQAM,而 AB=AQ = c,所以 Rt A ABE £ Rt A QAM ・ 乂 Rt △ HBT 今 Rt A ABE ・所以 Rt A HBT £ Rt A QAM ・即 =S s.Ill Rt A ABE 空 Rt AQAM,又得 Q M=AE = a, ZAQM = ZBAE.I ZAQM+ ZFQM = 90° , ZBAE+ ZCAR = 90°, ZAQM = ZBAE, ・・・ZFQM= ZCAR.乂・・• ZQMF= ZARC = 90° , QM=AR = a,・•・ Rt A QMF RtA ARC.即 .• • LhSi+Sd+Ss+Sq+Ss a~=S]+S6 b" = S又•.・ Sf = S? , Sg = S5 , S4 = $6 ,• + /?~ = + S& + S Q + S7 +二 S] + S4 + S3 + S? + S5二 L ,即 u 2 +h 2 =c 2.【证法111 (利用切割线定理证明)在Rt A ABC 中,设直角边BC = a, AC = b,斜边AB 二c •如图,以B 为圆 心a 为半径作圆,交AB 及AB 的延长线分别于D 、E,则BD = BE = BC = a.因 为ZBCA = 90J 点C 在0B 上,所以AC 是©B 的切线•山切割线定理,得AC 2 =AE^AD=(AB + BE\AB BD) = (c +a\c-a)在Rt A ABC 中,设直角边BC = a, AC = b,斜边AB = c (如图)•过点A 作AD 〃CB,过点B 作BD 〃CA,则ACBD 为矩形,矩形ACBD 内接于一个圆• 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有AB^ DC = AD^ BC+ AC^ BD*.* AB = DC = c, AD = BC = a,AC = BD = b,- .・.AB~ = BC 2 +AC 2,即 c 2 = a 2 +/?2,、\・・.a 2+b 2 =c 2. 【证法13】(作直角三角形的内切圆证明) 八 4 Rt A ABC 中,设直角边BC 二a, AC 二b,斜边AB = c ・切圆0O,切点分别为D 、E 、F (如图),设0O 的半径为r ・【证法12](利用多列米定理证明)作Rt A ABC 的内 B•・• AE = AF, BF = BD, CD = CE,【证法15](辛卜松证明)A。

勾股定理教案范文

勾股定理教案范文

勾股定理教案范文一、教学目标1. 知识与技能:(1)理解勾股定理的定义和证明;(2)能够运用勾股定理解决实际问题。

2. 过程与方法:(1)通过观察、实验、推理等方法探索勾股定理;(2)培养学生的逻辑思维能力和创新能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生的团队协作精神和自主学习能力。

二、教学重点与难点1. 教学重点:(1)勾股定理的定义和证明;(2)运用勾股定理解决实际问题。

2. 教学难点:(1)勾股定理的证明;(2)灵活运用勾股定理解决复杂问题。

三、教学准备1. 教具准备:(1)多媒体课件;(2)勾股定理的相关图片和实例;(3)直角三角形模型。

2. 学生准备:(1)掌握三角形的基本知识;(2)具备一定的观察和推理能力。

四、教学过程1. 导入新课(1)利用多媒体课件展示勾股定理的实例;(2)引导学生观察和思考,激发学生的兴趣和好奇心。

2. 探究勾股定理(1)引导学生进行小组讨论,探讨勾股定理的证明方法;(2)引导学生通过实验、观察、推理等方法探索勾股定理;(3)引导学生总结勾股定理的证明过程。

3. 讲解与应用(1)教师详细讲解勾股定理的定义和证明;(2)举例说明勾股定理的应用范围;(3)引导学生运用勾股定理解决实际问题。

4. 练习与拓展(1)学生自主完成练习题,巩固所学知识;(2)引导学生进行拓展思考,探索勾股定理的推广和应用。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对勾股定理的理解和运用能力。

关注学生在学习过程中的情感态度和价值观的培养,激发学生对数学的兴趣和好奇心。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,了解学生的学习状态和兴趣。

2. 练习成果评价:对学生的练习题进行批改,评估学生对勾股定理的理解和运用能力。

3. 拓展任务评价:评估学生在拓展任务中的创新能力、逻辑思维和问题解决能力。

勾股定理教案完整版

勾股定理教案完整版

勾股定理教案完整版1)教师出示一般直角三角形ABC的图片,引导学生观察并讨论直角三角形的性质。

2)教师提出问题:如何求直角三角形的斜边长?3)引导学生通过探究等腰直角三角形的特殊关系,推导出勾股定理。

4)教师讲解勾股定理的公式及其证明方法。

三、练与应用1、教师出示一些例题,引导学生运用勾股定理解决实际问题。

2、教师组织学生小组合作,设计一些勾股定理相关的探究活动,如利用方格纸拼图验证勾股定理等。

四、总结归纳1、教师引导学生回顾勾股定理的探究过程,总结勾股定理的重要性及应用。

2、教师布置作业,要求学生运用勾股定理解决一些实际问题,并要求学生写出证明过程。

十、教学反思:本节课采用了以学生为主体的讨论探索法,通过设计情境、引发思考,引导学生自主探究勾股定理的特殊关系,培养了学生的合作意识和探索精神。

但是在教学过程中,需要更加注重学生的思维过程和思考方法的引导,使学生更深入地理解勾股定理的本质。

同时,教师在设计活动时需要更加注重活动的差异性和趣味性,以激发学生的研究兴趣。

展示图片让学生在网格纸上画图,并投影出来。

引导学生思考三个正方形的面积分别是多少,以及它们之间的关系。

可以让学生分组交流,展示不同的求面积方法。

最后,引导学生用边长表示出它们之间的关系。

学生根据问题分组交流,探讨直角三角形三边的关系。

引导学生概括出简练的语言,即直角三角形两条直角边的平方和等于斜边的平方。

介绍勾股定理的历史和命名。

勾股定理是我国古代代数书《周髀算经》中所记载的,约2000年前就被发现。

勾股定理的命名是因为古代把直角三角形的较短直角边叫做勾,较长直角边叫做股,斜边叫做弦。

西方国家称勾股定理为毕达哥拉斯定理。

证明勾股定理。

引导学生用图形的方法证明勾股定理。

可以介绍两种方法:一是将四个全等的直角三角形拼成正方形,二是将两个直角三角形拼成直角梯形。

在课堂小结中,引导学生回顾本节课所学的内容,总结收获。

布置课后作业。

在教材反思中,可以对课堂教学进行反思和总结,以便更好地改进教学方法和提高教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的证明教案
教学内容:第十四章勾股定理——第一节———第二课时
一、教学目标:
1、知识与技能:(1)掌握勾股定理的一些基本证明方法;
(2)了解有关勾股定理的历史.
2、过程与方法:(1)在定理的证明中培养学生的拼图能力;
(2)经历理解勾股定理的证明过程,感悟并
掌握勾股定理的证明猜想.
3、情感态度与价值观:(1)通过有关勾股定理的历史讲解,对学生
进行德育教育;
(2)通过数学思维活动,发展学生探究意识
和合作交流思想.
二、教学重点:理解并熟练勾股定理的证明过程
三、教学难点:对勾股定理证明思想的领会
四、教学用具:直尺,四个全等的直角三角形纸片,赵爽弦图,2002
年国际数学大会图片
五、教学方法:以学生为主体的讨论探索法
六、教学过程:
1、创设情境→激发兴趣
(1)复习勾股定理——直角三角形的三边关系
勾股定理:直角三角形两直角边a、b 的平方和等于斜边c 的平方。

数学表达式:a2+b2 =c2
(2)欣赏图片——引出课题
通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,激发学生民族自豪感.
2、分析探究→得出猜想
通过对赵爽弦图图形组成的提问:即由四个全等的直角三角形构成的,让同学们体验对数学图形的探究过程,学习这种研究方法。

同时提问:为什么会把这个图案设为大会的会徽?它有什么意义呢?
继而教师总结:因为在1700多年前中国古代数学家赵爽用这个弦图证明了勾股定理(出示图片),我们称它为“赵爽弦图”,它反应了中国古代数学家的聪明才智,是我们中国古代数学的骄傲,现在让我们追忆一下古人的足迹,用赵爽弦图证明勾股定理:
3、拼图证明→得出定理
证明方法一:(中国赵爽证法)
证明: 大正方形的面积可以表示为 :C 2
也可以表示为 :)(22/4a b ab -+ ∵ C 2 = )(2
2/4a b ab -+ C 2=a ab b ab 2222+-+
∴ c b a 222=+
赵爽弦图好比将大正方形分“割”成几个部分→割的方法
从而说明了勾股定理是正确的
证明方法二:(西方毕达哥拉斯证法)
证明:大正方形的面积可以表示为:)(2b a + 也可以表示为:C ab +2/42 ∵)(2b a +=c ab +2/42 c ab ab b a 22222+=++
∴ c b a 222=+
毕达哥拉斯图好比将小正方形“补”成一个大的图形→补的方法 从而也说明了勾股定理是正确的
c
c a
b
(图14.1.4)
A C
B
4、迁移应用→拓展提高
如图14.1.4,将长为5米的梯子AC 斜靠在 墙上,梯子底端到墙的距离BC 长为3米,求梯子上端A 到墙的底边的垂直距离AB.
解:如图14.1.4,在Rt △ABC 中,
BC=3米,AC=5米,根据勾股定理得
4AB === (米)
答:梯子上端A 到墙的底边的垂直距离AB 为4米。

5、回顾小结→整体感知
(1)、本节课我们经历了怎样的学习过程?
经历了从复习勾股定理,再到利用多种方法证明定理,最后学会应用定理解决实际问题的过程。

(2)、本节课我们学到了什么?
通过本节课的学习我们不但知道了著名的勾股定理,还体现了利用割补法来证明数学结论的数形结合思想。

(3)、学了本节课后你有什么感想?
作为反映自然界基本规律的一条结论,伟大的发现—勾股定理在数学发展中起过重要的作用,在现实世界中也有着广泛的应用。

同时,勾股定理的发现、验证和应用蕴涵着丰富的文化价值。

6、布置作业→巩固加深
以上两种证明方法是比较古老的,到目前为止,勾股定理的证明方法已经有四百多种了,著名画家达芬奇,美国总统加菲尔德都证明过,请同学们课后收集有关勾股定理的证明方法,下节课展示、交流。

相关文档
最新文档