(完整版)初一下册数学培优代数几何易错题
七年级数学代数式易错题(Word版 含答案)
![七年级数学代数式易错题(Word版 含答案)](https://img.taocdn.com/s3/m/634d0c130029bd64793e2c55.png)
3.某校要将一块长为 a 米,宽为 b 米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图 1,在空地上横、竖各铺一条宽为 4 米的石子路,其余空地种植花草. 方案二:如图 2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地 铺筑成石子路.
(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有 π,则保留) (2)若 a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π 取 3.14). 【答案】 (1)解:方案一:∵ 石子路宽为 4, ∴ S 石子路面积=4a+4b-16,
与 的差一定是 9 的倍数
(4)解:∵ + + + + + =3470+
∴ 222(a+b+c)=222×15+140+
∵ 100< <1000, ∴ 3570<222(a+b+c)<4470, ∴ 16<a+b+c≤20. 尝试发现
只有 a+b+c=19,此时 =748 成立, 这个三位数为 748.
一、初一数学代数式解答题压轴题精选(难)
1.任何一个整数 N,可以用一个的多项式来表示:
N=
.
例如:325=3×102+2×10+5. 一个正两位数的个位数字是 x,十位数字 y. (1)列式表示这个两位数; (2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明 新数与原数的和能被 11 整除. (3)已知 是一个正三位数.小明猜想:“ 与 的差一定是 9 的倍数。”请你帮助
2.|a|的几何意义是数轴上表示数 a 的点与原点 O 的距离,例如:|3|=|3﹣0|,即|3﹣0| 表示 3、0 在数轴上对应两点之间的距离.一般地,点 A、B 在数轴上分别表示数 a、b,那 么 A、B 之间的距离可表示为|a﹣b|,解决下面问题: (1)数轴上表示﹣1 和 2 的两点之间的距离是________;数轴上 P、Q 两点的距离为 6, 点 P 表示的数是 2,则点 Q 表示的数是________; (2)点 A 在数轴上表示数为 x,点 B、C 在数轴上表示的数分别为多项式 2m2n+mn﹣2 的 常数项和次数.________ ①若 B、C 两点分别以 3 个单位长度/秒和 2 个单位长度/秒的速度同时向右运动 t 秒.当 OC =2OB 时,求 t 的值;________ ②用含 x 的绝对值的式子表示点 A 到点 B、点 A 到点 C 的距离之和为________,直接写出
几何大概率错题整理(初一下学期)(答案)
![几何大概率错题整理(初一下学期)(答案)](https://img.taocdn.com/s3/m/4c4fe76486c24028915f804d2b160b4e777f8179.png)
初一下学期几何题集一、选择题1.如果两条平行线被第三条直线所截,那么同位角的平分线(A )A.互相平行B.互相垂直C.交角是锐角D.交角是钝角2.如图,图中∠1与∠2是同位角的是(C )12121212A.(2)(3)B.(2)(3)(4C.)(1)(2)(4)D.(3)(4)3.下列说法正确的是(B )A.直线AB 和直线BA 是两条直线 B.射线AB 和射线BA 是两条射线C.线段AB 和线段BA 是两条直线 D.直线AB 和直线α不能是同一条直线二、填空题1.已知数轴的原点为O ,如图所示,若点A 表示3,点B 表示-52,问:12345-1-2-3-4-5-66OAB(1)射线OB 上的点表示什么数?端点表示什么数?答:非正数(2)数轴上表示不小于-52,且不大于3的部分是什么图形?答:线段AB2.观察图①,由点A 和点B 可确定一条直线;观察图②,由不在同一直线上的三点A 、B 和C 最多能确定三条直线;(1)动手画一画图③中经过A 、B 、C 、D 四点的所有直线,最多共可作6条直线;(2)在同一平面内任三点不在同一直线的五个点最多能确定10条直线;(3)n 个点(n ≥2)最多能确定n (n -1)2条直线。
ABABCABCD3.在一条直线上取两点A 、B ,共有一条线段;在一条直线上取三个点A 、B 、C ,共有三条线段,在一条直线上取A 、B 、C 、D 四个点时,共有六条线段。
在一条直线上取n 个点时,共有n (n -1)2条线段。
A B A B C A B C D4.如图,EF ⏊AB 于点F ,CD ⏊AB 于点D ,E 是AC 上一点,∠1=∠2,则图中互相平行的直线是EF ⎳CD 、ED ⎳BCABCDEF125.工人师傅在用方砖铺地时,常常打两个木桩,然后沿着拉紧的线铺砖,这样地砖就铺得整齐。
这个事实说明的原理是两点确定一条直线,经过两点有且只有一条直线6.如图,射线DE ,DC 被直线AB 所截得的用数字表示的角中,∠4的同旁内角是∠5,∠3ABC DE123457.互为余角的两个角之差为35°,则较大角的补角是117.5°【解析】①α+β=90°②α-β=35°式子①+②α+β+α-β=90°+35°2α=125°α=62.5°180°-62.5°=117.5°8.如图,在射线CD 上取三点D 、E 、F ,则图中共有射线4条C D E F9.如图,已知∠AOB =120°,射线OC 从OA 位置处罚,绕点O 以每秒5°的速度顺时针方向旋转,同时射线OD 从OB 位置出发,绕点O 以每秒1°的速度逆时针方向旋转,当射线OC 与射线OB 重合时,运功停止,在运动过程中,当射线OC 旋转1207秒时,OD 平分∠BOC .三、解答题1.如图,B 处在A 处的南偏西45°方向上,C 处在A 处的南偏东30°方向,C 处在B 处的北偏东60°方向,求∠ACB 的度数。
代数式易错题(Word版 含答案)
![代数式易错题(Word版 含答案)](https://img.taocdn.com/s3/m/2f2970c202768e9951e738d0.png)
一、初一数学代数式解答题压轴题精选(难)1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.2.如图(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.【答案】(1)3x+3;3y+21(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则a+(a+1)+(a+7)+(a+8)=96,解得,a=20,由图2知,所框出的四个数存在,故存在被框住的4个数的和为96,其中最小的数为20(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,a2=(m+7)+(m+6)+(m+8)=3m+21,∵|a1﹣a2|=6,∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,∴m=16.【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:x+(x+1)+(x+2)=x+x+1+x+2=3x+3;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:y+(y+7)+(y+14)=y+y+7+y+14=3y+21.故答案为:3x+3;3y+21【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.3.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)超出10m3的部分6元/m35m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。
七年级(下)易错题和典型题期末复习专练一 代数部分
![七年级(下)易错题和典型题期末复习专练一 代数部分](https://img.taocdn.com/s3/m/c871c5922cc58bd63186bd75.png)
易错题和典型题专练一 代数部分一、填空题:1、在△ABC 中,若AB =5,AC =3,则中线AD 的长的取值范围是______________。
2、若22=nx,则()()=-22332nn x x ;若()()()xx23222-÷-=-,则=x 。
3、已知192221232=-++x x ,则=x ;()201120100.1258⋅-= 。
4、计算:()322m m x xx -∙÷= ;()()42242332a a a a a -++⋅⋅= 。
5、计算:=++--210)2.022(,=÷÷÷)()(6735m m m m 。
6、要使()()211-+--x x 有意义,x 的取值应满足: 。
7、若二项式142+m 加上一个单项式后是一个含m 的完全平方式,则单项式为 。
8、若0134622=++-+m n n m ,则22n m -=_________。
9、已知x m=3,19+=y m,用含有字母x 的代数式表示y ,则y =_________。
已知x m =3,131+=+y m ,用含有字母x 的代数式表示y ,则y =_________。
10、已知012=-+m m ,则=++2009223m m 。
11、三个多项式32,12,2223--+++x x x x x x 的公因式是___________。
12、若()()1212222=-++y xyx , 则22y x +=___________。
13、如果=+=+-==+2222,6,1y x xy y x xy y x ,则。
14、已知:132=--+yx y x ,用含x 的代数式表示y ,得 。
15、如果关于x 的方程2324+=-x m x 和m x x 32-=的解相同,则m = 。
16、已知关于y x ,的方程组y x ,ay x a y x -⎩⎨⎧-=++-=+则3242的值为 。
(易错题精选)初中数学代数式易错题汇编含答案(1)
![(易错题精选)初中数学代数式易错题汇编含答案(1)](https://img.taocdn.com/s3/m/b9e919291ed9ad51f11df22a.png)
(易错题精选)初中数学代数式易错题汇编含答案(1)一、选择题1.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.2.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是( )A .4B .6C .8D .10【答案】A【解析】【分析】 根据勾股定理可以求得a 2+b 2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值.【详解】解:根据勾股定理可得a 2+b 2=9, 四个直角三角形的面积是:12ab×4=9﹣1=8, 即:ab=4.故选A .考点:勾股定理.3.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.4.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.下列运算正确的是()A .336a a a +=B .632a a a ÷=C .()235a a a -⋅=-D .()336a a = 【答案】C【解析】【分析】分别求出每个式子的值,3332a a a +=,633a a a ÷=,()235a a a -⋅=-,()339a a =再进行判断即可.【详解】解:A: 3332a a a +=,故选项A 错;B :633a a a ÷=,故选项B 错;C :()235aa a -⋅=-,故本选项正确; D.:()339a a =,故选项D 错误.故答案为C.【点睛】本题考查了同底数幂的乘除,合并同类项,幂的乘方和积的乘方的应用;掌握乘方的概念,即求n 个相同因数的乘积的运算叫乘方,乘方的结果叫做幂;分清()22n n a a -=,()2121n n a a ++-=-.6.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .01)1=D .61200 = 6.12×10 4 【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.7.计算 2017201817(5)()736-⨯ 的结果是( ) A .736- B .736 C .- 1 D .367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.8.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.9.计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x2【答案】B【解析】【分析】根据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.10.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.11.按如图所示的运算程序,能使输出y的值为1的是()A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意. 故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.12.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.13.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2 【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.14.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.15.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a =【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.16.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】 根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.17.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.18.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.19.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.20.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( ) A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12, ∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .。
2020-2021初中数学代数式易错题汇编附解析
![2020-2021初中数学代数式易错题汇编附解析](https://img.taocdn.com/s3/m/80734d7eb90d6c85ec3ac6b4.png)
2020-2021初中数学代数式易错题汇编附解析一、选择题1.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.2.下列运算正确的是( ).A .()2222x y x xy y -=--B .224a a a +=C .226a a a ⋅=D .()2224xy x y = 【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方法则、同底数幂的乘法法则、完全平方公式分别化简求出答案.【详解】解:A.、()2222x y x xy y -=-+,故本选项错误;B.、2222a a a +=,故本选项错误;C.、224a a a ⋅=,故本选项错误;D 、 ()2224xy x y =,故本选项正确;故选:D .本题主要考查合并同类项、积的乘方、同底数幂的乘法、完全平方公式,熟练掌握相关的计算法则是解题的关键.3.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅= 【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.4.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .5.下列运算正确的是( )A .2235a a a +=B .22224a b a b +=+()C .236a a a ⋅=D .2336()ab a b -=- 【答案】D【分析】根据合并同类项法则、完全平方公式、同底数幂乘法法则、积的乘方法则逐一进行计算即可得.【详解】A. 235a a a +=,故A 选项错误;B. 222244a b a ab b +=++(),故B 选项错误;C. 235a a a ⋅=,故C 选项错误;D. 2336()ab a b -=-,正确,故选D.【点睛】本题考查了整式的运算,涉及了合并同类项、完全平方公式、积的乘方等运算,熟练掌握各运算的运算法则是解题的关键.6.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.7.如图,两个连接在一起的菱形的边长都是1cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A .点FB .点EC .点AD .点C【答案】A分析:利用菱形的性质,电子甲虫从出发到第1次回到点A共爬行了8cm(称第1回合),而2014÷8=251……6,即电子甲虫要爬行251个回合,再爬行6cm,所以它停的位置是F点.详解:一只电子甲虫从点A开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,从出发到第1次回到点A共爬行了8cm,而2014÷8=251……6,所以当电子甲虫爬行2014cm时停下,它停的位置是F点.故选A.点睛:本题考查了规律型:图形的变化类:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.8.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(-10%)(+15%)万元B.(1-10%)(1+15%)万元C.(-10%+15%)万元D.(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a万元,用a把4月份的产值表示出来a(1-10%),从而得出5月份产值列出式子a1-10%)(1+15%).故选B.9.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.+为()10.已知单项式2m1-互为同类项,则m n3a b-与n7a bA.1 B.2 C.3 D.4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项,n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .224a a a +=【答案】B【解析】【分析】根据积的乘方运算法则和同底数幂的运算法则分别计算即可解答.解:A. 235a a a ⋅=,故A 错误;B. 222()ab a b =,正确;C. ()326a a =,故C 错误;D. 2222a a a +=,故D 错误.故答案为B .【点睛】本题主要考查了积的乘方和同底数幂的运算运算法则,掌握并灵活运用相关运算法则是解答本题的关键.13.若3,2x y xy +==, 则()()5235x xy y +--的值为( ) A .12B .11C .10D .9 【答案】B【解析】【分析】项将多项式去括号化简,再将3,2x y xy +==代入计算.【详解】 ()()5235x xy y +--=235()xy x y -++,∵3,2x y xy +==,∴原式=2-6+15=11,故选:B.【点睛】此题考查整式的化简求值,正确去括号、合并同类项是解题的关键.14.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.15.已知x=2y+3,则代数式9-8y+4x 的值是( )A .3B .21C .5D .-15【答案】B【解析】直接将已知变形进而代入原式求出答案.【详解】解:∵x=2y+3∴x-2y=3∴98494(2y x y x -+=--⨯)=9-4(-3)=21故选:B【点睛】此题主要考查了整式的加减以及代数式求值,正确将原式变形是解题关键.16.已知112x y +=,则23xy x y xy +-的值为( ) A .12 B .2 C .12- D .2-【答案】D【解析】【分析】先将已知条件变形为2x y xy +=,再将其整体代入所求式子求值即可得解.【详解】 解:∵112x y+= ∴2x y xy+= ∴2x y xy += ∴2222323xy xy xy x y xy xy xy xy ===-+---. 故选:D【点睛】本题考查了分式的化简求值,此题涉及到的是整体代入法,能将已知式子整理变形为2x y xy +=的形式是解题的关键.17.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是( )(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A .食指B .中指C .小指D .大拇指【答案】B【解析】【分析】 根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.又∵2019是奇数,201925283=⨯+,∴数到2019时对应的指头是中指.故选:B .【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n ,小指对的数是5+8n .食指、中指、无名指对的数介于它们之间.19.若x 2+2(m+1)x+25是一个完全平方式,那么m 的值( )A .4 或-6B .4C .6 或4D .-6【答案】A【解析】【详解】解:∵x2+2(m+1)x+25是一个完全平方式,∴△=b2-4ac=0,即:[2(m+1)]2-4×25=0整理得,m2+2m-24=0,解得m1=4,m2=-6,所以m的值为4或-6.故选A.20.多项式2a2b﹣ab2﹣ab的项数及次数分别是()A.2,3 B.2,2 C.3,3 D.3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a2b﹣ab2﹣ab是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.。
七年级(下)北师大版数学几何易错题集
![七年级(下)北师大版数学几何易错题集](https://img.taocdn.com/s3/m/a8b98b25c5da50e2534d7f2e.png)
北师大版七年级(下)数学几何易错题集班级:姓名:得分:1,已知△ABC与△DEF全等,∠A=∠D=90°,∠B=37°,则∠E的度数是;2,已知△DEF≌△ABC,AB=AC,且△ABC的周长为23cm,BC=4 cm,则△DEF(第3题图)(第4题图)(第5题图)7,长为3cm,4cm,6cm,8cm的木条各两根,小明与小刚分别取了3cm和4cm 的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为()A.一个人取6cm的木条,一个人取8cm的木条;B.两人都取6cm的木条;C.两人都取8cm的木条;D.B, C 两种取法都可以8,下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A. ①②B. ②③C. ①③D. ①②③9,如图所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交点为C,则图中全等三角形共有()A. 2对B. 2对C. 4对D. 5对10,下列说法中,正确的有()①三角对应相等的2个三角形全等;②三边对应相等的2个三角形全等;③两角、一边相等的2个三角形全等;④两边、一角对应相等的2个三角形全等.A. 1个B. 2个C. 3个D. 4个11,如图,D在AB上,E在AC上,且∠B=∠C,则在下列条件:①AB=AC;②AD=AE;③BE=CD.其中能判定△ABE≌△ACD的有()A. 0个B. 1个C. 2个D. 3个12,△ABC中,AB=AC,三条高AD,BE,CF相交于O那么图中全等的三角形有()A. 5对B. 6对C. 7对D. 8对13,如图,已知AB=AC,D是BC的中点,E是AD上的一点,图中全等三角形有几对()A.1B.2C.3D.414,不能判断△ABC≌△DEF的条件是()A.∠A=∠F,BA=EF,AC=FDB.∠B=∠E,BC=EF,高AH=DGC.∠C=∠F=90°,∠A=60°,∠E=30°,AC=DFD.∠A=∠D,AB=DE,AC=DF15,如图,在△ABC与△ADE中,∠BAD=∠CAE,BC=DE,且点C在DE上,若添加一个条件,能判定△ABC≌△ADE,这个条件是()A.∠BAC=∠DAE B.∠B=∠DC.AB=AD D.AC=AE16,如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=OFE.其中能够证明△DOF≌△EOF的条件的个数有()A.1个B.2个C.3个D.4个17,如图,AB=AC,AD=AE,∠B=50°,∠AEC=120°则∠DAC的度数等于()A.120° B.70° C.60° D.50°18,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A.相等 B.互余 C.互补或相等 D.不相等19,七(7)班徐同学想利用下列长度的木棒制成一个三角形工具,下列各组你认为可行的是()A.5,2,2 B.2,3,6 C.5,3,4 D.7,13,6 20,在△ABC中,∠A=47°,高BE、CF所在直线交于点O,且点E、F不与点B、 C重合,则∠BOC= ;21, 下列说法中:①只有两个三角形才能完全重合;②如果两个图形全等,它们的形状和大小一定都相同;③两个正方形一定是全等图形;④边数相同的图形一定能互相重合; 错误的有()A.4个 B.3个 C.2个 D.1个22,对于条件:①两条直角边对应相等;②斜边和一锐角对应相等;③斜边和一直角边对应相等;④直角边和一锐角对应相等;以上能断定两直角三角形全等的有()A.1个 B.2个 C.3个 D.4个23,下列说法中,正确的个数是()○1斜边和一直角边对应相等的两个直角三角形全等;○2有两边和它们的对应夹角相等的两个直角三角形全等;○3一锐角和斜边对应相等的两个直角三角形全等;○4两个锐角对应相等的两个直角三角形全等;A.1个B.2个C.3个D.4个24,如图,∠1=70°,若m ∥n,则∠2= 度25,如图,AB∥CD,∠B=28°,∠D=47°,则∠BED= 度(第24题图)(第25题图)(第26题图)26,如图,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交于点E,若∠1=43°,则∠2= 度;27,如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.28,下列所示的四个图形中,∠1和∠2是同位角的是()A.②③ B.①②③ C.①②④ C.①②④29,在图中,∠1与∠2是同位角的有()A.①② B.①③ C.②③ D.②④30,已知:x+y=-1,xy=-6,求:x2+y2及x-y的值;31,解方程:(2x+3)(x-4)-(x+2)(x-3)= x2+6推理填空:32,已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC()∴∠2= ()∵∠1=∠2(已知)∴∠1=∠(等量代换)∴EF∥CD()∴EF∥CD()∴∠AEF=∠()∵EF⊥AB(已知)∴∠AEF=90°()∴∠ADC=90°()∴CD⊥AB()33,如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE;解:∵∠A=∠F()∴AC∥DF()∴∠D=∠1()又∵∠C=∠D()∴∠1=∠C()∴BD∥CE()。
(最新整理)初一下几何易错题
![(最新整理)初一下几何易错题](https://img.taocdn.com/s3/m/d409276ce53a580217fcfe07.png)
2021/7/26
等边三角形 25
钝角三角形的三条高
做一做
A
F
DB
C
E
2021/7/26
26
A
D
B
C
直角边BC边上的 高是 AB ; 直角边AB边上的 高是 CB ;
斜边AC边上的
2021/7/26
高是 BD ;
A
F
D
B
C
E
AB边上的高是 CE ;
BC边上的高是 AD ;
CA边上的高是 BF ;
9. 三角形的一个外角等于与它不相邻的两个内角的和。 10. 三角形的一个外角大于与它不相邻的任何一个内角。
2021/7/26
32
多边形的内角和公式: n边形的内角和等于 (n-2)×180°
2021/7/26
33
理解 “稳定性 ”
“只要三角形三条边的长度固
定,这个三角形的形状和大小也就
完全确定,三角形的这种性质叫做
(a-b)²+lb-cl=0
a-b=0且b-c=o
a=b且b=c
a=b=c
2021/7/26
41
三角形的三边长分别为a,b,c,化 简la+b-cl-lb-c-al
la+b-cl-lb-c-al =(a+b-c)-(-b+c+a)
=a+b-c+b-c-a
=2b-2c
2021/7/26
42
在∆ABC中,∠BAC=90°,AB=AC=2
三角形的稳定性。”这就是说,三
角形的稳定性不是“拉得动、拉不
动”的问题,其实质应是“三角形
边长确定,其形状和大小就确定
初一易错几何部分难题
![初一易错几何部分难题](https://img.taocdn.com/s3/m/eb16ce513b3567ec102d8a6c.png)
易错题和典型题专练二几何部分一、填空题:1、若等腰三角形的底边长为8 cm,则腰长x的取值范围是;若等腰三角形的腰长为8 cm,则底边长x的取值范围是。
2、已知一个三角形的两边的长是3和4,则第三边的长x的取值范围是;周长y的取值范围是;3、三角形按角分类成:,,。
4、已知两个角的两边分别平行,且其中一个角比另一个角的3倍少36o,则这两个角的度数是。
5、三角形三个内角的比为1:3:5,则最大的内角是度,最大的外角是度,按角分类,它属于三角形。
6、如图:在△ABC中,∠A=40°,高BE、CF交于点O,则∠BOC为=。
(第6题)(第10题)(第11题)(第12题)7、已知∠A、∠B、∠C是△ABC的三个内角,α=∠A+∠B,β=∠C+∠A,γ=∠B+∠C,则α、β、γ中,锐角最多有__________个。
8、将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形,•它的内角和(按一层计算)是_______度。
9、适合条件∠A=12∠B=13∠C的△ABC的形状是。
适合条件∠A=2∠B=3∠C的△ABC的形状是。
10、如图:已知BC∥DE,则∠1、∠2、∠3之间的关系是。
11、如图:已知AB∥DE,则∠1、∠2、∠3之间的关系是。
12、如图:已知∠A=120º,∠D=150º,BE、CE分别是角平分线,则∠E=。
13、小亮从A点出发前进10m,向右转15,再前进10m,又向右转15,…,这样一直走下去,他第一次回到出发点A时,一共走了 m。
14、要判断如图所示△ABC的面积是△PBC的面积的几倍,只用一把仅有该度直尺,需要度量的次数最少是次。
15、如图:天地广告公司为某商品设计的商品图案,图中阴影部分是彩色,若每个小长方形的面积都是1,则彩色的面积为 。
(第14题) (第15题) (第16题)16、如图:五边形ABCDE 是一块草地.小明从点S 出发,沿着这个五边形的边步行一周,最后仍回到起点S 处.小明在各拐弯处转过的角度之和是________°。
【精选】七年级代数式易错题(Word版 含答案)
![【精选】七年级代数式易错题(Word版 含答案)](https://img.taocdn.com/s3/m/c0aefe3002d276a201292e4b.png)
一、初一数学代数式解答题压轴题精选(难)1.用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C 型钢板和3块D型钢板.现购买A、B型钢板共100块,并全部加工成C、D型钢板.设购买A型钢板x块(x为整数)(1)可制成C型钢板块(用含x的代数式表示);可制成D型钢板块[用含x的代数式表示).(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若将C、D型钢板全部出售,通过计算说明此时获得的总利润.(3)在(2)的条件下,若20≤x≤25,请你设计购买方案使此时获得的总利润最大,并求出最大的总利润.【答案】(1)解:设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据题意得:可制成C型钢板2x+(100﹣x)=(x+100)块,可制成D型钢板x+3(100﹣x)=(﹣2x+300)块.故答案为:x+100;﹣2x+300(2)解:设获得的总利润为w元,根据题意得:w=100(x+100)+120(﹣2x+300)=﹣140x+46000(3)解:∵k=﹣140<0,∴w值随x值的增大而减小,又∵20≤x≤25,∴当x=20时,w取最大值,最大值为43200,∴购买A型钢板20块、B型钢板80块时,可获得的总利润最大,最大的总利润为43200元.【解析】【分析】(1)设购买A型钢板x块(x为整数),则购买B型钢板(100﹣x)块,根据“ 用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板”从而用含x的代数式表示出可制成C型钢板及D型钢板的数量.(2)设获得的总利润为w元,根据总利润=100×制成C型钢板的数量+120×制成D型钢板的数量,从而得出结论.(3)利用一次函数的性质求出最大利润及购买方案即可.2.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,3.电话费与通话时间的关系如下表:;(2)计算当a=100时,b的值.【答案】(1)解:依题可得:通话1分钟电话费为:0.2×1+0.8,通话2分钟电话费为:0.2×2+0.8,通话3分钟电话费为:0.2×3+0.8,通话4分钟电话费为:0.2×4+0.8,……∴通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)解:∵a=100,∴b=0.8+0.2×100=20.8.【解析】【分析】(1)观察表格可知通话a分钟电话费为:0.2×a+0.8,即b=0.8+0.2a.(2)将a=100代入(1)中代数式,计算即可得出答案.4.已知:a、b、c满足a=-b,|a+1|+(c-4)2=0,请回答问题:(1)请求出a、b、c的值;(2)a、b、c所对应的点分别为A、B、C,P为数轴上一动点,其对应的数为x,若点P 在线段BC上时,请化简式子:|x+1|-|1-x|+2|x-4|(请写出化简过程);(3)若点P从A点出发,以每秒2个单位长度的速度向右运动,试探究当点P运动多少秒时,PC=3PB?【答案】(1)解:因为,所以a+1=0,c-4=0,即a=-1,c=4. 因为a=-b,a=-1,所以b=-a=-(-1)=1. 综上所述,a=-1,b=1,c=4(2)解:因为点P在线段BC上,b=1,c=4,所以 . 因为,所以x+1>0,, . 0时,;当时,;当时, . 因此,当点P在线段BC上(即 )时,== = .(3)解:设点P的运动时间为t秒. 因为点P从A点出发,以每秒2个单位长度的速度向右运动,所以AP=2t. 因为点A对应的数为-1,点C对应的数为4,所以AC=4-(-1)=5. PB. 故点P不可能在点C的右侧. 因此,PC=AC-AP. 因为AP=2t,AC=5,所以PC=AC-AP=5-2t. 分析本小题的题意,点P与点B的位置关系没有明确的限制,故本小题应该对以下两种情况分别进行求解. ①点P在点B的左侧,如下图. 因为点A对应的数为-1,点B对应的数为1,所以AB=1-(-1)=2. 因为AP=2t,AB=2,所以PB=AB-AP=2-2t. 因为PC=3PB,PC=5-2t,PB=2-2t,所以5-2t=3(2-2t). 解这个关于t的一元一次方程,得. ②点P在点B的右侧,如下图.因为AP=2t,AB=2,所以PB=AP-AB=2t-2. 因为PC=3PB,PC=5-2t,PB=2t-2,所以5-2t=3(2t-2). 解这个关于t的一元一次方程,得 .综上所述,当点P运动或秒时,PC=3PB.【解析】【分析】(1)因|a+1|0;(c-4)20,所以由题意得a+1=0,c-4=0,即a=-1,c=4,所以b=1.(2)结合(1),由题意得,所以原式去绝对值化简得原式=x+1-(x-1)+2(4-x)=-2x+10.(3)结合(1),由题意得AP=2t,PC=5-2t;然后分情况讨论P在B点左右两侧两种情况。
【精选】代数式(培优篇)(Word版 含解析)
![【精选】代数式(培优篇)(Word版 含解析)](https://img.taocdn.com/s3/m/d99a3f42f90f76c660371a05.png)
一、初一数学代数式解答题压轴题精选(难)1.|a|的几何意义是数轴上表示数a的点与原点O的距离,例如:|3|=|3﹣0|,即|3﹣0|表示3、0在数轴上对应两点之间的距离.一般地,点A、B在数轴上分别表示数a、b,那么A、B之间的距离可表示为|a﹣b|,解决下面问题:(1)数轴上表示﹣1和2的两点之间的距离是________;数轴上P、Q两点的距离为6,点P表示的数是2,则点Q表示的数是________;(2)点A在数轴上表示数为x,点B、C在数轴上表示的数分别为多项式2m2n+mn﹣2的常数项和次数.________①若B、C两点分别以3个单位长度/秒和2个单位长度/秒的速度同时向右运动t秒.当OC =2OB时,求t的值;________②用含x的绝对值的式子表示点A到点B、点A到点C的距离之和为________,直接写出距离之和的最小值为________.【答案】(1)3;8或﹣4(2)解:∵多项式2m2n+mn﹣2的常数项是﹣2,次数是3,∴点B、C在数轴上表示的数分别为﹣2、3.;运动t秒,B点表示的数为﹣2+3t,C点表示的数为3+2t,∵OC=2OB,∴3+2t=2× ,∴3+2t=2(﹣2+3t),或3+2t=2(2﹣3t),解得t=,或t=,故所求t的值为或;;5.【解析】【解答】(1)解:数轴上表示﹣1和2的两点之间的距离是|2﹣(﹣1)|=3;设点Q表示的数是m,则|m﹣2|=6,解得m=8或﹣4,即点Q表示的数是8或﹣4.故答案为3,8或﹣4。
(2)解:②AB+AC=|﹣2﹣x|+|3﹣x|,其最小值为5.故答案为|﹣2﹣x|+|3﹣x|,5.【分析】(1)根据数轴上A、B两点之间的距离为|AB|=|a−b|,代入数值运用绝对值的性质即可求数轴上表示−1和2的两点之间的距离;设点Q表示的数是m,根据P、Q两点的距离为6列出方程|m−2|=6,解方程即可求解;(2)根据多项式的常数项与次数的定义求出点B、C在数轴上表示的数;①根据OC=2OB列出方程,解方程即可求解;②根据数轴上A、B两点之间的距离为|AB|=|a−b|即可表示AB+AC,然后可得距离之和的最小值.2.从2开始,连续的偶数相加时,它们的和的情况如下表:S和n之间有什么关系?用公式表示出来,并计算以下两题:(1)2a+4a+6a+…+100a;(2)126a+128a+130a+…+300a.【答案】(1)解:依题可得:S=n(n+1).2a+4a+6a+…+100a,=a×(2+4+6+…+100),=a×50×51,=2550a.(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,=a×(2+4+6+…+300),=a×150×151,=22650a.又∵2a+4a+6a+…+124a,=a×(2+4+6+…+124),=a×62×63,=3906a,∴126a+128a+130a+…+300a,=22650a-3906a,=18744a.【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,3.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1(1)若y2= + ,求y2的值(2)若y3= + + ,则y3的值为________;(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.【答案】(1)解:∵ =±1, =±1,∴y2= + =±2或0(2)±1或±3(3)2017;4032【解析】【解答】解:(2)∵ =±1, =±1, =±1,∴y3= + + =±1或±3.故答案为±1或±3,( 3 )由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。
【精选】七年级数学代数式易错题(Word版 含答案)
![【精选】七年级数学代数式易错题(Word版 含答案)](https://img.taocdn.com/s3/m/861a42922f60ddccda38a0f9.png)
(2)解:A 公司:20000+200(n-1)=200n+19800 B 公司:10000+50(2n-2)+10000+50(2n-1)=200n+19850, ∴ 从应聘者的角度考虑的话,选择 B 家公司有利. 【解析】【解析】(1)解:A 公司招聘的工作人员第二年的工资收入是:20000+200=20200 元; B 公司招聘的工作人员第二年的工资收入是:1000+50×2+1000+50×3=20250 元; 【分析】(1)根据第二年的年待遇等于年薪+工龄工资,即可算出; (2)分别表示出第 n 年在 A,B 两家公司工作的年收入,再比较大小即可。
2.A 和 B 两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有 如下差别:A 公司,年薪 20000 元,每年加工龄工资 200 元;B 公司,半年薪 10000 元, 每半年加工龄工资 50 元.
(1)第二年的年待遇:A 公司为________元,B 公司为________元;
(2)数轴上表示 x 和﹣2 的两点之间的距离表示为________.
(3)若 x 表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=________
(4)若|x+3|+|x﹣5|=8,利用数轴求出 x 的整数值.
【答案】 (1)3;5 (2)|x+2| (3)6 (4)解:∵ |x+3|+|x﹣5|=8,
∴ ﹣3≤x≤5, ∵ x 为整数, ∴ x=﹣3,﹣2,﹣1,0,1,2,3,4,5 【解析】【解答】解:(1)数轴上表示 2 和 5 两点之间的距离是 5﹣2=3,数轴上表示 2 和﹣3 的两点之间的距离是 2﹣(﹣3)=5;(2)数轴上表示 x 和﹣2 的两点之间的距离表 示为|x+2|;(3)若 x 表示一个有理数,且﹣4≤x≤﹣2,则|x﹣2|+|x+4|=6;
初一下几何易错题58页文档
![初一下几何易错题58页文档](https://img.taocdn.com/s3/m/b0a03ac3647d27284a735111.png)
初一下几何易错题
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
(完整版)七年级下学期相期末压轴题易错题复习数学试题(一)培优试题
![(完整版)七年级下学期相期末压轴题易错题复习数学试题(一)培优试题](https://img.taocdn.com/s3/m/586460e818e8b8f67c1cfad6195f312b3169ebb7.png)
一、解答题1.在平面直角坐标系中,点A ,B 的坐标分别为()2,0,()2,0-,现将线段AB 先向上平移3个单位,再向右平移1个单位,得到线段DC ,连接AD ,BC . (1)如图1,求点C ,D 的坐标及四边形ABCD 的面积;图1(2)如图1,在y 轴上是否存在点P ,连接PA ,PB ,使PAB ABCD S S =△四边形?若存在这样的点,求出点P 的坐标;若不存在,试说明理由;(3)如图2,在直线CD 上是否存在点Q ,连接QB ,使14QCB ABCD S S =△四边形?若存在这样的点,直接写出点Q 的坐标;若不存在,试说明理由.图2(4)在坐标平面内是否存在点M ,使23MAB ABCDS S =△四边形?若存在这样的点M ,直接写出点M 的坐标的规律;若不存在,请说明理由.解析:(1)()1,3C -,()3,3D ,12ABCD S =四边形;(2)存在,()0,6P -或()0,6P ;(3)存在,()1,3Q 或()3,3Q -;(4)存在,M 的纵坐标总是4或4-.或者:点M 在平行于x 轴且与x 轴的距离等于4的两条直线上;或者:点M 在直线4y =或直线4y =-上 【分析】(1)根据点的平移规律,即可得到对应点坐标; (2)由PABABCD S S =四边形,可以得到6OP =,即可得到P 点坐标;(3)由14QCBABCDS S =四边形,可以得到2CQ =,结合点C 坐标,就可以求得点Q 坐标; (4)由23MABABCDS S =四边形,可以AB 边上的高的长度,从而得到点M 的坐标规律. 【详解】(1)∵点()2,0A ,点(2,0)B -∴向上平移3个单位,再向右平移1个单位之后对应点坐标为(3,3)D ,点(1,3)C - ∴2(2)4AB =--= ∴=43=12ABCD S ⨯四边形 (2)存在,理由如下: ∵=12PAB ABCD S S =△四边形 即:12AB OP =12∴6OP =∴()0,6P -或()0,6P (3)存在,理由如下: ∵14QCB ABCDS S =△四边形 即:11234QCB S =⨯=△∵1322QCB S CQ OE CQ ==△∴2CQ = ∵(1,3)C - ∴()1,3Q 或()3,3Q - (4)存在:理由如下: ∵23MAB ABCDS S =△四边形 ∴212=83MAB S =⨯△设MAB △中,AB 边上的高为h则:182AB h =∴4h =∴点M 在直线4y =或直线4y =-上 【点睛】本题考查直角坐标系中点的坐标平移规律,由点到坐标轴的距离确定点坐标等知识点,根据相关内容解题是关键.2.在平面直角坐标系中,已知长方形,点,. (1)如图,有一动点在第二象限的角平分线上,若,求的度数;(2)若把长方形向上平移,得到长方形.①在运动过程中,求的面积与的面积之间的数量关系; ②若,求的面积与的面积之比.解析:(1)55°或35°;(2)①;②.【解析】【分析】(1)分两种情况:①在Rt△FEC中,求出∠FEC=90°-10°=80°,然后根据点在第二象限的角平分线上,得出∠POE=45°,对顶角相等,即可得出∠CPO=180°-80°-45°=55°;②由已知条件,得出∠CEO=45°,又根据∠CEO=∠CPE+∠PCB,得出∠CPO;(2)①首先设长方形向上平移个单位长,得到长方形,然后列出和的面积,即可得出两者的数量关系;②首先根据已知条件判定四边形是平行四边形,经过等量转化,即可得出和的面积,进而得出其面积之比.【详解】(1)分两种情况:①令PC交x轴于点E,延长CB至x轴,交于点F,如图所示:由已知得,,∠CFE=90°∴∠FEC=90°-10°=80°,又∵点在第二象限的角平分线上,∴∠POE=45°又∵∠FEC=∠PEO=80°∴∠CPO=180°-80°-45°=55°②延长CB,交直线l于点E,由已知得,,∵点在第二象限的角平分线上,∴∠CEO=45°∴∠CEO=∠CPE+∠PCB∴∠CPO=45°-10°=35°.故答案为55°或35°.(2)如图,①设长方形向上平移个单位长,得到长方形∴②∵长方形,∴∵,令交于E,则四边形是平行四边形,∴∴又∵由①得知,∴∴.【点睛】此题主要考查等量转换和平行四边形的判定以及性质,熟练掌握,即可解题.3.如图,在平面直角坐标系中,已知△ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标.(2)在y轴上是否存在点P,使得S△POB=23S△ABC若存在,求出点P的坐标;若不存在,请说明理由.(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究∠HBM,∠BMA,∠MAC之间的数量关系,并证明你的结论.解析:(1)C(-2,0);(2)点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明见解析.【分析】(1)由点A坐标可得OA=4,再根据C点x轴负半轴上,AC=6即可求得答案;(2)先求出S△ABC=9,S△BOP=OP,再根据S△POB=23S△ABC,可得OP=6,即可写出点P的坐标;(3)先得到点H的坐标,再结合点B的坐标可得到BH//AC,然后根据点M在射线CH上,分点M在线段CH上与不在线段CH上两种情况分别进行讨论即可得.【详解】(1)∵A(4,0),∴OA=4,∵C点x轴负半轴上,AC=6,∴OC=AC-OA=2,∴C(-2,0);(2)∵B(2,3),∴S△ABC=12×6×3=9,S△BOP=12OP×2=OP,又∵S△POB=23S△ABC,∴OP=23×9=6,∴点P坐标为(0,6)或(0,-6);(3)∠BMA=∠MAC±∠HBM,证明如下:∵把点C往上平移3个单位得到点H,C(-2,0),∴H(-2,3),又∵B(2,3),∴BH//AC;如图1,当点M在线段HC上时,过点M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠BMN+∠AMN,∴∠BMA=∠HBM+∠MAC;如图2,当点M在射线CH上但不在线段HC上时,过点M作MN//AC,∴∠MAC=∠AMN,MN//HB,∴∠HBM=∠BMN,∵∠BMA=∠AMN-∠BMN,∴∠BMA=∠MAC-∠HBM;综上,∠BMA=∠MAC±∠HBM.【点睛】本题考查了点的坐标,三角形的面积,点的平移,平行线的判定与性质等知识,综合性较强,正确进行分类并准确画出图形是解题的关键.4.如图,在平面直角坐标系中,点O为坐标原点,三角形OAB的边OA、OB分别在x轴正半轴上和y轴正半轴上,A(a,0),a是方程22132a a+--=的解,且△OAB的面积为6.(1)求点A、B的坐标;(2)将线段OA沿轴向上平移后得到PQ,点O、A的对应点分别为点P和点Q(点P与点B不重合),设点P的纵坐标为t,△BPQ的面积为S,请用含t的式子表示S;(3)在(2)的条件下,设PQ交线段AB于点K,若PK=83,求t的值及△BPQ的面积.解析:(1)B(0,3);(2)S=()()2603263t tt t⎧-+⎪⎨-⎪⎩<<;>(3)4【分析】(1)解方程求出a的值,利用三角形的面积公式构建方程求出b的值即可解决问题;(2)分两种情形分别求解:当点P在线段OB上时,当点P在线段OB的延长线上时;(3)过点K作KH⊥OA用H.根据S△BPK+S△AKH=S△AOB-S长方形OPKH,构建方程求出t,即可解决问题;【详解】解:(1)∵221 32a a+--=,∴2(a+2)-3(a-2)=6,∴-a+4=0,∴a=4,∴A(4,0),∵S△OAB=6,∴12•4•OB=6,∴OB=3,∴B(0,3).(2)当点P在线段OB上时,S=12•PQ•PB=12×4×(3-t)=-2t+6.当点P在线段OB的延长线上时,S=12•PQ•PB=12×4×(t-3)=2t-6.综上所述,S=()()2603 263t tt t⎧-+⎪⎨-⎪⎩<<>.(3)过点K作KH⊥OA用H.∵S △BPK +S △AKH =S △AOB -S 长方形OPKH , ∴12PK •BP +12AH •KH =6-PK •OP , ∴12×83×(3-t )+12(4-83)•t =6-83•t , 解得t =1, ∴S △BPQ =-2t +6=4.【点睛】本题考查三角形综合题,一元一次方程、三角形的面积、平移变换等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.5.如图,在平面直角坐标系中,()()()A 1,0,B 3,0,C 0,2-,CD//x 轴,CD=AB .(1)求点D 的坐标:(2)四边形OCDB 的面积S 四边形OCDB ;(3)在y 轴上是否存在点P ,使S △PAB =S 四边形OCDB ;若存在,求出点P 的坐标,若不存在,请说明理由.解析:(1)()4,2(2)7(3)点P 的坐标为70,2⎛⎫ ⎪⎝⎭或70,2⎛⎫- ⎪⎝⎭【详解】试题分析:⑴抓住CD ∥x 轴,可以推出C D 、纵坐标相等,而134CD AB ==--=是C D 、横坐标之差的绝对值,以此可以求出点D 的坐标,根据图示要舍去一种情况.⑵四边形OCDB 是梯形,根据点的坐标可以求出此梯形的上、下底和高,面积可求. ⑶存在性问题可以先假设存在,在假设的基础上以S △PAB = S 四边形OCDB 为等量关系建立方程,以此来探讨在y 轴上是否存在着符合条件的点P .试题解析:⑴.∵CD ∥x 轴, ∴C D 、纵坐标相等; ∵()0,2C ∴点D 的纵坐标也为2.设点D 的坐标为(),2m ,则0CD m m =-=. 又134AB =--=,且CD AB =, ∴4CD m ==,解得:124,4m m ==-.由于点D 在第一象限,所以4m =,所以D 的坐标为()4,2. ⑵.∵ CD ∥x 轴,且()()()()00,0,3,0,0,2,4,2B C D∴044,033,22CD OB CO =-==-===∴S 四边形OCDB = ()()11234722CO OB CD ⨯⨯+=⨯⨯+=.⑶.假设在y 轴上存在点P ,使S △PAB = S 四边形OCDB . 设P 的坐标为()0,n ,则PO n =,而4AB = ∴S △PAB =114222AB OP n n ⨯⨯=⨯⨯=.∵S △PAB = S 四边形OCDB ,S 四边形OCDB 7= ∴27n = ,解得;1277,22n n ==-.均符合题意.∴在y 轴上存在点P ,使S △PAB = S 四边形OCDB . 点P 的坐标为70,2⎛⎫ ⎪⎝⎭或70,2⎛⎫- ⎪⎝⎭.6.如图1在平面直角坐标系中,大正方形OABC 的边长为m 厘米,小正方形ODEF 的边长为n 厘米,且|m ﹣4|+2n -=0.(1)求点B 、点D 的坐标.(2)起始状态如图1所示,将大正方形固定不动,小正方形以1厘米/秒的速度沿x 轴向右平移,如图2.设平移的时间为t 秒,在平移过程中两个正方形重叠部分的面积为S 平方厘米.①当t =1.5时,S = 平方厘米;②在2≤t ≤4这段时间内,小正方形的一条对角线扫过的图形的面积为 平方厘米; ③在小正方形平移过程中,若S =2,则小正方形平移的时间t 为 秒.(3)将大正方形固定不动,小正方形从图1中起始状态沿x 轴向右平移,在平移过程中,连接AD ,过D 点作DM ⊥AD 交直线BC 于M ,∠DAx 的角平分线所在直线和∠CMD 的角平分线所在直线交于N (不考虑N 点与A 点重合的情形),求∠ANM 的大小并说明理由. 解析:(1)(4,4),(0,2)B D ;(2)①3,②4,③1或5;(3)45︒,理由见解析 【分析】(1)由非负性的性质以及算数平方根的性质可得出,m n 的值,可答案可求出; (2)①1.5秒时,小正方形向右移动1.5厘米,即可计算出重叠部分的面积; ②画出图形,计算所得图形面积即可;③小正方形的高不变,根据面积即可求出小正方形平移的距离和时间; (3)过D 作//DQ x 轴,过N 作NP //x 轴,设CMG DMG y ∠=∠=,则,2PNM NMB y MDQ CMD y ∠=∠=∠=∠=,得出902ADQ OAD y ∠=∠=︒-,得出902DAx y ∠=︒+,得出1452NAx DAx y PNA ∠=∠=︒+=∠,45ANM PNA PNM ∠=∠-∠=︒.【详解】 解(1)()2420m n -+--=,2,4n m ∴==, (4,4),(0,2)B D ∴;(2)①当 1.5t =秒时,小正方形向右移动1.5厘米,2 1.53S ∴=⨯=(平方厘米);②如图1所示,小正方形的一条对角线扫过的面积为红色平行四边形,面积为:224⨯=(平方厘米);③如图2,小正方形平移距离为415+=(厘米),∴小正方形平移的距离为1厘米或5厘米,1t ∴=或5t =,综上所述,小正方形平移的时间为1或5秒; (3)如图3,过D 作//DQ x 轴,过N 作NP //x 轴,MN 平分CMD ∠,设CMG DMG y ∠=∠=,则,2PNM NMB y MDQ CMD y ∠=∠=∠=∠=,DM AD ⊥,902ADQ OAD y ∴∠=∠=︒-,180180(902)902DAx AOD y y ∴∠=︒-∠=︒-︒-=︒+,AN 平分DAx ∠,1452NAx DAx y PNA ∴∠=∠=︒+=∠,4545ANM PNA PNM y y ∴∠=∠-∠=︒+-=︒. 【点睛】本题考查了非负数的性质、坐标与图形的性质、平移的性质、平行线的性质、角平分线的性质、解题的关键是熟练掌握平行线的性质及平移的性质.7.如图,已知点()2,A a ,点()6,B b ,且a ,b 满足关系式24(2)0a b -+-=.(1)求点A 、B 的坐标;(2)如图1,点()P m n ,是线段AB 上的动点,AE x ⊥轴于点E ,PH x ⊥轴于点H ,BF x ⊥轴于点F ,连接PE 、PF .试探究m ,n 之间的数量关系;(3)如图2,线段AB 以每秒2个单位长度的速度向左水平移动到线段11A B .若线段11A B 交y 轴于点C ,当三角形1A CO 和三角形1B CO 的面积相等时,求移动时间t 和点C 的坐标.解析:(1)2,4,6,2A B ;(2)210m n +=;(3)2t =,点C 的坐标为()0,3 【分析】(1)由题意易得40,20a b -=-=,然后可求a 、b 的值,进而问题可求解; (2)由(1)及题意易得4,4,2AE EF BF ===,然后根据APEPEFPBFAEFB S S SS=++四边形建立方程求解即可;(3)分别过点11,A B 作1A P y ⊥轴于点P ,1B Q y ⊥轴于点Q ,由题意易得()()1122,4,62,2A B t t --,然后可得11A P B Q =,进而可求t 的值,最后根据(2)可得三角形1B CO 的面积为3,则问题可求解. 【详解】 解:(1)∵()2420a b -+-=,∴40,20a b -=-=, ∴4,2a b ==, ∴点()2,4A ,点()6,2B ;(2)由(1)可得点()2,4A ,点()6,2B ,∵AE x ⊥轴于点E ,PH x ⊥轴于点H ,BF x ⊥轴于点F , ∴////AE PH BF ,4,624,2AE EF BF ==-==, ∵()P m n ,,∴2,,6EH m PH n HF m =-==-, ∵APEPEFPBFAEFB S S SS=++四边形,且()12AEFB S AE BF EF =+⋅四边形, ∴()()()1111424424262222m n m ⨯+⨯=⨯⨯-+⨯+⨯⨯-, 化简得210m n +=;(3)分别过点11,A B 作1A P y ⊥轴于点P ,1B Q y ⊥轴于点Q ,如图所示:∵线段AB 以每秒2个单位长度的速度向左水平移动到线段11A B ,时间为t , ∴()()1122,4,62,2A B t t --,∵三角形1A CO 和三角形1B CO 的面积相等, ∴111122A P OCB Q OC ⋅=⋅, ∴11A P B Q =,∴2262t t -=-, 解得:2t =, ∴()()112,4,2,2A B -,由(2)可得三角形11A B O 的面积为1124221242622AEFB S -⨯⨯-⨯⨯=--=四边形,∴三角形1B CO 的面积为3, 即232CO=, ∴3CO =, ∴()0,3C . 【点睛】本题主要考查图形与坐标、算术平方根与偶次幂的非负性及等积法,熟练掌握图形与坐标、算术平方根与偶次幂的非负性及等积法是解题的关键. 8.已知,AB ∥CD ,点E 为射线FG 上一点.(1)如图1,若∠EAF =25°,∠EDG =45°,则∠AED = .(2)如图2,当点E 在FG 延长线上时,此时CD 与AE 交于点H ,则∠AE D 、∠EAF 、∠EDG 之间满足怎样的关系,请说明你的结论;(3)如图3,当点E 在FG 延长线上时,DP 平分∠EDC ,∠AED =32°,∠P =30°,求∠EKD 的度数.解析:(1)70°;(2)EAF AED EDG ∠=∠+∠,证明见解析;(3)122° 【分析】(1)过E 作//EF AB ,根据平行线的性质得到25EAF AEH ∠=∠=︒,45EAG DEH ∠=∠=︒,即可求得AED ∠;(2)过过E 作//EM AB ,根据平行线的性质得到180EAF MEH ∠=︒-∠,180EDG AED MEH ∠+∠=︒-,即EAF AED EDG ∠=∠+∠;(3)设EAI x ∠=,则3BAE x ∠=,通过三角形内角和得到2EDK x ∠=-︒,由角平分线定义及//AB CD 得到33224x x =︒+-︒,求出x 的值再通过三角形内角和求EKD ∠.【详解】解:(1)过E 作//EF AB ,//AB CD ,//EF CD ∴,25EAF AEH ∴∠=∠=︒,45EAG DEH ∠=∠=︒, 70AED AEH DEH ∴∠=∠+∠=︒,故答案为:70︒;(2)EAF AED EDG ∠=∠+∠. 理由如下: 过E 作//EM AB ,//AB CD ,//EM CD ∴,180EAF MEH ∴∠+∠=︒,180EDG AED MEH ∠+∠+=︒, 180EAF MEH ∴∠=︒-∠,180EDG AED MEH ∠+∠=︒-,EAF AED EDG ∴∠=∠+∠;(3):1:2EAP BAP ∠∠=, 设EAP x ∠=,则3BAE x ∠=,32302AED P ∠-∠=︒-︒=︒,DKE AKP ∠=∠,又180EDK DKE DEK ∠+∠+∠=︒,180KAP KPA AKP ∠+∠+∠=︒,22EDK EAP x ∴∠=∠-︒=-︒,DP 平分EDC ∠,224CDE EDK x ∴∠=∠=-︒,//AB CD ,EHC EAF AED EDG ∴∠=∠=∠+∠,即33224x x =︒+-︒,解得28x =︒,28226EDK ∴∠=︒-︒=︒, 1802632122EKD ∴∠=︒-︒-︒=︒.【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键. 9.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ//EC交射线CD于点Q,连接CP.作PCF PCQ∠=∠,交直线AB于点F,CG平分ECF∠.(1)若点P,F,G都在点E的右侧,求PCG∠的度数;(2)若点P,F,G都在点E的右侧,30EGC ECG∠-∠=︒,求CPQ∠的度数;(3)在点P的运动过程中,是否存在这样的情形,使:4:3EGC EFC∠∠=?若存在,求出CPQ∠的度数;若不存在,请说明理由.解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.10.已知AB∥CD,∠ABE与∠CDE的角分线相交于点F.(1)如图1,若BM、DM分别是∠ABF和∠CDF的角平分线,且∠BED=100°,求∠M的度数;(2)如图2,若∠ABM=13∠ABF,∠CDM=13∠CDF,∠BED=α°,求∠M的度数;(3)若∠ABM=1n∠ABF,∠CDM=1n∠CDF,请直接写出∠M与∠BED之间的数量关系解析:(1)65°;(2)3606α︒-︒;(3)2n ∠M +∠BED =360° 【分析】(1)首先作EG ∥AB ,FH ∥AB ,连结MF ,利用平行线的性质可得∠ABE +∠CDE =260°,再利用角平分线的定义得到∠ABF +∠CDF =130°,从而得到∠BFD 的度数,再根据角平分线的定义和三角形外角的性质可求∠M 的度数;(2)先由已知得到∠ABE =6∠ABM ,∠CDE =6∠CDM ,由(1)得∠ABE +∠CDE =360°-∠BED ,∠M =∠ABM +∠CDM ,等量代换即可求解; (3)由(2)的方法可得到2n ∠M +∠BED =360°. 【详解】解:(1)如图1,作//EG AB ,//FH AB ,连结MF ,//AB CD ,//////EG AB FH CD ∴,ABF BFH ∴∠=∠,CDF DFH ∠=∠,180ABE BEG ∠+∠=︒,180GED CDE ∠+∠=︒,360ABE BEG GED CDE ∴∠+∠+∠+∠=︒,100BED BEG DEG ∠=∠+∠=︒, 260ABE CDE ∴∠+∠=︒,ABE ∠和CDE ∠的角平分线相交于E ,130ABF CDF ∴∠+∠=︒, 130BFD BFH DFH ∴∠=∠+∠=︒,BM 、DM 分别是ABF ∠和CDF ∠的角平分线,12MBF ABF ∴∠=∠,12MDF CDF ∠=∠,65MBF MDF ∴∠+∠=︒, 1306565BMD ∴∠=︒-︒=︒;(2)如图1,13ABM ABF ∠=∠,13CDM CDF ∠=∠,3ABF ABM ∴∠=∠,3CDF CDM ∠=∠,ABE ∠与CDE ∠两个角的角平分线相交于点F ,6ABE ABM ∴∠=∠,6CDE CDM ∠=∠, 66360ABM CDM BED ∴∠+∠+∠=︒,BMD ABM CDM ∠=∠+∠, 6360BMD BED ∴∠+∠=︒,3606BMD α︒-︒∴∠=; (3)由(2)结论可得,22360n ABM n CDM E ∠+∠+∠=︒,M ABM CDM ∠=∠+∠, 则2360n M BED ∠+∠=︒. 【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.11.如图1,AB //CD ,点E 、F 分别在AB 、CD 上,点O 在直线AB 、CD 之间,且100EOF ∠=︒.(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.解析:(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53.【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n ∠+∠+︒-∠-∠=︒,即可得关于n 的方程,计算可求解n 值. 【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD , ∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,, ∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒, 即360BEO EOF DFO ∠+∠+∠=︒, ∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO , 设BEM OEM x CFN OFN y ∠=∠=∠=∠=,, ∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒,∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD , ∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,, ∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠() x KMN HNM y =+∠-∠-=x -y =40°,EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD , ∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠, ∴KFD EHK AEG ∠=∠+∠, ∵50EHK NMF ENM ∠=∠-∠=︒, ∴50KFD AEG ∠=︒+∠, 即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠.∴1180180CFO DFK OFK KFD KFD n∠=︒-∠-∠=︒-∠-∠ ,1AEO AEG OEG AEG AEG n ∠=∠+∠=∠+∠,∵260BEO DFO ∠+∠=︒, ∴100AEO CFO ∠+∠=︒,∴11180100AEG AEG KFD KFD n n ∠+∠+︒-∠-∠=︒,即(180)1KFD AEG n ⎛⎫⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫⎪⨯⎭︒︒⎝+=,解得53n .经检验,符合题意,故答案为:53.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.12.已知点C在射线OA上.(1)如图①,CD//OE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD 与∠BO′E′的关系(用含α的代数式表示)(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD ∥O ′E ′,∴OF ∥O ′E ′,∴∠AOF =180°-∠OCD ,∠BOF =∠E ′O ′O =180°-∠BO ′E ′,∴∠AOB =∠AOF +∠BOF =180°-∠OCD +180°-∠BO ′E ′=360°-(∠OCD +∠BO ′E ′)=α, ∴∠OCD +∠BO ′E ′=360°-α;(3)∠AOB =∠BO ′E ′.证明:∵∠CPO ′=90°,∴PO ′⊥CP ,∵PO ′⊥OB ,∴CP ∥OB ,∴∠PCO +∠AOB =180°,∴2∠PCO =360°-2∠AOB ,∵CP 是∠OCD 的平分线,∴∠OCD =2∠PCO =360°-2∠AOB ,∵由(2)知,∠OCD +∠BO ′E ′=360°-α=360°-∠AOB ,∴360°-2∠AOB +∠BO ′E ′=360°-∠AOB ,∴∠AOB =∠BO ′E ′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.13.问题情境:(1)如图1,//AB CD ,128PAB ∠=︒,119PCD ∠=︒.求APC ∠度数.小颖同学的解题思路是:如图2,过点P 作//PE AB ,请你接着完成解答.问题迁移:(2)如图3,//AD BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,ADP α∠=∠,PCE β∠=∠.试判断CPD ∠、α∠、β∠之间有何数量关系?(提示:过点P 作//PF AD ),请说明理由;(3)在(2)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你猜想CPD ∠、α∠、β∠之间的数量关系并证明.解析:(1)见解析;(2)180CPD αβ∠=∠+︒-∠,理由见解析;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由见解析【分析】(1)过P 作PE ∥AB ,构造同旁内角,利用平行线性质,可得∠APC =113°;(2)过过P 作//PF AD 交CD 于F ,,推出////AD PF BC ,根据平行线的性质得出180BCP ,即可得出答案;(3)画出图形(分两种情况:①点P 在BA 的延长线上,②当P 在BO 之间时(点P 不与点B ,O 重合)),根据平行线的性质即可得出答案.【详解】解:(1)过P 作//PE AB ,//AB CD ,////PE AB CD ∴,=180APE PAB ,180CPE PCD ∠+∠=︒,128PAB ∠=︒,119PCD ∠=︒52APE ∴∠=︒,61CPE ∠=︒,5261113APC ∴∠=︒+︒=︒;(2)180CPD αβ∠=∠+︒-∠,理由如下:如图3,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠又ADP α∠=∠=180CPD DPF CPF ;(3)①当P 在BA 延长线时(点P 不与点A 重合),180CPD βα∠=︒-∠-∠; 理由:如图4,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠,180CPD CPF DPF αβ∴∠=∠-∠=︒-∠-∠;②当P 在BO 之间时(点P 不与点B ,O 重合),180CPD αβ∠=∠-︒+∠.理由:如图5,过P 作//PF AD 交CD 于F ,//AD BC ,////AD PF BC ∴,ADP DPF ∴∠=∠,BCP CPF ∠=∠,180BCP PCE ∠+∠=︒,PCE β∠=∠,180BCP β∴∠=︒-∠,又ADP α∠=∠180CPD DPF CPF αβ∴∠=∠-∠=∠+∠-︒.【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.14.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC -∠DBC =60°-∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)∵∠1=48°,∠BCA =90°,∴∠3=180°-∠BCA -∠1=180°-90°-48°=42°,∵a ∥b ,∴∠2=∠3=42°;(2)理由如下:过点B 作BD ∥a .如图2所示:则∠2+∠ABD =180°,∵a ∥b ,∴b ∥BD ,∴∠1=∠DBC ,∴∠ABD =∠ABC -∠DBC =60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C 作CP ∥a ,如图3所示:∵AC 平分∠BAM∴∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,又∵a ∥b ,∴CP ∥b ,∠1=∠BAM =60°,∴∠PCA =∠CAM =30°,∴∠BCP =∠BCA -∠PCA =90°-30°=60°,又∵CP ∥a ,∴∠2=∠BCP =60°,∴∠1=∠2.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.15.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________;(2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示)解析:(1)60°;(2)n °+40°;(3)n °+40°或n °-40°或220°-n °【分析】(1)过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数; (2)同(1)中方法求解即可;(3)分当点B 在点A 左侧和当点B 在点A 右侧,再分三种情况,讨论,分别过点E 作EF ∥AB ,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n =20时,∠ABC =40°,过E 作EF ∥AB ,则EF ∥CD ,∴∠BEF =∠ABE ,∠DEF =∠CDE ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠BEF =∠ABE =20°,∠DEF =∠CDE =40°,∴∠BED =∠BEF +∠DEF =60°;(2)同(1)可知:∠BEF =∠ABE =n °,∠DEF =∠CDE =40°,∴∠BED =∠BEF +∠DEF =n °+40°;(3)当点B 在点A 左侧时,由(2)可知:∠BED =n °+40°;当点B 在点A 右侧时,如图所示,过点E 作EF ∥AB ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC =2n °,∠ADC =80°,∴∠ABE =12∠ABC =n °,∠CDG =12∠ADC =40°,∵AB ∥CD ∥EF ,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=12∠ABC=n°,∠CDE=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.。
(完整版)初中七年级下册相期末压轴题易错题数学附答案培优试题
![(完整版)初中七年级下册相期末压轴题易错题数学附答案培优试题](https://img.taocdn.com/s3/m/f8237c4d842458fb770bf78a6529647d272834aa.png)
一、解答题1.在平面直角坐标系中,点A (1,2),点B (a ,b ),且2(3)44a b b --=-+-,点E (6,0),将线段AB 向下平移m 个单位(m >0)得到线段CD ,其中A 、B 的对应点分别为C 、D .(1)求点B 的坐标及三角形ABE 的面积;(2)当线段CD 与x 轴有公共点时,求m 的取值范围;(3)设三角形CDE 的面积为S ,当45S ≤≤时,求m 的取值范围. 解析:(1)B (3,4),7;(2)24m ≤≤;(3)23m ≤≤或1112m ≤≤ 【分析】(1)由算术平方根的意义可求出a ,b 的值,可求出B 点的坐标,过点B 作BH ⊥x 轴于点H ,过点A 作AM ⊥BH 于点M ,过点E 作EN ⊥AM 于点N ,连接EM ,由三角形面积公式可得出答案;(2)当点C 在x 轴上时,此时m =2,当点D 在x 轴上时,m =4,由题意可得出答案; (3)根据点C 和点D 不同的位置,由坐标与图形的性质及三角形面积公式可得出答案. 【详解】 解:(1)∵2(3)44a b b --=-+-,∴4040b b -≥⎧⎨-≥⎩, ∴b =4, ∴()23a --=0,∴a -3=0, ∴a =3, ∴B (3,4),∴过点B 作BH ⊥x 轴于点H ,过点A 作AM ⊥BH 于点M ,过点E 作EN ⊥AM 于点N ,连接EM ,则S △ABE =S △ABM +S △EBM +S △AME =12×2×2+12×2×3+12×2×2 =7;(2)当点C在x轴上时,此时m=2,当点D在x轴上时,m=4,∴2≤m≤4时,线段CD与x轴有公共点;(3)当点C在x轴上时,此时m=2,C(1,0),D(3,2),S△CDE=5,当点D在x轴上时,此时m=4,C(1,-2),D(3,0),S△CDE=3,当点C在x轴下方时,点D在x轴上方时,且S△CDE=4,如图2,分别过点C,D作x轴,y轴平行线交于点G,连接GE,过点E作EH⊥CG于点H,∵C(1,2-m),D(3,4-m),∴CG=2,DG=2,EH=m-2,∴S△CDE=S△CDG+S△EDG-S△CEG,∴4=12×2×2+12×2×3−12×2•(m−2),∴m=3.∴当2≤m≤3时,4≤S≤5;当C,D均为x轴下方时,如图3,∵CG=DG=2,GH=3,EH=m-2,∴S△CDE=S△ECG-S△CDG-S△EDG,∴S△CDE=12×2•(m−2)-12×2×2−12×2×3=m-7,当m-7=4时,m=11,当m-7=5时,m=12,∴当11≤m≤12时,4≤S≤5.综合以上可得,当2≤m≤3或11≤m≤12时,4≤S≤5.【点睛】本题是几何变换综合题,考查了三角形的面积,坐标与图形的性质,平移的性质,正确进行分类讨论是解题的关键.2.在如图所示的平面直角坐标系中,A(1,3),B(3,1),将线段A平移至CD,C (m,-1),D(1,n)(1)m=_____,n=______(2)点P的坐标是(c,0)①设∠ABP=α,请写出∠BPD和∠PDC之间的数量关系(用含α的式子表示,若有多种数量关系,选择一种加以说明)②当三角形PAB的面积不小于3且不大于10,求点p的横坐标C的取值范围(直接写出答案即可)解析:(1)-1,-3.(2)①当点P在直线AB,CD之间时,∠BPD-∠PDC=α.当点P在直线CD的下方时,∠BPD+∠PDC=α.当点P在直线AB的上方时,∠BPD+∠PDC=α;②-6<m≤1或7≤m<14【分析】(1)由题意,线段AB向左平移2个单位,向下平移4个单位得到线段CD,利用平移规律求解即可.(2)①分三种情形求解,如图1中,当点P在直线AB,CD之间时,∠BPD-∠PDC=α.如图2中,当点P在直线CD的下方时,∠BPD+∠PDC=α.如图3中,当点P在直线AB的上方时,同法可证∠BPD+∠PDC=α.分别利用平行线的性质求解即可.②求出点P在直线AB两侧,△PAB的面积分别为3和10时,m的值,即可判断.【详解】解:(1)由题意,线段AB向左平移2个单位,向下平移4个单位得到线段CD,∵A(1,3),B(3,1),∴C(-1,-1),D(1,-3),∴m=-1,n=-3.故答案为:-1,-3.(2)如图1中,当点P在直线AB,CD之间时,∠BPD-∠PDC=α.理由:过点P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD-∠PDC=∠BPD-∠DPE=∠BPE=α.如图2中,当点P在直线CD的下方时,∠BPD+∠PDC=α.理由:过点P作PE∥AB,∵AB∥CD,∴PE∥CD∥AB,∴∠ABP=∠BPE,∠PDC=∠DPE,∴∠BPD+∠PDC=∠BPD+∠DPE=∠BPE=α.如图3中,当点P在直线AB的上方时,同法可证∠BPD+∠PDC=α.(3)如图4中,过点B作BH⊥x轴于H,过点A作AT⊥BH交BH于点T,延长AB交x轴于E.当点P 在直线AB 的下方时,S △PAB =S 梯形ATHP -S △ABT -S △PBH =12(2+3-m )•3-12×2×2-12•(3-m )•1=-m +4, 当△PAB 的面积=3时,-m +4=3,解得m =1, 当△PAB 的面积=3时,-m +4=10,解得m =-6, ∵△ABT 是等腰直角三角形, ∴∠ABT =45°=∠HBE , ∴BH =EH =1, ∴E (4,0),根据对称性可知,当点P 在直线AB 的右侧时,当△PAB 的面积=3时,m =7, 当△PAB 的面积=3时,m =14, 观察图象可知,-6<m ≤1或7≤m <14. 【点睛】本题属于三角形综合题,考查了三角形的面积,平行线的判定和性质等知识,解题的关键是学会利用分割法求三角形面积,学会寻找特殊位置解决问题,属于中考常考题型.3.如图,在平面直角坐标系中,点()26A ,,()4,3B ,将线段AB 进行平移,使点A 刚好落在x 轴的负半轴上,点B 刚好落在y 轴的负半轴上,A ,B 的对应点分别为A ',B ',连接AA '交y 轴于点C ,BB '交x 轴于点D .(1)线段A B ''可以由线段AB 经过怎样的平移得到?并写出A ',B '的坐标; (2)求四边形AA BB ''的面积;(3)P 为y 轴上的一动点(不与点C 重合),请探究PCA '∠与A DB ''∠的数量关系,给出结论并说明理由.解析:(1)向左平移4个单位,再向下平移6个单位,(2,0)A '-,(0,3)B '-;(2)24;(3)见解析 【分析】(1)利用平移变换的性质解决问题即可. (2)利用分割法确定四边形的面积即可.(3)分两种情形:点P 在点C 的上方,点P 在点C 的下方,分别求解即可. 【详解】解:(1)点(2,6)A ,(4,3)B ,又将线段AB 进行平移,使点A 刚好落在x 轴的负半轴上,点B 刚好落在y 轴的负半轴上,∴线段A B ''是由线段AB 向左平移4个单位,再向下平移6个单位得到,(2,0)A ,(0,3)B '-.(2)11692232642422ABB A S ''=⨯-⨯⨯⨯-⨯⨯⨯=四边形. (3)连接AD . (4,3)B ,(0,3)B '-,BB ∴'的中点坐标为(2,0)在x 轴上,(2,0)D ∴.)6(2,A ,//AD y ∴轴,同法可证(0,3)C ,OC OB ∴=', AO CB '⊥',AC A B ∴'='',同法可证,B A B D ''=',A DB DA B ∴∠'=∠'',ACBA B C ∠''=∠'', 当点P 在点C 的下方时,180PCA ACB ∠'+∠''=︒,90A B C DA B ∠''+∠''=︒, 90180PCA A DB ∴∠'+︒-∠''=︒,'''90PCA A DB ∴∠-∠=︒,当点P 在点C 的上方时,'''90PCA A DB ∠+∠=︒.【点睛】本题考查坐标与图形变化—平移,解题的关键是理解题意,学会有分割法求四边形的面积,学会用分类讨论的思想解决问题,属于中考常考题型.4.在平面直角坐标系中,已知线段AB ,点A 的坐标为()1,2-,点B 的坐标为()3,0,如图1所示.(1)平移线段A B 到线段C D ,使点A 的对应点为,点B 的对应点为C ,若点C 的坐标为()2,4-,求点D 的坐标;(2)平移线段A B 到线段C D ,使点C 在y 轴的正半轴上,点D 在第二象限内(A 与D 对应, B 与C 对应),连接BC BD ,,如图2所示.若(7BCD BCD S S ∆∆=表示△BCD 的面积),求点C 、D 的坐标;(3)在(2)的条件下,在y 轴上是否存在一点P ,使(23PCD PCD BCD S S S ∆∆∆=表示△PCD 的面积)?若存在,求出点P 的坐标; 若不存在,请说明理由.解析:(1)()4,2D -;(2)()()0422C D -,、,;(3)存在点P ,其坐标为20,3⎛⎫- ⎪⎝⎭或260,3⎛⎫ ⎪⎝⎭. 【分析】(1)利用平移得性质确定出平移得单位和方向;(2)根据平移得性质,设出平移单位,根据S △BCD =7(S △BCD 建立方程求解,即可); (3)设出点P 的坐标,表示出PC 用PCD BCDS2S3=,建立方程求解即可. 【详解】(1)∵B(3,0)平移后的对应点()2,4C -, ∴设3204a b +=-+=,, ∴54a b =-=,即线段AB 向左平移5个单位,再向上平移4个单位得到线段CD , ∴A 点平移后的对应点()4,2D -; (2)∵点C 在y 轴上,点D 在第二象限,∴线段AB 向左平移3个单位,再向上平移y 个单位,∴()()022C y D y --+,,, 连接OD , BCDBOCCODBODSSSS=+-=1112(2)7222OB OC OC OB y ⨯+⨯-⨯-+=,∴4y = ∴()()0422C D -,、,; (3)存在设点()0P m ,,∴4PC m =- ∵23PCD BCD S S ∆=, ∴12|4|2723m -⨯=⨯ ∴14|4|3m -=, ∴22633m m =-=或∴存在点P ,其坐标为20,3⎛⎫- ⎪⎝⎭或260,3⎛⎫ ⎪⎝⎭.【点睛】本题考查了线段平移的性质,解题的关键在利用平移的性质,得到点坐标的关系、图形面积的关系,根据面积的关系,从而求出点的坐标.5.如图,在平面直角坐标系中,点O 为坐标原点,三角形OAB 的边OA 、OB 分别在x 轴正半轴上和y 轴正半轴上,A (a ,0),a 是方程22132a a +--=的解,且△OAB 的面积为6.(1)求点A 、B 的坐标;(2)将线段OA 沿轴向上平移后得到PQ ,点O 、A 的对应点分别为点P 和点Q (点P 与点B 不重合),设点P 的纵坐标为t ,△BPQ 的面积为S ,请用含t 的式子表示S ; (3)在(2)的条件下,设PQ 交线段AB 于点K ,若PK =83,求t 的值及△BPQ 的面积.解析:(1)B (0,3);(2)S =()()2603263t t t t ⎧-+⎪⎨-⎪⎩<<;>(3)4【分析】(1)解方程求出a 的值,利用三角形的面积公式构建方程求出b 的值即可解决问题; (2)分两种情形分别求解:当点P 在线段OB 上时,当点P 在线段OB 的延长线上时; (3)过点K 作KH ⊥OA 用H .根据S △BPK+S △AKH=S △AOB-S 长方形OPKH ,构建方程求出t ,即可解决问题; 【详解】 解:(1)∵22132a a +--=,∴2(a +2)-3(a -2)=6, ∴-a +4=0, ∴a =4, ∴A (4,0),∵S △OAB =6, ∴12•4•OB =6,∴OB =3, ∴B (0,3).(2)当点P 在线段OB 上时,S =12•PQ •PB =12×4×(3-t )=-2t +6. 当点P 在线段OB 的延长线上时,S =12•PQ •PB =12×4×(t -3)=2t -6. 综上所述,S =()()2603263t t t t ⎧-+⎪⎨-⎪⎩<<>.(3)过点K 作KH ⊥OA 用H . ∵S △BPK +S △AKH =S △AOB -S 长方形OPKH , ∴12PK •BP +12AH •KH =6-PK •OP , ∴12×83×(3-t )+12(4-83)•t =6-83•t , 解得t =1, ∴S △BPQ =-2t +6=4.【点睛】本题考查三角形综合题,一元一次方程、三角形的面积、平移变换等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.6.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为(),0a ,点C 的坐标为()0,b 且a 、b 8120a b --=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O C B A O 的线路移动.(1)点B 的坐标为___________;当点P 移动5秒时,点P 的坐标为___________; (2)在移动过程中,当点P 到x 轴的距离为4个单位长度时,求点P 移动的时间; (3)在O C B --的线路移动过程中,是否存在点P 使OBP 的面积是20,若存在直接写出点P 移动的时间;若不存在,请说明理由.解析:(1)(8,12),(0,10);(2)2秒或14秒;(3)存在,t =2.5s 或25s 3【分析】(1)由非负数的性质可得a 、b 的值,据此可得点B 的坐标;由点P 运动速度和时间可得其运动5秒的路程,得到OP =10,从而得出其坐标;(2)先根据点P 运动11秒判断出点P 的位置,再根据三角形的面积公式求解可得; (3)分为点P 在OC 、BC 上分类计算即可.【详解】解:(1) ∵a ,b 8120a b --=,∴a =8,b =12,∴点B (8,12);当点P 移动5秒时,其运动路程为5×2=10,∴OP =10,则点P 坐标为(0,10),故答案为:(8,12)、(0,10);(2)由题意可得,第一种情况,当点P 在OC 上时,点P 移动的时间是:4÷2=2秒,第二种情况,当点P 在BA 上时.点P 移动的时间是:(12+8+8)÷2=14秒,所以在移动过程中,当点P 到x 轴的距离为4个单位长度时,点P 移动的时间是2秒或14秒.(3)如图1所示:∵△OBP的面积=20,∴12OP•BC=20,即12×8×OP=20.解得:OP=5.∴此时t=2.5s如图2所示;∵△OBP的面积=20,∴12PB•OC=20,即12×12×PB=20.解得:BP=103.∴CP=143.∴此时t=25s3,综上所述,满足条件的时间t=2.5s或25s 3【点睛】本题考查矩形的性质,三角形的面积,坐标与图形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.7.如图,直线HD//GE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.(1)如图1,若∠BCG=40°,求∠ABC的度数;(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N 的数量关系,并说明理由.∠HAP;理由见解解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣12析.【分析】(1)过点B作BM//HD,则HD//GE//BM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;(2)过B作BP//HD//GE,过F作FQ//HD//GE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;(3)过P作PK//HD//GE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.【详解】解:(1)过点B作BM//HD,则HD//GE//BM,如图1,∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,∵∠DAB=120°,∠BCG=40°,∴∠ABM=60°,∠CBM=40°,∴∠ABC=∠ABM+∠CBM=100°;(2)过B作BP//HD//GE,过F作FQ//HD//GE,如图2,∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,∵∠DAB=120°,∴∠HAB=180°﹣∠DAB=60°,∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,∴∠HAF=30°,∠FCG=40°,∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,∴∠ABC>∠AFC;(3)过P作PK//HD//GE,如图3,∴∠APK=∠HAP,∠CPK=∠PCG,∴∠APC=∠HAP+∠PCG,∵PN平分∠APC,∴∠NPC=12∠HAP+12∠PCG,∵∠PCE=180°﹣∠PCG,CN平分∠PCE,∴∠PCN=90°﹣12∠PCG,∵∠N+∠NPC+∠PCN=180°,∴∠N=180°﹣12∠HAP﹣12∠PCG﹣90°+12∠PCG=90°﹣12∠HAP,即:∠N=90°﹣12∠HAP.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.8.已知直线AB//CD,点P、Q分别在AB、CD上,如图所示,射线PB按逆时针方向以每秒12°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按逆时针方向每秒3°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间10秒时,PB'与QC'的位置关系为;(2)若射线QC先转15秒,射线PB才开始转动,当射线PB旋转的时间为多少秒时,PB′//QC′.解析:(1)PB′⊥QC′;(2)当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′【分析】(1)求出旋转10秒时,∠BPB′和∠CQC′的度数,设PB′与QC′交于O,过O作OE∥AB,根据平行线的性质求得∠POE和∠QOE的度数,进而得结论;(2)分三种情况:①当0<t≤15时,②当15<t≤30时,③当30<t<45时,根据平行线的性质,得出角的关系,列出t的方程便可求得旋转时间.【详解】解:(1)如图1,当旋转时间30秒时,由已知得∠BPB′=10°×12=120°,∠CQC′=3°×10=30°,过O作OE∥AB,∵AB∥CD,∴AB∥OE∥CD,∴∠POE=180°﹣∠BPB′=60°,∠QOE=∠CQC′=30°,∴∠POQ=90°,∴PB′⊥QC′,故答案为:PB′⊥QC′;(2)①当0<t≤15时,如图,则∠BPB′=12t°,∠CQC′=45°+3t°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠PEC=∠CQC′,即12t=45+3t,解得,t=5;②当15<t≤30时,如图,则∠APB′=12t﹣180°,∠CQC'=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣180=45+3t,解得,t=25;③当30<t≤45时,如图,则∠BPB′=12t﹣360°,∠CQC′=3t+45°,∵AB∥CD,PB′∥QC′,∴∠BPB′=∠BEQ=∠CQC′,即12t﹣360=45+3t,解得,t=45;综上,当射线PB旋转的时间为5秒或25秒或45秒时,PB′∥QC′.【点睛】本题主要考查了平行线的性质,第(1)题关键是作平行线,第(2)题关键是分情况讨论,运用方程思想解决几何问题.9.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;(2)如图2,∠BMH和∠HND的角平分线相交于点E.①请直接写出∠MEN与∠MHN的数量关系:;②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)解析:(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°【分析】(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣1(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.2【详解】解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1∵EP∥AB且ME平分∠BMH,∠BMH.∴∠MEQ=∠BME=12∵EP∥AB,AB∥CD,∴EP∥CD,又NE平分∠GND,∴∠QEN=∠DNE=12∠GND.(两直线平行,内错角相等)∴∠MEN=∠MEQ+∠QEN=12∠BMH+12∠GND=12(∠BMH+∠GND).∴2∠MEN=∠BMH+∠GND.∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.∴∠DHN=∠BMH﹣∠MHN.∴∠GND+∠BMH﹣∠MHN=180°,即2∠MEN﹣∠MHN=180°.(2)①:过点H作GI∥AB.如答图2由(1)可得∠MEN=12(∠BMH+∠HND),由图可知∠MHN=∠MHI+∠NHI,∵GI∥AB,∴∠AMH=∠MHI=180°﹣∠BMH,∵GI∥AB,AB∥CD,∴GI∥CD.∴∠HNC=∠NHI=180°﹣∠HND.∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,∴∠BMH+∠HND=360°﹣∠MHN.即2∠MEN+∠MHN=360°.故答案为:2∠MEN+∠MHN=360°.②:由①的结论得2∠MEN+∠MHN=360°,∵∠H=∠MHN=140°,∴2∠MEN=360°﹣140°=220°.∴∠MEN=110°.过点H作HT∥MP.如答图2∵MP∥NQ,∴HT∥NQ.∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).∵MP平分∠AMH,∴∠PMH=12∠AMH=12(180°﹣∠BMH).∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.∴∠ENQ+∠ENH+140°﹣12(180°﹣∠BMH)=180°.∵∠ENH=12∠HND.∴∠ENQ+12∠HND+140°﹣90°+12∠BMH=180°.∴∠ENQ+12(HND+∠BMH)=130°.∴∠ENQ+12∠MEN=130°.∴∠ENQ=130°﹣110°=20°.【点睛】本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.10.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β,∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+.答:∠BED 的度数为180°﹣1122a β+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 11.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点. (1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ; (2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.解析:(1)∠A +∠C +∠APC =360°;(2)见解析;(3)55° 【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补,即可证得∠A +∠C +∠APC =360°;(2)作PQ ∥AB ,易得AB ∥PQ ∥CD ,根据两直线平行,内错角相等,即可证得∠APC =∠A +∠C ;(3)由(2)知,∠APC =∠PAB -∠PCD ,先证∠BEF =∠PQB =110°、∠PEG =12∠FEG ,∠GEH =12∠BEG ,根据∠PEH =∠PEG -∠GEH 可得答案. 【详解】解:(1)∠A +∠C +∠APC =360° 如图1所示,过点P 作PQ ∥AB ,∴∠A +∠APQ =180°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A+∠C,如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF =55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.如图,已知直线//AB 射线CD ,110CEB ∠=︒.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧. ①求PCG ∠的度数;②若30EGC ECG ∠-∠=︒,求CPQ ∠的度数.(不能使用“三角形的内角和是180︒”直接解题)(2)在点P 的运动过程中,是否存在这样的偕形,使:3:2EGC EFC ∠∠=?若存在,直接写出CPQ ∠的度数;若不存在.请说明理由.解析:(1)①35°;(2)55°;(2)存在,52.5︒或7.5︒ 【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG =∠GCF =20°,再根据PQ ∥CE ,即可得出∠CPQ =∠ECP =60°;(2)设∠EGC =3x ,∠EFC =2x ,则∠GCF =3x -2x =x ,分两种情况讨论:①当点G 、F 在点E 的右侧时,②当点G 、F 在点E 的左侧时,依据等量关系列方程求解即可. 【详解】解:(1)①∵AB ∥CD , ∴∠CEB +∠ECQ =180°, ∵∠CEB =110°, ∴∠ECQ =70°,∵∠PCF =∠PCQ ,CG 平分∠ECF ,∴∠PCG =∠PCF +∠FCG =12∠QCF +12∠FCE =12∠ECQ =35°; ②∵AB ∥CD , ∴∠QCG =∠EGC ,∵∠QCG +∠ECG =∠ECQ =70°, ∴∠EGC +∠ECG =70°, 又∵∠EGC -∠ECG =30°, ∴∠EGC =50°,∠ECG =20°,∴∠ECG =∠GCF =20°,∠PCF =∠PCQ =12(70°−40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,设∠EGC=3x°,∠EFC=2x°,①当点G、F在点E的右侧时,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=12∠FCQ=12∠EFC=x°,则∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∴∠PCQ=12∠FCQ=62.5°,∴∠CPQ=∠ECP=62.5°-55°=7.5°,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.13.已知,//AB CD.点M在AB上,点N在CD上.(1)如图1中,BME∠、E∠、END∠的数量关系为:;(不需要证明);如图2中,BMF ∠、F ∠、FND ∠的数量关系为: ;(不需要证明)(2)如图 3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=,求FME ∠的度数;(3)如图4中,60BME ∠=,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出么FEQ ∠的度数. 解析:(1)∠BME =∠MEN −∠END ;∠BMF =∠MFN +∠FND .(2)120°(3)∠FEQ 的大小没发生变化,∠FEQ =30°. 【分析】(1)过E 作EH //AB ,易得EH //AB //CD ,根据平行线的性质可求解;过F 作FH //AB ,易得FH //AB //CD ,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME +∠END )+∠BMF −∠FND =180°,可求解∠BMF =60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ =12∠BME ,进而可求解. 【详解】解:(1)过E 作EH //AB ,如图1,∴∠BME =∠MEH , ∵AB //CD , ∴HE //CD , ∴∠END =∠HEN ,∴∠MEN =∠MEH +∠HEN =∠BME +∠END , 即∠BME =∠MEN −∠END . 如图2,过F 作FH //AB ,∴∠BMF =∠MFK , ∵AB //CD , ∴FH //CD , ∴∠FND =∠KFN ,∴∠MFN =∠MFK −∠KFN =∠BMF −∠FND , 即:∠BMF =∠MFN +∠FND .故答案为∠BME =∠MEN −∠END ;∠BMF =∠MFN +∠FND .(2)由(1)得∠BME =∠MEN −∠END ;∠BMF =∠MFN +∠FND . ∵NE 平分∠FND ,MB 平分∠FME ,∴∠FME =∠BME +∠BMF ,∠FND =∠FNE +∠END , ∵2∠MEN +∠MFN =180°,∴2(∠BME +∠END )+∠BMF −∠FND =180°, ∴2∠BME +2∠END +∠BMF −∠FND =180°, 即2∠BMF +∠FND +∠BMF −∠FND =180°, 解得∠BMF =60°, ∴∠FME =2∠BMF =120°;(3)∠FEQ 的大小没发生变化,∠FEQ =30°. 由(1)知:∠MEN =∠BME +∠END , ∵EF 平分∠MEN ,NP 平分∠END ,∴∠FEN =12∠MEN =12(∠BME +∠END ),∠ENP =12∠END , ∵EQ //NP , ∴∠NEQ =∠ENP ,∴∠FEQ =∠FEN −∠NEQ =12(∠BME +∠END )−12∠END =12∠BME , ∵∠BME =60°, ∴∠FEQ =12×60°=30°. 【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.14.综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,a b ,且,a b ABC //是直角三角形,90BCA ∠=︒,操作发现:(1)如图1.若148∠=︒,求2∠的度数;(2)如图2,若30,1A ∠=︒∠的度数不确定,同学们把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.(3)如图3,若∠A =30°,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.解析:(1)42°;(2)见解析;(3)∠1=∠2,理由见解析 【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC-∠DBC=60°-∠1,进而得出结论;(3)过点C作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.【详解】解:(1)∵∠1=48°,∠BCA=90°,∴∠3=180°-∠BCA-∠1=180°-90°-48°=42°,∵a∥b,∴∠2=∠3=42°;(2)理由如下:过点B作BD∥a.如图2所示:则∠2+∠ABD=180°,∵a∥b,∴b∥BD,∴∠1=∠DBC,∴∠ABD=∠ABC-∠DBC=60°-∠1,∴∠2+60°-∠1=180°,∴∠2-∠1=120°;(3)∠1=∠2,理由如下:过点C作CP∥a,如图3所示:∵AC平分∠BAM∴∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,又∵a∥b,∴CP∥b,∠1=∠BAM=60°,∴∠PCA =∠CAM =30°,∴∠BCP =∠BCA -∠PCA =90°-30°=60°, 又∵CP ∥a , ∴∠2=∠BCP =60°, ∴∠1=∠2. 【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.15.如图,已知点()0,0O ,()2,0A ,()1,2B -.(1)求OAB 的面积;(2)点C 是在坐标轴上异于点A 的一点,且OBC 的面积等于OAB 的面积,求满足条件的点C 的坐标;(3)若点D 的坐标为()m,2,且1m <-,连接AD 交OB 于点E ,在x 轴上有一点F ,使BDE 的面积等于BEF 的面积,请直接写出点F 的坐标__________(用含m 的式子表示).解析:(1)2;(2)(0,4),(0,4),(2,0)--;(3)1(1,0)F m +或2(1,0)F m -- 【分析】(1)直接利用以OA 为底,进行求面积;(2)OBC 的面积等于OAB 的面积,需要分三种情况进行分类讨论; (3)根据BDEBEFS S=推导出OBDOBFSS=,然后分两种情况进行讨论,即当F 位于x 轴负半轴上时与F 位于x 轴正半轴上时.【详解】 解:(1)1122222OAB B SOA y =⋅⋅=⨯⨯=. (2)作如下图形,进行分类讨论:①当点C 在y 轴正半轴上时,111||22OBC B SOC x =⋅⋅=, 114,(0,4)OC C ∴=;②当点C 在y 轴负半轴上时,221||22OBC B SOC x =⋅⋅=, 224,(0,4)OC C ∴=-;③当点C 在x 轴负半轴上时, 33122OBC B SOC y =⋅⋅=, 332,(2,0)OC C ∴=-;因此符合条件的C 点坐标有3个,分别是(0,4),(0,4),(2,0)--. (3)BDEBEFSS=,1122D F BE h BE h ∴⋅⋅=⋅⋅, D F h h ∴=,即D 与F 点到OB 的距离相等,12OBDD S OB h =⋅⋅, 12OBFF SOB h =⋅⋅, OBDOBFSS∴=, ∴由BDEBEFSS=可推出OBDOBFSS=,①F 位于x 轴负半轴上时,11(1)2122OBDB SBD y m m =⋅⋅=⨯--⨯=--,11111122BOF B B SOF y OF y OF =⋅⋅=⋅⋅=, 11OF m ∴=--, 1(1,0)F m ∴+;②F 位于x 轴正半轴上时,222112BOF B SOF y OF m =⋅⋅==--, 2(1,0)F m ∴--,综上:点F 的坐标为1(1,0)F m +或2(1,0)F m --. 【点睛】本题考查了坐标与图形、三角形的面积、动点问题,解题的关键是要作适当辅助线,进行分类讨论求解.。
2019年初一下 代数易错题[宝典]-6页文档资料
![2019年初一下 代数易错题[宝典]-6页文档资料](https://img.taocdn.com/s3/m/20b1ea73fc4ffe473268ab43.png)
代数易错题1、若方程⎩⎨⎧=+=+22y x 3k -1y 2x 的解满足x+y=0,则k 的值为( )A 、-1B 、1C 、0D 、不能确定2、已知关于x ,y 的方程组⎩⎨⎧+=+=+122m y x m y x 的解x ,y 满足x+y ≥0,则m 的取值范围是( )A 、m ≥-21B 、m ≤-21C 、m ≤1D 、-21≤m ≤1 3、已知关于x 的二元一次方程组⎩⎨⎧==+1--5-33m y x m y x ,若x+y>4,则m 的取值范围是( )A 、m>2B 、m<4C 、m>5D 、m>64、关于x 的不等式组⎩⎨⎧+≤0320a -x a x 的解集中至少有5个整数解,则正数a 的最小值是( )A 、3B 、2C 、1D 、32 5、已知方程组⎩⎨⎧=+=+11442y x my x 的解是正整数,则m 的值为( )A 、-10B 、-1C 、8D 、-10或-16、已知t 满足方程组⎩⎨⎧=--=xt y t x 2332则x 和y 之间满足的关系y= 。
7、二元一次方程152x =--+y x y 化为y=kx+b 的形式,则k= 8、若二元一次方程2x-3y=0,满足x ≠0,y ≠0,则y x y 345x 6+-的值为 9、二元一次方程5x+2y=15的自然数解为10、用甲,乙两种饮料按x :y (重量比)混合配制成一种新饮料,原来两种饮料成本是甲每300克5元,乙每300克3元,现甲成本上升10%,乙下降10%,而新饮料成本恰好保持不变,则x :y=11、若方程组⎩⎨⎧=+=+222111a c y b x a c y b x 的解是⎩⎨⎧==10-y 8x 则方程组⎩⎨⎧=+=+222527121517a c y b x a c y b x 的解为12、若关于x ,y 的二元一次方程组⎩⎨⎧=+=15216my -x 3ny x 的解是⎩⎨⎧==18x y ,那么关于x ,y的二元一次方程组()()⎩⎨⎧=-++=+15216y -x m -3y x n y x y x )()(的解是 13、若()()3232a -+-=-⋅+a a a ,则a 的取值范围是14、已知不等式4x-m ≥2x 恰好只有四个负整数解,则m 的取值范围是15、我们用[]a 表示不大于a 的最大整数,例如:[][][]3-5.2-3322.5===,,,已知x ,y 满足方程组[][][][]⎩⎨⎧=-=+0392x 3y x y ,则[]y x +可能的值有16、(10分)对于实数x ,符号[]x 表示不大于x 的最大整数解,如:[][][]8-5.7-663===,,π(1)若[]3-a =,求a 的取值范围;(2)234=⎥⎦⎤⎢⎣⎡+a ,求满足条件的所有正整数a 。
初一下册数学培优代数几何易错题
![初一下册数学培优代数几何易错题](https://img.taocdn.com/s3/m/8322037ac850ad02de8041b6.png)
初一下册数学培优习题1、解方程:() 18031902180⨯=---αα,则α= 2、用10%和5%的盐水合成8%的盐水10kg ,问10%和5%的盐水各需多少kg ?3、已知523x k +=的解为正数,则k 的取值范围是4、(1)若204160x m x -≤⎧⎨+〉⎩有解,则m 的取值范围 (2)若212(1)11x a x x-〈⎧⎨+〉-⎩的解为x >3,则a 的取值范围(3)若2123x a x b -〈⎧⎨-〉⎩的解是-1<x <1,则(a+1)(b-2)= (4)若2x <a 的解集为x <2,则a=5、已知32121x y m x y m +=+⎧⎨+=-⎩,x >y ,则m 的取值范围 ;6、已知同一坡路上山速度为600m/h ,下山的速度为400m/h ,则上下山的平均速度为?7、已知24(3)0x y x y +-+-=,则x= ,y= ; 8、已知35303580x y z x y z ++=⎧⎨--=⎩(0z ≠),则:x z = ,:y z = ; 9、当m= 时,方程262310x y x y m +=⎧⎨-=-⎩中x 、y 的值相等,此时x 、y 的值= 。
10、已知点P(5a-7,-6a-2)在二、四象限的角平分线上,则a= 。
11、⎩⎨⎧=-=+my x m y x 932的解是3423=+y x 的解,求m m 12-。
12、若方程x x m x m 5)3(1)1(3--=++的解是负数,则m 的取值范围是 。
13、船从A 点出发,向北偏西60°行进了200km 到B 点,再从B 点向南偏东20°方向走500km 到C 点,则∠ABC= 。
14、⎩⎨⎧=++=+ayxayx32253的解x和y的和为0,则a= 。
15、a、b互为相反数且均不为0,c、d互为倒数,则=-+⨯+cdabba325)(。
a、b互为相反数且均不为0,则=+⨯-+)1()1(baba。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一下册数学培优习题
1、解方程:()οοο1803
1902180⨯=---αα,则α= 2、用10%和5%的盐水合成8%的盐水10kg ,问10%和5%的盐水各需多少kg ?
3、已知523x k +=的解为正数,则k 的取值范围是
4、(1)若204160x m x -≤⎧⎨+〉⎩
有解,则m 的取值范围 (2)若212(1)11x a x x
-〈⎧⎨+〉-⎩的解为x >3,则a 的取值范围
(3)若2123x a x b -〈⎧⎨
-〉⎩的解是-1<x <1,则(a+1)(b-2)= (4)若2x <a 的解集为x <2,则a=
5、已知32121
x y m x y m +=+⎧⎨+=-⎩,x >y ,则m 的取值范围 ;
6、已知同一坡路上山速度为600m/h ,下山的速度为400m/h ,则上下山的平均速度为?
7、已知2
4(3)0x y x y +-+-=,则x= ,y= ; 8、已知35303580x y z x y z ++=⎧⎨--=⎩
(0z ≠),则:x z = ,:y z = ; 9、当m= 时,方程262310x y x y m +=⎧⎨-=-⎩
中x 、y 的值相等,此时x 、y 的值= 。
10、已知点P(5a-7,-6a-2)在二、四象限的角平分线上,则a= 。
11、⎩⎨⎧=-=+m
y x m y x 932的解是3423=+y x 的解,求m m 12-。
12、若方程x x m x m 5)3(1)1(3--=++的解是负数,则m 的取值范围是 。
13、船从A 点出发,向北偏西60°行进了200km 到B 点,再从B 点向南偏东20°方向走500km 到C
点,则∠ABC= 。
14、
⎩
⎨
⎧
=
+
+
=
+
a
y
x
a
y
x
3
2
2
5
3
的解x和y的和为0,则a= 。
15、a、b互为相反数且均不为0,c、d互为倒数,则=
-
+
⨯
+cd
a
b
b
a
3
2
5
)
(。
a、b互为相反数且均不为0,则=
+
⨯
-
+)1
(
)1
(
b
a
b
a。
a、b互为相反数,c、d互为倒数,2
=
x,则=
+
+cdx
b
a10
10。
16、若1
=
m
m
,则m 0。
(填“>”、“<”或“=”)
17、计算:=
-
+
-
2
1
4
7
7
2
;=
⨯77
764
25
.0。
18、若5
+
m与()42-n互为相反数,则=n m。
19、倒数等于它本身的数是:;相反数等于它本身的数是:。
20、有23人在甲处劳动,17人在乙处劳动,现调20人去支援,使在甲处劳动的人数是在乙处劳动
的人数的2倍,应调往甲乙两处各多少人?
21、如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD ⊥AE于D, CE⊥AE于E.
图1 图2 图3
(1)试说明: BD=DE+CE.
(2) 若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD与DE、CE的关系如何? 不需说明.
(3) 若直线AE绕A点旋转到图(3)位置时(BD>CE), 其余条件不变, 问BD与DE、CE的关系如何?。