一轮复习23受力分析共点力的平衡教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点三受力分析共点力的平衡
基础点
知识点1受力分析
1.定义:把指定物体(研究对象)在特定的物理环境中受到的所有外力都找出来,并画出外力受力示意图的过程。
2.受力分析的一般顺序
(1)首先分析场力(重力、电场力、磁场力)。
(2)其次分析接触力(弹力、摩擦力)。
(3)最后分析其他力。
可概括为“一重,二弹,三摩擦,四其他”。
知识点2共点力的平衡
1.平衡状态:物体处于静止状态或匀速直线运动状态。
2.共点力的平衡条件
F 合=0或者⎩⎪⎨⎪⎧
F x =0F y =0 3.平衡条件的推论
(1)二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相等,方向相反。
(2)三力平衡:如果物体在三个共点力的作用下处于平衡状态,其中任何一个力与其余两个力的合力大小相等,方向相反,并且这三个力的矢量可以形成一个封闭的矢量三角形。
(3)多力平衡:如果物体在多个共点力的作用下处于平衡状态,其中任何一个力与其余几个力的合力大小相等,方向相反。
重难点一、受力分析
1.受力分析的角度和依据
(1)假设法:在受力分析时,若不能确定某力是否存在,可先对其作出存在的假设,然后根据分析该力存在对物体运动状态的影响来判断该力是否存在。
(2)整体法:将加速度相同的几个相互关联的物体作为一个整体进行受力分析的方法。
(3)隔离法:将所研究的对象从周围的物体中分离出来,单独进行受力分析的方法。
(4)动力学分析法:对加速运动的物体进行受力分析时,应用牛顿运动定律进行分析求解的方法。
3.受力分析的四个步骤
(1)明确研究对象:确定受力分析的物体,研究对象可以是单个物体,也可以是多个物体的组合。
(2)隔离物体分析:将研究对象从周围物体中隔离出来,进而分析周围有哪几个物体对
它施加了力的作用(重力-弹力-摩擦力-其他力)。
(3)画出受力示意图:画出受力示意图,准确标出各力的方向。
(4)检查分析结果:检查画出的每一个力能否找出它的施力物体,检查分析结果能否使研究对象处于题目所给的物理状态。
特别提醒
(1)研究对象可以是物体的一个点、一个物体或多个物体组成的系统。
(2)受力分析时要有一定的顺序。一般按“一重二弹三摩擦四其他”的顺序。
(3)画受力示意图时,物体受的各个力一般应画成共点力,力可平移到物体重心。
(4)整体法和隔离法不是独立的,对一些较复杂问题,通常需要多次选取研究对象,交替使用整体法和隔离法。
(5)受力分析时,有些力的大小和方向不能确定,必须根据物体受到的能够确定的几个力的情况和物体的运动状态进行判断。
二、物体的平衡
1.共点力作用下物体的平衡
(1)平衡状态:物体保持静止或匀速直线运动的状态叫平衡状态,是加速度a=0的状态。
(2)平衡条件:物体所受的合力为零,即F合=0。若采用正交分解法求平衡问题,则平衡条件是:F x合=0,F y合=0。
特别提醒
物体的瞬时速度为零时,物体不一定处于平衡状态。例如,做竖直上抛运动的物体到达最高点时,速度为零,但合力不为零,不能保持静止状态。
2.共点力平衡问题的处理方法
(1)分解法:将一个主要的力(任意一个力均可)沿其他两个力的方向分解,这样把三力平衡问题转化为两个方向上的二力平衡问题,则每个方向上的一对力大小相等。
(2)合成法:将三个力中的任意两个力合成为一个力,则其合力与第三个力平衡,把三力平衡转化为二力平衡问题。
(3)力的三角形法:物体受同一平面内三个互不平行的力处于平衡时,可以将这三个力的矢量平移,使三个力矢量首尾相接,恰好构成三角形。如果已知两个力,则利用三角形知识可求得未知力。
(4)相似三角形法:根据合力为零,把三个力画在一个三角形中,看力的三角形与哪个几何三角形相似,根据相似三角形对应边成比例列方程求解。该方法一般处理非直角三角形问题。
(5)正交分解法
将各力分解到x轴上和y轴上,运用两坐标轴上的合力等于零的条件F x=0、F y=0进行分析,多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x、y方向选择时,尽可能使较多的力落在x、y轴上,被分解的力尽可能是已知力,不宜分解待求力。
3.动态平衡问题
(1)动态平衡:“动态平衡”是指物体所受的力一部分是变力,是动态力,力的大小和方向均要发生变化,但变化过程中的每一个定态均可视为平衡状态,所以叫动态平衡。
(2)基本思路:化“动”为“静”,“静”中求“动”。
(3)求解方法
①解析法
对研究对象进行受力分析,一般先画出受力分析图,再根据物体的平衡条件列式求解,得到因变量与自变量的一般函数表达式,最后根据自变量的变化确定因变量的变化。
②图解法
对研究对象在动态变化过程中的若干状态进行受力分析,在同一图中作出物体在若干状态下所受的力的平行四边形,由各边的长度变化及角度变化来确定力的大小及方向的变化情况,此即为图解法,它是求解动态平衡问题的基本方法。
③相似三角形法
在三力平衡问题中,如果有一个力是恒力,另外两个力方向都变化,且题目给出了空间几何关系,多数情况下力的矢量三角形与空间几何三角形相似,可利用相似三角形对应边成比例列等式,根据空间几何边的变化来判断力的变化。
特别提醒
(1)解析法是解决共点力平衡的最基本的方法,物体在多力平衡时多使用这种方法。
(2)图解法的优点是能将各力的大小、方向等变化趋势形象、直观地反映出来,大大降低了解题难度和计算强度。此方法常用于求解三力平衡且有一个力是恒力、另有一个力是方向不变的问题。
4.平衡中的临界(极值)问题
(1)临界(极值)问题
当某物理量变化时,会引起其他几个物理量的变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题的描述中常用“刚好”“刚能”“恰好”等语言叙述。
常见的临界(极值)状态有:
①两接触物体脱离与不脱离的临界(极值)条件是相互作用力为0(主要体现为两物体间的弹力为0)。
②绳子断与不断的临界(极值)条件为绳中的张力达到最大值;绳子绷紧与松弛的临界(极值)条件为绳中的张力为0。
③存在摩擦力作用的两物体间发生相对滑动或相对静止的临界(极值)条件为静摩擦力达到最大。
(2)解决临界(极值)问题的常用方法
①极限法:首先要正确地进行受力分析和变化过程分析,找出平衡的临界点和极值点;临界条件必须在变化中去寻找,不能停留在一个状态来研究临界问题,而要把某个物理量推