(原创精品)n=3时的0-1背包问题(回溯法)
回溯法和分支限界法解决0-1背包题(精)[精品文档]
![回溯法和分支限界法解决0-1背包题(精)[精品文档]](https://img.taocdn.com/s3/m/4b32afcc84868762caaed595.png)
0-1背包问题计科1班朱润华 2012040732方法1:回溯法一、回溯法描述:用回溯法解问题时,应明确定义问题的解空间。
问题的解空间至少包含问题的一个(最优)解。
对于0-1背包问题,解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有0-1赋值。
例如n=3时,解空间为:{(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}然后可将解空间组织成树或图的形式,0-1背包则可用完全二叉树表示其解空间给定n种物品和一背包。
物品i的重量是wi,其价值为vi,背包的容量为C。
问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大?形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,),xi∈{0,1}, ? ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。
二、回溯法步骤思想描述:0-1背包问题是子集选取问题。
0-1 背包问题的解空间可以用子集树表示。
在搜索解空间树时,只要其左儿子节点是一个可行节点,搜索就进入左子树。
当右子树中有可能含有最优解时,才进入右子树搜索。
否则,将右子树剪去。
设r是当前剩余物品价值总和,cp是当前价值;bestp是当前最优价值。
当cp+r<=bestp时,可剪去右子树。
计算右子树上界的更好的方法是将剩余物品依次按其单位价值排序,然后依次装入物品,直至装不下时,再装入物品一部分而装满背包。
例如:对于0-1背包问题的一个实例,n=4,c=7,p=[9,10,7,4],w=[3,5,2,1]。
这4个物品的单位重量价值分别为[3,2,3,5,4]。
以物品单位重量价值的递减序装入物品。
先装入物品4,然后装入物品3和1.装入这3个物品后,剩余的背包容量为1,只能装0.2的物品2。
由此得一个解为[1,0.2,1,1],其相应价值为22。
动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题一、问题描述:有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?二、总体思路:根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。
原理:动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。
但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。
过程:a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i 个物品选或不选),V i表示第i 个物品的价值,W i表示第i 个物品的体积(重量);b) 建立模型,即求max(V1X1+V2X2+…+VnXn);c) 约束条件,W1X1+W2X2+…+WnXn<capacity;d) 定义V(i,j):当前背包容量j,前i 个物品最佳组合对应的价值;e) 最优性原理是动态规划的基础,最优性原理是指“多阶段决策过程的最优决策序列具有这样的性质:不论初始状态和初始决策如何,对于前面决策所造成的某一状态而言,其后各阶段的决策序列必须构成最优策略”。
判断该问题是否满足最优性原理,采用反证法证明:假设(X1,X2,…,Xn)是01背包问题的最优解,则有(X2,X3,…,Xn)是其子问题的最优解,假设(Y2,Y3,…,Yn)是上述问题的子问题最优解,则理应有(V2Y2+V3Y3+…+V n Yn)+V1X1 > (V2X2+V3X3+…+VnXn)+V1X1;而(V2X2+V3X3+…+VnXn)+V1X1=(V1X1+V2X2+…+VnXn),则有(V2Y2+V3Y3+…+VnYn)+V1X1 > (V1X1+V2X2+…+VnXn);该式子说明(X1,Y2,Y3,…,Yn)才是该01背包问题的最优解,这与最开始的假设(X1,X2,…,Xn)是01背包问题的最优解相矛盾,故01背包问题满足最优性原理;f) 寻找递推关系式,面对当前商品有两种可能性:第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{V(i-1,j),V(i-1,j-w(i))+v(i) }其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);由此可以得出递推关系式:1) j<w(i) V(i,j)=V(i-1,j)2) j>=w(i) V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }number=4,capacity=7四、构造最优解:最优解的构造可根据C列的数据来构造最优解,构造时从第一个物品开始。
背包问题回溯法

背包问题回溯法背包问题回溯法是一种用于解决背包问题的算法。
背包问题是一个经典的组合优化问题,在许多领域都有广泛的应用。
它的基本形式是在给定一组物品和一个容量为C的背包的情况下,选择将哪些物品放入背包中,以使得放入背包中物品的总价值最大。
回溯法是一种通过搜索所有可能的解空间来求解问题的算法。
在背包问题中,回溯法通过递归地尝试将物品放入背包或不放入背包来寻找最优解。
具体而言,回溯法从问题的初始状态开始,根据问题的约束条件和目标函数的要求,逐步生成问题的解空间,并通过剪枝策略来减少搜索空间的规模,直到找到问题的最优解或无解。
在使用回溯法解决背包问题时,需要定义一个递归函数来实现搜索过程。
该函数的输入参数包括当前已选择的物品、当前已选择物品的总价值、当前已选择物品的总重量、剩余物品的可选范围、剩余背包容量等等。
在函数的实现中,首先需要判断当前选择的物品是否满足约束条件,如果满足则继续递归地对剩余的物品进行选择;如果不满足,则进行剪枝操作,即回溯到上一层递归函数继续搜索其他可能的解。
当递归函数搜索完所有可能的解空间时,返回问题的最优解或无解。
背包问题回溯法的关键是如何定义约束条件和剪枝策略。
在背包问题中,约束条件包括物品的重量不能超过背包的容量,物品的总价值不能超过已选择的物品的总价值。
而剪枝策略可以根据问题的具体情况来进行设计,例如可以根据当前已选择物品的总价值和剩余物品的可选范围来进行剪枝,减少搜索空间的规模,提高算法的效率。
背包问题回溯法的时间复杂度取决于问题的规模和剪枝策略的设计。
由于回溯法需要搜索所有可能的解空间,所以在最坏情况下,时间复杂度为指数级别。
为了提高算法的效率,可以引入一些优化技巧,例如动态规划和贪心策略,来减少搜索空间的规模并加速算法的执行速度。
总之,背包问题回溯法是一种用于解决背包问题的经典算法。
通过搜索所有可能的解空间,并根据约束条件和剪枝策略来寻找最优解,可以求解出背包问题的最优解或无解。
01背包问题回溯法c语言

01背包问题回溯法c语言01背包问题是一个经典的动态规划问题,可以使用回溯法来解决。
在C语言中,我们可以通过递归的方式来实现回溯法解决01背包问题。
首先,让我们来看一下01背包问题的描述:给定n个物品,每个物品有一个重量和一个价值。
现在有一个背包,它能够容纳一定的重量,问如何选择装入背包的物品,使得背包中物品的总价值最大。
接下来,让我们来看一下如何使用回溯法来解决这个问题。
我们可以定义一个递归函数来尝试将每个物品放入背包或者不放入背包,然后找出最优解。
以下是一个简单的C语言代码示例:c.#include <stdio.h>。
#define N 5 // 物品的数量。
#define W 10 // 背包的容量。
int weight[N] = {2, 2, 6, 5, 4}; // 每个物品的重量。
int value[N] = {6, 3, 5, 4, 6}; // 每个物品的价值。
int maxValue = 0; // 最大的总价值。
void backtrack(int index, int currentWeight, int totalValue) {。
if (index == N || currentWeight == W) {。
if (totalValue > maxValue) {。
maxValue = totalValue;}。
return;}。
// 不放入背包。
backtrack(index + 1, currentWeight, totalValue); // 放入背包。
if (currentWeight + weight[index] <= W) {。
backtrack(index + 1, currentWeight +weight[index], totalValue + value[index]);}。
}。
int main() {。
backtrack(0, 0, 0);printf("背包能够容纳的最大总价值为,%d\n", maxValue);return 0;}。
0-1背包问题的多种解法

问题描述0/1 背包问题 :现有 n 种物品,对 1<=i<=n ,已知第 i 种物品的重量为正整数 W i ,价值为正整数 V i , 背包能承受的最大载重量为正整数 W ,现要求找出这 n 种物品的一个子集,使得子集中物 品的总重量不超过 W 且总价值尽量大。
(注意:这里对每种物品或者全取或者一点都不取, 不允许只取一部分)算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i W i 1 i i(1)x i { 0,1}( 1 i n)nmax v i x i (2) i1于是,问题就归结为寻找一个满足约束条件( 1 ),并使目标函数式( 2 )达到最大的 解向量 X (x 1, x 2 ,x 3, ........... , x n ) 。
首先说明一下 0-1 背包问题拥有最优解。
假设 (x 1,x 2,x 3, ........ ,x n ) 是所给的问题的一个最优解, 则(x 2,x 3, ............... ,x n )是下面问题的n n n个问 题 的 一 个 最 优解 , 则v i y iv i x i , 且 w 1x 1w i y i W 。
因此 ,i 2 i 2 i 2一个最优解:w i x i Wi2w 1x 1nmax v i x i 。
如果不是的话,设(y 2,y 3, , y n ) 是这x i {0,1}( 2 i n)i2n n nv1x1 v i y i v1x1 v i x i v i x i ,这说明(x1,y2,y3, ............. ,y n) 是所给的0-1 背包问i 2 i 2 i 1题比( x1 , x 2 , x3 , ... , x n ) 更优的解,从而与假设矛盾。
穷举法:用穷举法解决0-1 背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集) ,计算每个子集的总重量,然后在他们中找到价值最大的子集。
回溯法解决0-1背包问题

回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。
第i件物品的价值是v[i],重量是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。
回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。
在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。
对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。
为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。
#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。
算法设计期末试卷及答案

一.简述递归动态规划算法的基本步骤,以及动态规划算法与分治法的异同。
设计动态规划算法的主要步骤为:(最长公共子串,0/1背包)(1)找出最优解的性质,并刻划其结构特征。
(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。
两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。
而用分治法求解的问题,经分解得到的子问题往往是互相独立的。
二.分治法在每一层递归上都有三个步骤:(汉诺塔问题)1.分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;2.解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;3.合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:Divide-and-Conquer(P)1. if |P|≤n02. then return(ADHOC(P))3. 将P分解为较小的子问题P1 ,P2 ,...,Pk4. for i←1 to k5. do yi ←Divide-and-Conquer(Pi) △递归解决Pi6. T ←MERGE(y1,y2,...,yk) △合并子问题7. return(T)三.分支限界法的搜索策略:(0/1背包,旅行售货员)在当前节点(扩展节点)处,先生成其所有的儿子节点(分支),然后再从当前的活节点(当前节点的子节点)表中选择下一个扩展节点。
为了有效地选择下一个扩展节点,加速搜索的进程,在每一个活节点处,计算一个函数值(限界),并根据函数值,从当前活节点表中选择一个最有利的节点作为扩展节点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。
分支限界法解决了大量离散最优化的问题。
四.回溯法一般步骤:()(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
0-1背包问题——回溯法求解【Python】

0-1背包问题——回溯法求解【Python】回溯法求解0-1背包问题:问题:背包⼤⼩ w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放⼊背包中物品的总价值最⼤。
回溯法核⼼:能进则进,进不了则换,换不了则退。
(按照条件深度优先搜索,搜到某⼀步时,发现不是最优或者达不到⽬标,则退⼀步重新选择)注:理论上,回溯法是在⼀棵树上进⾏全局搜索,但是并⾮每种情况都需要全局考虑,毕竟那样效率太低,且通过约束+限界可以减少好多不必要的搜索。
解决本问题思路:使⽤0/1序列表⽰物品的放⼊情况。
将搜索看做⼀棵⼆叉树,⼆叉树的第 i 层代表第 i 个物品,若剩余空间允许物品 i 放⼊背包,扩展左⼦树。
若不可放⼊背包,判断限界条件,若后续继续扩展有可能取得最优价值,则扩展右⼦树(即此 i 物品不放⼊,但是考虑后续的物品)。
在层数达到物品的个数时,停⽌继续扩展,开始回溯。
注:如何回溯呢?怎样得到的,怎样恢复。
放⼊背包中的重量取出,加在bagV上的价值减去。
约束条件:放⼊背包中物品的总质量⼩于等于背包容量限界条件:当前放⼊背包中物品的总价值(i及之前) + i 之后的物品总价值 < 已知的最优值这种情况下就没有必要再进⾏搜索数据结构:⽤⼀个变量记录当前放⼊背包的总价值 bagV(已扩展),⼀个变量记录后续物品的总价值 remainV(未扩展),当前已得到的⼀种最优值 bestV(全局情况),⼀个⽤0/1表⽰的数组bestArr[]记录哪些物品放⼊了背包。
核⼼结构:递归思路进⾏解决。
层层递归,递归到尽头,保留最优值,恢复递归中,层层回溯,即将原来加上去的重量与价值恢复。
# -*- coding:utf-8 -*-def Backtrack(t):global bestV, bagW, bagV,arr, bestArr, cntVif t > n: #某次深度优先搜索完成if bestV < bagV:for i in range(1, n+1):bestArr[i] = arr[i]bestV = bagVelse: #深度优先搜索未完成if bagW + listWV[t][0] <= w: #第t个物品可以放⼊到背包中,扩展左⼦树arr[t] = TruebagW += listWV[t][0]bagV += listWV[t][1]Backtrack(t+1)bagW -= listWV[t][0]bagV -= listWV[t][1]if cntV[t] + bagV > bestV: #有搜索下去的必要arr[t] = FalseBacktrack(t+1)if__name__ == '__main__':w = int(input()) #背包⼤⼩n = int(input()) #物品个数listWV = [[0,0]]listTemp = []sumW = 0sumV = 0for i in range(n):listTemp = list(map(int, input().split())) #借助临时list每次新增物品对应的list加⼊到listWV中sumW += listTemp[0]sumV += listTemp[1]listWV.append(listTemp) #依次输⼊每个物品的重量与价值bestV = 0bagW = 0bagV = 0remainV = sumVarr = [False for i in range(n+1)]bestArr = [False for i in range(n+1)]cntV = [0 for i in range(n+1)] #求得剩余物品的总价值,cnt[i]表⽰i+1~n的总价值 cntV[0] = sumVfor i in range(1, n+1):cntV[i] = cntV[i-1] - listWV[i][1]if sumW <= w:print(sumV)else:Backtrack(1)print(bestV)print(bestArr)print(cntV)检测:1052 65 34 52 43 617[False, True, False, True, False, True][24, 18, 15, 10, 6, 0]。
0-1背包问题的枚举算法

0-1背包问题的枚举算法一、问题概述0-1背包问题是一种经典的优化问题,给定一组物品,每种物品都有自己的重量和价值,而你有一个限制容量的背包。
目标是在不超过背包容量的情况下,选择物品使得总价值最大化。
然而,在某些情况下,所有的物品都不能被放入背包中,这时就需要用到0-1背包问题的枚举算法。
二、算法原理枚举算法的基本思想是从所有可能的物品组合中逐个尝试,找出满足条件的组合。
对于0-1背包问题,我们可以枚举所有可能的物品组合,对于每个组合,计算其总价值和当前背包的剩余容量,如果总价值大于当前背包容量所能获得的最大价值,那么就将这个物品放入背包中,并更新背包剩余容量和总价值。
如果当前物品的价值小于或等于当前背包容量所能获得的最大价值,那么就将这个物品标记为0(表示已经考虑过),并继续尝试下一个物品。
最终得到的组合就是最优解。
三、算法实现以下是一个简单的Python实现:```pythondefknapsack_enumeration(items,capacity):#初始化结果列表和当前价值result=[]current_value=0#枚举所有可能的物品组合foriinrange(len(items)):#标记当前物品为0(已考虑过)items[i][1]=0#计算当前物品的价值并更新总价值forjinrange(len(items)):ifj<i:#不考虑之前的物品对当前物品的价值影响current_value+=items[j][1]*items[i][0]/capacityelse:#考虑之前的物品对当前物品的价值影响(假设不考虑前一个物品的重量)current_value+=items[j][0]*(capacity-items[i][0])/capacity#将当前物品从物品列表中移除(放入背包中)delitems[i]#将当前价值添加到结果列表中result.append(current_value)returnresult```四、应用场景枚举算法在许多实际应用中都有应用,如计算机科学、运筹学、工程学等。
回溯法解决01背包问题

回溯法是一个既带有系统性又带有跳跃性的搜索算法。
它在包含问题的所有解的解空间树中按照深度优先的策略,从根节点出发搜索解空间树。
算法搜索至解空间树的任一节点时,总是先判断该节点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该节点为根的子树的系统搜索,逐层向其原先节点回溯。
否则,进入该子树,继续按深度优先的策略进行搜索。
运用回溯法解题通常包含以下三个步骤:∙针对所给问题,定义问题的解空间;∙确定易于搜索的解空间结构;∙以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;在0/1背包问题中,容量为M的背包装载。
从n个物品中选取装入背包的物品,物品i的重量为Wi,价值为Pi。
最佳装载指装入的物品价值最高,即∑PiXi(i=1..n)取最大值。
约束条件为∑WiXi ≤M且Xi∈[0,1](1≤i≤n)。
在这个表达式中,需求出Xi的值。
Xi=1表示物品i装入背包,Xi=0表示物品i不装入背包。
∙即判断可行解的约束条件是:∑WiXi≤M(i=0..n),Wi>0,Xi∈[0,1](1≤i≤n)∙目标最大值:max∑PiXi(i=0..n-1),Pi>0,Xi=0或1(0≤i<n)0/1背包问题是一个自己选取问题,适合于用子集树表示0/1背包问题的解空间。
在搜索解空间树时,只要左儿子节点是一个可行节点,搜索就进入左子树,在右子树中有可能包含最优解才进入右子树搜索,否则将右子树剪去。
程序分析:将物品个数,每个物品体积/价值输入,计算总物品体积S,输入背包体积V,如果V<0或者V>S则前置条件错误,即背包体积输入错误,否则顺序将物品放入背包。
假设放入前i件物品,背包没有装满,继续选取第i+1件物品,若该物品“太大”不能装入,则弃之继而选取下一件直到背包装满为止;如果剩余物品中找不到合适物品以填满背包,则说明“刚刚”装入的第i件物品不合适,应将i拿出,继续从i+1及以后的物品中选取,如此重复,直到找到满足条件的解。
算法设计与分析复习题目及答案

分治法1、二分搜索算法是利用(?分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略?)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(?分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法?)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(?动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(??动态规划法?? )。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(?分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(?最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
0-1背包问题c语言实现

0-1背包问题c语言实现问题描述:给定n种物品和一个背包。
物品i的重量为w[i],其价值为v[i],背包的容量为c。
应如何选择装入背包的物品,使得装入背包中的物品的总价值最大。
每种物品最多装入一次。
0-1背包问题:对于要装入背包中的物品,只有两种选择:全部装入或者不装入。
背包问题:对于要装入背包中的物品,可以选择装入一部分,不一定要全部装入背包中。
算法分析:使用贪心策略求解此类问题时,首先要选出最优的度量标准。
可供选择的度量标准有三种:价值,容量,单位价值(v/w,价值/重量)。
显然,价值高的物品容量可能太大,容量大的物品价值也可能很低。
最优的度量标准是单位价值。
背包问题算法思路:1、将各个物品按照单位价值由高到低排序;2、取价值最高者放入背包;3、计算背包的剩余空间;4、重复2-3步,直到背包剩余容量=0或者物品全部装入背包为止(对于0-1背包,终止条件为背包剩余容量无法装入任意一件物品或者物品全部装入背包)。
下面是C语言实现(DEV c++4.9.9.2运行通过)[cpp]#includevoid package(int n,float c,float v[],float w[],float x[]); void package0_1(int n,float c,float v[],float w[],float x[]);int main(void){int n = 3;float c = 20;float v[] = {24,15,25};float w[] = {15,10,18};//已经按照单位价值降序排列float *x;x = (float*)malloc(sizeof(float)*n);printf("******背包*******\n");package(n,c,v,w,x);printf("*******0-1背包******\n");package0_1(n,c,v,w,x);system("PAUSE");}/** 背包问题* n:物品个数* c:背包容量* v[]:每个物品的价值* w[]:每个物品的重量(这里已经按照单位价值降序排列)* x[]:物品是否放入背包(0表示不放,1表示全部放入,0-1放入一部分)*/void package(int n,float c,float v[],float w[],float x[]){int i;for(i=0;i{x[i] = 0;//初始状态,所有物品都没有被放入背包}for(i=0;i{if(w[i] > c){break;}x[i] = 1;c = c - w[i];printf("放入第%d件物品,背包剩余容量%f.\n",(i+1),c);}if(i<=n)//还可以放入一个物品的一部分{x[i] = c/w[i];printf("放入第%d件物品的%f部分.背包剩余容量为0.\n",(i+1),w[i]*x[i]);}}/** 0-1背包问题* n:物品个数* c:背包容量* v[]:每个物品的价值* w[]:每个物品的重量(这里已经按照单位价值降序排列)* x[]:物品是否放入背包(0表示不放,1表示全部放入)*/void package0_1(int n,float c,float v[],float w[],float x[]) {int i;for(i=0;i{x[i] = 0;//初始状态,所有物品都没有被放入背包}for(i=0;i{if(w[i] > c){break;}x[i] = 1;c = c - w[i];printf("放入第%d件物品,背包剩余容量%f.\n",(i+1),c); }}#includevoid package(int n,float c,float v[],float w[],float x[]); void package0_1(int n,float c,float v[],float w[],float x[]);int main(void){int n = 3;float c = 20;float v[] = {24,15,25};float w[] = {15,10,18};//已经按照单位价值降序排列float *x;x = (float*)malloc(sizeof(float)*n);printf("******背包*******\n");package(n,c,v,w,x);printf("*******0-1背包******\n");package0_1(n,c,v,w,x);system("PAUSE");}/** 背包问题* n:物品个数* c:背包容量* v[]:每个物品的价值* w[]:每个物品的重量(这里已经按照单位价值降序排列)* x[]:物品是否放入背包(0表示不放,1表示全部放入,0-1放入一部分)*/void package(int n,float c,float v[],float w[],float x[]){int i;for(i=0;i<n;i++){x[i] = 0;//初始状态,所有物品都没有被放入背包}for(i=0;i<n;i++){if(w[i] > c){break;}x[i] = 1;c = c - w[i];printf("放入第%d件物品,背包剩余容量%f.\n",(i+1),c);}if(i<=n)//还可以放入一个物品的一部分{x[i] = c/w[i];printf("放入第%d件物品的%f部分.背包剩余容量为0.\n",(i+1),w[i]*x[i]);}}/** 0-1背包问题* n:物品个数* c:背包容量* v[]:每个物品的价值* w[]:每个物品的重量(这里已经按照单位价值降序排列)* x[]:物品是否放入背包(0表示不放,1表示全部放入)*/void package0_1(int n,float c,float v[],float w[],float x[]){int i;for(i=0;i<n;i++){x[i] = 0;//初始状态,所有物品都没有被放入背包}for(i=0;i<n;i++){if(w[i] > c){break;}x[i] = 1;c = c - w[i];printf("放入第%d件物品,背包剩余容量%f.\n",(i+1),c);}}虽然背包问题和0-1背包都具有最优子结构性质,但是背包问题用贪心算法求出来的是最优解,0-1背包问题通过贪心算法得不到最优解,因为无法保证最后能将背包装满,部分闲置的背包空间使总价值降低了。
动态规划算法0-1背包问题课件PPT

回溯法
要点一
总结词
通过递归和剪枝来减少搜索空间,但仍然时间复杂度高。
要点二
详细描述
回溯法是一种基于递归的搜索算法,通过深度优先搜索来 找出所有可能的解。在0-1背包问题中,回溯法会尝试将物 品放入背包中,并递归地考虑下一个物品。如果当前物品 无法放入背包或放入背包的总价值不增加,则剪枝该分支 。回溯法能够避免搜索一些无效的组合,但仍然需要遍历 所有可能的组合,时间复杂度较高。
缺点
需要存储所有子问题的解,因此空间 复杂度较高。对于状态转移方程的确 定和状态空间的填充需要仔细考虑, 否则可能导致错误的结果。
04
0-1背包问题的动态规划解法
状态定义
状态定义
dp[i][ j]表示在前i个物品中选,总 重量不超过j的情况下,能够获得 的最大价值。
状态转移方程
dp[i][ j] = max(dp[i-1][ j], dp[i1][ j-w[i]] + v[i]),其中w[i]和v[i] 分别表示第i个物品的重量和价值。
02
计算时间复杂度:时间复杂度是指求解问题所需的时间与问题规模之间的关系。对 于0-1背包问题,时间复杂度主要取决于状态总数。由于每个状态都需要被遍历, 因此时间复杂度为O(2^n),其中n是物品的数量。
03
空间复杂度:空间复杂度是指求解问题所需的空间与问题规模之间的关系。在0-1 背包问题中,空间复杂度主要取决于状态总数。由于每个状态都需要被存储,因此 空间复杂度也为O(2^n),其中n是物品的数量。
06
0-1背包问题的扩展和实际应用
多多个物品和多个 背包,每个物品有各自的重量和价值, 每个背包有各自的容量,目标是选择物 品,使得在不超过背包容量限制的情况 下,所选物品的总价值最大。
0-1背包问题(回溯法)

0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
分别用回溯法和分支限界法求解0-1背包问题

华北水利水电学院数据结构与算法分析实验报告2009 ~2010 学年第 1 学期2009 级计算机专业班级:200915326 学号:200915326 姓名:郜莉洁一、实验题目:分别用回溯法和分支限界法求解0-1背包问题二、实验内容:0-1背包问题:给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为C。
应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。
不能将物品i装入背包多次,也不能只装入部分的物品i。
三、程序源代码:A:回溯法:// bag1.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream.h>#define MaxSize 100 //最多物品数int limitw; //限制的总重量int maxwv=0; //存放最优解的总价值int maxw;int n; //实际物品数int option[MaxSize]; // 存放最终解int op[MaxSize]; //存放临时解struct {int weight;int value;}a[MaxSize]; //存放物品数组void Knap( int i, int tw, int tv) //考虑第i个物品{int j;if(i>=n) //找到一个叶子结点{if (tw<=limitw && tv>maxwv) //找到一个满足条件地更优解,保存它{maxwv=tv; maxw=tw;for(j=0;j<n;j++) option[j]=op[j];}}else{op[i]=1; //选取第I个物品Knap(i+1,tw+a[i].weight, tv+a[i].value);op[i]=0; //不选取第I个物品,回溯Knap(i+1,tw,tv);}}int main(int argc, char* argv[]){int j;n=3; //3物品a[0].weight=16;a[0].value=45;a[1].weight=15;a[1].value=25;a[2].weight=15;a[2].value=25;//a[3].weight=1;a[3].value=1;limitw=30; //限制重量不超过30 Knap(0,0,0);cout<<"最佳装填方案是:"<<endl;for(j=0;j<n;j++)if(option[j]==1)cout<<"第"<<j+1<<"种物品"<<endl;cout<<"总重量="<<maxw<<",总价值="<<maxwv<<endl;return 0;}回溯法测试结果:测试数据:物品一:重量:16,价格:45;物品二:重量:15,价格:25;物品三:重量:15,价格:25;B:分支限界法:#include <stdio.h>#include<malloc.h>#define MaxSize 100 //最多结点数typedef struct QNode{float weight;float value;int ceng;struct QNode *parent;bool leftChild;}QNode,*qnode; //存放每个结点typedef struct{qnode Q[MaxSize];int front,rear;}SqQueue; //存放结点的队列SqQueue sq;float bestv=0; //最优解int n=0; //实际物品数float w[MaxSize]; //物品的重量float v[MaxSize]; //物品的价值int bestx[MaxSize]; // 存放最优解qnode bestE;void InitQueue(SqQueue &sq ) //队列初始化{sq.front=1;sq.rear=1;}bool QueueEmpty(SqQueue sq) //队列是否为空if(sq.front==sq.rear)return true;elsereturn false;}void EnQueue(SqQueue &sq,qnode b)//入队{if(sq.front==(sq.rear+1)%MaxSize){printf("队列已满!");return ;}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;}qnode DeQueue(SqQueue &sq)//出队{qnode e;if(sq.front==sq.rear){printf("队列已空!");return 0;}e=sq.Q[sq.front];sq.front=(sq.front+1)%MaxSize;return e;}void EnQueue1(float wt,float vt, int i ,QNode *parent, bool leftchild)qnode b;if (i==n) //可行叶子结点{if (vt==bestv){bestE=parent;bestx[n]=(leftchild)?1:0;}return;}b=(qnode)malloc(sizeof(QNode)); //非叶子结点b->weight=wt;b->value=vt;b->ceng=i;b->parent=parent;b->leftChild=leftchild;EnQueue(sq,b);}void maxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1; //当前的扩展结点所在的层float ew=0; //扩展节点所相应的当前载重量float ev=0; //扩展结点所相应的价值qnode e=NULL;qnode t=NULL;InitQueue(sq);EnQueue(sq,t); //空标志进队列while (!QueueEmpty(sq)){wt=ew+w[i];vt=ev+v[i];if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true); // 左儿子结点进队列}EnQueue1(ew,ev,i,e,false); //右儿子总是可行;e=DeQueue(sq); // 取下一扩展结点if (e == NULL){if (QueueEmpty(sq)) break;EnQueue(sq,NULL); // 同层结点尾部标志e=DeQueue(sq); // 取下一扩展结点i++;}ew=e->weight; //更新当前扩展结点的值ev=e->value;}printf("最优取法为:\n");for( int j=n-1;j>0;j--) //构造最优解{bestx[j]=(bestE->leftChild?1:0);bestE=bestE->parent;}for(int k=1;k<=n;k++){if(bestx[k]==1)printf("\n物品%d:重量:%.1f,价值:%.1f\n",k,w[k],v[k]);}printf("\n");printf("最优价值为:%.1f\n\n",bestv);}void main(){int c;float ewv[MaxSize];printf(" //////////////////// 0-1背包问题分枝限界法/////////////////////\n\n");printf("请输入物品的数量:\n");scanf("%d",&n);printf("请输入背包的最大承重量:\n");scanf("%d",&c);printf("\n请输入物品的重量和单位重量价值:\n\n");for(int i=1;i<=n;i++){printf("物品%d:",i);scanf("%f%f",&w[i],&ewv[i]);v[i]=w[i]*ewv[i];printf("\n");}maxLoading(w, v, c);}分支限界法测试结果:五、小结(包括收获、心得体会、存在的问题及解决问题的方法、建议等)注:内容一律使用宋体五号字,单倍行间距,不得少于100字。
0-1背包问题的递归方法

0-1背包问题的递归方法0-1背包问题是一个经典的动态规划问题,可以使用递归方法求解。
定义一个函数`knapsack(weights, values, capacity, n)`,其中`weights`和`values`分别代表物品的重量和价值,`capacity`代表背包的容量,`n`代表当前考虑的物品个数。
递归的思路是对于每个物品,有两种选择:放入背包中或者不放入背包中。
1. 如果第`n`个物品的重量大于背包的容量`capacity`,则不放入背包中,返回`0`;2. 否则,有两种选择:- 选择放入第`n`个物品,则总价值为第`n`个物品的价值加上考虑前`n-1`个物品,背包容量减去第`n`个物品重量的最优解; - 不放入第`n`个物品,则总价值为考虑前`n-1`个物品,背包容量不变的最优解。
代码如下所示:```pythondef knapsack(weights, values, capacity, n):if n == 0 or capacity == 0:return 0if weights[n-1] > capacity:return knapsack(weights, values, capacity, n-1)else:return max(values[n-1] + knapsack(weights, values, capacity-weights[n-1], n-1),knapsack(weights, values, capacity, n-1))```可以通过调用`knapsack`函数来求解0-1背包问题,如下所示:```pythonweights = [2, 3, 4, 5]values = [3, 4, 5, 6]capacity = 5n = len(weights)result = knapsack(weights, values, capacity, n)print(result)```以上代码会输出最优解的总价值。
0-1背包问题求解方法综述

算法分析与设计大作业…实验题目:0-1背包问题求解方法综述组员:班级:指导老师:]%0-1背包问题求解方法综述【摘要】:0-1背包问题是一个经典的NP-hard组合优化问题,现实生活中的很多问题都可以以它为模型。
本文首先对背包问题做了阐述,然后用蛮力解法、动态规划算法、贪心算法和回溯解法对背包问题进行求解,分析了0-1背包问题的数学模型,刻划了最优解的结构特征,建立了求最优值的递归关系式。
最后对四种算法从不同角度进行了对比和总结。
【关键词】:0-1背包问题;蛮力解法;动态规划算法;贪心算法;回溯解法。
0.引言0-1背包问题是指给定n个物品,每个物品均有自己的价值vi和重量wi(i=1,2,…,n),再给定一个背包,其容量为W。
要求从n个物品中选出一部分物品装入背包,这部分物品的重量之和不超过背包的容量,且价值之和最大。
单个物品要么装入,要么不装入。
很多问题都可以抽象成该问题模型,如配载问题、物资调运[1]问题等,因此研究该问题具有较高的实际应用价值。
目前,解决0-1背包问题的方法有很多,主要有动态规划法、回溯法、分支限界法、遗传算法、粒子群算法、人工鱼群算法、蚁群算法、模拟退火算法、蜂群算法、禁忌搜索算法等。
其中动态规划、回溯法、分支限界法时间复杂性比较高,计算智能算法可能出现局部收敛,不一定能找出问题的最优解。
文中在动态规划法的基础上进行了改进,提出一种求解0-1背包问题的算法,该算法每一次执行总能得到问题的最优解,是确定性算法,算法的时间复杂性最坏可能为O(2n)。
背包问题描述0-1背包问题(KP01)是一个著名的组合优化问题。
它应用在许多实际领域,如项目选择、资源分布、投资决策等。
背包问题得名于如何选择最合适的物品放置于给定背包中。
本文主要研究背包问题中最基础的0/1背包问题的一些解决方法。
为解决背包问题,大量学者在过去的几十年中提出了很多解决方法。
解决背包问题的算法有最优算法和启发式算法[2],最优算法包括穷举法、动态规划法、分支定界法、图论法等,启发式算法包括贪心算法、遗传算法、蚁群算法、粒子算法等一些智能算法。
背包问题的各种求解方法

背包问题的各种求解⽅法⼀、“0-1背包”问题描述: 给定n中物品,物品i的重量是w i,其价值为v i,背包的容量为c.问应如何选择装⼊背包中的物品,使得装⼊背包中的物品的总价值最⼤?形式化描述:给定c>0,w i>0,v i>0,1≤i≤n,要求找⼀个n元0-1向量(x1,x2,...,x n),x i∈{0,1},1≤i≤n,使得∑w i x i≤c,⽽且∑v i x i达到最⼤。
因此0-1背包问题是⼀个特殊的整形规划问题:max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n⼆、动态规划求解(两种⽅法,顺序或逆序法求解) 1.最优⼦结构性质 1.1 简要描述 顺序:将背包物品依次从1,2,...n编号,令i是容量为c共有n个物品的0-1背包问题最优解S的最⾼编号。
则S'=S-{i}⼀定是容量为c-w i且有1,...,i-1项物品的最优解。
如若不是,领S''为⼦问题最优解,则V(S''+{i})>V(S'+{i}),⽭盾。
这⾥V(S)=V(S')+v i.逆序:令i是相应问题最优解的最低编号,类似可得。
1.2 数学形式化语⾔形式化的最优⼦结构 顺序(从前往后):设(y1,y2,...,y n)是所给问题的⼀个最优解。
则(y1,...,y n-1)是下⾯相应⼦问题的⼀个最优解: max ∑v i x is.t ∑w i x i≤cx i∈{0,1},1≤i≤n-1如若不然,设(z1,...,z n-1)是上述⼦问题的⼀个最优解,⽽(y1,...,y n-1)不是它的最优解。
由此可知,∑v i z i>∑v i y i,且∑v i z i+w n y n≤c。
因此∑v i y i+v n y n>∑v i y i(前⼀个范围是1~n-1,后⼀个是1~n) ∑v i z i+w n y n≤c这说明(z1,z2,...,y n)是⼀个所给问题的更优解,从⽽(y1,y2,...,y n)不是问题的所给问题的最优解,⽭盾。
回溯法解0-1背包问题实验报告

实验4 回溯法解0-1背包问题一、实验要求1.要求用回溯法求解0-1背包问题;2.要求交互输入背包容量,物品重量数组,物品价值数组;3.要求显示结果。
二、实验仪器和软件平台仪器:带usb接口微机软件平台:WIN-XP + VC++三、实验源码#include ""#include<iostream>#include<cstdio>#include<>#include<iomanip>using namespace std;template<class ty>class Knap{public:friend void Init();friend void Knapsack();friend void Backtrack(int i);friend float Bound(int i);bool operator<(Knap<ty> a)const{if(fl< return true;else return false;}private:ty w; ;cout<<endl;cout<<"请依次输入"<<n<<"个物品的价值P:"<<endl;for(i=0;i<n;i++)cin>>bag[i].v;for(i=0;i<n;i++){bag[i].flag=0; bag[i].kk=i;bag[i].fl=*bag[i].v/bag[i].w;}}void Backtrack(int i){if(i>=n) <=c) lag=1; cw+=bag[i].w;cp+=bag[i].v; Backtrack(i+1);cw-=bag[i].w; cp-=bag[i].v;}if(Bound(i+1)>bestp)lag=0; Backtrack(i+1);}}<=cleft){;b+=bag[i].v;i++;}/bag[i].w * cleft;return b;}void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加}cout<<endl;cout<<"当前最优价值为:"<<L<<endl;cout<<"变量值x = ";for(int i=1;i<=n;i++){cout<<x[i-1];}delete []bag; bag=NULL;delete []x; x=NULL;cout<<endl; getch();}int main(){cout<<endl;cout<<"|**********回溯法解0-1背包问题**********|"<<endl;Init();Backtrack(0);Knapsack();return 0;}四、运行结果五、实验小结通过该实验,我充分了解了回溯法与分支界限法的区别。
回溯法解决01背包问题算法

回溯法解决01背包问题算法回溯法是一种常见的解决0-1背包问题的算法。
以下是使用Python编写的基于回溯法的0-1背包问题的解决方案:```pythondef knapsack(weights, values, capacity):n = len(weights)dp = [[0 for _ in range(capacity + 1)] for _ in range(n + 1)]for i in range(1, n + 1):for w in range(1, capacity + 1):if weights[i - 1] <= w:dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1])else:dp[i][w] = dp[i - 1][w]return dp[n][capacity]def backtrack(weights, values, capacity, i, w):if i == 0 or w == 0:returnif weights[i - 1] <= w:backtrack(weights, values, capacity, i - 1, w - weights[i - 1])print(f"Pick {values[i - 1]} with weight {weights[i - 1]}")backtrack(weights, values, capacity, i - 1, w)else:backtrack(weights, values, capacity, i - 1, w)def knapsack_backtrack(weights, values, capacity):backtrack(weights, values, capacity, len(weights), capacity)```在这个代码中,`knapsack`函数使用动态规划方法来解决问题,而`backtrack`函数使用回溯法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用回溯法解决3种可选择物品的0-1背包问题当n=3时,其解空间是
{(0,0,0)(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}n=3时的0-1背包问题:
w=[16,15,15]p=[45,25,25]c=30
开始时,Cr=C=30,V=0,A为唯一活结点,也是当前扩展结点
扩展A,先到达B结点
Cr=Cr-w1=14,V=V+v1=45
此时A、B为活结点,B成为当前扩展结点
扩展B,先到达D
Cr<w2,D导致一个不可行解,回溯到B
再扩展B到达E
E可行,此时A、B、E是活结点,E成为新的扩展结点
扩展E,先到达J
Cr<w3,J导致一个不可行解,回溯到E
再次扩展E到达K
由于K是叶结点,即得到一个可行解x=(1,0,0),V=45
K不可扩展,成为死结点,返回到E
E没有可扩展结点,成为死结点,返回到B
B没有可扩展结点,成为死结点,返回到A
A再次成为扩展结点,扩展A到达C
Cr=30,V=0,活结点为A、C,C为当前扩展结点
扩展C,先到达F
Cr=Cr-w2=15,V=V+v2=25,此时活结点为A、C、F,F成为当前扩展结点扩展F,先到达L
Cr=Cr-w3=0,V=V+v3=50
L是叶结点,且50>45,皆得到一个可行解x=(0,1,1),V=50
L不可扩展,成为死结点,返回到F
再扩展F到达M
M是叶结点,且25<50,不是最优解
M不可扩展,成为死结点,返回到F
F没有可扩展结点,成为死结点,返回到C
再扩展C到达G
Cr=30,V=0,活结点为A、C、G,G为当前扩展结点
扩展G,先到达N,N是叶结点,且25<50,不是最优解,又N不可扩展,返回到G
再扩展G到达O,O是叶结点,且0<50,不是最优解,又O不可扩展,返回到G
G没有可扩展结点,成为死结点,返回到C
C没有可扩展结点,成为死结点,返回到A
A没有可扩展结点,成为死结点,算法结束,最优解X=(0,1,1),最优值
V=50。