利用抛物线的特点比较二次函数值的大小

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用抛物线的特点比较函数值的大小

开口向下

观察抛物线不难发现这样的规律:

当开口向上时,此时抛物线上的点与对称轴的距离越远函数值越大

当开口向下时,此时抛物线上的点与对称轴的距离越远函数值越小

利用这个发现做下题:

例、已知二次函数()232y x m =-+的图像经过A ()13,y -、B )22,y 、C )35,y 三个点则1y 、2y 、3y 的大小关系为( )

A 1y >2y > 3y

B 2y >1y >3y

C 1y >3y > 2y

D 3y >2y >1y

在本题中抛物线开口向上,对称轴是x=2,此时抛物线上的点与对称轴的距离越远函数值越大

A 、

B 、

C 三点到对称轴是x=2的距离分别是322252 且有32-2252即A 点最远、C 点最近

所以1y >2y > 3y

使用这种方法比较函数值的大小时,你只需要比较它们到对称轴的距离就行了。 -1 1 x

O y

x =1 开口向上 -4

相关文档
最新文档