物理化学课程简介及教学大纲
《物理化学》课程教学大纲
物理化学Physical Chemistry一、课程基本情况课程类别:学科基础课课程学分:3学分课程总学时:48 学时,其中讲课:48 学时课程性质:必修开课学期:第3学期先修课程:高等数学、大学物理、材料化学适用专业:应用化学,材料物理等教材:沈文霞编,《物理化学核心教程》,科学出版社,2009年。
开课单位:物理与光电工程学院材料物理系二、课程性质、教学目标和任务本课程是适用于应用化学,材料物理等相关专业的学科基础课,本课程主要解决化学反应的方向和限度、化学反应的速率和机理等方面的问题,着重研究学科内更具普遍性的、更本质的化学运动内在规律,研究化学中的物质运动基本规律。
通过本课程的学习,要求学生了解和理解物理化学中重要的基本概念和基本知识,掌握各基本原理、定律、规则,并能进行计算和综合运用,解决一些实际问题,使学生在今后的实际工作中能有意识的运用化学观点去思考、认识和解决问题。
该课程的任务是激发学生学习化学的兴趣,将化学知识体系和思维方法传授给学生,培养学生分析和解决一般化学问题的能力,提高学生的化学素质,从而为后继课程以及今后从事生产和科研打下一定的化学基础。
三、教学内容和要求第1章绪论(1学时)(1)明确为什么要学习物理化学,了解物理化学课程内容;(2)掌握物理化学研究与学习的方法;(3)掌握物理量的表示与运算。
重点:物理量的表示难点:物理量的表示与运算第2章气体(2学时)(1)了解低压气体的经验定律、真实气体的状态方程;(2)理解液体的饱和蒸汽压和临界状态;(3)理解道尔顿分压定律和阿马格分体积定律(4)掌握理想气体的状态方程、混合物组成表示法;重点:混合物组成表示法;难点:液体的饱和蒸汽压和临界状态;道尔顿分压定律和阿马格分体积定律;第3章热力学第一定律(7学时)3.1 热力学概论(0.5学时)(1)了解热力学的研究对象;热力学的研究方法和(2)理解热力学研究方法的局限性;(3)掌握热力学研究方法;重点:热力学研究方法;难点:热力学研究方法的局限性;3.2 热力学的一些基本概念(0.5学时)(1)掌握热力学的一些基本概念;(2)掌握状态函数的特点;重点:热力学的一些基本概念;难点:状态函数的特点;3.3 热力学第一定律(1学时)(1)理解内能(U )和焓(H)都是状态函数、热(Q)和功(W )都是与途径有关的过程量。
物理化学课程简介及教学大纲
“物理化学”课程简介及教学大纲课程代码:课程名称:物理化学课程类别:学科基础课总学时/学分:80 / 3+2 (其中含实验或实践学时:48 )开课学期:每学年第一和第二学期适用对象:化工类专业本科生先修课程:高等数学、普通物理学、无机化学、分析化学和有机化学内容简介:物理化学也称为理论化学,是化学的重要分支之一。
物理化学是用数学和物理学的方法研究化学中最具有普遍性的一般规律。
本课程介绍研究化学变化和相变化的平衡规律和化学反应的速率规律的宏观层次理论方法,从微观到宏观层次的研究方法和多相系统的研究方法等。
包括热力学三大定律和基本方程、统计热力学、多组分系统热力学、相平衡、化学平衡、电化学、化学反应动力学、表面现象和胶体等。
一、课程性质、目的和任务【课程性质】物理化学是学生在具备了必要的高等数学、普通物理、无机化学、分析化学等基础知识之后必修的理论基础课,是应用化学、化学工程、生物化学等专业的一门主干基础理论课程,同时也是后继化学专业课程的基础。
【教学目的】通过本课程的学习使学生建立一个系统、完整的物理化学基本理论和方法的框架,掌握热力学、动力学、电化学、统计热力学中的普遍规律和实验方法;在强化基础的同时,逐步培养学生的思维能力和创造能力。
【教学任务】本课程共分十章:热力学第一定律、热力学第二定律、统计热力学初步、溶液理论、相平衡、化学平衡、电化学、化学动力学、表面现象、胶体化学。
本课程重点在于化学基础理论、基本知识的教学,在阐述基本原理时应着重讲清整个问题的思路、介绍问题的提出背景和形成理论的思维方法,使学生学到有关知识的同时能学到探索问题的思路和方法,培养解决问题的能力;在基础层次上选择有代表性的科学研究成果和实际,着眼于前沿涉及的新思想和新方法。
二、课程教学内容及要求绪论§ 1物理化学的学科特点和发展史§2物理化学的研究内容和研究方法§ 3 必要的数学知识§4物理化学的学习方法和学习要求【基本要求】1. 了解学生的心理特点和学科特点,探讨物理化学的学习方法,使学生确立学好物理化学的信心。
《物理化学》课程教学大纲
《物理化学》课程教学大纲
一、课程介绍
(一)课程性质
物理化学主要研究化学变化和相变化的平衡规律和变化速率规律,是化学工程与工艺、应用化学、生物工程、食品、材料、制药、生物技术等专业的专业课。
通过本门课程的学习,学生应比较牢固地掌握物理化学基本概念及计算方法,同时还应得到一般科学方法的训练和逻辑思维能力的培养。
这种训练和培养应贯穿在课堂教学的整个过程中,使学生体会和掌握怎样由实验结果出发进行归纳和演绎,或由假设和模型上升为理论,并结合具体条件用理论解决实际问题的方法。
(二)课程任务
教学内容由热力学和动力学为主体,涉及:热力学基本概念、定律、原理、方法,溶液、相平衡、化学平衡的热力学,唯象动力学的基本概念,反应速率理论,催化作用,电化学基础,表面现象(界面现象)及胶体化学。
通过学习本课程,要求学生对物理化学有系统的认识,并了解其在化学、化工、环境、材料、能源、生命、医药、农业等学科中的根基地位及其相互的关系。
二、学习目标
(一)课程的总体目标与基本要求
教学目的:通过本课程的学习使学生建立一个系统、完整的物理化学基本理论和基本方法的框架,掌握热力学、动力学、电化学中的普遍规律和实验方法;在强化基础的同时,逐步培养学生的思维能力和创造能力。
教学要求:本课程重点在于化学基础理论、基本知识的教学,在阐述基本原理时应着重讲清整个问题的思路、介绍问题的提出背景和形成理论的思维方法,使学生学到有关知识的同时能学到探索问题的思路和方法,培养解决问题的能力;在基础层次上选择有代表性的科学研究成果和工程实际,着眼于前沿所涉及的新思想和新方法上。
(二)各章节学习目标
三、教学大纲
五、考核要点。
《物理化学》教学大纲
《物理化学》教学大纲一、课程基本信息课程名称:物理化学课程类别:专业基础课课程学分:X学分课程总学时:X学时二、课程的性质、目的和任务(一)课程性质物理化学是化学学科的一个重要分支,是化学专业及相关专业学生必修的一门基础课程。
它运用物理学的原理和方法,研究化学变化的基本规律,是连接无机化学、有机化学、分析化学等基础学科与化工原理、化学工艺学等应用学科的桥梁。
(二)课程目的通过本课程的学习,使学生系统地掌握物理化学的基本概念、基本原理和基本方法,培养学生运用物理化学的理论和方法分析和解决化学问题的能力,为后续课程的学习和今后从事化学及相关领域的研究、开发和生产工作打下坚实的基础。
(三)课程任务1、使学生掌握热力学第一定律、热力学第二定律、热力学第三定律的基本内容,能够熟练运用热力学方法计算化学反应的热效应、熵变、焓变和自由能变化,判断化学反应的方向和限度。
2、使学生掌握多组分系统热力学的基本概念和基本定律,能够熟练运用相律分析相平衡问题,掌握单组分和双组分系统的相图及其应用。
3、使学生掌握化学平衡的基本原理,能够熟练运用化学平衡常数计算平衡组成,了解温度、压力、浓度等因素对化学平衡的影响。
4、使学生掌握电化学的基本概念和基本定律,能够熟练运用能斯特方程计算电极电势和电池电动势,了解电解、电镀、原电池等电化学过程的基本原理和应用。
5、使学生掌握化学动力学的基本概念和基本定律,能够熟练运用反应速率方程和反应级数计算反应速率,了解温度、浓度、催化剂等因素对反应速率的影响,掌握简单级数反应的动力学特征和反应机理的推测方法。
6、使学生掌握表面化学和胶体化学的基本概念和基本原理,了解表面活性剂、吸附、乳化、胶体的稳定性等表面化学和胶体化学现象的本质和应用。
三、课程教学的基本要求(一)知识要求1、掌握物理化学的基本概念、基本原理和基本公式,如热力学函数、相律、化学平衡常数、电极电势、反应速率常数等。
2、理解物理化学基本原理的推导过程和物理意义,能够运用物理化学原理分析和解决实际问题。
物理化学教学大纲
物理化学教学大纲一、课程简介物理化学是化学的一个重要分支,主要研究物质的结构、性质、变化规律,以及物质之间的相互作用等内容。
本课程旨在使学生掌握物理化学基础知识,培养学生的化学思维和实验技能,为日后深入学习化学相关专业打下坚实的基础。
二、教学目标1. 了解物理化学的基本概念和原理,掌握相关实验技能;2. 提高学生的化学思维和实验能力,培养学生的分析和解决问题的能力;3. 培养学生对物理化学领域的兴趣,为将来的学习和研究打下基础。
三、教学内容与安排1. 物理化学的基本概念1.1 物态变化1.2 热力学基础1.3 化学平衡2. 物理化学实验2.1 量热实验2.2 晶体学实验2.3 分析化学实验3. 物理化学实践3.1 计算化学3.2 显微镜技术3.3 光谱学4. 期末综合实验及成果展示四、考核方式1. 平时表现(包括课堂参与、实验操作等)占总成绩的20%;2. 期中考试占总成绩的30%;3. 实验报告和作业占总成绩的20%;4. 期末考试占总成绩的30%。
五、教学要求1. 学生应按时上课,积极参与课堂讨论,完成实验操作;2. 学生应独立完成实验报告和作业,注重实践能力的培养;3. 学生应按时复习,做好笔记和总结,为考核做好准备。
六、教学保障1. 教材:《物理化学》第5版;2. 实验器材:齐全的物理化学实验器材;3. 师资力量:有丰富教学经验的物理化学教师;4. 教学环境:整洁、安全、适合学习的教室和实验室。
七、总结通过本教学大纲的制定,旨在通盘考虑各方面的教学要求,确保学生能够全面、系统地掌握物理化学基础知识,培养其科学思维和实践能力,为将来的学习和研究提供坚实的基础。
希望学生在本课程的学习过程中能够勤奋学习,积极实践,取得优异的成绩。
祝各位同学学习进步!。
物理化学课程简介及教学大纲
“物理化学”课程简介及教学大纲课程代码:课程名称:物理化学课程类别:学科基础课总学时/学分:80 / 3+2 (其中含实验或实践学时:48 )开课学期:每学年第一和第二学期适用对象:化工类专业本科生先修课程:高等数学、普通物理学、无机化学、分析化学和有机化学内容简介:物理化学也称为理论化学,是化学的重要分支之一。
物理化学是用数学和物理学的方法研究化学中最具有普遍性的一般规律。
本课程介绍研究化学变化和相变化的平衡规律和化学反应的速率规律的宏观层次理论方法,从微观到宏观层次的研究方法和多相系统的研究方法等。
包括热力学三大定律和基本方程、统计热力学、多组分系统热力学、相平衡、化学平衡、电化学、化学反应动力学、表面现象和胶体等。
一、课程性质、目的和任务【课程性质】物理化学是学生在具备了必要的高等数学、普通物理、无机化学、分析化学等基础知识之后必修的理论基础课,是应用化学、化学工程、生物化学等专业的一门主干基础理论课程,同时也是后继化学专业课程的基础。
【教学目的】通过本课程的学习使学生建立一个系统、完整的物理化学基本理论和方法的框架,掌握热力学、动力学、电化学、统计热力学中的普遍规律和实验方法;在强化基础的同时,逐步培养学生的思维能力和创造能力。
【教学任务】本课程共分十章:热力学第一定律、热力学第二定律、统计热力学初步、溶液理论、相平衡、化学平衡、电化学、化学动力学、表面现象、胶体化学。
本课程重点在于化学基础理论、基本知识的教学,在阐述基本原理时应着重讲清整个问题的思路、介绍问题的提出背景和形成理论的思维方法,使学生学到有关知识的同时能学到探索问题的思路和方法,培养解决问题的能力;在基础层次上选择有代表性的科学研究成果和实际,着眼于前沿涉及的新思想和新方法。
二、课程教学内容及要求绪论§ 1 物理化学的学科特点和发展史§ 2 物理化学的研究内容和研究方法§ 3 必要的数学知识§ 4 物理化学的学习方法和学习要求【基本要求】1. 了解学生的心理特点和学科特点,探讨物理化学的学习方法,使学生确立学好物理化学的信心。
《物理化学》教学大纲
《物理化学》网络课程建设标准一、课程教学大纲(一)大纲说明物理化学课程是采用物理的原理和方法来研究化学中最基本的规律和理论的一门课程,是化学工程与工艺、能源化工等专业学科基础必修核心课程。
其先修课程是高等数学、大学物理、无机及分析化学、有机化学;适用化学工程与工艺、能源化工等专业。
1、课程的任务该课程主要讲述化学热力学、化学动力学、电化学、界面化学和胶体化学的基本原理、方法及其应用;通过该课程的学习,使学生能系统地掌握物理化学的基本知识和基本原理,加深对自然现象本质的认识,这些知识和原理不仅是化学的理论基础,也是其它与化学有关的技术科学的发展基础,同时要求学生学会物理化学的科学思维方法,培养学生提出问题、研究问题、分析问题的能力,培养他们获取知识并用来解决实际问题的能力。
2、课程的教学基本要求(1) 掌握物理化学基础知识,能够恰当地表达化学工程中涉及到的物理化学问题;(2) 在加强基本知识、基本理论和基本方法教学的同时,适度反映现代物理化学学科领域发展的新动向和新趋势,理论联系实际,培养学生科学的思维方法,发现问题、分析问题和解决问题的能力,以及创新思维;(3) 通过本课程的学习,要求学生对物理化学的基本概念和基本理论有较系统的理解。
对于重要的基本概念、基本原理能了解其来源、含义和适用范围;公式的推导和应用,应注意所引进的条件和实际情况,并估计其可能产生误差的根源;要求至少做200道习题。
学习要理论联系实际,在解决实际问题时,能够熟练运用所学到的物理化学知识和技能。
3、教学方法和教学形式建议本课程采用远程教学和面授辅导相结合的方式开展教学。
远程教学包括学生收看网上的IP课件和网上教学辅导等教学形式;面授辅导考虑学生在职和成人的特点和需求,在业余时间进行有针对性的学习指导。
平时作业是很重要的形成性考核手段,各级学习中心应配合面授辅导教师督促学生独立完成并及时批改和反馈,必要时应要求学生重做。
4、课程教学要求的层次1.掌握:要求学生能够全面、较深入理解和熟练掌握所学内容,并能够用其分析、初步处理和解答与应用相关的问题,能够举一反三。
物理化学 教学大纲
物理化学教学大纲一、课程背景和目标物理化学是物理学和化学的交叉学科,旨在研究和解释物质的性质和变化规律。
本课程的目标是使学生掌握物理化学的基础知识和实验技能,培养他们的科学思维和问题解决能力。
二、课程内容1. 热力学- 热力学基础概念- 热力学定律和方程- 热力学过程和熵- 化学动力学和平衡2. 量子化学- 量子力学基本原理- 原子结构和光谱学- 分子结构和化学键- 量子力学在化学中的应用3. 统计力学- 统计力学基本概念- 理想气体和非理想气体- 热力学性质的统计解释4. 电化学- 电化学基础概念- 电池和电解质溶液- 电化学动力学和电化学反应机理5. 分子光谱学- 分子光谱基本原理- 基于分子光谱的结构分析- 分子光谱在分析化学中的应用三、教学方法1. 授课教学教师采用讲授、示范等方式,结合多媒体技术进行知识传授,并通过例题和实例分析加深学生对知识的理解。
2. 实验教学通过实验教学,培养学生的实验技能和科学精神,加深对物理化学理论的理解和应用能力。
3. 研讨讨论鼓励学生参与课堂研讨和问题讨论,培养他们的团队合作和批判性思维能力。
四、教学评估与考核1. 作业与小测验定期布置练习和小测验,对学生的知识掌握情况进行评估。
2. 实验报告要求学生按要求撰写实验报告,评估其实验设计和实验结果分析的能力。
3. 期中考试和期末考试在课程中设置期中考试和期末考试,考核学生对所学知识的综合理解和应用能力。
五、参考教材- Atkins, P.W., de Paula, J. Physical Chemistry. Oxford University Press.- Levine, I.N. Physical Chemistry. McGraw-Hill Education.- McQuarrie, D.A., Simon, J.D. Physical Chemistry: A Molecular Approach. University Science Books.六、课程要求和学习建议1. 准时上课,积极参与课堂讨论和活动。
(完整版)物理化学课程教学大纲
物理化学课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;课程名称: 物理化学(PhysicalChemistry)所属专业:材料化学课程类别:专业课课程性质:专业课(必选)学分: 3学分(54学时)(二)课程简介、目标与任务、先修课与后续相关课程;课程简介:物理化学又称理论化学,是从研究化学现象和物理现象之间的相互联系入手,从而找出化学运动中最具普遍性的基本规律的一门学科。
共包括4部分内容:第1部分,热力学。
内容包括:热力学第一定律、热力学第二定律、化学势、化学平衡、相平衡。
第2部分,电化学。
内容包括:电解质溶液、可逆电池电动势、不可逆电池过程。
第3部分,表面现象与分散系统。
内容包括:表面现象、分散系统。
第4部分,化学动力学。
内容包括:化学动力学基本原理、复合反应动力学。
目标与任务:使学生掌握物理化学基本概念及计算方法,同时还应得到一般科学方法的训练和逻辑思维能力的培养。
这种训练和培养应贯穿在课堂教学的整个过程中,使学生体会和掌握怎样由实验结果出发进行归纳和演绎,或由假设和模型上升为理论,并结合具体条件用理论解决实际问题的方法。
先修课与后续相关课程:先修课:高等数学(微分、积分)、大学普通物理、无机化学、有机化学、分析化学后续相关课程:无。
(三)教材与主要参考书。
教材:物理化学简明教程,第四版,印永嘉等编,高等教育出版社出版.2007参考书目:[1] 付献彩主编,《物理化学》上、下册. 第五版.高等教育出版社出版.2006[2] 胡英主编,《物理化学》上、中、下册. 第一版,北京:高等教育出版社出版.2001[3] 宋世谟主编,《物理化学》上、下册,第四版.北京:高等教育出版社出版.2001[4] 物理化学简明教程例题与习题,第二版,印永嘉等编,高等教育出版社出版二、课程内容与安排绪论讲授,1学时。
第一章热力学第一定律1.1 热力学的研究对象1.2 几个基本概念1.3 能量守恒1.4 体积功1.5 定容及定压下的热1.6 理想气体的热力学能和焓1.7 热容1.8 理想气体的绝热过程1.9 实际气体的节流膨胀1.10 化学反应的热效应1.11生成焓及燃烧焓1.12反应焓与温度的关系(一)教学方法与学时分配讲授,8学时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“物理化学”课程简介及教学大纲课程代码:课程名称:物理化学课程类别:学科基础课总学时/学分:80 / 3+2 (其中含实验或实践学时:48 )开课学期:每学年第一和第二学期适用对象:化工类专业本科生先修课程:高等数学、普通物理学、无机化学、分析化学和有机化学内容简介:物理化学也称为理论化学,是化学的重要分支之一。
物理化学是用数学和物理学的方法研究化学中最具有普遍性的一般规律。
本课程介绍研究化学变化和相变化的平衡规律和化学反应的速率规律的宏观层次理论方法,从微观到宏观层次的研究方法和多相系统的研究方法等。
包括热力学三大定律和基本方程、统计热力学、多组分系统热力学、相平衡、化学平衡、电化学、化学反应动力学、表面现象和胶体等。
一、课程性质、目的和任务【课程性质】物理化学是学生在具备了必要的高等数学、普通物理、无机化学、分析化学等基础知识之后必修的理论基础课,是应用化学、化学工程、生物化学等专业的一门主干基础理论课程,同时也是后继化学专业课程的基础。
【教学目的】通过本课程的学习使学生建立一个系统、完整的物理化学基本理论和方法的框架,掌握热力学、动力学、电化学、统计热力学中的普遍规律和实验方法;在强化基础的同时,逐步培养学生的思维能力和创造能力。
【教学任务】本课程共分十章:热力学第一定律、热力学第二定律、统计热力学初步、溶液理论、相平衡、化学平衡、电化学、化学动力学、表面现象、胶体化学。
本课程重点在于化学基础理论、基本知识的教学,在阐述基本原理时应着重讲清整个问题的思路、介绍问题的提出背景和形成理论的思维方法,使学生学到有关知识的同时能学到探索问题的思路和方法,培养解决问题的能力;在基础层次上选择有代表性的科学研究成果和实际,着眼于前沿涉及的新思想和新方法。
二、课程教学内容及要求绪论§ 1 物理化学的学科特点和发展史§ 2 物理化学的研究内容和研究方法§ 3 必要的数学知识§ 4 物理化学的学习方法和学习要求【基本要求】1. 了解学生的心理特点和学科特点,探讨物理化学的学习方法,使学生确立学好物理化学的信心。
第一章热力学第一定律§ 1 热力学概论:热力学的特点和局限性,热力学的基本概念§ 2 热和功:热和功的定义、性质、常见过程体积功的计算,可逆过程§ 3 热力学第一定律:热力学第一定律经典说法和数学表达式§ 4 等容热等压热及焓§ 5 热力学第一定律在理想气体中的应用§ 6 热容及热的计算§ 7 理想气体的绝热可逆过程§ 8 焦耳-汤姆逊效应§ 9 热化学【基本要求】1. 掌握热力学基础的概念。
2. 熟练掌握热力学第一定律,明确热和功只在体系与环境有能量交换时才有意义,熟知功和热正、负号的取号惯例。
3. 明确准静态过程与可逆过程的意义。
4. 掌握理想气体的热力学能及焓只是温度的函数,常见过程∆U,∆H,Q,W的计算。
5. 掌握等容热效应和等压热效应之间的关系,会应用赫斯定律、物质的标准摩尔生成焓、标准摩尔燃烧焓计算化学反应热效应。
7. 掌握基尔霍夫方程。
【重点】1. 状态函数、可逆过程、内能和焓、热和功等概念,热力学第一定律。
2. 计算理想气体在等温、等压、绝热过程中的△U、△H、Q和W的计算。
的计算。
3. 化学反应热△r Hθm【难点】1. 状态函数的特点。
2.基尔霍夫定律和绝热反应的有关计算。
第二章热力学第二定律§ 1 引言:自发过程的共性§ 2 热力学第二定律的经验说法§ 3卡诺定理§ 4 熵的概念:熵的概念, 第二定律的数学表达式, 熵增加原理。
§ 5 熵变的计算§ 6 熵的统计意义和热力学第三定律§ 7 吉布斯自由能和亥姆霍兹自由能§ 8 △G的计算与T、P之间的关系§ 9 热力学基本关系式【基本要求】1. 了解自发过程的特征和热力学第二定律的经典说法。
掌握热力学第二定律的数学表达式,即克劳修斯不等式。
2. 熟练掌握熵增加原理。
会使用规定熵来计算化学变化的熵变。
5. 理解为什么定义亥姆霍兹自由能和吉布斯自由能,它们的用处及适用条件。
6. 会熟练计算简单状态变化过程和相变化过程的△S、△F、△G,并用以判断过程方向,学会设计简单的可逆过程。
7. 掌握热力学基本方程的表达式及应用条件,了解麦克斯韦关系式。
8. 较熟练地运用吉布斯-亥姆霍兹公式。
【重点】1. △S、△F、△G的方向性判据。
2. 常见过程中的△S、△H和△G的计算。
【难点】1. 一些常见过程的△S计算,对熵的统计意义的理解。
2. 吉布斯-亥姆霍兹公式的有关计算。
第三章溶液理论§ 1 偏摩尔量§ 2 化学势§ 3 气体化学势等温式§ 3 溶液组成的表示法§ 4 稀溶液中的两个经验定律§ 5 理想溶液: 理想溶液的定义、通性及各组分的化学势§ 6 稀溶液: 稀溶液的定义,各组分的化学势,稀溶液的依数性§ 7 非理想溶液: 各组分化学势,活度、活度系数。
【基本要求】1. 了解偏摩尔量和化学势的概念及它们之间的区别和相同点。
2. 掌握拉乌尔(Raoult)定律和亨利(Henry)定律以及它们的应用。
3. 了解标准态的概念,理解理想系统(理想溶液及理想稀溶液)中各组分化学势的表达式。
4. 熟练掌握理想溶液和理想稀溶液的气、液两相的平衡组成计算。
5. 熟练掌握稀溶液依数性的有关计算。
6. 理解逸度和活度的概念,了解逸度和活度的标准态。
【重点】1. 利用拉乌尔定律和亨利定律的简单计算。
2. 理想溶液和理想稀溶液的气、液两相的平衡组成计算。
3. 稀溶液依数性的有关计算。
第五章相平衡§ 1 相律:相、组分、组分数、自由度的概念;相律的引出和意义。
§ 2 相律的应用范例§ 3 单组分系统相图:克劳修斯-克拉贝龙方程。
水的相图分析。
§ 4 双组分系统相图:完全互溶双组分系统;部分互溶双液系;完全不互溶双液系;二组分固-液系相图(有低共熔混合物的体系,生成化合物的体系,生成固熔体的体系);热分析法和溶解度法绘制相图。
【基本要求】1. 熟练掌握相平衡的基本概念,相律。
2. 熟练掌握克拉贝龙方程和克-克方程的使用条件和应用方法。
3. 理解单组分系统相图中点,线和面的含义及自由度。
掌握水的相图,掌握三相点和冰点的区别。
4. 熟练掌握完全互溶双组分系统相图,了解蒸馏和精溜原理。
5. 了解部分互溶双液系相图和不互溶双液系相图和水蒸气蒸馏的原理。
6. 掌握热分析法和溶解度法绘制相图的方法。
了解利用相图提纯物质。
【重点】1.组分数和自由度和相数的计算。
2.完全互溶双液系相图,简单二组分低共熔物的相图的判读。
3.杠杆规则在相图中的应用。
【难点】1. 杠杆规则在相图中的应用。
2. 相图的动态分析和绘制。
第六章化学平衡§ 1 化学反应的方向和限度§ 2 范特荷夫等温方程§ 3 平衡常数的表示法§ 4 平衡常数的测定和平衡转化率的计算。
§ 5 标准生成吉布斯自由能和标准反应吉布斯自由能§ 6 温度,压力,惰性气体对平衡常数的影响。
§ 7 同时平衡。
【基本要求】本章是重点但不属难点章节,通过对该章节的学习,要求有下列几点:1. 熟练掌握根据范特霍夫等温方程,由KӨ及J的相对大小判断反应方向。
2. 掌握标准生成吉布斯自由能的意义及标准反应吉布斯自由能的计算方法。
3. 理解对任何反应系统的标准平衡常数都只是温度的函数。
4. 熟悉K、K P、K X和K C间的关系。
p5. 了解实际气体化学反应的平衡常数表达式,掌握高压下气体逸度的计算以及实际气体平衡常数与逸度和逸度系数的关系。
6. 掌握利用标准平衡常数计算平衡转化率、平衡组成、化合物的分解压力、分解温度等。
7. 掌握各种因素对平衡的影响。
【重点】1. 化学反应平衡常数的表达式。
2. 利用平衡常数计算平衡组成,范特霍夫公式的有关计算。
3. 温度对化学平衡的影响。
第七章电化学§ 1 电解质溶液的电导:电导,电导率,摩尔电导率。
§ 2 离子独立移动定律§ 3 离子倘度和迁移数§ 4 电导测定的应用§ 5 强电解质溶液理论:离子强度,电解质平均活度和平均活度系数,德拜体格尔离子呼吸理论。
§ 6 可逆电池:定义,符号,电动势,电池反应热力学,浓差电池,液体接界电位。
§ 7 电极电位:标准氢电极,参比电极,电极电位表达式,电极电位与氧化还原能力的关系,可逆电极的类型,电极电位的计算。
§ 8 电池电动势测定的应用举例,【基本要求】1. 了解迁移数的意义及常用测定迁移数的方法。
2. 明确电导率、摩尔电导率的意义及它们与溶液浓度的关系。
3. 熟悉离子独立移动定律及电导测定的一些应用。
4. 掌握电解质的离子平均活度系数的意义及其计算方法。
5. 了解强电解质溶液理论,会使用德拜-休克尔极限公式。
6. 明确电动势与△r G m的关系。
熟悉电极电势的一套符号惯例。
7. 熟悉标准电极电势表的应用。
8. 对于所给电池能熟练正确地写出电极反应和电池反应并能计算其电动势,能根据简单的化学反应来设计电池。
9. 明确温度对电动势的影响及了解△r H m和△r S m的计算。
10. 了解电动势产生的机理及电动势测定法的一些应用,特别要求学生掌握可逆电池反应的热力学及电动势测定的应用。
11. 了解金属腐蚀的原因和各种防腐的方法。
了解化学电源的类型及应用。
【重点】1.电导率、摩尔电导率及它们与溶液浓度的关系。
2.离子独立移动定律及电导测定的一些应用。
3.离子平均活度系数的意义及其计算方法。
4.标准电极电势的应用,能斯特公式的有关计算,5.E与△r G m关系,温度对E的影响及计算△r H m和△r S m的计算。
6.电动势测定的应用。
【难点】1. 迁移数的计算及其与摩尔电导率、离子迁移率之间的关系。
2. 简单的化学反应来设计电池和液接电势的计算。
第八章化学动力学与催化作用§ 1 基本概念§ 2 简单级数反应:一级反应,二级反应,三级反应,零级反应。
§ 3 温度对反应速率的影响:阿伦尼乌斯方程,活化能。
§ 4 复杂反应:对峙反应,连串反应,平行反应,链反应。
§ 5 反应机理:稳态近似,平衡假设,速控步。
§ 6 反应速率理论:碰撞理论,过渡态理论,单分子反应理论。
§ 7 光化学:光化学定律,光化合反应,光分解反应,激光化学反应。