人教版六年级数学下册《圆柱的体积》课件PPT

合集下载

六下数学《圆柱的体积(练习课)》课件

六下数学《圆柱的体积(练习课)》课件

求侧面积的一半+1个底面积 求圆柱体积的一半
拓展题 如图,想想办法,你能否求
它的体积?( 单位:厘米)
4
2
6
5024÷(3.14×10×10)=16(厘米)
答:它的高是16厘米。
一个圆柱形水槽里面有10厘米深的水, 水槽底面积是144平方厘米,将一个边长6厘 米的正方体铁块放入水中,水面将上升多少 厘米?
V=6×6×6=216(立方厘米)
216÷144=1.5厘米
答:水面将上升1.5厘米。
一个无盖的圆柱形水桶,侧面积是 188.4平方分米,底面周长是62.8分米 做这个水桶至少要多少平方分米?这 个水桶的容积是多少立方分米?
h=188.4÷62.8=3分米 r=62.8÷3.14÷2=10分米 S=3.14×10×10+188.4=502.4(平方分米) V=3.14×10×10×3=942(立方分米) 答:做这个水桶至少要502.4平方分米,它的容积式942立方分米。
将一个圆柱体沿着底面直径切成两个半圆柱, 表面积增加了40平方厘米,圆柱的底面直径为4 厘米,这个圆柱的体积是多少立方厘米?
三、解决问题
一个圆柱形状的金属零件,底面周 长31.4厘米,高5厘米。把它放入一个装 满水的容器中,完全浸没。问:会溢出 多少毫升的水?
V=sh S: 31.4÷3.14÷2=5(厘米)
3.14×52=78.5(平方厘米)
V: 78.5×5=392.5(立方厘米)
一个圆柱形状的奶粉盒,体积是 5024立方厘米,底面半径10厘米,它的 高是多少厘米?
(表面积=侧面积+1个底面积)
(3)挖成这个水池,共需挖土多少立方米?
(体积=底面积×高) v=π(d÷2)2h

数学人教版六年级下册《圆柱的认识》课件

数学人教版六年级下册《圆柱的认识》课件
因此,圆柱侧面积的 计算公式为:侧面积 = 底面周长 × 高。
将底面周长代入侧面 积公式,得到:侧面 积 = 2 × π × 半径 × 高。
底面周长可以通过圆 的周长公式计算:底 面周长 = 2 × π × 半径。
底面积计算公式推导
01
圆柱的底面积是指圆柱底面的面 积,即一个圆的面积。
02
圆的面积计算公式为:底面积 = π × 半径²。
机械领域
在机械制造中,圆柱形的零件非 常常见,如轴承、齿轮等。这些 零件的形状和尺寸精度对机器的
性能和使用寿命有很大影响。
日常生活
在日常生活中,我们也经常接触 到圆柱形的物体,如罐头、水杯 、笔筒等。了解圆柱的性质和特 点有助于我们更好地理解和使用
这些物品。
02
圆柱表面积计算方法
侧面积计算公式推导
典型例题解析
例题1
一个圆柱的底面半径是3厘米,高 是5厘米,求它的体积。
解析
根据圆柱体积计算公式V = πr²h, 将已知条件代入公式进行计算即可 。
例题2
一个圆柱的侧面积是100平方厘米, 底面半径是5厘米,求它的体积。
解析
首先根据侧面积和底面半径求出圆柱 的高,然后再利用体积公式进行计算 。
例题3
面积公式,总表面积 = 2 × π × 3² + 94.2 = 150.72平方厘米。
03
例题2
一个圆柱的侧面积是150.72平方厘米,高是4厘米,求它的底面半径。
03
圆柱体积计算方法
体积计算公式推导过程
圆柱体积计算公式的推导基于长方体 体积的计算方法。
当切割的小长方体的数量足够多时, 可以准确地得到圆柱的体积计算公式 :V = πr²h。

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知

人教版六年级数学下册第三单元第11课《整理和复习》课件

人教版六年级数学下册第三单元第11课《整理和复习》课件

×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
? 出米率 = 磨出大米的质量÷稻谷的质量
磨出大米的质量 = 稻谷的质量×出米率
27.76×70% = 19.432(千克) 答:一漏斗稻谷能磨出19.432千克大米。
如图,将一个圆柱切成4份,增加了多少表面积?
增加了4个长方 形的面积
12×16×4 = 192×4 = 768(平方厘米) 答:增加了768平方厘米。
圆锥只有一条高
圆锥的底面是一个圆, 侧面是一个扇形。
圆锥可看成由三角形旋转形成的。
6.圆锥的体积
圆锥的体积是与它等底等高的圆柱体积的
1 3

底面积×高
圆锥体积=13×底面积×高 V圆锥=13×πr2×h
7.解决问题
切割问题:切割前后的表面积增加了,体积不变。
新增两个一组邻边分别 为圆柱的底面直径和高 的长方形或正方形。
C.缩小到原来的21
(7)用一块长25.12厘米,宽18.84厘米的长方形铁皮,配 上两个直径为( C )厘米的圆形铁皮正好可以做成 圆柱形容器。 A.3 B.8 C.6或8
3.计算圆柱的表面积。(单位: cm)(8分) 3.14×8×20+3.14×(8÷2)2×2=602.88(cm2)

《圆柱的认识以及体积》(课件)-2021-2022学年数学六年级下册

《圆柱的认识以及体积》(课件)-2021-2022学年数学六年级下册

4.压路机前轮直径是1.6m,长2m,它转动一周,压路 的面积是多少平方米?
求圆柱侧面积
3.14×1.6×2=10.048(m2)
答:压路的面积是10.048平方米。
5.制作一个底面直径20cm,长50cm的圆柱形通风管,至少 要用多少平方厘米的铁皮?
求圆柱侧面积
3.14×20×50=3140(cm2) 答:至少要用3140平方厘米的铁皮。
S=πr 2
r
πr
S=πr ×r =πr 2
把圆柱的底面平均分的份数越多,切拼成的立体图形 越接近长方体。
思考: ①拼成的长方体的底面积与原来圆柱的底面积有什 么关系?为什么? ②拼成的长方体的高与原来圆柱的高有什么关系? 为什么? ③拼成的长方体的体积与原来圆柱的体积有什么关 系?为什么?
)里画



3. 转动长方形ABCD,生成右面的两个圆柱。说说
它们分别是以长方形的哪条边为轴旋转而成的,底面半 径和高分别是多少。
A
D
1cm
B 2cm C
(1)
(2)
那长方形ABCD如果以AD边为轴旋转,会形 成哪个圆柱呢?请你动手试一试。
答:长方形ABCD如果以AD边为轴旋转,会形成(2)号圆柱。 底面半径是1cm,高是2cm。
?cm S侧:18.84×10=188.4(cm2)
18.84cm 10cm r:18.84÷3.14÷2=3(cm) S底:3.14×32×2=56.52(cm2)
S表:188.4+56.52=244.92(cm2)
1.冬天护林工人给圆柱形的树干的下端涂防蛀涂料,那么 粉刷树干的面积是指树的( B )。
有一个棱长为10厘米的正方体木块,把它削成一个最 大的圆柱体,应削多少体积的木头?

部编人教版六年级数学下册第三单元课件ppt第6课时 圆柱的体积

部编人教版六年级数学下册第三单元课件ppt第6课时 圆柱的体积

状元成才路
状元成才路
状元成才路
2.计算下面各圆状元柱成才路 的体积。(单位:c状m元成才路 )
状元成才路
状元成才路 状元成才路
状元成才路
状元成才路 状元成才路
状元成才路
状元成才路 状元成才路
状元成才路
状元成才路
3.14×状元成才5路 2×2=157(cm状3元成)才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路 状元成才路
状元成才路
3.14×(4÷2) ×12 状元成才路
状元成才路
2状元成才路
状元成才路
=150.72(cm3) 状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路 状元成才路
状元成才路 状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
18.84÷状元成才路3.14÷2=3(dm) 状元成才路
3.状1元成才4路 ×32×4=113.0状4元成才(路 dm3)
答:这个圆柱的体积是113.04dm 。 状元成才路
状元成才路
状元成才路
3
状元成才路
随堂演练
状元成才路
1.判断。
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
状元成才路
3.14×(1÷2)2×1状元成0才路 =7.85(立方米) 状元成才路 状元成才路

部编六年级数学《圆柱的体积》刘育华PPT课件 一等奖新名师优质课获奖比赛公开北京

部编六年级数学《圆柱的体积》刘育华PPT课件 一等奖新名师优质课获奖比赛公开北京
1.5米=150厘米 20×150=3000(立方厘米)
答:它的体积是3000立方厘米。
名师PPT课件Βιβλιοθήκη 填表。底面积(平方米)
15

(米)
3
6.4
4
圆柱体积
(立方米)
45
25.6
4分米
求各圆柱的 体积。
10分米 0.5分米
0.8米
谢谢观赏!
名师PPT课件
讨论
(1)已知圆的半径和高,怎样求圆柱的体积?
(2)已知圆的直径和高,怎样求圆柱的体积?
(3)已知圆的周长和高,怎样求圆柱的体积?
名师PPT课件
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
名师PPT课件
努 力 吧 !
名师PPT课件
判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。(×) (2)圆柱体的高越长,它的体积越大。(×) (3)圆柱体的体积与长方体的体积相等。(×) (4)圆柱体的底面直径和高可以相等。(√ )
名师PPT课件
圆柱体积=底面积×高
一个圆柱形水桶,从桶内量底面直径是3分 米,高是4分米,这个水桶的容积是多少升?
3分米
4分米
(1)水桶的底面积:3.14×(
3 2
)2=7.065(dm2)
(2)水桶的容积: 7.065×4=28.26(L)
名师PPT课件
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
“比赛PPT课件,适合公开课赛课!”
名师PPT课件
名师PPT课件

圆柱的体积课件PPT2人教版

圆柱的体积课件PPT2人教版

3、V=Πr h 长方体的高等于圆柱的高。
2 4、一个圆柱形粮囤,从里面量得底面直径是 3 m,高 2 m。
3、小明和妈妈出去游玩,带了一个圆柱形保温杯,从里面量底面直径是 8 cm,高是 15 cm。 2、怎样求长方体和正方体的体积? 长方体的底面积等于圆柱的底面积。 如果你知道圆柱的底面半径r 、直径d和高h ,你能写出圆柱的体积公式吗? 这个零件的体积是多少立方厘米? 花坛的底面内直径为 3 m,高为 0.
2、一个圆柱形零件,底面半径是5厘米,高是8 厘米。这个零件的体积是多少立方厘米?
【升级练习】
1、一根圆柱形木料,底面周长是 62.8 厘米,高是 50 厘米。这根木料的体积是多少?
2、下图的杯子能不能装下这袋牛奶?(数据是从杯子里面测量得到的。)
3、小明和妈妈出去游玩,带了一个圆柱形保温杯,从里面量底面直径是 8 cm,高是 15 cm。如果两人游玩期间 要喝 1 L 水,带这杯水够吗?
20cm
10cm
12、下面 4 个图形的面积都是 36dm2(图中单位:dm)。用这些图形分别卷成圆柱,哪个圆柱的体 积最小?哪个圆柱的体积最大?你有什么发现?
18 2
12 3
9 4
6 6
【课堂总结】
底面积 ×高
1、 圆柱的体积 =底面积 × 高 圆可以转化成近似的长方形计算面积,圆柱可以转化成近似的长方体计算体积吗?
花坛的底面内直径为 3 m,高为 0.
一个容积为 1 L 的保温壶,50 秒能装满水吗?
5 m,两个花坛中共需要填土多少立方米?
一个容积为 1 L 的保温壶,50 秒能装满水吗?
5 dm,体积为 81dm3 ,另一个高为 3 dm,它的体积如果每立方米玉米约重 750 kg,这个粮囤能装多少吨玉米?

人教版六年级数学下册《圆柱的体积》课件ppt

人教版六年级数学下册《圆柱的体积》课件ppt

个花坛一共需要填土多少立方米?
高为0.8m是多余信息, 花坛里所填土的体积只
花坛的底面积 3.14×(4÷2)=2 3.14×2 2=12.56
(m2
)
于土的高度有关。
两个花坛的体积
12.56×0.5×2=6.28×2=12.56(m³)
答:两个花坛一共需要填土12.56立方米。
课堂小结
这节课你们都学会了哪些知识?
人教版 数学 六年级 下册
3 圆柱与圆锥
圆柱与圆锥
圆柱的体积
复习导入
什么是体积?
圆柱与圆锥
怎样求长方体和 正方体的体积?
物体所占空间的大小是物体的体积。 高 宽 长方体的体积=长×宽×高

正方体的体积=棱长×棱长×棱长
棱长
复习导入
圆柱与圆锥
回想:圆的面积计算公式是怎样推导出来的?
r πr
S=πr2
杯子的底面积: 3.14 ×(8÷2)2
=3.14 ×16 =50.24(cm2)
=502.4(mL) 牛奶的体积: 240×2=480(mL) 502.4 >480 答:杯子能装下2袋这样的牛奶。
课堂练习
圆柱与圆锥
小明和妈妈出去游玩,带了一个圆柱形保温壶,从里 面量底面直径是8cm,高是15cm。如果两人游玩期间 要喝1L水,带这壶水够喝吗?
保温壶的底面积:
3.14×(8÷2)2 =3.14×16 =50.24(cm2)
保温壶的容积:
50.24×15=753.6( cm3 ) =0.7536(L)
1L>0.7536 L
答:带这壶水不够喝。
课堂练习
圆柱与圆锥
一根圆柱形木料底面直径是0.4m,长5m。如果做一张 课桌用去木料0.02m3,这根木料最多能做多少张课桌?

人教版六年级数学下册第三单元第11课《整理和复习》课件

人教版六年级数学下册第三单元第11课《整理和复习》课件
少立方分米?(结果保留一位小数) 24÷12=2(dm) 3.14×(2÷2)2×2×13≈2.1(dm3) 答:削成的圆锥的体积约是 2.1 dm3。
6.乐乐先用橡皮泥做了一个圆柱,再在圆柱中凿了四 个相同的圆柱形孔,剩余部分的体积是多少立方厘 米?(大圆柱的底面直径为24 cm,小圆柱的底面直径 为 38.1c4m×,(2高4÷都2是)2×151c5m-)3.14×(8÷2)2×15×4=3768(cm3) 答:剩余部分的体积是3768 cm3。
(1)这个进料漏斗大约能装多少千克稻谷? (稻谷不超出漏斗上沿,得数保留整数。)
先求这个进料漏斗的体积 × 每立方分米稻谷质量
圆锥的体积 圆柱的体积
3.14×(4÷2)2×4.2×
1 3
+
3.14×(4÷2)2×2
一种水稻磨米机的进料漏斗由圆柱和圆锥两部分组成。 圆柱和圆锥的底面直径都是4dm,圆柱高2dm,圆锥高 4.2dm。每立方分米稻谷大约重0.65kg。
×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
7.一管鞋油的出口直径为5 mm,爸爸每天挤出 20 mm长的鞋油擦鞋,这管鞋油可用36天。这 管鞋油有多少立方毫米? 3.14×(5÷2)2×20×36=14130(mm3) 答:这管鞋油有14130 mm3。

人教版六年级数学下册《圆柱的体积》课件

人教版六年级数学下册《圆柱的体积》课件
的值。 3. 求方程的解的过程叫解方程。
(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。

《圆柱的体积》PPT课件

《圆柱的体积》PPT课件
底面积

圆柱的体积=底面积×高
圆 柱 的 高
底面 半径 圆柱底面周长的一半
填空
(1)把圆柱的底面平均分成若干份,沿圆柱的高 切开后,可以拼成一个近似的( 长方体),拼成的 长方体的底面积等于圆柱的(底面积 ),高就是圆
柱的( 高).
(2)用字母V表示圆柱的体积,S表示圆柱的底面积, h表示圆柱的高,圆柱的体积公式可以写成
12平方分米 6 分 米
12×6
V=s h
(1)
.
3 分 米
7分米
3.14 ×32 ×7
V= 兀r 2× h
(2)
3.14 ×(6÷2)2 ×8 V=兀(d÷2)2×h
(3)
金箍棒底面周长是12.56cm,长是200cm。这根金箍 棒的体积是多少立方厘米?
底面半径:12.56÷3.14÷2=2(cm) 底面积: 3.14×22=12.56(cm3)
方厘米)
答:它的体积是3000立方厘米。
你收获了 什么?
直柱体的体积 = 底面积×高
V =s h
体积: 12.56×200=2512(cm3) 答:这根金箍棒的体积是2512cm3。 如果这根金箍棒是铁制的,每立方厘米铁的质量为 7.9g,这根金箍棒的质量为多少千克?
7.9×2512=19844.8(g)=19.8448
答:这根金箍(棒k重g)19.8448千克。
例4 一根圆柱形钢材,底面积 是20平方厘米,高是1.5米。 它的体积是多少?
( V=Sh )
3.14×0.42×5 =3.14×0.16×5
=3.14×0.8 =2.512(m3) 答:需要2.512m3木材。
3.14×(6÷2)2×16 =3.14×9×16 =452.16(cm3) =452.16(毫升)

《圆柱的认识》ppt课件

《圆柱的认识》ppt课件
圆柱的两个底面是相等的圆,侧面 是一个曲面,展开后是一个长方形 或正方形。
底面、侧面和高等元素
01
02
03
底面
圆柱的两个底面是相等的 圆,它们平行且在同一平 面内。
侧面
圆柱的侧面是一个曲面, 它连接着两个底面。

圆柱的高是两个底面之间 的距离,它表示圆柱的竖 直高度。
圆柱与长方体关系
形状差异
圆柱与长方体在形状上有明显差异, 圆柱具有弯曲的侧面和圆形的底面, 而长方体则由六个矩形面组成。
应用场景
圆柱和长方体在实际生活中都有广泛 的应用。例如,圆柱形的容器、管道 和柱子等,长方体的箱子、建筑物和 家具等。
体积计算
虽然形状不同,但圆柱和长方体都可
以通过相应的公式来计算体积。圆柱
的体积公式为V=πr²h,长方体的体积
公式为V=lwh。
02
圆柱表面积计算方法
侧面积计算公式
01
圆柱侧面积 = 底面周长 × 高
《圆柱的认识》ppt课件
目录
• 圆柱基本概念与性质 • 圆柱表面积计算方法 • 圆柱体积计算方法 • 圆柱在日常生活中的应用 • 圆柱相关数学问题探讨 • 总结回顾与拓展延伸
01
圆柱基本概念与性质
圆柱定义及特点
圆柱定义
圆柱是由两个平行且相等的圆面以 及连接这两个圆面的曲面所围成的 几何体。
圆柱特点
已知圆柱底面直径和高, 需先将直径转换为半径 后代入公式求解。
已知圆柱底面积和高, 可直接使用底面积乘以 高求解。
04
已知圆柱侧面积和高, 需通过侧面积公式反推 出底面半径后代入体积 公式求解。
与其他几何体体积比较
与立方体比较
当圆柱的高等于直径时,其体积 最大,超过同等尺寸的立方体。

六年级数学下册《圆柱和圆锥的认识》课件

六年级数学下册《圆柱和圆锥的认识》课件
定积分法
使用定积分求出圆锥的体积公式,再代入底面半径和高度即可求得圆锥的体积。
圆台的定义和特征
定义
圆台是由一个上底面半径、下底面半径、高和侧面 组成的几何图形。
特征
圆台的侧面是一个梯形,底面圆的半径和高度可确 定圆台的大小。
实际应用
圆台广泛应用于生活中的各种容器和建筑结构中, 比如灯罩和教堂尖顶。
圆锥广泛应用于生活中的各种容器和建筑结构中,比如冰淇淋蛋筒和火车车头。
圆锥的表面积求解方法
公式法
使用圆锥的侧面积公式和底面积公式相加即可求得 圆锥的表面积。
展开图法
将圆锥展开成一个弓形,在弓形的开端加上一个扇 形即可得到圆锥的展开图,再利用展开图计算圆锥 的表面积。
圆锥的体积求解方法
底面积法
使用底面积公式和三角形面积公式计算圆锥的体积。
公式法
使用圆台的体积公式即可求得圆台的体积。
几何体分解法
可以将圆台分解为一个圆锥和一个圆柱,分别计算 它们的体积后相加即可得到圆台的体积。
圆柱与圆锥的差异和联系
相同点
• 都有底面和侧面 • 表面积和体积的计算方法类似 • 都广泛应用于实际生活和工程中
不同点
• 底面形状不同:圆柱底面为圆形,圆锥底面 为圆形或椭圆形
交通锥标志
交通锥一般用于道路施工和事故现场,图标通常设 计成圆锥形,用以提醒司机注意交通安全。
数学思维拓展:解决圆柱和圆锥问题的 策略
1
抽象转化法
将题目抽象成一些基本的几何图形,然后利用几何图形的相似、等量关系等解题。
2
代数运算法
当几何图形较为复杂时,可以将某些参 一个圆锥的底面半径为5cm,高为12cm,它 的表面积是多少?
圆柱和圆锥的学习方法和技巧

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

部编版六年级数学下册第三单元《圆柱的体积》(复习课件)

大?你有什么发现?
18

12
9
6
2 3 4 6
图1
以长方形的宽 图1
为底面周长:
图2
5π4>
36 π

27 π

18 π
图3
图4的体积最大。 图4
图2
图3
图4
π×(2÷π÷2)²×2=1π8(dm³)
π×(3÷π÷2)²×3= 2π7(dm³)
π×(4÷π÷2)²×4= 3π6(dm³)
π×(6÷π÷2)²×6= 5π4(dm³)
求高为12cm圆柱的体积。
(6÷2)2×3.14×12 =9×3.14×12 =339.12(cm3) =339.12(mL) 答:小红喝了339.12mL的水。
两个底面积相等的圆柱,一个高为4.5dm,体积为81dm3。 另一个高为3dm,它的体积是多少?
只要求出其中一 个圆柱的底面积, 也就得出了另一 个圆柱的底面积。
下面4个图形的面积都是36dm2(图中单位:dm)。
用这些图形分别卷成圆柱,哪个圆柱的体积最小?哪个圆柱的体积最
大?你有什么发现?
18
12
9
6
2 3 4 6
图1
图2
同一个长方形,以 长为底面周长比以 宽为底面周长卷成 的圆柱体积大。
1
图3
图4
侧面积相等的圆柱, 底面周长比高大得 越多,体积就越大。 否则就越小。
=3.14×400×10
20cm
20cm,高10cm。
=1256×10
=12560(cm³)
答:以宽为轴旋转一周,得到的圆柱的体积是12560cm³。
我国是一个水资源短缺、水旱灾害频繁的国家, 全国669座城市中有400座供水不足,110座严重缺 水。但是,在一些校园内经常会发现学生忘关水龙 头的现象,如果学校自来水管的内直径是2厘米, 水管内水的流速是每秒8分米。小军去水池洗手时, 忘记关掉水龙头,像这样5分钟会浪费多少升水?

小学数学六年级下册:1.圆柱第7课时解决问题-优质课件(图文并茂)

小学数学六年级下册:1.圆柱第7课时解决问题-优质课件(图文并茂)
六年级数学下册(RJ)
教学课件
第 3 单元
圆柱与圆锥
1. 圆 柱
第 7 课时 解 决 问 题
一、探索新知
一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧 倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积 是多少?
7
能不能转化成圆柱呢?
7cm
这个瓶子不是一个完整的 圆柱,无法直接计算容积。
2. 一个圆柱的高是5cm,若高增加2cm(如图 所示),圆柱的表面积就增加25.12cm2。原来圆柱 的体积是多少立方厘米? 25.12÷2÷3.14÷2=2(cm) 3.14×22×5=62.8(cm3) 答:原来圆柱的体积是62.8cm3。
三、课堂小结
正放时水的体积+倒放瓶子时空余部分的容积=瓶 子的容积;利用体积不变的特性,把不规则圆柱转化 成规则圆柱来计算。
81 ÷4.5 ×3 =18 ×3 =54(dm³)
答:它的体积是54dm³ 。
10. 一个圆柱形玻璃容器的底面直径是10cm,把一块完全浸 泡在这个容器的水中的铁块取出后,水面下降2cm。这块铁 块的体积是多少?
请你想一想,如何求这 块铁块的体积?
2 3.14×(10÷2) ×2 =3.14×5² ×2 =3.14×25×2 =78.5×2 =157(cm³ )
7. 学校要在教学区和操场之间修一道围墙,原计划用土35m³。 后来多开了一个厚度为25cm的月亮门,减少了土石的用量。 现在用了多少立方米的土石?
请你仔细想一想,要想知道 现在用多少立方米的土石? 就要先求什么? 35-3.14×(2÷2)×0.25 =35-3.14×1×0.25 =35-0.785 =34.215(m³ )
4.一个圆柱的体积是80cm3,底面积是16cm。 它的高是多少厘米 分析:此题为已知圆柱体积和底面积求高,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)圆柱体的底面直径和高可以相等。( √)
绿色圃中小学教育网
圆柱体积=底面积×高
1.5米=150厘米 20×150=3000(立方厘米)
答:它的体积是 3000 立方厘米。 绿色圃中小学教育网

填表。
底面积
(平方米)
一个圆柱形水桶,从桶内量底面直径是3分 米,高是4分米,这个水桶的容积是多少升?
3分米 4分米
3 2 2 (1)水桶的底面积:3.14×( ) =7.065(dm ) 2 (2)水桶的容积: 7.065×4=28.26(L)
绿色圃中小学教育网
一根圆柱形铁棒,底面周长是12.56厘米, 长是100厘米,它的体积是多少?
绿色圃中小学教育网
讨怎样求圆柱的体积? (3)已知圆的周长和高,怎样求圆柱的体积?
绿色圃中小学教育网
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高:
绿色圃中小学教育网
绿色圃中小学教育网
绿色圃中小学教育网
绿色圃中小学教育网
绿色圃中小学教育网

(米)
圆柱体积
(立方米)
15
6.4
3 4
绿色圃中小学教育网
45 25.6
4分米 10分米
0.8米
求各圆柱的 体积。
绿色圃中小学教育网
0.5分米
绿色圃中小学教育网
底面积 高

长方体体积=底面积×高 圆柱体积=底面积×高
V=sh
绿色圃中小学教育网
3.14 ×0.42×5=2.512(立方米)
答:它的体积是2.512立方米。
绿色圃中小学教育网
d 2 V=∏( ) h 2
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
绿色圃中小学教育网
努 力 吧 !
绿色圃中小学教育网
判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。( ×) (2)圆柱体的高越长,它的体积越大。( ×) (3)圆柱体的体积与长方体的体积相等。(× )
相关文档
最新文档