初中阶段公理

合集下载

初中9个基本公理有哪些

初中9个基本公理有哪些

初中9个基本公理有哪些
初中9个基本公理包括:
1. 任意两点间可以确定一条直线段。

2. 任意一条线段可以无限延伸。

3. 给定一条线段,可以在其上任意点处作一条与该线段等长的线段。

4. 任意三点在同一直线上的条件是它们两两之间的线段长度之和等于第三条线段的长度。

5. 通过任意点可作一条与给定直线垂直的直线。

6. 正确的方法是从一个点向另一个点引一条唯一直线。

7. 对于任意一点和一直线上的一点,有且只有一条直线可以通过这两点。

8. 若两条直线与第三条直线相交,使内角和小于180度的一侧相对,则这两条直线最终会相交。

9. 两条垂直于同一直线的直线必然相互垂直。

这些基本公理是欧氏几何的基础,用来描述平面和空间的几何性质。

初中数学公理有哪些

初中数学公理有哪些

初中数学中公理如下:
1、线段公理:两点之间,线段最短。

2、直线公理:过两点有且只有一条直线。

3、平行公理:过直线外一点有且只有一条直线与已知直线平行。

4、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

5、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

6、两条平行线被第三条直线所截,同位角相等。

7、两边及其夹角对应相等的两个三角形全等。

(SAS)
8、两角及其夹边对应相等的两个三角形全等。

(ASA)
9、三边对应相等的两个三角形全等。

(SSS)
10、全等三角形的对应边相等,对应角相等。

扩展资料
证明两直线平行,同位角相等的方法:
平行线的性质:两直线平行,同位角相等。

两直线平行,内错角相等。

两直线平行,同旁内角互补平行线的判定:同位角相等,两直线平行。

内错角相等,两直线平行。

同旁内角互补,两直线平行。

两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。

两条直线a,b被第三条直线c所截会出现“三线八角”,其中有4对同位角,2对内错角,2对同旁内角。

初中数学公理

初中数学公理

初中数学公理
《初中数学公理》
一、数的基本公理
1、集合公理:
(1)集合的定义:集合是任意给定的一组元素的总称。

(2)空集的定义:不包含任何元素的集合被称为空集。

(3)子集定义:若集合A中的所有元素都属于集合B,则A(即子集)称为B(即包含集)的子集。

2、等价关系公理:
若两个集合A和B,它们的元素一一对应,则称A与B是等价的,记作A≌B。

3、一元运算公理:
(1)集合的构成:集合的元素可以是任何类型的数据,可以是整数、小数、有理数、无理数、复数等。

(2)集合运算:集合之间可以进行加减乘除、幂、因式分解等一元运算。

4、基本性质:
(1)绝对值的基本性质:
a)|a|≥0;b)|a|=a或|a|=-a;c)|ab|=|a|·|b|;d)|a+b|≤|a|+|b|。

(2)最大公约数和最小公倍数的性质:
a)若a、b有公因数d,则d是a、b的最大公约数;b)a、b的
最小公倍数是a、b的乘积÷a、b的最大公约数。

5、基本法则:
(1)法则的定义:所谓法则,指的是通过具体的实例和实验,提取出的一种客观规律,并可以用数学语言表达出来,以用于解决实际问题。

(2)基本法则:
a)集合的分配律;b)量纲法则;c)分数的乘除运算法则;d)指数的乘除运算法则;e)和差的乘除运算法则;f)同余方程法则;g)惯例法则。

初中数学公式定理大全

初中数学公式定理大全

直线、射线、线段、角、相交线、平行线1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补任意三个点不在一直线上的n 个点通过任意两点可以确定直线的条数:三角形15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a 、b 的平方和、等于斜边c 的平方,即222a b c +=47勾股定理的逆定理 如果三角形的三边长a 、b 、c 有关系222a b c += ,那么这个三角形是直角三角形四边形48定理 四边形的内角和等于360° 49四边形的外角和等于360°50多边形内角和定理 n 边形的内角的和等于(n-2)×180°51推论 任意多边的外角和等于360°任意n 边形对角线的条数:52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(a×b )÷2 67菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=2a b+;梯形面积 S=L×h三角形与四边形的面积:以a 为底,h 为悬高12S ah= 比例与相似83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a cb d=,那么a b c db d±±=;a b c da b c d--=++;a b c da b c d++=--85 (3)等比性质如果a c e mb d f n===⋅⋅⋅=(b+d+…+n≠0),那么a c e m ab d f n b+++⋅⋅⋅+=+++⋅⋅⋅+86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值圆101圆是到定点的距离等于定长的点的集合102圆的内部可以看作是到圆心的距离小于半径的点的集合103圆的外部可以看作是到圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

常见的初中数学公理

常见的初中数学公理

1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角得补角相等4、同角或等角得余角相等5、过一点有且只有一条直线与已知直线垂直6、直线外一点与直线上各点连接得所有线段中,垂线段最短7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都与第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理:三角形两边得与大于第三边16、推论:三角形两边得差小于第三边17、三角形内角与定理:三角形三个内角得与等于180°18、推论1:直角三角形得两个锐角互余19、推论2:三角形得一个外角等于与它不相邻得两个内角得与20、推论3:三角形得一个外角大于任何一个与它不相邻得内角21、全等三角形得对应边、对应角相等22、边角边公理(SAS):有两边与它们得夹角对应相等得两个三角形全等23、角边角公理(ASA):有两角与它们得夹边对应相等得两个三角形全等24、推论(AAS):有两角与其中一角得对边对应相等得两个三角形全等25、边边边公理(SSS):有三边对应相等得两个三角形全等26、斜边、直角边公理(HL):有斜边与一条直角边对应相等得两个直角三角形全等27、定理1:在角得平分线上得点到这个角得两边得距离相等28、定理2:到一个角得两边得距离相同得点,在这个角得平分线上29、角得平分线就是到角得两边距离相等得所有点得集合30、等腰三角形得性质定理等腰三角形得两个底角相等(即等边对等角)31、推论1:等腰三角形顶角得平分线平分底边并且垂直于底边32、等腰三角形得顶角平分线、底边上得中线与底边上得高互相重合33、推论3:等边三角形得各角都相等,并且每一个角都等于60°34、等腰三角形得判定定理:如果一个三角形有两个角相等,那么这两个角所对得边也相等(等角对等边)35、推论1:三个角都相等得三角形就是等边三角形36、推论2:有一个角等于60°得等腰三角形就是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对得直角边等于斜边得一半38、直角三角形斜边上得中线等于斜边上得一半39、定理:线段垂直平分线上得点与这条线段两个端点得距离相等40、逆定理:与一条线段两个端点距离相等得点,在这条线段得垂直平分线上41、线段得垂直平分线可瞧作与线段两端点距离相等得所有点得集合42、定理1:关于某条直线对称得两个图形就是全等形43、定理2:如果两个图形关于某直线对称,那么对称轴就是对应点连线得垂直平分线44、定理3:两个图形关于某直线对称,如果它们得对应线段或延长线相交,那么交点在对称轴上45、逆定理:如果两个图形得对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理:直角三角形两直角边a、b得平方与、等于斜边c得平方,即a^2+b^2=c^247、勾股定理得逆定理:如果三角形得三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形就是直角三角形48、定理:四边形得内角与等于360°49、四边形得外角与等于360°50、多边形内角与定理:n边形得内角得与等于(n-2)×180°51、推论:任意多边得外角与等于360°52、平行四边形性质定理1:平行四边形得对角相等53、平行四边形性质定理2:平行四边形得对边相等54、推论:夹在两条平行线间得平行线段相等55、平行四边形性质定理3:平行四边形得对角线互相平分56、平行四边形判定定理1:两组对角分别相等得四边形就是平行四边形57、平行四边形判定定理2:两组对边分别相等得四边形就是平行四边形58、平行四边形判定定理3:对角线互相平分得四边形就是平行四边形59、平行四边形判定定理4:一组对边平行相等得四边形就是平行四边形60、矩形性质定理1:矩形得四个角都就是直角61、矩形性质定理2:矩形得对角线相等62、矩形判定定理1:有三个角就是直角得四边形就是矩形63、矩形判定定理2:对角线相等得平行四边形就是矩形64、菱形性质定理1:菱形得四条边都相等65、菱形性质定理2:菱形得对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积得一半,即S=(a×b)÷267、菱形判定定理1:四边都相等得四边形就是菱形68、菱形判定定理2:对角线互相垂直得平行四边形就是菱形69、正方形性质定理1:正方形得四个角都就是直角,四条边都相等70、正方形性质定理2:正方形得两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1:关于中心对称得两个图形就是全等得72、定理2:关于中心对称得两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理:如果两个图形得对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理:等腰梯形在同一底上得两个角相等75、等腰梯形得两条对角线相等76、等腰梯形判定定理:在同一底上得两个角相等得梯形就是等腰梯形77、对角线相等得梯形就是等腰梯形78、平行线等分线段定理:如果一组平行线在一条直线上截得得线段相等,那么在其她直线上截得得线段也相等79、推论1:经过梯形一腰得中点与底平行得直线,必平分另一腰80、推论2:经过三角形一边得中点与另一边平行得直线,必平分第三边81、三角形中位线定理:三角形得中位线平行于第三边,并且等于它得一半82、梯形中位线定理:梯形得中位线平行于两底,并且等于两底与得一半L=(a+b)÷2S=L×h83、(1)比例得基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理:三条平行线截两条直线,所得得对应线段成比例87、推论:平行于三角形一边得直线截其她两边(或两边得延长线),所得得应线段成比例88、定理:如果一条直线截三角形得两边(或两边得延长线)所得得对应线段成比例,那么这条直线平行于三角形得第三边89、平行于三角形得一边,并且与其她两边相交得直线,所截得得三角形得三边与原三角形三边对应成比例90、定理:平行于三角形一边得直线与其她两边(或两边得延长线)相交,所构成得三角形与原三角形相似91、相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上得高分成得两个直角三角形与原三角形相似93、判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3:三边对应成比例,两三角形相似(SSS)95、定理:如果一个直角三角形得斜边与一条直角边与另一个直角三角形得斜边与一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1:相似三角形对应高得比,对应中线得比与对应角平分线得比都等于相似比97、性质定理2:相似三角形周长得比等于相似比98、性质定理3:相似三角形面积得比等于相似比得平方99、任意锐角得正弦值等于它得余角得余弦值,任意锐角得余弦值等于它得余角得正弦值100、任意锐角得正切值等于它得余角得余切值,任意锐角得余切值等于它得余角得正切值101、圆就是定点得距离等于定长得点得集合102、圆得内部可以瞧作就是圆心得距离小于半径得点得集合103、圆得外部可以瞧作就是圆心得距离大于半径得点得集合104、同圆或等圆得半径相等105、到定点得距离等于定长得点得轨迹,就是以定点为圆心,定长为半径得圆106、与已知线段两个端点得距离相等得点得轨迹,就是着条线段得垂直平分线107、到已知角得两边距离相等得点得轨迹,就是这个角得平分线108、到两条平行线距离相等得点得轨迹,就是与这两条平行线平行且距离相等得一条直线109、定理:不在同一直线上得三点确定一个圆。

初中数学公理和定理

初中数学公理和定理

初中数学公理和定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。

8、直线公理:过两点有且只有一条直线。

9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。

2、经过两点有一条直线,并且只有一条直线。

3、同角或等角的补角相等,同角或等角的余角相等。

4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

6、经过已知直线外一点,有且只有一条直线与已知直线平行。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.(2)对应线段相等、对应角相等。

初中数学公式定理公理大全

初中数学公式定理公理大全

初中数学公式大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180 °18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60。

初中常用的定理(公理)

初中常用的定理(公理)

初中常用的定理(公理)1过两点有且只有一条直线2两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 关于某条直线对称的两个图形是全等形43 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48 四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 关于中心对称的两个图形是全等的72 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 经过梯形一腰的中点与底平行的直线,必平分另一腰80 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d﹤r②直线L和⊙O相切 d=r③直线L和⊙O相离 d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d﹥R+r ②两圆外切 d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)④两圆内切 d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2。

常见的初中数学公理

常见的初中数学公理

常见的初中数学公理、定理■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理:经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理:三角形两边的和大于第三边16.推论:三角形两边的差小于第三边17.三角形内角和定理:三角形三个内角的和等于180°18.推论1:直角三角形的两个锐角互余19.推论2:三角形的一个外角等于和它不相邻的两个内角的和20.推论3:三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等23.角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS):有三边对应相等的两个三角形全等26.斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理:线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1:关于某条直线对称的两个图形是全等形43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247.勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48.定理:四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理:n边形的内角的和等于(n-2)×180°51.推论:任意多边的外角和等于360°52.平行四边形性质定理1:平行四边形的对角相等53.平行四边形性质定理2:平行四边形的对边相等54.推论:夹在两条平行线间的平行线段相等55.平行四边形性质定理3:平行四边形的对角线互相平分56.平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3:对角线互相平分的四边形是平行四边形59.平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60.矩形性质定理1:矩形的四个角都是直角61.矩形性质定理2:矩形的对角线相等62.矩形判定定理1:有三个角是直角的四边形是矩形63.矩形判定定理2:对角线相等的平行四边形是矩形64.菱形性质定理1:菱形的四条边都相等65.菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1:四边都相等的四边形是菱形68.菱形判定定理2:对角线互相垂直的平行四边形是菱形69.正方形性质定理1:正方形的四个角都是直角,四条边都相等70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1:关于中心对称的两个图形是全等的72.定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理:等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83. (1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84. (2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85. (3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例87.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的应线段成比例88.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3:三边对应成比例,两三角形相似(SSS)95.定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2:相似三角形周长的比等于相似比98.性质定理3:相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理:不在同一直线上的三点确定一个圆。

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理几何是研究空间形状和大小关系的一门学科,它依赖于一系列公理和定理来构建其理论体系。

下面是初中几何中一些常用的公理和定理,涵盖了线段、角、三角形、四边形和圆等几何概念。

公理1:通过任意两点,可以画一条唯一的直线。

公理2:一条由两点确定的线段可以延长成一条无限长的直线。

公理3:给定一条线段和一点,可以画出与这条线段等长的线段。

公理4:所有直角都相等。

公理5:如果两直线与第三条直线各自交于一个相同的角,则这两条直线是平行的。

公理6:如果两直线分别与第三条直线各自交于两个同位角相等的角,则这两条直线是平行的。

定理1:三角形内两角之和等于180度。

定理2:等腰三角形的两底角相等。

定理3:等边三角形的三个内角均为60度。

定理4:全等三角形的对应的边和对应角均相等。

定理5:直角三角形中,斜边的平方等于两直角边平方和。

定理6:三角形的任一边大于另外两边之差,小于另一两边之和。

定理7:三角形两边之和大于第三边。

定理8:平行线上的对应角相等。

定理9:同位角互补。

定理10:同位角相等。

定理11:平行线截断同位线段成比例线段。

定理12:平行线截断角成等角。

定理13:如果两条直线被一条平行线截断,那么所得的内错角相等,同时所得的外错角也相等。

定理14:在一个给定圆上,取一点和另一点之间的每一对弦都是有相同长度的。

定理15:在一个给定圆上,两端在圆上,而与圆上一点相交的弦不等长。

定理16:在一个给定圆上,通过圆心的每一条弦都是直径。

定理17:在一个给定圆上,圆心角的度数是所对的弧所经过的圆心角的度数的两倍。

定理18:四边形的内角和等于360度。

定理19:矩形的两对边相等且两对角为直角。

定理20:平行四边形的对边相等且两对角分别相等。

定理21:菱形的四条边相等,且对角线相互平分。

定理22:四边形两对相对边的和相等。

这仅仅是初中几何中的一小部分公理和定理,通过这些公理和定理,我们可以建立起几何学中的基础知识和理论体系。

初中数学几何定理大全(上海特别版)

初中数学几何定理大全(上海特别版)

初中数学公理和定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。

8、直线公理:过两点有且只有一条直线。

9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。

2、经过两点有一条直线,并且只有一条直线。

3、同角或等角的补角相等,同角或等角的余角相等。

4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

6、经过已知直线外一点,有且只有一条直线与已知直线平行。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.(2)对应线段相等、对应角相等。

几何定理大全

几何定理大全

初中数学公理和定理一、公理(不需证明)1、两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条平行线被第三条直线所截,同位角相等;3、两边和夹角对应相等的两个三角形全等; (SAS)4、角及其夹边对应相等的两个三角形全等; (ASA)5、三边对应相等的两个三角形全等; (SSS)6、全等三角形的对应边相等,对应角相等.7、线段公理:两点之间,线段最短。

8、直线公理:过两点有且只有一条直线。

9、平行公理:过直线外一点有且只有一条直线与已知直线平行10、垂直性质:经过直线外或直线上一点,有且只有一条直线与已知直线垂直以下对初中阶段所学的公理、定理进行分类:一、直线与角1、两点之间,线段最短。

2、经过两点有一条直线,并且只有一条直线。

3、同角或等角的补角相等,同角或等角的余角相等。

4、对顶角相等二、平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

6、经过已知直线外一点,有且只有一条直线与已知直线平行。

7、连接直线外一点与直线上各点的所有线段中,垂线段最短。

8、夹在两平行线间的平行线段相等9、平行线的判定:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)垂直于同一条直线的两条的直线互相平行.(5)如果两条直线都和第三条直线平行,那么这两条直线也平行10、平行线的性质:(1)两直线平行,同位角相等。

(2)两直线平行,内错角相等。

(3)两直线平行,同旁内角互补。

三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转)11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.(2)对应线段相等、对应角相等。

常见的初中数学公理

常见的初中数学公理

常见的初中数学公理、定理■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.过一点有且只有一条直线和已知直线垂直6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理:经过直线外一点,有且只有一条直线与这条直线平行8.如果两条直线都和第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.定理:三角形两边的和大于第三边16.推论:三角形两边的差小于第三边17.三角形内角和定理:三角形三个内角的和等于180°18.推论1:直角三角形的两个锐角互余19.推论2:三角形的一个外角等于和它不相邻的两个内角的和20.推论3:三角形的一个外角大于任何一个和它不相邻的内角21.全等三角形的对应边、对应角相等22.边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等23.角边角公理(ASA):有两角和它们的夹边对应相等的两个三角形全等24.推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等25.边边边公理(SSS):有三边对应相等的两个三角形全等26.斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等27.定理1:在角的平分线上的点到这个角的两边的距离相等28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上29.角的平分线是到角的两边距离相等的所有点的集合30.等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33.推论3:等边三角形的各角都相等,并且每一个角都等于60°34.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35.推论1:三个角都相等的三角形是等边三角形36.推论2:有一个角等于60°的等腰三角形是等边三角形37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38.直角三角形斜边上的中线等于斜边上的一半39.定理:线段垂直平分线上的点和这条线段两个端点的距离相等40.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42.定理1:关于某条直线对称的两个图形是全等形43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45.逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247.勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48.定理:四边形的内角和等于360°49.四边形的外角和等于360°50.多边形内角和定理:n边形的内角的和等于(n-2)×180°51.推论:任意多边的外角和等于360°52.平行四边形性质定理1:平行四边形的对角相等53.平行四边形性质定理2:平行四边形的对边相等54.推论:夹在两条平行线间的平行线段相等55.平行四边形性质定理3:平行四边形的对角线互相平分56.平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57.平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58.平行四边形判定定理3:对角线互相平分的四边形是平行四边形59.平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60.矩形性质定理1:矩形的四个角都是直角61.矩形性质定理2:矩形的对角线相等62.矩形判定定理1:有三个角是直角的四边形是矩形63.矩形判定定理2:对角线相等的平行四边形是矩形64.菱形性质定理1:菱形的四条边都相等65.菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66.菱形面积=对角线乘积的一半,即S=(a×b)÷267.菱形判定定理1:四边都相等的四边形是菱形68.菱形判定定理2:对角线互相垂直的平行四边形是菱形69.正方形性质定理1:正方形的四个角都是直角,四条边都相等70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71.定理1:关于中心对称的两个图形是全等的72.定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73.逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74.等腰梯形性质定理:等腰梯形在同一底上的两个角相等75.等腰梯形的两条对角线相等76.等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形77.对角线相等的梯形是等腰梯形78.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边81.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半82.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83. (1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84. (2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85. (3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例87.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的应线段成比例88.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90.定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA)92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)94.判定定理3:三边对应成比例,两三角形相似(SSS)95.定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97.性质定理2:相似三角形周长的比等于相似比98.性质定理3:相似三角形面积的比等于相似比的平方99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101.圆是定点的距离等于定长的点的集合102.圆的内部可以看作是圆心的距离小于半径的点的集合103.圆的外部可以看作是圆心的距离大于半径的点的集合104.同圆或等圆的半径相等105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107.到已知角的两边距离相等的点的轨迹,是这个角的平分线108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109.定理:不在同一直线上的三点确定一个圆。

初中所有公理

初中所有公理

初中所有公理公理是数学中最基本的概念,是不需要证明的前提条件。

初中数学中有许多公理,下面我们来一一了解。

1. 一等量代换公理这个公理是指,如果两个量相等,那么它们可以互相代换。

例如,如果a=b,那么在任何等式中,a可以用b代替,b也可以用a代替。

2. 二分律这个公理是指,任何一个数都可以分成两个相等的部分。

例如,对于任何一个数a,都可以分成a/2和a/2两个相等的部分。

3. 传递律这个公理是指,如果a=b,b=c,那么a=c。

例如,如果1+2=3,3=2+1,那么1+2=2+1。

4. 反身律这个公理是指,任何一个数都等于自己。

例如,1=1,2=2,3=3。

5. 对称律这个公理是指,如果a=b,那么b=a。

例如,如果1+2=3,那么3=1+2。

6. 传递律这个公理是指,如果a=b,b=c,那么a=c。

例如,如果1+2=3,3=2+1,那么1+2=2+1。

7. 加法结合律这个公理是指,对于任何三个数a、b、c,有(a+b)+c=a+(b+c)。

例如,(1+2)+3=1+(2+3)=6。

8. 加法交换律这个公理是指,对于任何两个数a、b,有a+b=b+a。

例如,1+2=2+1=3。

9. 乘法结合律这个公理是指,对于任何三个数a、b、c,有(a×b)×c=a×(b×c)。

例如,(1×2)×3=1×(2×3)=6。

10. 乘法交换律这个公理是指,对于任何两个数a、b,有a×b=b×a。

例如,1×2=2×1=2。

以上就是初中数学中的所有公理,它们是数学中最基本的概念,是我们学习数学的基础。

在学习数学的过程中,我们需要牢记这些公理,才能更好地理解和应用数学知识。

初中九大公理

初中九大公理

初中九大公理初中九大公理是初中数学中最基本、最重要的九个定理,它们为后续的数学学习奠定了坚实的基础。

这篇文章将会详细介绍这九大公理及其应用。

公理一:任何数加上0等于它本身。

这个公理表明了加法的单位元是0。

也就是说,任何数加上0,结果都是它本身。

这个公理的应用非常广泛,它在后续的加法、减法、乘法、除法等运算中都有着重要的作用。

公理二:任何数乘以1等于它本身。

这个公理表明了乘法的单位元是1。

也就是说,任何数乘以1,结果都是它本身。

这个公理的应用也非常广泛,它在后续的乘法、除法等运算中都有着重要的作用。

公理三:任何数乘以0等于0。

这个公理表明了乘法的零元是0。

也就是说,任何数乘以0,结果都是0。

这个公理的应用非常广泛,它在后续的乘法、除法等运算中都有着重要的作用。

公理四:任何数加上它的相反数等于0。

这个公理表明了加法的逆元是相反数。

也就是说,任何数加上它的相反数,结果都是0。

这个公理的应用非常广泛,它在后续的加法、减法等运算中都有着重要的作用。

公理五:两个数的和与它们的顺序无关。

这个公理表明了加法的交换律。

也就是说,两个数相加,它们的顺序不影响结果。

这个公理的应用非常广泛,它在后续的加法、减法等运算中都有着重要的作用。

公理六:两个数的积与它们的顺序无关。

这个公理表明了乘法的交换律。

也就是说,两个数相乘,它们的顺序不影响结果。

这个公理的应用非常广泛,它在后续的乘法、除法等运算中都有着重要的作用。

公理七:分配律。

这个公理表明了乘法对加法的分配律。

也就是说,两个数相加后再乘以一个数,等于先分别乘以这个数再相加。

这个公理的应用非常广泛,它在后续的加法、乘法等运算中都有着重要的作用。

公理八:结合律。

这个公理表明了加法和乘法的结合律。

也就是说,三个数相加或相乘的结果,不受它们的加括号顺序的影响。

这个公理的应用非常广泛,它在后续的加法、乘法等运算中都有着重要的作用。

公理九:存在0和1以外的数。

这个公理表明了实数系中存在着0和1以外的数。

初中数学146个常见定理和公式,期末考前吃透至少提高20分

初中数学146个常见定理和公式,期末考前吃透至少提高20分

初中数学146个常见定理和公式,期末考前吃透至少提高20分1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c 的平方,即a^2+b^2=c^247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理 n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83、(1)比例的基本性质如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d84、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中阶段公理,定理总汇1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10两直线平行,同位角相等11 内错角相等,两直线平行12 同旁内角互补,两直线平行13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+ b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc。

如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d﹤r②直线L和⊙O相切 d=r③直线L和⊙O相离 d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d﹥R+r②两圆外切 d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)④两圆内切 d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r。

相关文档
最新文档