复杂控制系统

合集下载

化工自动化及仪表第八章复杂控制系统 第一节串级控制系统

化工自动化及仪表第八章复杂控制系统  第一节串级控制系统

图8-4 加热炉温度串级控制系统方块图
图8-5
副回路(副控制系统)
串级
控制 系统 组成 原理 及术
主设 定值
主控 制器
副设 定值
副控 制器
干扰
操纵
变量
副被控
变量
执行器 副对象
-
-
副测量值
副测量、变送

主测量值
主测量、变送
(1) 组成原理
①将原被控对象分解为两个串联的被控对象。
干扰 主对象
主被控 变量
TC
TT
PC
PT
燃料油 气开阀
被加热原料
T 出口温度
解答:
(1)阀的气开、气关特性
依据安全原则,当供气中断时,应使控制阀处于 全关闭状态,不致烧坏加热炉,所以应选气开阀
TC燃料油 气开阀
被加热原料
T 出口温度
(2)控制器的正、反作用
副控 制器
因为:P ys e
P 燃料量 阀开度 u
根据系统的结构和所担负的任务来分:串级、均
匀、比值、分程、选择性、前馈、多冲量等
本章研究内容:
8.1 串级控制系统 8.2 均匀控制系统 8.3 比值控制系统 8.4 分程控制系统 8.6 前馈控制系统
8.1 串级控制系统
复杂控制系统中用的最多的一种。
适用场合:当对象的滞后较大,干扰比较剧烈、
频繁,采用简单控制质量较差,或要求被控变量 的误差范围很小,简单控制系统不能工艺满足要 求。
人们研究出了一种不需要增加太多的仪表就可以 使被控变量达到较高的控制精度的方法——串级控制 系统。
串级控制系统的思想:
把时间常数较大的被控对象分解为两 个时间常数较小的被控对象。

义务教育版(2024)信息科技六年级全一册 第14课 复杂系统可分解 教案

义务教育版(2024)信息科技六年级全一册 第14课  复杂系统可分解 教案
巡视各小组的讨论和设计情况,给予指导和建议。
认真听讲,理解子系统的概念和控制系统与子系统的关系。
观察关系结构图,加深对控制系统和子系统的理解。
小组内成员积极讨论,从手机的功能出发,找出手机控制系统中的子系统及其功能,并填写表格。
派代表向全班分享小组的讨论结果。
思考教师的问题,分析厨房电气系统中的子系统,并绘制关系结构图。
讲解控制系统与子系统的关系,通过绘制关系结构图,让学生直观地理解它们之间的层次关系。
2.了解控制系统中的子系统
组织学生分组,让学生讨论手机控制系统中的子系统和其功能,并填写表格。
巡视各小组的讨论情况,及时给予指导和帮助。
邀请各小组代表分享他们的讨论结果。
3.描述控制系统及其子系统的关系
引导学生分析厨房电气系统中的子系统,并根据给定的关系结构图,描述厨房电气系统及其子系统的关系。
学情分析
六年级的学生已经具备了一定的系统思维和解决问题的能力,但对于复杂系统的分解和子系统的概念可能还比较陌生。在教学中,应引导学生从生活实际出发,通过具体的案例和活动,帮助学生理解复杂系统的可分解性。
教学目标
一、知识与技能
理解复杂控制系统可以分解为多个子系统的概念。
能够绘制控制系统与子系统的关系结构图。
积极回答教师的提问,阐述自己的观点
上网查资料,了解智能家居的特点和功能。
小组内讨论,确定自己理想中的智能家居的功能,并设计子系统,绘制思维导图。
设计意图:
系统的讲解知识,让学生对复杂系统的可分解性有一个清晰的认识。通过具体案例和图示,帮助学生理解抽象的概念;通过设计活动,提高学生的创新能力和实践能力。
设计意图:
通过展示图片引发学生对复杂系统的关注和思考。

复杂系统控制理论及方法研究

复杂系统控制理论及方法研究

复杂系统控制理论及方法研究一、引言复杂系统是由多个互相作用的组成部分所构成的系统,具有不确定性、非线性、耦合性和多样性等特点。

由于其内部结构繁复,和外界相互作用复杂,因此对复杂系统的控制和优化问题一直是科学家和工程师们研究的热点。

复杂系统控制理论及方法是为了解决这一问题而形成的一种交叉学科,涵盖了数学、自动控制、计算机科学和机械工程等多个学科领域。

本文将重点介绍复杂系统控制理论及方法的研究现状和发展趋势。

二、复杂系统控制理论研究1.控制理论的基础概念复杂系统的控制需要在系统的行为、性质和可控性等方面进行深入分析,确定合适的控制策略和算法。

控制理论中的基本概念包括系统模型、控制对象、控制器和监测器等。

2.控制策略与算法控制策略在设计上采用的是系统级控制策略,从系统整体的角度思考,对系统进行统一的控制。

控制算法采用非线性控制算法,通过建立系统的数学模型和控制策略,利用优化方法对系统进行全局优化调整。

三、复杂系统控制方法研究1. 自适应控制方法自适应控制方法是能够自动调整控制策略参数的方法,能够快速适应系统变化。

该方法采用自适应神经网络优化算法,通过在线学习和逐步调整控制策略,使控制器的参数不断逼近最佳值,从而达到控制系统的稳定性和优化性能。

自适应控制方法适用于受到干扰、具有非线性和不确定性的复杂系统控制。

2. 模糊控制方法模糊控制方法是一种基于权重关系的控制方法,能够对复杂系统的特性进行拟合,处理模糊信息,适用于输入输出变量复杂难以描述的系统。

利用模糊规则建立模糊模型,从而实现对系统的控制。

该方法应用广泛,可用于各种复杂工程领域的控制问题,如电力系统、航空飞行控制等。

四、复杂系统控制方法应用研究1. 无人机控制探索无人机技术正在飞速发展,但由于自身特殊的复杂性,在控制过程中遇到众多困难。

通过采用现代控制理论和方法,探索无人机控制问题,可以有效改善其控制性能、提高其安全性和可靠性,也有利于推动无人机技术的发展。

常用复杂控制系统

常用复杂控制系统

0
20
T01 T02' T01T02'
02
1
Kc1K02' K01Km1 T01T02'
标准形式: s2 20s 02 0
串级控制系统的工作频率为:
串 0
12
1 2 T01 T02'
2
T01T02 '
(2)提高了系统的工作频率
单回路系统特征方程为 1 Gc (s)Gv (s)G02 (s)G01(s)Gm1(s) 0
K
' 02
1
Kc2 Kv K02 Kc2 Kv K02 Km2
K
' 02
1 Km2
当K02或KV随操作条件或负荷变化时,K02’几乎不变.
当采用串级控制时,主环是一个定值系统,而副环 却是一个随动系统。主调节器能够根据操作条件和负荷 变化的情况,不断修改副调节器的给定值,以适应操作 条件和负荷的变化。
5.应用于非线性过程 特点:负荷或操作条件改变导致过程特性改变。若单回路控 制,需随时改变调节器整定参数以保证系统的衰减率不变; 串级控制,则可自动调整副调节器的给定值。
合成反应器温度串级控制:换热器呈非线性特性
注意
串级控制虽然应用范围广,但必 须根据具体情况,充分利用优点,才 能收到预期的效果。
整定原则: 尽量加大副调节器的增益,提高副回路的频率,
使主、副回路的工作频率错开,以减少相互影响。 先整副环后整主环。
1. 逐步逼近整定法
1)主开环、副闭环,整定副调的参数;记为 GC2(s)1
2) 副回路等效成一个环节,闭合主回路,整定主调节器参数,
记为
GC1(s)1
3)观察过渡过程曲线,满足要求,所求调节器参数即为

串级、比值、前馈-反馈、选择性、分程以及三冲量六种复杂控制系统

串级、比值、前馈-反馈、选择性、分程以及三冲量六种复杂控制系统

1、串级控制系统
串级控制系统是应用最早,效果最好,使 用最广泛的一种复杂控制系统,它的特点 是两个调节器相串联,主调节器的输出作 为副调节器的设定,当对象的滞后较大, 干扰比较剧烈、频繁时,可考虑采用串级 控制系统。
1、基本概念
串级控制系统(Cascade Cont ro1System)是一 种常用的复杂控制系统,它根据系统结构
主回路(外回路):断开副调节器的反馈回路 后的整个外回路。
副回路(内回路):由副参数、副调节器及所 包括的一部分对象所组成的闭合回路(随
动回路)
主对象(惰性区):主参数所处的那一部分工 艺设备,它的输入信号为副变量,输出信 号为主参数(主变量)。
副对象(导前区):副参数所处的那一部分工 艺设备,它的输入信号为调节量,其输出 信号为副参数(副参数 将要达到危险值时,就适当降低生产要求, 让它暂时维持生产,并逐渐调整生产,使 之朝正常工况发展。能实现软限控制的控 制系统称为选择性控制系统,又称为取代 控制系统或超驰控制系统。
通常把控制回路中有选择器的控制系统称 为选择性控制(selective control)系统。选择 器实现逻辑运算,分为高选器和低选器两 类。高选器输出是其输入信号中的高信号, 低选器输出是其输入信号中的低信号。
控制系统一般又可分为简单控制系统和复 杂控制系统两大类,所谓复杂,是相对于 简单而言的。凡是多参数,具有两个以上 变送器、两个以上调节器或两个以上调节 阀组成多回路的自动控制系统,称之为复 杂控制系统。
目前常用的复杂控制系统有串级、比值、 前馈-反馈、选择性、分程以及三冲量等, 并且随着生产发展的需要和科学技术进步, 又陆续出现了许多其他新型的复杂控制系 统。
路外,使调整k时不影响控制回路稳定性。

复杂系统控制理论的应用与发展

复杂系统控制理论的应用与发展

复杂系统控制理论的应用与发展一、引言复杂系统是指由大量相互作用的部件构成的系统,这些部件之间无法单独考量,需要整体来进行分析和控制。

复杂系统的控制理论是研究如何通过控制某些变量来使整个系统达到预期目标的一门学科。

该理论已经广泛应用于诸如工业、交通、财经和社会管理等领域,并不断发展和完善。

二、控制方法的分类1.模型预测控制模型预测控制是一种基于模型的控制方法,首先对系统进行建模,建立数学模型。

通过模型预测,计算未来响应曲线,然后根据预测结果,制定控制策略来控制系统。

模型预测控制适用于许多系统,例如飞机导航系统和化工生产中的反应过程。

2.反馈控制反馈控制是指将系统输出与期望输出进行比较,通过调整控制输入来稳定系统,使输出误差最小。

反馈控制应用广泛,例如在飞机驾驶中,自动驾驶系统会通过输入导航数据进行调整,以保持在预定的航线上飞行。

三、复杂系统控制理论的应用1.交通管理城市交通管理是一个复杂的系统,交通拥堵和交通事故是城市交通管理中的两个主要问题。

因此,交通管理中的复杂系统控制理论应用越来越广泛。

例如,公路控制系统通过使用各种传感器和控制设备,帮助管理交通流。

2.金融投资金融投资涉及到许多复杂的变量和系统,例如股票市场、外汇市场和货币市场。

复杂系统控制理论可以帮助投资者建立有效的投资策略和风险管理方法,并通过对市场数据的调整,来使投资组合达到最大化。

3.医疗保健医疗保健是一个复杂的系统,包括医院、医生、患者和医疗设备等多个因素。

复杂系统控制理论可以用来改善医院管理和医疗过程,如医院排队排队系统的优化,放射成像技术的影响等。

四、未来的发展趋势复杂系统控制理论仍在持续发展和完善,未来的发展趋势包括:1.数据分析和人工智能随着技术的发展,机器学习和人工智能变得越来越重要。

数据分析和机器学习可以帮助我们理解大量数据,提高系统控制的精度和效率。

2.智能化和自动化随着技术的进步,智能化和自动化的应用将会越来越多,自然而然,复杂系统控制理论的应用将获得一系列的突破。

常见的复杂控制系统

常见的复杂控制系统


串级控制系统主、副被控变量的选择 选择原则如下: 根据工艺过程的控制要求选择主被控变量;主被控 变量应反映工艺指标。 副被控变量应包含主要扰动,并应包含尽可能多的 扰动。 主、副回路的时间常数和时滞应错开,即工作频率 错开,以防止共振现象发生。 主、副被控变量之间应有一一对应关系。 主被控变量的选择应使主对象有较大的增益和足够 的灵敏度。 应考虑经济性和工艺的合理性。

采用外部积分的防饱和积分系统
y
x1
yep

G2
K
T | |




G1
K

T | |
2-6(a)采用外部积分的防饱和积分系统
yep
1
K2

2
1 TI 2 s


3
G1外部积分的防饱和环节的主环开环系统方框图
最终得到输入节点e1与输出节点x1之间的传递函 数: K 1 G (s)W (s) K G (s)W (s) K G (s)W (s)(1 1 )
=
1-
2 T1 x串 g
+ T 2 + K T 2K Z K f K m 2K 2T 1 1 g T 1T 2 2x串
w单 =
1-
1 2 T1 + T 2 x单 g g T 1T 2 2x单
假定串级控制系统和单回路控制以同样的衰减率工作,即令
x串 = x单
T 1 + T 2 + K T 2K Z K f K m 2K 2T 1 w串 = = w单 T1 + T 2 K T 2K Z K f K m 2K 2T 1 = 1+ T1 + T 2 1+ T1 (1 + K T 2K Z K f K m 2K 2 ) T2 T 1+ 1 T2

复杂系统控制理论及其应用研究

复杂系统控制理论及其应用研究

复杂系统控制理论及其应用研究随着信息技术和系统科学的迅速发展,在日常生活中,我们经常面对各种复杂的系统,如生态系统、交通系统、市场经济等。

如何对这些复杂系统进行合理的控制,一直是人们关注的焦点。

复杂系统控制理论和方法是处理这些问题的有效工具。

一、什么是复杂系统复杂系统是指由许多相互连接、相互作用,其中包含大量部分相互独立的大量元素组成的系统,往往具有非线性、高度不确定、动态演化等特点。

复杂系统的研究内容涉及多个学科,包括物理学、数学、计算机科学、生物学、社会科学等。

复杂系统的结构和特性复杂多样,但通常存在着一些普遍的规律。

例如,许多复杂系统都表现出分形结构,即在不同的尺度上都具有相似的结构和性质。

这些规律的发现,为理解和控制复杂系统提供了重要的线索。

二、复杂系统控制的挑战与传统的线性系统相比,控制复杂系统具有更大的困难。

一方面,复杂系统的非线性和不确定性导致其行为难以预测和掌握,需要更加精细的模型和算法来描述和处理。

另一方面,复杂系统往往具有多层次、多尺度、多目标等特点,系统本身也是动态演化的,因此需要对系统的动态结构和演化进行更加深入的研究。

目前,控制复杂系统的研究主要围绕以下几个方向展开:1、系统建模与分析针对不同类型的复杂系统,需要建立适合的数学模型和理论框架。

常用的模型包括基于微分方程的状态空间模型、基于网络结构的图模型、基于统计方法的随机过程模型等。

建立适合的模型有助于深入理解复杂系统的本质机理和系统特性,并为控制系统提供基础。

2、复杂系统控制策略复杂系统的控制策略需要考虑多个方面的因素,如系统的输入输出关系、系统的状态反馈控制、控制目标是否可达、控制策略与系统性能的匹配等。

针对不同的复杂系统,需要设计出不同的控制方法和算法,如MPC(Model Predictive Control)、PID(Proportional Integral Derivative)算法等。

3、复杂系统的优化与协调控制在复杂系统中,单一的控制策略往往不能完全满足不同的优化目标。

复杂控制系统分析

复杂控制系统分析

把副回路看成是一个动态环节,这个环节的
输出为:
若采用单回路控制,在同样条件下采用同样的方法, 可以得到它的稳态输出为:
y1(∞)< y‘1 (∞),也就是说,串级控制系统 的稳态偏差比单回路控制系统的稳态误差要小得多, 其原因就在于前者具有一定的自适应能力。
串级控制系统主副回路和主副调节器选择: 一、主副回路的选择原则 (1)副回路应该把生产系统中尽量多的干扰、变

(4)前馈控制系统只能用来克服生产过程中主要的、 可测的扰动。 实际工业生产中使被调量发生变化的原因(扰动) 是很多的,对每一种扰动都需要一个独立的前馈控 制,这就会使控制系统变得非常复杂;而且有的扰 动往往是难于测量的,对于这些扰动就无法实现前 馈控制。 (5)前馈控制系统一般只能实现局部补偿而不能保 证被调量的完全不变。

(4)动态前馈比静态前馈复杂,参数的整定也比较麻烦。 因此,在静态前馈能够满足工艺要求的时候,尽量不采 用动态前馈。实际工程中,通常控制通道和扰动通道的 惯性时间和纯滞后时间接近,往往采用静态前馈就能获 得良好的控制效果。 (5)扰动通道的时间常数远大于控制通道的时间常数, 反馈控制已能获得良好的控制性能,只有控制性能要求 很高时,才有必要引入前馈控制。 (6)扰动通道的时间常数远远小于控制通道的时间常数, 由于扰动的影响十分快速,前馈调节器的输出迅速达到 最大或最小,以至难于补偿扰动的影响,这时不宜采用 前馈控制。

预估补偿控制
Smith(史密斯)预估补偿是针对具有纯迟延
的过程,在PID反馈控制的基础上,引入预补 偿环节,从而使控制品质大大提高的方法。
Smith(史密斯)预估补偿原理
被控变量的闭环传递函数是
扰动作用至被控变量的闭环传递函数是

复杂控制系统(已修改)

复杂控制系统(已修改)

21 复杂控制系统一、概述1、单回路控制系统——简单控制系统:在一般情况下能够满足生产控制要求。

特殊情况:系统干扰因素多、干扰变化剧烈,以及工艺特殊要求。

2、复杂控制系统——串级控制系统、比值控制系统、均匀控制系统、前馈控制系统、选择控制系统、分程控制系统等复杂系统--随着控制理论与工业应用的发展,包含的内容也不同,例如复杂大系统--人口系统,环境控制,能源控制,企业生产经营控制等。

3、多回路系统多回路系统特征:基于PID控制策略;由多个控制回路组成的系统。

4、多回路系统的发展80-90%控制系统是基于PID控制的系统,包括多回路系统。

多回路系统应用状况以乙烯生产厂为例,它共有421个控制回路其中:常规PID单回路347个,串级、比值等74个(串级24)多回路系统占17.5%。

二、串级控制系统的构成加热炉是工业生产中常用设备之一。

工艺要求被加热物料的温度为某一定值,因此选取加热炉的出口温度为被控变量,选取燃料量为操纵变量,构成图5-1(a)所示的单回路控制系统。

影响炉出口温度的因素很多,主要有:被加热物料的流量和炉前温度变化[f1(t)];燃料热值的变化、压力的波动[f2(t)];烟囱挡板位置的改变、抽力的变化[f3(t)]等。

图5-1(a)系统的特点是,所有对被控变量的扰动都包含在这个回路之中,并都由温度控制器来克服。

但是控制通道的时间常数和容量滞后较大,控制作用不用及时,系统克服扰动的能力较差,不能满足工艺的要求。

为此,另外选择,炉膛温度为被控变量,燃料量为操纵变量,设计图5-1(b)所示的单回路控制系统,以维持炉口温度为某一定值。

该系统的特点是对于扰动[f2(t)] 、[f3(t)]能及时有效地克服,但是扰动[f1(t)]未包括在系统内,系统不能克服扰动[f1(t)]对炉出口温度的影响,仍然不能达到生产工艺要求。

综上分析,为了充分应用上述两种方案的优点,选取炉出口温度为被控变量,选择炉膛温度为中间辅助参数,把炉出口温度控制器的输出作为炉膛温度控制器的设定值,构成了图5-2所示的炉出口温度与炉膛温度的串级控制系统,图5-3是它的方块图。

复杂过程控制系统

复杂过程控制系统

复杂过程控制系统复杂过程控制系统是在工业生产中广泛应用的一种自动化控制系统。

它通常由多个子系统和分布式控制单元组成,用于监测和控制物理过程中的各种参数和变量。

这些系统通常用于化工、石油、电力、冶金和制药等行业,帮助提高生产效率、降低生产成本,并确保产品质量的稳定性。

1.传感器和执行器:传感器用于监测和测量物理过程中的各种参数,如温度、压力、流量和浓度等。

执行器用于控制各种执行设备,如阀门、开关和电机等。

2.控制器:控制器是系统的核心组件,负责处理传感器采集到的数据,并根据预定的控制算法进行计算和决策。

常见的控制算法包括PID控制、模糊逻辑控制和模型预测控制等。

3.通信网络:复杂过程控制系统通常是分布式的,需要通过通信网络将各个子系统和分布式控制单元连接起来,实现数据的传输和共享。

通信网络可以采用以太网、现场总线和无线通讯等多种技术。

4.数据存储和处理:复杂过程控制系统通常需要处理大量的实时数据,这些数据需要进行存储和处理,以便后续分析和优化。

常见的数据存储和处理技术包括数据库、数据仓库和大数据分析等。

5.人机界面:复杂过程控制系统通常需要人机界面来展示和操作控制系统的状态和参数。

人机界面可以采用计算机监视器、触摸屏和报警器等多种设备,以便操作员及时了解系统的运行状况并进行调整。

在复杂过程控制系统中,通常还需要考虑以下几个方面的问题:1.安全性:复杂过程控制系统通常处于高风险的工业环境中,因此安全性是一个重要考虑因素。

系统需要采取措施来防止任何非法、损坏或恶意的访问,并确保系统的稳定性和可靠性。

2.可靠性:复杂过程控制系统通常需要长时间的运行,因此可靠性是一个重要指标。

系统需要设计合理的备份机制和冗余系统,以防止单点故障导致系统的停机或数据丢失。

3.故障诊断和维护:系统需要具备故障诊断和维护功能,以便快速发现和解决系统中的故障。

这可以通过自动化的故障诊断系统和远程监控系统来实现。

4.系统集成:复杂过程控制系统通常由多个子系统和分布式控制单元组成,系统集成是一个重要的工作。

复杂控制系统说明

复杂控制系统说明

复杂控制系统一、一段炉水碳比1. 控制回路图2. 工艺控制描述工艺蒸汽在进入一段炉111-101B之前与脱硫后的天然气混合。

这个仪表复杂回路的目的是确定装置产量和期望的水碳比。

工艺蒸汽和原料天然气流量自动调节来保持产量和水碳比。

因为这个复杂控制系统的功能,FICA-A2502和FICA-A2503控制器都必须设定为远程(串级)给定模式。

3. 仪表描述在运算中蒸汽流量及天然流量均为摩尔流量。

原料天然气需要增加分子量自动校正功能,由中化分析天然气组分,工艺人员输入由DCS自动实现分子量计算。

实际的蒸汽原料气流量比(压力&温度补偿蒸汽流量FIA-A2503除以压力&温度补偿天然气流量流量FIA-A2502)由FFS-A2504显示。

一个内部联锁监测实际的蒸汽原料气流量比,如果这个比率低就报警并且在此比率低低报警钟时停车(I-101)。

操作人员也可以通过开关PB-101。

参见因果图63-D119停车动作。

操作人员用DCS手动点FFN-1001设定期望的水碳比。

操作人员用DCS手动点HIC-1001设定氨厂产量流率到期望的流率。

装置流率调整是“补偿器”由HN-1001斜率功能为最小过程干扰。

斜率功能限制流率改变,最大流率改变为5%的产量流率每小时。

由于在原料气中有高含量“惰气”(氮气和二氧化碳)的存在,于是采取了一些措施以便操作人员手动输入原料气组分数据校正原料气流量为碳流量。

工艺设计的基础水碳比为2.77。

工艺设计基础蒸汽原料气质量流量比为99729/76763或1.3。

碳仅占大约47%的原料气流量,所以除以质量流量由碳含量给出一个正确的水碳比2.77。

原料气组分数据可以从AI-1008A-F(62-D102)或人工取样分析获得。

斜率功能块(HN-1001)输出直接去原料气流量选择器(FFN-1001B)和蒸汽流量选择器(FFN-1001C)。

期望的水碳比(FFN-1001)输出直接去蒸汽流量除法器(FFN-1001A)和原料气流量乘法器(FFN-1001D)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、复杂控制系统1. 串级控制系统有哪些主要特点?为什么说串级控制系统能迅速克服进入副回路的扰动?2. 串级控制系统中的副被控变量如何选择?3. 串级控制系统中的主、副控制器的正、反作用如何选择?它们与阀门的开关形式有无关系?4. 如图串级控制系统。

该系统在扰动F 1和F 2作用下,要求输出Y 无余差。

问主、副控制器是否应全部采用具有积分作用的控制器,为什么?(设过程均具有自衡特性)5.的气关阀。

问:主、副控制器的正、反作用需要改变吗?为什么?如果需要,如何改变?主、副控制器的比例度和积分时间是否需要改变?6. 在一个串级控制系统中,主被控变量是温度,原用0-200℃温度变送器,后改用80-200℃温度变送器。

问:主、副控制器的比例度和积分时间是否需要改变?如果需要,如何改变?7. 有附图所示反应器,反应器温度是用冷却水控制的。

(1)如果主要扰动是冷却水阀前压力有波动,应组成怎样的串级控制系统回路?画出控制方案。

(2)画出采用串级控制系统时的流程图。

并设控制阀是气开式,那么,两个控制器分别应选正作用还是反作用,为什么?(3)如果控制阀为气关式,两个控制器的正反作用是否需要改变? 8. 当串级控制系统采用流量控制回路时,如果用孔板作为测量元件,且不采用开方器,有时会出现负荷小时反而不稳定的现象,为什么?为了避免这种情况,改变阀的流量特性行不行,为什么?如果不行,用什么办法可以解决?(题4图)9. 在串级控制系统中,当主、副控制器都有积分作用时,在主控制器达到饱和之后,副控制器也将积分饱和,情况更严重。

采用如图方案,试说明为什么能防止积分饱和,并写出主控制器控制规律式来说明。

这样的系统能使主被控变量没有余差吗? 10. 简单均匀控制系统与简单控制系统有何异同点?如何识别简单均匀控制系统? 11. 简述简单均匀、双冲量均匀、串级均匀的应用场合。

串级均匀与串级控制系统有何异同点?12. 画出图示双冲量均匀系统的方框图,若控制器采用比例积分作用,输出(液位)是否有余差?13. 试比较比值,双闭环比值和串级比值控制系统的特点,并画出各自的方块图。

14. 在比值控制系统中,用相乘方案较之相除方案有什么优点?15. 在比值控制系统中,流体F 1的流量是不可调的,仪表量程为0~50M 3/h 。

流体F 2的流量是可调的,仪表量程为0~80M 3/h 。

现决定采用除法器(I 0=10×I 1/I 2)组成单闭环比值控制系统,画出控制方案,并确定比值系数。

16. 甲烷转化反应中,为了保证甲烷的转化率,就必须保持天然气、蒸汽和空气之间成一定比值(1:3:1.4)且当蒸汽和天然气的比值低于2.9,空气和天然气的比值高于1.5时报警。

设计如图所示的控制及报警系统。

由电动III 型比值器构成比值控制系统,用差压法测流量,未经开方运算。

蒸汽流量的最大值G SMAX =31100M 3/h ;天然气流量的最大值G NMAX =11000M 3/h ;空气流量的最大值G AMAX =14000M 3/h 。

试求比值器的比值系数K 1和K 2,以及高限信号和低限信号器的设定值。

17. 工艺要求F 1/F 2=1/1.2F 1的流量是不可控的,仪表量程为0~36000NM 3/h 。

F 2的流量是可控的,仪表量程为0~2400NM 3/h 。

采用气动乘法器(00.080.02)0.02)(P (P P B A 0+--=)组成单闭环比值控制系统。

画出控制方案,并确定比值系数。

18. 如图所示比值控制系统中,采用除法确定比值,并用孔板测量流量。

问:该控制系统的非线性特性来自何处,对控制质量有什么影响,用什么办(题12图)(题18图)法可以克服?19. 什么是前馈控制?它有何特点?为什么一般要与反馈控制相结合?20. 前馈控制有几种结构形式?前馈控制主要应用于什么场合?21. 对图示的前馈——串级控制系统,试确定前馈补偿装置的传递函数G d (S)。

22. 图示加热炉的控制要求为出口温度恒定,燃烧良好。

(1)主要扰动为原料流量(不可控),试设计合理的控制方案。

画出方框图,确定控制器的正反作用。

(2)主要扰动燃料油阀前压力,试设计合理的控制方案。

23. 分析图示控制系统的作用。

24. 图示反应器的温度用冷水和热水控制。

设计分程控制系统,并确定控制器的正反作用。

25.为了防止燃料气控制阀后压力过高,准备引入选择性控制回路。

(1)设计它的原理流程图,并简要说明。

(2)说明需要添置的仪器设备。

(题21图)TT(3)提出需要采取的防积分饱和措施。

26. 工艺要求物料A 、B 、C(其中A 为主物料),在任何情况下(指任一物料供应不足时),保持一定比值。

试设计满足上述工艺要求的控制系统。

27. 如图所示。

为了整个系统的平稳操作,必须使塔釜流量保持恒定。

当裂解气温度太低时,化合物堵塞管道,造成事故。

因此裂解气温度低于(1)试设计一个自动选择性控制系统来实现上述要求。

(2)当两个控制器都具有积分作用时,画出防止积分饱和的方法。

(3)试问可否用限幅的办法来防止积分饱和,为什么?28. 如图所示为保证塔顶成分一定的控制系统。

若在产品不合格的情况下,关闭V 2使方H 0.u 2(题31图)用差压法测量流量。

这三类控制系统中的非线性关系各来自何处?是否可采用控制阀流量特性加以补偿?为什么?33. 有哪些系统可能会产生积分饱和?如何防止?34. 什么是关联?举例说明。

一般用什么来衡量系统之间的关联程度?简述消除关联(耦合)的途径。

35. 已知图示控制系统存在严重关联,试设计解耦控制系统;画出控制流程图和方框图。

36. 已知图示控制系统,画出该控制系统的方框图,并说明D 12和D 21的作用。

37.请解释简易解耦不能由:⎥⎥⎦⎤⎢⎢⎣⎡2212F 1F 1或⎥⎥⎦⎤⎢⎢⎣⎡1F 1F 2212构成。

38. 如图所示控制系统中两个回路是否存在着关联?若存在着关联,问:该系统能否实施?其调节质量如何?简要说明原因。

39. 上图为二个支管合并到一个总管的混合系统。

设m 1、m 2是流体的质量流量,它们的成分是x 1、x 2。

试推导出系统的各项相对增益,把结果用x 表示出来。

40. 已知控制系统方块图如下:求:(1)若)ST 1(1K G ,K G i C2C2C1C1+==,在干扰作用下系统是否有余差?(题35图)(题36图)(题38图)(2)若C2C2i C1C1K G ,)ST 1(1K G =+=,在干扰作用下系统是否有余差? 1试述串级控制系统的工作原理,它有哪些特点?2某加热炉出口温度控制系统,经运行后发现扰动主要来自燃料流量波动,试设计控制系统克服之。

如果发现扰动主要来自原料流量波动,应如何设计控制系统以克服之?画出带控制点工艺流程图和控制系统框图。

4液位均匀控制系统与简单液位控制系统有什么异同点?哪些场合需要采用液位均匀控制系统?5某加热炉出口温度串级控制系统中,副被控变量是炉膛温度,温度变送器的量程都选用0`500℃,控制阀选用气开阀。

经调试后系统已经正常运行,后因副回路的温度变送器损坏,改用量程为200`300℃的温度变送器,问对控制系统有什么影响?如何解决?7某反应器有A 和B 两种无聊参加反应,已知,A 物料是供应有余的,B 物料可能供应不足他们都可测可控。

采用差压变送器和开方器测量他们的流量,工艺要求正常工况时Fa=300kg/h,Fb=600kg/h,拟用DDZ-Ⅲ型仪表,设计双闭环比值(相乘方案)控制系统,确定乘法器的输入电流,画出控制系统框图和带点工艺流程图。

6.98 什么叫串级控制系统?请画出串级控制系统的典型方块图。

答:串级控制系统是由其结构上的特征而得名的。

它是由主、副两个调节器串接工作的。

主调节器的输出作为副调节器的给定值,副调节器的输出去操纵调节阀,以实现对主变量的定值控制。

串级控制系统的典型方块图如图6-57所示。

图6-57(题40图)6.99串级控制系统有哪些特点?主要使用在哪些场合?答:串级控制系统的主要特点为:(1)在系统结构上,它是由两个串接工作的调节器构成的双闭环控制系统;(2)系统的目的在于通过设置副变量来提高对主变量的控制质量;(3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响;(4)系统对负荷改变时有一定的自适应能力。

串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用强而频繁、负荷变化大、对控制质量要求较高的场合。

6.100怎样选择串级控制系统中主、副调节器的控制规律?答:串级控制系统的目的是为了高精度地稳定主变量,对主变量要求较高,一般不允许有余差,所以主调节器一般选择比例积分控制规律,当对象滞后较大时,也可引入适当的微分作用。

串级控制系统中对副变量的要求不严。

在控制过程中,副变量是不断跟随主调节器的输出变化而变化的,所以副调节器一般采用比例控制规律就行了,必要时引入适当的积分作用,而微分作用一般是不需要的。

6.101如何选择串级控制系统中主、副调节器的正、反作用?答:副调节器的作用方向与副对象特性、调节阀的气开、气关型式有关,其选择方法与简单控制系统中调节器正、反作用的选择方法相同,是按照使副回路成为一个负反馈系统的原则来确定的。

主调节器作用方向的选择可按下述方法进行:当主、副变量增加(或减小)时,如果要求调节阀的动作方向是一致的,则主调节器应选“反”作用的;反之,则应选“正”作用的。

从上述方法可以看出,串级控制系统中主调节器作用方向的选择完全由工艺情况确定,或者说,只取决于主对象的特性,而与执行器的气开、气关型式及副调节器的作用方向完全无关。

这种情况可以这样来理解:如果将整个副回路看做是构成主回路的一个环节时,其方块图可以简化为图6-58所示。

由图可见,这时副回路这个环节的输入就是主调节器的输出(即副回路的给定),而其输出就是副变量。

由于副回路的作用总是使副变量跟随主调节器的输出变化而变化,不管副回路中副对象的特性及执行器的特性如何,当主调节器输出增加时,副变量总是增加的,所以在主回路中,副回路这个环节的特性总是“正”作用方向的。

由图可见,在主回路中,由于副回路、主测量变送这两个环节的特性始终为“正”,所以为了使整个主回路构成负反馈,主调节器的作用方向仅取决于主对象的特性。

主对象具有“正”作用特性(即副变量增加时,主变量亦增加)时,主调节器应选“反”作用方向;反之,当主对象具有“反”作用特性时,主调节器应选“正”作用方向。

图6-586.104图6-61所示氨冷器,用液氨冷却铜液,要求出口铜液温度恒定。

为保证氨冷器内有一定汽化空间,并避免液氨带入冰机造成事故,采用温度-液位串级控制。

相关文档
最新文档