第17届全国希望杯数学竞赛试题----高一
历届希望杯全国中学生数学竞赛试题

历届希望杯全国中学生数学竞赛试题希望杯全国中学生数学竞赛,简称希望杯,是全国性的高中生数学竞赛,目的是提高中学生的数学水平,发现和培养数学人才。
该竞赛创立于1991年,得名于中国社会四大精神家之一的邓小平主席“希望工程”,每年都举办。
历届希望杯的试题融合了中外数学思想和实际应用,难度逐年增加,不仅考查了学生的基本数学素养,还着重考察了学生的解题能力、创新能力和数学思维,具有普及性和挑战性。
以2020年的希望杯高中组试题为例,该试题分为两个部分:第一部分是选择题,共8题,每题4分,答错不扣分;第二部分是非选择题,共4道大题,每题20分。
其中,在选择题部分,第4题和第8题具有代表性。
第4题是一道比较经典的组合数学问题,给定$n$个线性方程和$n$个变量,每个方程只含有两个变量,求解是否可能使得每个方程恰好有一个解。
此题除了需要运用组合数学的内容,在解决思路上也需要考虑细节,属于比较考验学生的解题能力的题目。
而第8题则是一道难度较大的几何题目,给定三角形$ABC$,在弧$BC$上选取点$D$,$E$,在弧$AC$上选取点$F$,$G$,证明直线$BD$,$FG$,$CE$三线共点。
此题需要学生在几何知识的基础上,结合创新思维解题,考验学生的应用数学、几何证明能力以及数学思维和想象力。
在非选择题部分,第1题和第2题也是有代表性的。
第1题是一道较为基础的集合论问题,设$A$,$B$,$C$为任意三个集合,求证$A\cap(B-C)=(A\cap B)-(A\cap C)$。
第2题则是一道挑战性较大的数学分析问题,对以$2\pi$为周期的函数$f(x)$,给定$p>1$,若$n\in N^*$,则有$\int_{0}^{2\pi}f(nx)dx=0$,求证$\int_{0}^{2\pi}\left| f(x)\right|^pdx=k\int_{0}^{2\pi}\left|f'(x)\right|^pdx$,其中$k$是$p-1$次多项式,且系数为常数。
2006年第17届“希望杯”全国数学邀请赛第二试试题及详解【圣才出品】

2006年第17届“希望杯”全国数学邀请赛第二试试题及详解一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内。
1.a 和b 是满足ab ≠0的有理数,现有四个命题:①422+-b a 的相反数是422+-b a ;②a b -的相反数是a 的相反数与b 的相反数的差;③ab 的相反数是a 的相反数和b 的相反数的乘积;④ab 的倒数是a 的倒数和b 的倒数的乘积。
其中真命题有()。
A .1个B .2个C .3个D .4个【来源】第17届“希望杯”全国数学邀请赛(初一)第二试【答案】C【解析】分析每个命题如下:(1)422+-b a 的相反数是222244a a b b ---=++,所以,①正确;(2)a b -的相反数是b a -,而a 的相反数与b 的相反数的差为()()a b b a ---=-,所以,②正确;(3)ab 的相反数为ab -,而a 的相反数和b 的相反数的乘积为()()a b ab --=,所以,③错误;(4)ab 的倒数为ab a b =⋅,而a 的倒数和b 的倒数的乘积为a b ⋅,所以,④正确。
【评注】关键是熟知相反数,倒数等概念的基本含义。
2.在下面的图形中,不是正方体的平面展开图的是()。
A B C D【来源】第17届“希望杯”全国数学邀请赛(初一)第二试【答案】C【解析】通过想像,可将A ,B ,D 选项分别还原为一个正方体。
【评注】考查,空间想象能力。
3.在代数式2xy 中,x 与y 的值各减少25%,则该代数式的值减少了()。
A .50%B .75%C .6437D .6427【来源】第17届“希望杯”全国数学邀请赛(初一)第二试【答案】C【解析】x 与y 的值各减少25%,即x 与y 的值各变为原来的0.75倍,那么22323223370.75(0.75)(10.75)[1()]464xy x y xy xy xy -⋅=-=-=,所以,该代数式的值减少了6437。
第17届“希望杯”全国数学邀请赛试题

第17届“希望杯”全国数学邀请赛试题初中一年级 第1试 一、选择题以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.1.在数轴上,点A对应的数是-2006,点B对应的数是+17.则A、B两点的距离是()(A)1989. (B)1999.(C)2013.(D)2023.2.有如下四个命题:①两个符号相反的分数之间必定有一个正整数;②两个符号相反的分数之间必定有一个负整数;③两个符号相反的分数之间必定有一个整数;④两个符号相反的分数之间必定有一个有理数.其中真命题的个数为()(A)1. (B)2. (C)3. (D)4.图13.图1是某中学参加选修课学生人数的扇形统计图,从图中可以看出参加数学选修课的学生为参加选修课学生总人数的()(A)12%. (B)22%.(C)32%. (D)20%.4.如果a<-3,那么()(A)a+2a+3<a+1a+2<aa+1.(B)a+1a+2<aa+1<a+2a+3.(C)aa+1<a+1a+2<a+2a+3.(D)aa+1<a+2a+3<a+1a+2.5.如图2的交通标志中,轴对称图形有()(A)4个.(B)3个.(C)2个.(D)1个.图26.对于数x,符号[x]表示不大于x的最大整数.例如[3.14]=3,[-7.59]=-8.则满足关系式[3x+77]=4的x的整数值有()(A)6个.(B)5个.(C)4个.(D)3个.图37.在图3所示的4×4的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则α,β,γ的大小关系是()(A)β<α<γ.(B)β<γ<α.(C)α<γ<β.(D)α<β<γ.8.方程x+y+z=7的正整数解有()(A)10组.(B)12组.(C)15组.(D)16组.图49.如图4,ABCD与BEFG是并列放在一起的两个正方形.O是BF与EG的交点.如果正方形ABCD的面积是9平方厘米,CG=2厘米.则·43·数理天地初中版数学竞赛2020年第12期△DEO的面积是().(A)6.25平方厘米.(B)5.75平方厘米.(C)4.50平方厘米.(D)3.75平方厘米.10.有如下四个叙述:①当0<x<1时,11+x<1-x+x2.②当0<x<1时,11+x>1-x+x2.③当-1<x<0时,11+x<1-x+x2.④当-1<x<0时,11+x>1-x+x2.其中正确的叙述是()(A)①③.(B)②④.(C)①④.(D)②③.二、A组填空题11.神舟六号飞船的速度为7.8千米/秒,航天员费俊龙用3分钟在舱内连做4个“前滚翻”,那么当费俊龙“翻”完一个跟斗时,飞船飞行了千米.12.已知a+b=3,a2b+ab2=-30,则a2-ab+b2+11=.13.图5为某工厂2003年至2005年的利润和资产统计表,由图可知资产利润率最高的年份是年.(注:资产利润率=利润总资产)图514.计算:13×17×-213+0.125()÷-1116()1-12-18=.图6 15.图6是一个程序流向图,请你看图说出“终止”处的计算结果是.16.已知m-2的倒数是-141m+2(),则m2+1m2的值是.17.n是自然数,如果n+20和n-21都是完全平方数,则n等于.18.If x=2is the solution of the equation191613x+a2+4()-7[]+10{}=1,then a=.(英汉词典:equation方程;solution解)19.将(1+2x-3x2)2展开,所得多项式的系数和是.图720.如图7所示,圆的周长为4个单位长度,在圆的4等分点处,顺时针方向依次标上数字0,1,2,3.先让圆周上数字0所对应的点与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,使数轴上-2,-3,-4,…所对应的点与圆周上3,2,1,…所对应的点重合,那么数轴上数-2006与圆周上对应的数是.三、B组填空题21.把一块正方体木块的表面涂上漆,再把它锯成27块大小相同的小正方体.在这些小正方体中,没涂漆的有个,至少被漆2个面的有块.图822.如图8所示,在△ABC中,∠ACB=90°,AC=8厘米,BC=6厘米.分别以AC、BC为边向形外作正方形AEDC、BCFG.三角形BEF的面积为a,六边形AEDFGB面积为S.则a=平方厘米,且aS=.·53·2020年第12期数学竞赛数理天地初中版23.世界十大沙漠的面积见下表:(面积单位:万平方千米)名称撒哈拉沙漠阿拉伯沙漠利比亚沙漠澳大利亚沙漠戈壁沙漠面积860 233 169 155 104名称巴塔哥尼亚沙漠鲁卜哈利沙漠卡拉哈里沙漠大沙沙漠塔克拉玛干沙漠面积67 65 52 41 32十大沙漠的总面积为万平方千米.已知地球陆地面积为1.49亿平方千米,占地球表面积的29.2%,则十大沙漠的总面积占地球表面积的%(精确到千分位).24.甲自A向B走了5.5分钟时,乙自B向A行走,每分钟比甲多走30米.他们于途中C处相遇.甲自A到达C用时比自C到B用时多4分钟,乙自C到A用时比自B到C用时多3分钟.则甲从A到C用了分钟,A、B两处的距离是米.25.将1,2,3,4,5,6,7,8,9按任意顺序写成一排,其中相邻的3个数字组成一个三位数.共有七个三位数,求这七个三位数的和.则所得这些三位数之和的最小值是.参考答案一、选择题题号1 2 3 4 5 6 7 8 9 10答案D B B C C D B C A C 提示1.A,B两点间的距离是+17-(-2006)=17+2006=2023.故选(D).2.如-12和12之间既没有正整数,也没有负整数,所以命题①,②不正确.0介于两个符号相反的分数之间,所以命题③,④正确.故选(B).3.参加数学兴趣小组的学生占参加课外活动学生总人数的100%-17%-26%-35%=22%.故选(B).4.因为a+2a+3=1-1a+3,a+1a+2=1-1a+2,aa+1=1-1a+1,又a+1<a+2<a+3<0,可得0<-(a+3)<-(a+2)<-(a+1),所以-1a+1<-1a+2<-1a+3,因此aa+1<a+1a+2<a+2a+3.故选(C).5.第一、第三两个交通标志是轴对称图形,其他两个交通标志不是轴对称图形,故选(C).6.解不等式4≤3x+77<5,得整数解x=7,8,9.故选(D).7.观察图形,易知 ∠ABD=α>90°,∠DEF=β<90°,∠CGH=γ=90°,所以β<γ<α.故选(B).8.因为x,y,z均为正整数,且x+y+z=7,所以1≤x≤5.下面分类讨论:当x=1时,有5组解;当x=2时,有4组解;当x=3时,有3组解;当x=4时,有2组解;当x=5时,有1组解.共计5+4+3+2+1=15(组)解.故选(C).9.如图9,连接BD,易知BD∥EG,图9所以△EDO与△BEO的面积相等.由于O是正方形BEFG的对角线BF与EG的交点,所以△BEO的面积等于正方形BEFG面积的四分之一.因为正方形ABCD的面积是9平方厘米,所以边长BC=3厘米.又CG=2厘米,因此,BG=5厘米,正方形BEFG的面积等于25平方厘米.所以△EDO的面积=△BEO的面积=254=6.25(平方厘米).故选(A).·63·数理天地初中版数学竞赛2020年第12期10.当0<x<1或-1<x<0时,11+x和1-x+x2都大于0,所以两式的比值大于0.又(1-x+x2)÷11+x=(1-x+x2)(1+x)=1+x3,当0<x<1时,1+x3>1,所以①正确,②不正确;当-1<x<0时,1+x3<1,所以③不正确,④正确.故选(C).二、A组填空题题号11 12 13 14 15 16 17 18 19 20答案351 50 2004 16-3294421-4 0 3 提示11.费俊龙“翻”一个跟斗的时间为(3×60÷4)秒,神舟六号飞船飞行的速度为7.8千米/秒,所以在费俊龙“翻”一个跟头的时间内飞船飞行了7.8×3×60÷4=351(千米).12.因为a+b=3,a2b+ab2=ab(a+b)=-30,所以ab=-10.故 a2-ab+b2+11=(a+b)2-3ab+11=32-3×(-10)+11=50.13.计算得2003年的资产利润率=3003000×100%=10%,2004年的资产利润率=3603200×100%=11.25%,2005年的资产利润率=4805000×100%=9.6%,所以资产利润率最高的年份是2004年.14.13×17×-213+0.125()÷-1116()1-12-18=17×-2+138()×-1617()38=16.15.只要按照程序的过程走就可以看出结果应该是-2的5次方,等于-32.16.译文:如果m-2的倒数是-141m+2(),那么m2+1m2=.解 由条件知 m-2=-41m+2,即(m-2)1m+2()=-4,1-2m+2m=0.所以1m-m=12,两边平方,再整理得 m2+1m2=94.17.设n+20=a2,n-21=b2(a,b均为整数),则a2-b2=(a-b)(a+b)=41,且a2>b2,又因为41是质数,所以a-b=1,a+b=41;{或a-b=41,a+b=1;{或a-b=-1,a+b=-41;{或a-b=-41,a+b=-1.{方程组的两式相加,得2a=42,或2a=-42,即a=21,或a=-21,从而n=a2-20=441-20=421.18.译文:已知x=2是方程191613x+a2+4()-7[]+10{}=1的解,那么a=.解 从外向里逐层去括号:1613x+a2+4()-7[]+10=9,1613x+a2+4()-7[]=-1,13x+a2+4()-7=-6,13x+a2+4()=1,x+a2+4=3,x+a2=-1,x+a=-2.将x=2代入上式,得a=-4.·73·2020年第12期数学竞赛数理天地初中版19.多项式a0xn+a1xn-1+a2xn-2+…+am-1x1+an的系数和为a0+a1+a2+…+an-1+an,故只需令多项式a0xn+a1xn-1+a2xn-2+…+an-1x1+an中的x=1即可.所以(1+2x-3x2)2的展开式的系数和为(1+2-3)2=0.20.因为|(-2006)-(-1)|=2005=501×4+1,所以数轴上的数-2006与圆周上的数3相对应.三、B组填空题题号21 22 23 24 25答案1;20 66;148 1778;3.48 10;1440 4648;3122 提示21.8个角上的小正方体三面涂漆,12条棱上各有1块小正方体两面涂漆,6个面上各有1块小正方体一面涂漆,还剩1块中心的小正方体没有涂漆.所以没涂漆的小正方体有1块,至少被漆2个面的小正方体有8+12=20(块).22.易知S△ABC=S△CDF=12×6×8=24(平方厘米),正方形ACDE的面积=82=64(平方厘米),正方形BCFG的面积=62=36(平方厘米).所以 六边形AEDFGB的面积=24+24+64+36=148(平方厘米).连接CE,则S△CFE=S△CFD=24(平方厘米),S△CBE=S△CBA=24(平方厘米),又S△BCF=622=18(平方厘米).所以三角形BEF的面积24+24+18=66(平方厘米).23.十大沙漠的总面积为860+233+169+155+104+67+65+52+41+32=1778(万平方千米),地球陆地面积为1.49亿平方千米=1.49×104万平方千米,占地球表面积的29.2%,所以地球表面积为1.49×104÷29.2%(万平方千米).故十大沙漠的总面积占地球表面积的17781.49×104÷29.2%=3.48%.24.解法1 设甲与乙相遇时甲行走了t分钟,则甲自C到达B处所用时间是(t-4)分钟,乙自B到达C处所用时间是(t-5.5)分钟,乙自C到达A处所用时间是(t-2.5)分钟.设甲的速度是v米/分,则乙的速度是(v+30)米/分.列方程组,得tv=(t-2.5)(v+30),(t-4)v=(t-5.5)(v+30).{即30t-2.5v-75=0,30t-1.5v-165=0.{解得t=10,v=90.{所以A,B两处的距离为(2t-4)v=16×90=1440(米).解法2 设甲的速度是v米/分,则乙的速度是(v+30)米/分.列方程组,得AC-BC=4v,AC-BC=3(v+30).{解得v=90.又设甲与乙相遇时乙行走了t分钟,则(5.5+t)×90-(90+30)t=90×4,解得t=4.5.所以甲从A到C所用时间是5.5+4.5=10(分钟),A,B两处的距离为90×10+(90+30)×4.5=1440(米).25.设排列的九个数为a,b,c,d,e,f,g,h,i依题意知,所求的七个三位数的和为abc+bcd+cde+def+efg+fgh+ghi=100a+110b+111(c+d+e+f+g)+11h+i,为使所求的七个三位数的和最大,应选取a=3,b=4,c~g选5~9,h=2,i=1,此时,最大的和为4648.为使所求的七个三位数的和最小,应选取a=7,b=6,c~g选1~5,h=8,i=9,此时,最小的和为3122.·83·数理天地初中版数学竞赛2020年第12期初中一年级 第2试一、选择题以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后面的圆括号内.1.a和b是满足ab≠0的有理数,现有四个命题:①a-2b2+4的相反数是2-ab2+4;②a-b的相反数是a的相反数与b的相反数的差;③ab的相反数是a的相反数和b的相反数的乘积;④ab的倒数是a的倒数和b的倒数的乘积.其中真命题有()(A)1个. (B)2个. (C)3个. (D)4个.2.在下面的图形中,不是正方体的平面展开图的是()3.在代数式xy2中,x与y的值各减少25%,则该代数式的值减少了()(A)50%.(B)75%.(C)3764.(D)2764.4.若a<b<0<c<d,则以下四个结论中正确的是()(A)a+b+c+d一定是正数.(B)d+c-a-b可能是负数.(C)d-c-b-a一定是正数.图1(D)c-d-b-a一定是正数.5.在图1中,DA=DB=DC,则x的值是()(A)10.(B)20.(C)30.(D)40.6.已知a,b,c都是整数,m=|a+b|+|b-c|+|a-c|,那么()(A)m一定是奇数.(B)m一定是偶数.(C)仅当a,b,c同奇或同偶时,m是偶数.(D)m的奇偶性不能确定.7.三角形三边的长a,b,c都是整数,且[a,b,c]=60,(a,b)=4,(b,c)=3.(注:[a,b,c]表示a,b,c的最小公倍数;(a,b)表示a,b的最大公约数),则a+b+c的最小值是()(A)30.(B)31.(C)32.(D)33.图28.如图2,矩形ABCD由3×4个小正方形组成.此图中,不是正方形的矩形有()(A)40个. (B)38个.(C)36个.(D)34个.9.设a是有理数,用[a]表示不超过a的最大整数,如[1.7]=1,[-1]=-1,[0]=0,[-1.2]=-2,则在以下四个结论中正确的是()(A)[a]+[-a]=0.(B)[a]+[-a]等于0或1.(C)[a]+[-a]≠0.(D)[a]+[-a]等于0或-1.10.On the num ber axis,there are twopoints Aand Bcorresponding to num bers 7and b respectively,and the distance betweenAand Bis less than 10.Let m=5-2b,thenthe range of the value of mis()(A)-1<m<39.(B)-39<m<1.(C)-29<m<11.(D)-11<m<29.(英汉词典:number axis数轴;point点;correspondingto对应于…;respectively分别地;distance距离;less than小于;value值、数值;range范围)·93·2020年第12期数学竞赛数理天地初中版二、填空题11.112-256+3112-41920+5130-64142+7156-87172+9190=.12.若m+n-p=0,则m1n-1p()+n1m-1p()-p1m+1n()的值等于.图313.图3是一个小区的街道图,A,B,C,…,X,Y,Z是道路交叉的17个路口,站在任一路口都可以沿直线看到过这个路口的所有街道.现要使岗哨们能看到小区的所有街道,那么,最少要设个岗哨.14.如果m-1m=-3,那么m3-1m3=.15.1+2+3+4+5+…+2005+20061-11004()1-11005()1-11006()…1-12006()=.16.乒乓球比赛结束后,将若干个乒乓球发给优胜者.取其中的一半加半个发给第一名;取余下的一半加半个发给第二名;又取余下的一半加半个发给第三名;再取余下的一半加半个发给第四名;最后取余下的一半加半个发给第五名,乒乓球正好全部发完.这些乒乓球共有个.17.有甲、乙、丙、丁四人,每三个人的平均年龄加上余下一人的年龄之和分别为29、23、21和17岁,则这四人中最大年龄与最小年龄的差是岁.18.初一(2)班的同学站成一排,他们先自左向右从“1”开始报数,然后又自右向左从“1”开始报数,结果发现两次报数时,报“20”的两名同学之间(包括这两名同学)恰有15人,则全班同学共有人.19.2 m+2006+2 m(m是正整数)的末位数字是.20.Assume that a,b,c,d are all integers,and four equations(a-2b)x=1,(b-3c)y=1(c-4d)z=1,w+100=d have alwayssolutions x,y,z,w of positive numbersrespectively,then the minimum of ais.(英汉词典:to assume假设;integer整数;equation方程;solution(方程的)解;positive正的;respectively分别地;minimum最小值)三、解答题要求:写出推算过程21.(1)证明:奇数的平方被8除余1.(2)请你进一步证明:2006不能表示为10个奇数的平方之和.图422.如图4所示,△ABC的面积为1,E是AC的中点,O是BE的中点.连结AO并延长交BC于D,连结CO并延长AB于F.求四边形BDOF的面积.23.老师带着两名学生到离学校33千米远的博物馆参观.老师乘一辆摩托车,速度为25千米/小时.这辆摩托车后座可带乘1名学生,带人后速度为20千米/小时.学生步行的速度为5千米/小时.请你设计一种方案,使师生三人同时出发后到达博物馆的时间都不超过3个小时.参考答案一、选择题题号1 2 3 4 5 6 7 8 9 10答案C C C C A B B A D C 提示1.因为-a-2b2+4=2-ab2+4,所以命题①是真命题;因为a-b的相反数为-(a-b)=-a-(-b),所以命题②的真命题;·04·数理天地初中版数学竞赛2020年第12期因为ab的相反数为-ab,(-a)(-b)=ab,又ab≠0,所以-ab≠ab,因此③不是真命题;因为ab≠0,所以ab的倒数为1ab=1a·1b,因此,④是真命题.故选(C).2.观察即知,选(C).3.因为x(1-25%)·[y(1-25%)]2=2764xy2,所以代数式的值减少了1-2764=3764.故选(C).4.当a=-5,b=-4,c=1,d=2时,(A)不成立;当a=-5,b=-4,c=1,d=20时,(D)不成立;又因为a<b<0<c<d,所以d+c>0,①d-c>0,②-a>0,③-b>0,④①+③+④,得 d+c-a-b>0,②+③+④,得 d-c-b-a>0,即(B)不正确,(C)正确.故选(C).5.根据三角形内角和定理,并利用等腰三角形两底角相等,得2x+30×2+50×2=180,解得x=10.故选(A).6.因为a,b,c,均为整数,又奇数+奇数=偶数;偶数+偶数=偶数;奇数-奇数=偶数;偶数-偶数=偶数;奇数-偶数=奇数;偶数-奇数=奇数;所以当a,b,c同奇或同偶时,m为偶数;当a,b,c中有两个奇数一个偶数时,m为偶数;当a,b,c中有两个偶数一个奇数时,m为偶数;故选(B).7.由题意知b既能被4整除,又能被3整除,所以b能被12整除.又60能被b整除,所以b=12或60.(1)若b=12,则60÷b=5,因为(5,4)=1,(5,3)=1,所以a,c中至少有一个含因数5.若a含因数5,则a≥20,又c≥3,所以a+b+c≥20+12+3=35;若c含因数5,则c≥15,又a≥4,所以a+b+c≥4+12+15=31,取a=4,b=12,c=15,能构成三角形.(2)若b=60,则a+b+c>60>31.综上知,a+b+c的最小值为31.故选(B).8.从5条竖线中取2条,共有5×42=10(种)取法,从4条横线中取2条,共有4×32=6(种)取法.2条竖线和2条横线可组成1个矩形,所以图中的矩形共有10×6=60(个),其中,正方形有4×3+3×2+2×1=20(个),所以,不是正方形的矩形有60-20=40(个).故选(A).·14·2020年第12期数学竞赛数理天地初中版9.当a=1.1时,[a]=1,[-a]=-2,所以(A)、(B)不成立.当a=1时,[a]=1,[-a]=-1,所以(C)不成立.当a≥0时,a可以写成a=[a]+{a},而0≤{a}<1,-a=-[a]-{a}.如果{a}=0,即a是正整数,则[-a]=-[a],所以[a]+[-a]=0.如果{a}>0,则[-a]=-[a]=-1,所以[a]+[-a]=-1.当a<0时,令b=-a>0,将上面讨论中的a换成b,仍可以得到[a]+[-a]等于0或-1.故选(D).10.译文:点A和点B分别对应于数轴上的两个数7和b,且|AB|<10.如果m=5-2b,那么m的取值范围是( )(A)-1<m<39.(B)-39<m<1.(C)-29<m<11.(D)-11<m<29.解 由题意知|AB|=|b-7|<10,所以-3<b<17,即-29<5-2b<11.故选(C).二、填空题题号11 12 13 14 15答案1910-3 4-36 4026042题号16 17 18 19 20答案31 18 53或25 0 2433 提示11.原式=1+12+3-256()+112+ 5-41920()+130+7-64142()+156+ 9-87172()+190=1+12+16+112+120+130+142+156+172+190=1+1-12()+12-13()+13-14()+ 14-15()+…+18-19()+19-110()=2-110=1-910.12.因为m+n-p=0,所以m-p=-n,n-p=-m,m+n=p,即 m1n-1p()+n1m-1p()-p1m+1n()=mn-mp+nm-np-pm+pn()=mn-pn()+nm-pm()-mp+np()=m-pn+n-pm-m+np=-1-1-1=-3.13.因为DS,AX,EY,FZ是小区中4条彼此平行的街道,守望每条街道都需要1个岗哨,因此,守望这4条彼此平行的街道至少需要4个岗哨.即守望这个小区的所有街道需要安排的岗哨不能少于4个.在D,N,Y,F路口设4个岗哨即可守望小区的所有街道,因此,最少要设4个岗哨.14.m3-1m2=m-1m()m2+11m2()=-3 m2-2+1m2+3()=-3 m-1m()2+3[]=-3×12=-36.·24·数理天地初中版数学竞赛2020年第12期15.原式=(1+2006)×100310032006=2007×2006=4026042.16.设共有乒乓球x个,则第一名得乒乓球的个数为x2+12=12(x+1);第二名得乒乓球的个数为12x-x+12()+12=14(x+1);第三名得乒乓球的个数为12x-x+12-x+14()+12=18(x+1);以此类推,第四名得乒乓球的个数为x+116;第五名得x+132.依题意x+12+x+14+x+18+x+116+x+132=x,即(x+1)12+14+18+116+132()=x.解得x=31.17.设甲、乙、丙、丁四人的年龄分别是a,b,c,d,则有a+b+c3+d=29,b+c+d3+a=23,c+d+a3+b=21,d+a+b3+c=17.烅烄烆将四个式子相加并化简,得a+b+c+d=45,再将上面方程组的每个式子乘以3后分别与(*)式相减,得a=12,b=9,c=3,d=21.由对称性,知甲、乙、丙、丁四人中年龄最大的是21岁,年龄最小的是3岁.所以最大年龄与最小年龄的差为21-3=18(岁).18.有如图5所示的两种情况:图5所以全班共有20+20+13=53(人),或20+(20-15)=25(人).19.因为2 m+2006+2 m=2 m(22006+1),而22006=(24)501×22=16501×4,乘积的个位数字是4,所以22006+1的个位数字是5,又2 m为偶数,所以mm+2006+2 m的末位数字为0.20.译文:设a,b,c,d均为整数,且关于x,y,z,w的四个方程(a-2b)x=1,(b-3c)y=1,(c-4d)z=1,w+100=d的根都是正数,则a可能取得的最小值是.解 因为方程(a-2b)x=1的根x>0,所以a-2b>0,又因为a,b均为整数,所以a-2b也为整数,即a-2b≥1,a≥2b+1.同理可得b≥3c+1,c≥4d+1,d≥101.所以a≥2b+1≥2(3c+1)+1=6c+3≥6(4d+1)+3=24d+9≥24×101+9=2433,故a可能取得的最小值为2433.三、解答题21.(1)设n为任意整数,则2n+1为任意奇数.那么(2n+1)2=2n2+4n+1=4n(n+1)+1.由于n(n+1)能被2整除,·34·2020年第12期数学竞赛数理天地初中版所以4n(n+1)能被8整除,所以4n(n+1)+1被8除余1.因此,奇数的平方被8除余1.(2)假设2006可以表示为10个奇数的平方之和,也就是x21+x22+x23+…+x210=2006,(其中x1,x2,x3,…,x10都是奇数)等式左边被8除余2,而2006被8除余6.矛盾!因此,2006不能表示为10个奇数的平方之和.22.设S△BDF=x,S△BOD=y.因为E是AC的中点,O是BE的中点,且S△ABC=1,所以S△AOE=S△COE=S△AOB=S△COB=14.则S△AOF=14-x,S△ACF=34-x,S△BCF=14+x.由S△AOFS△BOF=AFBF=S△ACFS△BCF,得14-xx=34-x14+x,即116-x2=34x-x2,得x=112.又S△COD=14-y,S△ACD=34-y,S△ABD=14+y.由S△BODS△COD=BDCD=S△ABDS△ACD,得y14-y=14+y34-y,即116-y2=34y-y2,得y=112.所以S四边形BDOF=x+y=112+112=16.23.要使师生二人都到达博物馆的时间尽可能短,可设计方案如下:设学生为甲、乙二人.乙先步行,老师带甲乘摩托车行驶一定路程后,让甲步行,老师返回接乙,然后老师带乘乙,与步行的甲同时到达博物馆.如果6所示,设老师带甲乘摩托车行驶了x千米,用了x20小时,比乙多行了x20×(20-5)=34x(千米).图6这时老师让甲步行前进,而自己返回接乙,遇到乙时,用了34x÷(25+5)=x40(小时).乙遇到老师时,已经步行了x20+x40()×5=38x(千米),离博物馆还有33-38x(千米).要使师生三人能同时到达博物馆,甲、乙二人搭乘摩托车的路程应相同,则有x=33-38x,解得x=24.即甲先乘摩托车行驶24千米,用了1.2小时,再步行9千米,用了1.8小时,共计3小时.因此,上述方案可使师生三人同时出发后都到达博物馆的时间不超过3个小时.·44·数理天地初中版数学竞赛2020年第12期。
浙江省2017年高中(高一)“希望杯”二试数学试题Word版含答案

2017年高中“希望杯”浙江省二试试题一、选择题:本大题共10个小题,每小题4分,共40分.1.已知锐角α终边上一点的坐标为(2sin3,2cos3)-,则α=( )A .3π-B .3C .32π-D .32π- 2.若定义在R 上的函数(1)y f x =-是奇函数,则()f x 的图象一定过点( )A .(0,0)B .(1,0)C .(-1,0)D .(1,-1)3.在集合(0,1)(1,)+∞ 上定义运算“★”:{|l o g ,,}a x A A x b a b B =∈∈★B=,则集合11{,}2{2,4}4★的真子集的个数是( ) A .1 B .3 C .7 D .154.Two sets expressed asA=2{(,)|sin 1.2sin 1,}x y y x x x R =-+∈,B=sin {(,)|2,}x x y y x R -=∈then the number of element for A B is ( )A .0B .1 C.2 D .infinite5.设32()366f x x x x =-+-,且()1,()5f a f b ==-,则a b += ( )A .-2B .0 C.1 D .26.若0a ≠,则等比数列333248log 5,log 5,log 5a a a a a a ++++++的公比是( ) A .12 B .2 C.13D .3 7.`2()(1)()(0)31x F x f x x =-≠+是偶函数,且()f x 不恒等于0,则()f x ( ) A .是奇函数 B .是偶函数 C.可能是奇函数,也可能是偶函数 D .既不是奇函数,也不是偶函数8.对于方程||0x x px q ++=进行讨论,下面有四个结论:①至多有三个实根.②至少有一个实根. ③仅当240p q -≥时才有实根. ④当0p <和0q >时,有三个实根.A .1个B .2个 C.3个 D .4个9.如图,在长方体1111ABCD A BC D -中,15,10,6AB AA AD ===,点E 在1DD 上,点F在AD 上,点G 在AB 上,且1:1:2,:2:3,:3:4DF FA D E ED BG GA ===,则EFG ∆(图中阴影部分)在平面11BCC B 上正投影的面积是( )A .8B .10 C.12 D .1510.设定义在R 上的函数()f x 满足3()()2f x f x =-+,又知(0)2,(1)2,(2)3f f f =-==,则(1)(2)(3)(2009)f f f f ++++ 的值等于( )A .2009B .2010 C.2011 D .2012 第Ⅱ卷(共90分)二、填空题(每题4分,满分40分)11.已知函数222,0,()2,0.x x x f x x x x ⎧--≥⎪=⎨-<⎪⎩若2(3)(2)f a f a ->,则实数a 取值范围是 .12.设432()f x x ax bx cx d =++++,其中,,,a b c d 是常数,如果(1)10,(2)20,(3)30f f f ===,则(10)(6)f f +-= .13.用[]x 表示不超过实数x 的最大整数,若0[sin(10)1k ⨯=-,则最小正整数k为 .14.若13(2)2()3(0)f x f x x x +=≠,则()f x = .15.若(1sin )(1sin )y a x a x =++--,当1sin 0x +=时,y 取得最小值;当sin 0a x +=时,y 取得最大值,则a 的取值范围是 .16.已知数列{}n a 满足*11210()n n n a a a n N ++++=∈110,n n a b a c==+,若{}n b 是等差数列,且其前n 项和为n S ,则2013S = .17.不等式组424222log (824)33sin cos 2yy x x x y ππ-+⎧-+≤⎪⎨≥⎪⎩的解集是 .18.If a sequence {}n a is definde as 1125,21n n a a a n +=-=-,then the minimum value of n a n is . 19.已知函数()(*),f n k n N k =∈是0.9196461178┅ 的小数点后的第n 个数字,则5(((5)))8(((8)))f f f f f f += .20.设:p 函数()log(101)xf x ax =+-是偶函数,:q 函数42()2x x ag x -=是奇函数,则p 是q 的 条件(填必要不充分,或充分不必要,或充要,或既不充分也不必要).三、解答题 每题都要写出推算过程.21. 已知数列}{n a ,其中.2,3211n n n a a a a +==+(1)求}{n a 的通项公式;(2)求满足20121>n a 的n 的最小值.22.在ABC ∆中,c b a ,,分别是角C B A ,,所对的边,已知5,8==c b ,且)sin sin )(sin (C B A c b a -+++ .sin )32(B a +=(1)求角C 的大小;(2)求.ABC S ∆ 23.已知函数⎪⎩⎪⎨⎧<-≥+=.0),1(log ,0),1(log )(212x x x x x f (1)判断函数)(x f y =的奇偶性;(2)对任意两个实数21,x x ,求证:当021>+x x 时,0)()(21>+x f x f ;(3)对任何实数0)23()(,2≥-+-x x e f a e f x 恒成立,求实数a 的取值范围.试卷答案一、选择题1-5: CCCDD 6-10:CABCD二、填空题11. 31<<-a 12.8104 13. 19 14.x x 56109- 15.[-1,0]16. 202709117.)}1,2)(1,2(|),{(---y x 18.541 19.86 20.充要 三、解答题21.(1)由n n n a a a 221+=+,得21)1(1+=++n n a a 由题设,易知 0>n a于是2212)1(log )1(log +=++n n a a即)1(log 2)1(log 212+=++n n a a所以)}1({log 12++n a 是以2)13(log 2=+为首项,2为公比的等比数列 故n n n a 222)1(log 12=⋅=+-则n n a 221=+因此122-=n n a(2)由20121>n a ,即20121122>-n ,得2012222>n 因为151********20122163842=⨯<<=, 所以*,22142N n n ∈> 即152,22152≥≥n n故4≥n .因此,所示n 的最小值是。
2021年第17届全国希望杯数学竞赛试题(Word可编辑版)

2021年第17届全国希望杯数学竞赛试题
(最新版)
-Word文档,下载后可任意编辑和处理-
第十七届“希望杯”全国数学邀请赛
高一第1试
2021年3月19日上午8:00至10:00
一、选择题(每小题4分,共40分)以下每题的4个选项中仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
题号
1
2
3
4
5
6
7
8
9
10
共得分
答案
1.设则()
(A) (B) (C) (D)
2.若的定义域为A,的定义域为B,那么()(A) (B) AB(C)(D)3.已知
(A)(B)(C)(D)的符号不确定4.设则
(A)16(B)4(C)2(D)5.已知,函数的图像关于原点对称的充要条件是()
(A)(B)(C)(D)
6.若三条边的长依次为,则三内角A,B,C的大小顺序为()(A)(B)(C)(D)
7.若实数满足
(A)(B)31(C)(D)或
8.区间所得的象集区间为,若区间的长度比区间
的长度大5,则=()
(A)5(B10(C)2.5(D)1
10.函数在区间上的最大值为-3,则a的值是()
(A)(B)
(C)(D)。
第17届“希望杯”全国数学邀请赛(高一)

A、-B、+2或-C、+2或2-D、2-或-
二、A组填空题
11.已知定义在非零自然数集上的函数f(n)=,则当n≤2005时,n-f(n)=____________;当2005<n≤2007时,n-f(n)=____________.
17.tan24°+tan24°tan36°+tan36°=______________.
18.计算:12-22+32-42+……+20052-20062=______________.
19.王先生乘坐一辆出租车前往首都国际机场,该车起价10元(3公里以内),3公里以外每行驶0.6公里增加1元,当王先生到达机场时,计价器显示应付费34元,设王先生乘车路程为s公里,则s的取值范围是______________.
12.若sinαcosβ=1,则cosαsinβ=____________.
13.化简log sin+log sin的结果为______________.
14.Thereare2006ballslinedupinarow.Therarecolouredtobered,white,blueandblackinthefollowingorder:5red,4white,1blue,3black,5red,4white,1blue,3black…….Thenthelastballiscolouredtobe_______________.
8.区间[0,m]在映射f:x2x+m所得的象集区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度达5,则m=( )
A、5B、10C、2.5D、1
9.设数列{an}(an>0)的前n项和是Sn,且an与2的算术平均值等于Sn与2的几何平均值,则{an}的通项为( )
希望杯高一试题及答案

希望杯高一试题及答案一、选择题(每题5分,共50分)1. 已知函数f(x)=2x^2-3x+1,求f(-1)的值。
A. -3B. -1C. 3D. 1答案:C2. 一个等差数列的前三项分别为2,5,8,求该数列的公差。
A. 1B. 2C. 3D. 4答案:B3. 已知向量a=(3, -4),向量b=(-2, 6),求向量a与向量b的点积。
A. 0B. 12C. -12D. 24答案:C4. 一个圆的半径为5,圆心在坐标原点,求该圆的面积。
A. 25πB. 50πC. 100πD. 200π答案:B5. 函数y=x^3-6x^2+9x+1的极小值点是:A. x=1B. x=2C. x=3D. x=4答案:B6. 已知集合A={1, 2, 3},集合B={2, 3, 4},求A∩B。
A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}答案:B7. 一个三角形的三边长分别为3,4,5,求该三角形的面积。
A. 6B. 3.6C. 2.4D. 1.8答案:B8. 已知函数f(x)=x^2-4x+3,求f(x)的对称轴。
A. x=-1B. x=2C. x=0D. x=1答案:B9. 一个正方体的对角线长为√3,求该正方体的体积。
A. 1B. 2C. 3D. 4答案:A10. 已知函数y=1/x,当x=2时,求y的值。
A. 0.5B. 1C. 2D. 4答案:A二、填空题(每题5分,共30分)11. 已知等比数列的前三项为2,4,8,求该数列的第四项。
答案:1612. 一个直角三角形的两条直角边长分别为3和4,求该三角形的斜边长。
答案:513. 已知函数f(x)=x^3-3x^2+2,求f'(x)。
答案:3x^2-6x14. 一个球的体积为(4/3)π,求该球的半径。
答案:115. 已知向量a=(1, 2),向量b=(3, 4),求向量a与向量b的向量积。
答案:-216. 一个圆的周长为2π,求该圆的半径。
高一希望杯试题及答案

高一希望杯试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是正确的描述?A. 地球是平的B. 地球是圆的C. 地球是方的D. 地球是三角形的答案:B2. 根据题目描述,下列哪个数学公式是正确的?A. \( a^2 + b^2 = c^2 \)(当a, b, c为直角三角形的边)B. \( a^2 + b^2 = c^2 + 2ab \)C. \( a^2 + c^2 = b^2 \)D. \( a^2 + b^2 + c^2 = 0 \)(当a, b, c为零向量)答案:A3. 在化学中,水的化学式是什么?A. H2OB. O2HC. OH2D. H2O2答案:A4. 以下哪个选项不是植物的六大器官之一?A. 根B. 茎C. 叶D. 花答案:D(花是生殖器官,但不是六大器官之一)5. 以下哪个历史事件标志着中国近代史的开端?A. 鸦片战争B. 辛亥革命C. 抗日战争D. 五四运动答案:A6. 在物理中,下列哪个公式描述了牛顿第二定律?A. \( F = ma \)B. \( F = mv \)C. \( F = m \frac{v^2}{r} \)D. \( F = \frac{1}{2}mv^2 \)答案:A7. 以下哪个选项是正确的描述?A. 所有生物都需要氧气才能生存B. 所有生物都需要水才能生存C. 所有生物都需要阳光才能生存D. 所有生物都需要土壤才能生存答案:B8. 以下哪个选项是正确的描述?A. 光速在真空中是恒定的B. 光速在不同介质中是相同的C. 光速在不同介质中是恒定的D. 光速在真空中会随着时间变化答案:A9. 在地理学中,以下哪个选项是正确的描述?A. 地球的自转方向是自东向西B. 地球的自转方向是自西向东C. 地球的公转方向是自东向西D. 地球的公转方向是自西向东答案:B10. 在音乐理论中,以下哪个选项是正确的描述?A. C大调的调号是两个升号B. G大调的调号是一个升号C. F大调的调号是四个降号D. D大调的调号是五个升号答案:D二、填空题(每空1分,共10分)1. 根据题目描述,地球的自转周期是________小时。
数学难题“希望杯”竞赛试题.doc

1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.1.有一百名小运动员所穿运动服的号码恰是从1到100这一百个自然数,问从这100名运动员中至少要选出多少人,才能使在被选出的人中必有两人,他们运动服的号码数相差9?请说明你的理由.2.少年科技组制成一台单项功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1-x2|的结果,此后每输入一个整数都是与前次显示的结果进行求差取绝对值的运算,现小明将从1到1991这一千九百九十一个整数随意地一个一个地输入,全部输入完毕之后显示的最后结果设为p.试求出p的最大值,并说明理由.4.若P=a2+3ab+b2,Q=a2-3ab+b2,则代入到代数式P-[Q-2P-(-P-Q)]中,化简后,是______.7.小华写出四个有理数,其中每三数之和分别为2,17,-1,-3,那么小华写出的四个有理数的乘积等于______.10.在下图所示的每个小方格中都填入一个整数:并且任意三个相邻格子中所填数之和都等于5,则x y zxyz++=__________.1.将分别写有数码1,2,3,4,5,6,7,8,9的九张正方形卡片排成一排,发现恰是一个能被11整除的最大的九位数.请你写出这九张卡片的排列顺序,并简述推理过程.2.一个自然数a,若将其数字重新排列可得一个新的自然数b.如果a恰是b的3倍,我们称a是一个“希望数”.(1)请你举例说明:“希望数”一定存在.(2)请你证明:如果a,b都是“希望数”,则ab一定是729的倍数.若a>0,在-a与a之间恰有1993个整数,则a的取值范围是______.甲、乙两个火车站相距189公里,一列快车和一列慢车分别从甲、乙两个车站同时出发,相向而行,经过1.5小时,两车相遇,又相距21公里,若快车比慢车每小时多行12公里,则慢车每小时行______公里.有人问一位老师:他教的班有多少学生.老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩不足六位学生正在操场踢足球.”则这个“特长班”共有学生______人.设a=1÷2÷3÷4,b=1÷(2÷3÷4),c=1÷(2÷3)÷4,d=1÷2÷(3÷4),则(b÷a)÷(c÷d)=______.某次竞赛满分为100分,有六个学生的得分彼此不等,依次按高分到低分排列名次.他们六个人的平均分为91分,第六名的得分是65分.则第三名的得分至少是______分.有甲、乙、丙、丁四位同学去林中采蘑菇.平均每个采得蘑菇的个数约是一个十位数字为3的两位数,又知甲采的数量是乙的45,乙采的数量是丙的32倍,丁比甲多采了3个蘑菇,则丁采蘑菇______ 个.1.如图28,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x,y,z).试求满足上述条件的矩形的面积最小值.2.你能找到三个整数a,b,c,使得关系式(a+b+c)(a-b-c)(a-b+c)(b+c-a)=3388成立吗?如果能找到,请举一例,如果找不到,请说明理由.在自然数中,从小到大地数,第15个质数是N,N的数字和是a,数字积是b,则22 a bN的值是________.已知a,b是互为相反数,c,d是互为负倒数,x的绝对值等于它的相反数的2倍,则x3+abcdx+a-bcd的值是______.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1∶2∶3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需______工时.若p,q都是质数,以x为未知数的方程px+5q=97的根是1,则p2-q=______.1.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图9所示.试求图中阴影部分的总面积(写出分步求解的简明过程)2.(1)现有一个19°的“模板”(图10),请你设计一种办法,只用这个“模板”和铅笔在纸上画出1°的角来.(2)现有一个17°的“模板”与铅笔,你能否在纸上面画出一个1°的角来?(3)用一个21°的“模板”与铅笔,你能否在纸上画出一个1°的角来?对(2)、(3)两问,如果能,请你简述画法步骤,如果不能,请你说明理由.某市举行环城自行车比赛,跑的路线一圈是6千米,甲车速是乙车速的,在出发后1小时10分钟时,甲、乙二人恰在行进中第二次相遇,则乙车比甲车每分钟多走_____千米.如图8,两条线段AB、CD将大长方形分成四个小长方形,其中S1面积是8,S2的面积是6,S3的面积是5.则阴影三角形的面积是_____.1.某班参加校运动会的19名运动员的运动服号码恰是1~19号,这些运动员随意地站成一个圆圈,则一定有顺次相邻的某3名运动员,他们运动服号码数之和不小于32,请你说明理由.2.已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-17(a+b )的值.2如图3,某公园的外轮廓是四边形ABCD,被对角线AC、BD分为四个部分,△AOB的面积是1平方千米,△BOC的面积是2平方千米,△COD的面积是3平方千米,公园陆地的总面积是6.92平方千米,那么人工湖的面积是______平方千米.快慢两列火车的长分别是150米和200米,相向行驶在平行轨道上.若坐在慢车上的人见快车驶过窗口的时间是6秒,那么坐在快车上的人见慢车驶过窗口所用的时间是______秒.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是______分.21.(1)请你写出不超过30的自然数中的质数之和.(2)请回答,千位数是1的四位偶自然数共有多少个?(3)一个四位偶自然数的千位数字是1,当它分别被四个不同的质数去除时,余数也都是1,试求出满足这些条件的所有自然数,其中最大的一个是多少?22.(1)用1×1,2×2,3×3三种型号的正方形地板砖铺设23×23的正方形地面,请你设计一种辅设方案,使得1×1的地板砖只用一块.(2)请你证明:只用2×2,3×3两种型号的地板砖,无论如何铺设都不能铺满23×23的正方形地面而不留空隙.初一“数学晚会”上,有10个同学藏在10个大盾牌后面.男同学的盾牌前面写的是一个正数,女同学的盾牌前面写的是一个负数,这10个盾牌如下所示.则盾牌后面的同学中有女同学______人;男同学______人.83023(5)(1)83(30),,0.1,,,8,2,,4(2),51,(25)19971997(3)a ---+---⨯-⨯---- 《数理天地》(初中版)月刊,全年共出12期,每期定价2.50元,某中学初一年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元,若订全年的同学都改订半年,而订半年的同学均改订全年时,共需订费1245元,则该中学初一年级订阅《数理天地》(初中版)的学生共有______人.21.已知一个七位自然数62xy427是99的倍数(其中x 、y 是阿拉伯数字),试求950x +24y +1之值,简写出求解过程.22.用24个面积为1的单位正三角形拼成如图5所示的正六边形,我们把面积为4的正三角形称为“希望形”.(1)请你回答,图中共可数出多少个不同的“希望形”?(2)将1~24这24个自然数填入24个单位正三角形中(每个里只填1个数).我们依次对所有“希望形”中的4个单位正三角形中填的数同时加上一个相同的自然数称为一次操作,问能否经过有限次操作员后,使图中24个单位正三角形中都变为相同的自然数?如果能,请给出一种填法,如果不能,请简述理由.甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是_________秒.某人以4千米/时的速度步行由甲地到乙地,然后又以6千米/时的速度从乙地返回甲地,那么某人往返一次的平均速度是______千米/时.21.23个不同的正整数的和是4845,问:这23个数的最大公约数可能达到的最大值是多少?写出你的结论,并说明理由.22.(a )请你在平面上画出6条直线(没有三条共点),使得它们中的每条直线都恰与另三条直线相交,并简单说明画法.(b )能否在平面上画出7条直线(任意3条都不共点),使得它们中的每条直线都恰与另3条直线相交?如果能,请画出一例,如果不能,请简述理由.A 、B 两个港口相距300公里.若甲船顺水自A 驶向B,乙船同时自B 逆水驶向A,两船在C 处相遇.若乙船顺水自A 驶向B,甲船同时自B 逆水驶向A,则两船于D 处相遇,C 、D 相距30公里.已知甲船速度为27公里/小时,则乙船速度是______公里/ 小时.甲、乙、丙、丁、戊五名同学参加推铅球比赛,通过抽签决定出赛顺序. 在未公布顺序前每人都对出赛顺序进行了猜测.甲猜:乙第三,丙第五;乙猜: 戊第四,丁第五;丙猜:甲第一,戊第四;丁猜:丙第一,乙第二;戊猜:甲第三,丁第四. 老师说每人的出赛顺序都至少被一人所猜中,则出赛顺序中,第一是______, 第三是______,第五是_______.21.一个长方形如图所示恰分成六个正方形,其中最小的正方形面积是1 平方厘米.求这个长方形的面积.22.已知一组两两不等的四位数,它们的最大公约数是42, 最小公倍数是90090.问这组四位数最多能有多少个?它们的和是多少?某种出租汽车的车费是这样计算的:路程在4公里以内(含4公里)为10元4角,达到4公里以后,每增加1公里加1元6角;达到15公里后,每增加1公里加2元4角,增加不足1公里时按四舍五入计算,则乘坐15公里该种出租车应交车费________元,某乘客乘坐该种出租车交了车费95元2角,则这个乘客乘该出租车行驶的路程为________公里。
最全希望杯数学竞赛真题及答案

“希望杯”全国数学竞赛(第1-23届)第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
希望杯高一试题及答案

希望杯高一试题及答案一、选择题(每题3分,共30分)1. 函数y=f(x)的图象关于直线x=1对称,则f(0)等于()。
A. f(2)B. f(-2)C. f(1)D. f(-1)2. 已知数列{a_n}是等差数列,且a_1=1,a_3=4,则a_5等于()。
A. 7B. 8C. 9D. 103. 若函数y=f(x)在区间[1,2]上单调递增,则下列不等式中一定成立的是()。
A. f(1) < f(2)B. f(0) < f(2)C. f(1) < f(3)D. f(2) < f(3)4. 已知集合A={x|x^2-3x+2=0},B={x|x^2-x-2=0},则A∩B等于()。
A. {1}B. {2}C. {1,2}D. 空集5. 已知函数y=f(x)=x^3+1,求f'(1)的值()。
A. 2B. 3C. 4D. 56. 若复数z=a+bi满足|z|=1,且z^2=i,则a和b的值分别为()。
A. a=0, b=1B. a=1, b=0C. a=-1, b=0D. a=0, b=-17. 已知向量a=(1,2),b=(2,1),则向量a+b的坐标为()。
A. (3,3)B. (3,4)C. (2,3)D. (4,3)8. 已知双曲线x^2/a^2 - y^2/b^2 = 1的离心率为e=√2,且a=2,则b的值为()。
A. 2B. 4C. √2D. 2√29. 已知抛物线y^2=4x的焦点为F,点P(1,2)在抛物线上,则PF 的长度为()。
A. 1B. 2C. 3D. √510. 已知等比数列{a_n}的首项a_1=2,公比q=2,则a_5的值为()。
A. 16B. 32C. 64D. 128二、填空题(每题4分,共20分)11. 已知函数y=f(x)=x^2-4x+3,求f(2)的值。
12. 已知等差数列{a_n}的前n项和为S_n,若S_3=9,S_5=15,则a_4的值为。
希望杯高一数学竞赛试题

希望杯高一数学竞赛试题希望杯数学竞赛是一项旨在激发学生学习数学兴趣和提高数学素养的竞赛活动。
以下是一份模拟的高一数学竞赛试题,供参赛学生练习使用。
一、选择题(每题5分,共20分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值为:A. 6B. 4C. 2D. 02. 已知\( a \),\( b \),\( c \)是三角形ABC的三边长,且满足\( a^2 + b^2 = c^2 \),则三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 集合\( A = \{ x | x^2 - 5x + 6 = 0 \} \),求集合\( A \)的元素个数:A. 1B. 2C. 3D. 44. 若\( \sin \theta + \cos \theta = \sqrt{2} \),求\( \sin\theta \cdot \cos \theta \)的值为:A. 1B. \( \frac{\sqrt{2}}{2} \)C. \( \frac{1}{2} \)D. \( \frac{\sqrt{2}}{4} \)二、填空题(每题4分,共16分)5. 已知等差数列的首项\( a_1 = 3 \),公差\( d = 2 \),求第10项\( a_{10} \)的值为:________。
6. 若\( x \),\( y \)满足\( 2x - 3y = 7 \),求\( 4x + 6y - 14 \)的值为:________。
7. 已知圆的半径为5,圆心到直线\( x + y - 7 = 0 \)的距离为4,则该直线与圆的位置关系是:________。
8. 若\( \log_2 3 = a \),求\( \log_{\frac{1}{2}} 3 \)的值为:________。
三、解答题(每题14分,共56分)9. 已知函数\( f(x) = x^3 - 3x^2 + 2x - 1 \),求证:对于任意实数\( x \),都有\( f(x) \geq -1 \)。
2006年第17届“希望杯”全国数学邀请赛第一试试题及详解【圣才出品】

【评注】比较几个数的大小直接不好比较时,可找一个桥梁即中间值分别与这几个数比
较,从而即可得到原来几个数的大小关系。
8.方程 x+y+z=7 的正整数解有( )。 A.10 组 B.12 组 C.15 组 D.16 组 【来源】第 17 届“希望杯”全国数学邀请赛(初一)第一试 【答案】C 【解析】这些正整数解为: 1,1,5;1,2,4;1,3,3;1,4,2;1,5,1; 2,1,4;2,2,3;2,3,2;2,4,1; 3,1,3;3,2,2;3,3,1; 4,1,2;4,2,1; 5,1,1; 总共 15 组。
3 / 16
圣才电子书
【答案】C
十万种考研考证电子书、题库视频学习平台
【解析】第一个和第三个是轴对称图形。
【评注】熟知轴对称的含义,即当以一条轴将两侧对折时,则完全重合。
6.对于数 x,符号[x]表示不大于 x 的最大整数.例如,[3.14]=3,[-7.59]= -8,则满足关系式[ 3x+7 ]=4 的 x 的整数值有( )。
5 / 16
圣才电子书 十万种考研考证电子书、题库视频学习平台
【评注】对于数目较小的等式,可直接利用枚举法列出其所有的解。
9.如图 4,ABCD 与 BEFG 是并列放在一起的两个正方形.O 是 BF 与 EG 的交点.如果正 方形 ABCD 的面积是 9 平方厘米,CG=2 厘米,则三角形 DEO 的面积是( )。
A.β<α< B.β< <α
4 / 16
圣才电子书
C.α< <β
十万种考研考证电子书、题库视频学习平台
D.α<β<
【来源】第 17 届“希望杯”全国数学邀请赛(初一)第一试
【答案】B
【解析】观察图形可以得出 90 ,而 90 , 90 ,所以 。
浙江省2017年高中(高一)“希望杯”二试数学试题+Word版含答案

2017年高中“希望杯”浙江省二试试题一、选择题:本大题共10个小题,每小题4分,共40分.1.已知锐角α终边上一点的坐标为(2sin 3,2cos3)-,则α=( ) A .3π- B .3 C .32π-D .32π-2.若定义在R 上的函数(1)y f x =-是奇函数,则()f x 的图象一定过点( ) A .(0,0) B .(1,0) C .(-1,0) D .(1,-1)3.在集合(0,1)(1,)+∞上定义运算“★”:{|l o g ,,}ax A A x b a b B =∈∈★B=,则集合11{,}2{2,4}4★的真子集的个数是( )A .1B .3C .7D .15 4.Two sets expressed asA=2{(,)|sin 1.2sin 1,}x y y x x x R =-+∈,B=sin {(,)|2,}xx y y x R -=∈then the number ofelement for AB is ( )A .0B .1 C.2 D .infinite5.设32()366f x x x x =-+-,且()1,()5f a f b ==-,则a b += ( ) A .-2 B .0 C.1 D .26.若0a ≠,则等比数列333248log 5,log 5,log 5a a a a a a ++++++的公比是( )A .12 B .2 C.13D .3 7.`2()(1)()(0)31x F x f x x =-≠+是偶函数,且()f x 不恒等于0,则()f x ( )A .是奇函数B .是偶函数 C.可能是奇函数,也可能是偶函数 D .既不是奇函数,也不是偶函数8.对于方程||0x x px q ++=进行讨论,下面有四个结论:①至多有三个实根.②至少有一个实根.③仅当240p q -≥时才有实根.④当0p <和0q >时,有三个实根.A .1个B .2个 C.3个 D .4个9.如图,在长方体1111ABCD A B C D -中,15,10,6AB AA AD ===,点E 在1DD 上,点F在AD 上,点G 在AB 上,且1:1:2,:2:3,:3:4DF FA D E ED BG GA ===,则EFG ∆(图中阴影部分)在平面11BCC B 上正投影的面积是( )A .8B .10 C.12 D .1510.设定义在R 上的函数()f x 满足3()()2f x f x =-+,又知(0)2,(1)2,(2)3f f f =-==,则(1)(2)(3)(2009)f f f f ++++的值等于( )A .2009B .2010 C.2011 D .2012第Ⅱ卷(共90分)二、填空题(每题4分,满分40分)11.已知函数222,0,()2,0.x x x f x x x x ⎧--≥⎪=⎨-<⎪⎩若2(3)(2)f a f a ->,则实数a 取值范围是 .12.设432()f x x ax bx cx d =++++,其中,,,a b c d 是常数,如果(1)10,(2)20,(3)30f f f ===,则(10)(6)f f +-= .13.用[]x 表示不超过实数x 的最大整数,若0[sin(10)1k ⨯=-,则最小正整数k 为 .14.若13(2)2()3(0)f x f x x x+=≠,则()f x = .15.若(1sin )(1sin )y a x a x =++--,当1sin 0x +=时,y 取得最小值;当sin 0a x +=时,y 取得最大值,则a 的取值范围是 .16.已知数列{}n a 满足*11210()n n n a a a n N ++++=∈110,n n a b a c==+,若{}n b 是等差数列,且其前n 项和为n S ,则2013S = .17.不等式组424222log (824)33sin cos 2y y x x x y ππ-+⎧-+≤⎪⎨≥⎪⎩的解集是 .18.If a sequence {}n a is definde as 1125,21n n a a a n +=-=-,then the minimum value ofna nis . 19.已知函数()(*),f n k n N k =∈是0.9196461178┅ 的小数点后的第n 个数字,则5(((5)))8(((8)))f f f f f f += .20.设:p 函数()log(101)xf x ax =+-是偶函数,:q 函数42()2x xag x -=是奇函数,则p 是q 的 条件(填必要不充分,或充分不必要,或充要,或既不充分也不必要). 三、解答题 每题都要写出推算过程.21. 已知数列}{n a ,其中.2,3211n n n a a a a +==+ (1)求}{n a 的通项公式;(2)求满足20121>n a 的n 的最小值.22.在ABC ∆中,c b a ,,分别是角C B A ,,所对的边,已知5,8==c b ,且)sin sin )(sin (C B A c b a -+++ .sin )32(B a +=(1)求角C 的大小; (2)求.ABC S ∆23.已知函数⎪⎩⎪⎨⎧<-≥+=.0),1(log ,0),1(log )(212x x x x x f(1)判断函数)(x f y =的奇偶性;(2)对任意两个实数21,x x ,求证:当021>+x x 时,0)()(21>+x f x f ; (3)对任何实数0)23()(,2≥-+-x xe f a ef x 恒成立,求实数a 的取值范围.试卷答案一、选择题1-5: CCCDD 6-10:CABCD二、填空题11. 31<<-a 12.8104 13. 19 14.xx 56109-15.[-1,0]16. 2027091 17.)}1,2)(1,2(|),{(---y x 18.54119.8620.充要三、解答题21.(1)由n n n a a a 221+=+,得21)1(1+=++n n a a由题设,易知 0>n a于是2212)1(log )1(log +=++n n a a即)1(log 2)1(log 212+=++n n a a所以)}1({log 12++n a 是以2)13(log 2=+为首项,2为公比的等比数列故nn n a 222)1(log 12=⋅=+-则nn a 221=+ 因此122-=nn a (2)由20121>n a ,即20121122>-n,得2012222>n因为1514221638420122163842=⨯<<=, 所以*,22142N n n∈>即152,22152≥≥n n故4≥n . 因此,所示n 的最小值是22.解:由)sin sin )(sin (C B A c b a -+++.sin )32(B a +=及正弦定理,可得()()(2a b c a b c ab +++-=即2222(2a ab b c ab ++-=+222c a b =+由余弦定理,可得6C π=或56π, 因为b c >,所以 于是,当56C π=时,B 也是钝角,不满足三角形内角和定理, 故 6C π=.(2)图中,ABC ∆可以是锐角三角形,也可以是钝角三角形.从A 作AD BC ⊥于D ,则在Rt ADC ∆中,14,2AD AC DC AC ====又3BD =,所以3BC =+或3BC =-+故162ABC S BC AD ∆=⋅=±+ 23.(1)因为2(0)log (10)0f =+=当0x <时,0x ->,所以12()log (1)f x x =-2log (1)x =--()f x =-即()()f x f x -=-当0x >时,0x -<,所以12()log [1()]f x x =--2log (1)x =-+()f x =-即()()f x f x -=-综上知,()y f x =是奇函数.(2)因为2log y x =是单调递增函数,1u x =+也是单调递增函数,由复合函数的单调性知 当0x ≥时,2log (1)y x =+是单调递增函数 由(1)知由奇函数的单调性,知0x <时,()f x 是单调递增函数 从而()y f x =是定义在R 单调递增上的奇函数, 由021>+x x ,得,12x x >- 所以122()()()f x f x f x >-=- 即0)()(21>+x f x f (3)因为2()(32)0xx f e a f e -+-≥所以2()(32)(23)xx x f e a f e f e -≥--=-于是223xx ea e -≥-即2223(1)2xx x a ee e ≥-+=-+当0x =时,2(1)2xe -+有最小值2, 所以只需2a ≤,就有2()(32)0xx f ea f e -+-≥恒成立,故a 的取值范围是(,2]-∞.。
第十七届希望杯培训题

第十七届(2006年)“希望杯”全国数学邀请赛培训题高中一年级一. 选择题以下各题的四个选项客观化中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内。
1.已知全集U =R ,N 为自然数集,A =|x ||x -3|≥2},B =|x |2x -6x -7>0},那么集合A ∩(U C B )∩N 的元素个数有( )(A )4 (B )5 (C )6 (D )无穷多个。
2.若sin α+cos α=-1,则角α的终边在( ) (A )I 或III 象限 (B )II 或IV 象限 (C )x 或y 轴上(D )II 或III 象限3.{}n a 是等差数列,{}n a 的前n 项和为n S ,若()m k S S b m k ==>,则m k S +=( ) (A )0 (B )b (C )2b (D )4b4.若-π<α<β<π,则3α-2β的范围是( ) (A )(-3π,3π) (B )(-5π,5π) (C )(-5π,π) (D )(-5π,2π) 5.不定方程2x +2y +3z =20的正整数解的集合为A ={(x ,y ,z )|2x +2y +3z =20,x ,y ,z ∈*N },则Card (A )=()(A )9 (B )21 (C )29 (D )30 (Card (A )表示A 中集合元素的个数)6.设a >0,a ≠1,12(1)(),()21x x x xa a a xf x f x a --+==-,则( ) (A )1()f x 是奇函数,2()f x 是奇函数 (B )1()f x 是偶函数,2()f x 是偶函数 (C )1()f x 是奇函数,2()f x 是偶函数 (D )1()f x 是偶函数,2()f x 是奇函数7.设a 、∈(0,2π),且sin α>cos α,则csc ,cos ,tan ααα的大小顺序是( )(A )csc cos tan ααα<< (B )cos tan csc ααα<< (B )cos csc tan ααα<< (D )与α有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(A) S T S
(B) S T T
(C) S T S
(D) S T S
1 2.若 f ( x) 的定义域为 A, g(x) f (x 1) f ( x) 的定义域为 B ,那么( )
x
(A) A B R
(B) A B
(C) A B
(D) A B
3.已知 tan 1,且 sin cos 0,则 ( )
)
(A) b 0
(B) c 0
(C) d 0
(D) b d 0
3
3
6. 若 ABC 三条边的长依次为 a sin ,b cos ,c 1,则三内角A, B, C的大小顺序为 ( )
4
4
(A) A B C
(B) B A C
(C) C B A (D) C A B
7.若实数 x 满足 log2 x 3 2cos x,则 | x 2| | x 33| 等于 ( )
(A) 35 2x
(B)31
(C) 2x 35
(D) 2x 35 或 35 2x
8.区间 [ m,0]在映射 f : x 2x m 所得的象集区间为 [ a,b] ,若区间 [ a,b] 的长度比区间
[0, m] 的长度大5,则 m =( )
(A)5
(B10
(C)2.5
(D)1
10.函数 f ( x)
第十七届“希望杯”全国数学邀请赛
高一
2006 年 3 月 19 日
第1试
上午 8:00 至 10 :00
一、选择题(每小题 4 分,共 40 分) 以下每题的 4 个选项中仅有一个是正确的,
请将表示正确答案的英文字母写在下面的表格内。
题号 1
23
4
5
6
7
8
9
10 共得分
答案
1.设 S {( x, y) | xy 0}, T {( x, y) | x 0, y 0}, 则( )
( A) cos 0
(B) cos 0 (C) cos 0
( D) cos 的符号不确定
4.设 a 0, a 1,若 y ax 的反函数的图像经过点 ( 2 , 1), 则 a ( ) 24
(A)16
(B)4
(C)2
(D) 2
5.已知 a 0 ,函数 f (x) ax3 bx2 cx d 的图像关于原点对称的充要条件是(
9x2
6ax 2a
a2 在区间 [
11 , ] 上的最大值为-3,则
a 的值是(
)
33
3
(A)
2 (C) 6 2或 2 6
(B) 6