五年级奥数最优方案与策略例题分析和练习

合集下载

小学五年级奥数题及答案附精讲

小学五年级奥数题及答案附精讲

小学五年级奥训练题及答案精讲一、工程问题1.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成;现在先请甲、丙合做2小时后,余下的乙还需做6小时完成;乙单独做完这件工作要多少小时2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成;如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九;现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天3.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天;已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成5.师徒俩人加工同样多的零件;当师傅完成了1/2时,徒弟完成了120个;当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个6.一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵;单份给男生栽,平均每人栽几棵7.一个池上装有3根水管;甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完;现在先打开甲管,当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟二.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数比兔的腿数少28条,,问鸡与兔各有几只三.数字数位问题2.A和B是小于100的两个非零的不同自然数;求A+B分之A-B的最小值...4.一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.5.一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.6.把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少7.一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数.8.有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数.9.有一个两位数,如果用它去除以个位数字,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数.10.如果现在是上午的10点21分,那么在经过28799...99一共有20个9分钟之后的时间将是几点几分四.排列组合问题1.有五对夫妇围成一圈,使每一对夫妇的夫妻二人动相邻的排法有A 768种B 32种C 24种D 2的10次方中2 若把英语单词hello的字母写错了,则可能出现的错误共有A 119种B 36种C 59种D 48种五.容斥原理问题1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是A 43,25B 32,25 C32,15 D 43,112.在多元智能大赛的决赛中只有三道题.已知:1某校25名学生参加竞赛,每个学生至少解出一道题;2在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍:3只解出第一题的学生比余下的学生中解出第一题的人数多1人;4只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是A,5 B,6 C,7 D,83.一次考试共有5道试题;做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%;如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少六.抽屉原理、奇偶性问题1.一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的2.有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样3.某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球4.地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同如果能请说明具体操作,不能则要说明理由七.路程问题1.狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它;问:狗再跑多远,马可以追上它2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间5.在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒米,两人起跑后的第一次相遇在起跑线前几米6.一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,轨道是直的,声音每秒传340米,求火车的速度得出保留整数7.猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子;8.AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟9.甲乙两车同时从AB两地相对开出;第一次相遇后两车继续行驶,各自到达对方出发点后立即返回;第二次相遇时离B地的距离是AB全程的1/5;已知甲车在第一次相遇时行了120千米;AB两地相距多少千米10.一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时;如果水流速度是每小时2千米,求两地间的距离11.快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程;12.小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时12千米,乘车每小时30千米,问:甲乙两地相距多少千米八.比例问题1.甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分快快快2.一种商品,今年的成本比去年增加了10分之1,但仍保持原售价,因此,每份利润下降了5分之2,那么,今年这种商品的成本占售价的几分之几3.甲乙两车分别从两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么两地相距多少千米4.一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少5、某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数6、有7个数,它们的平均数是18;去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20;求去掉的两个数的乘积;7、小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分;如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分小学六年级奥数题答案一、工程问题1、由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量1/4+1/5×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量;根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1;所以1-9/10=1/10表示乙做6-4=2小时的工作量;1/10÷2=1/20表示乙的工作效率;1÷1/20=20小时表示乙单独完成需要20小时;答:乙单独完成需要20小时;2、解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/204/5+1/309/10=7/100,可知甲乙合作工效>甲的工效>乙的工效;又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成;只有这样才能“两队合作的天数尽可能少”;设合作时间为x天,则甲独做时间为16-x天1/2016-x+7/100x=1x=10答:甲乙最短合作10天3、解:1/20+1/16=9/80表示甲乙的工作效率9/80×5=45/80表示5小时后进水量1-45/80=35/80表示还要的进水量35/80÷9/80-1/10=35表示还要35小时注满答:5小时后还要35小时就能将水池注满;4、解:由题意可知1/甲+1/乙+1/甲+1/乙+……+1/甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×=11/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多天1/甲=1/乙+1/甲×因为前面的工作量都相等得到1/甲=1/乙×2又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=天5、答案为300个120÷4/5÷2=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个;6、答案是15棵算式:1÷1/6-1/10=15棵7、答案45分钟;1÷1/20+1/30=12 表示乙丙合作将满池水放完需要的分钟数;1/1218-12=1/126=1/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水; 1/2÷18=1/36 表示甲每分钟进水最后就是1÷1/20-1/36=45分钟;8、答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷3-2×2=6天,就是甲的时间,也就是规定日期方程方法:1/x+1/x+2×2+1/x+2×x-2=1解得x=69、答案为40分钟;解:设停电了x分钟根据题意列方程1-1/120x=1-1/60x2解得x=40二.鸡兔同笼问题1、解:4100=400,400-0=400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只;400-28=372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么4+2=6 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只从400只变为396只,鸡的总脚数就会增加2只从0只到2只,它们的相差数就会少4+2=6只也就是原来的相差数是400-0=400,现在的相差数为396-2=394,相差数少了400-394=6372÷6=62 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只100-62=38表示兔的只数三.数字数位问题1、解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数;解题:1+2+3+4+5+6+7+8+9=45;45能被9整除依次类推:1~1999这些数的个位上的数字之和可以被9整除10~19,20~29……90~99这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+……+90=450 它有能被9整除同样的道理,100~900 百位上的数字之和为4500 同样被9整除也就是说1~999这些连续的自然数的各个位上的数字之和可以被9整除;同样的道理:1000~1999这些连续的自然数中百位、十位、个位上的数字之和可以被9整除这里千位上的“1”从1000~1999千位上一共999个“1”的和是999,也能整除;最后答案为余数为0;2、解:A-B/A+B = A+B - 2B/A+B = 1 - 2 B/A+B前面的1 不会变了,只需求后面的最小值,此时A-B/A+B 最大;对于B / A+B 取最小时,A+B/B 取最大,问题转化为求A+B/B 的最大值;A+B/B = 1 + A/B ,最大的可能性是A/B = 99/1A+B/B = 100A-B/A+B 的最大值是:98 / 1003、解:因为A/2 + B/4 + C/16=8A+4B+C/16≈,所以8A+4B+C≈,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103; 当是102时,102/16=当是103时,103/16=4、解:设原数个位为a,则十位为a+1,百位为16-2a根据题意列方程100a+10a+16-2a-10016-2a-10a-a=198解得a=6,则a+1=7 16-2a=4答:原数为476;5、解:设该两位数为a,则该三位数为300+a7a+24=300+aa=24答:该两位数为24;6、解:设原两位数为10a+b,则新两位数为10b+a它们的和就是10a+b+10b+a=11a+b因为这个和是一个平方数,可以确定a+b=11因此这个和就是11×11=121答:它们的和为121;7、解:设原六位数为abcde2,则新六位数为2abcde字母上无法加横线,请将整个看成一个六位数再设abcde五位数为x,则原六位数就是10x+2,新六位数就是200000+x根据题意得,200000+x×3=10x+2解得x=85714所以原数就是8571428、答案为3963解:设原四位数为abcd,则新数为cdab,且d+b=12,a+c=9根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察abcd2376cdab根据d+b=12,可知d、b可能是3、9;4、8;5、7;6、6;再观察竖式中的个位,便可以知道只有当d=3,b=9;或d=8,b=4时成立;先取d=3,b=9代入竖式的百位,可以确定十位上有进位;根据a+c=9,可知a、c可能是1、8;2、7;3、6;4、5;再观察竖式中的十位,便可知只有当c=6,a=3时成立;再代入竖式的千位,成立;得到:abcd=3963再取d=8,b=4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立;9、解:设这个两位数为ab10a+b=9b+610a+b=5a+b+3化简得到一样:5a+4b=3由于a、b均为一位整数得到a=3或7,b=3或8原数为33或78均可以10、解:28799……920个9+1/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20四.排列组合问题1、解:根据乘法原理,分两步:第一步是把5对夫妻看作5个整体,进行排列有5×4×3×2×1=120种不同的排法,但是因为是围成一个首尾相接的圈,就会产生5个5个重复,因此实际排法只有120÷5=24种;第二步每一对夫妻之间又可以相互换位置,也就是说每一对夫妻均有2种排法,总共又2×2×2×2×2=32种综合两步,就有24×32=768种;2、解:5全排列54321=120有两个l所以120/2=60原来有一种正确的所以60-1=59五.容斥原理问题1、解:根据容斥原理最小值68+43-100=11最大值就是含铁的有43种2、解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题;分别设各类的人数为a1、a2、a3、a12、a13、a23、a123由1知:a1+a2+a3+a12+a13+a23+a123=25…①由2知:a2+a23=a3+ a23×2……②由3知:a12+a13+a123=a1-1……③由4知:a1=a2+a3……④再由②得a23=a2-a3×2……⑤再由③④得a12+a13+a123=a2+a3-1⑥然后将④⑤⑥代入①中,整理得到a2×4+a3=26由于a2、a3均表示人数,可以求出它们的整数解:当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22又根据a23=a2-a3×2……⑤可知:a2>a3因此,符合条件的只有a2=6,a3=2;然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符;故只解出第二题的学生人数a2=6人;3、答案:及格率至少为71%;假设一共有100人考试100-95=5100-80=20100-79=21100-74=26100-85=155+20+21+26+15=87表示5题中有1题做错的最多人数87÷3=29表示5题中有3题做错的最多人数,即不及格的人数最多为29人100-29=71及格的最少人数,其实都是全对的及格率至少为71%六.抽屉原理、奇偶性问题1、解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套;这时拿出1副同色的后4个抽屉中还剩3只手套;再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推;把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套;这时拿出1副同色的后,4个抽屉中还剩下3只手套;根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的;以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9只答:最少要摸出9只手套,才能保证有3副同色的;2、解:每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法.当有11人时,能保证至少有2人取得完全一样:当有21人时,才能保证到少有3人取得完全一样.3、解:需要分情况讨论,因为无法确定其中黑球与白球的个数;当黑球或白球其中没有大于或等于7个的,那么就是:64+10+1=35个如果黑球或白球其中有等于7个的,那么就是:65+3+1=34个如果黑球或白球其中有等于8个的,那么就是:65+2+1=33如果黑球或白球其中有等于9个的,那么就是:65+1+1=324、解:不可能;因为总数为1+9+15+31=5656/4=14;14是一个偶数,而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一定还是奇数,不可能得到偶数14个;七.路程问题1、解:根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米;根据“狗跑5步的时间马跑3步”,可知同一时间马跑37x米=21x米,则狗跑54x=20米;可以得出马与狗的速度比是21x:20x=21:20根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷21-20×21=630米2、解:由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份总路程为18份,两车相差2份;又因为两车在中点40千米处相遇,说明两车的路程差是40+40千米;所以算式是40+40÷10-8×10+8=720千米;3、解:600÷12=50,表示哥哥、弟弟的速度差600÷4=150,表示哥哥、弟弟的速度和50+150÷2=100,表示较快的速度,方法是求和差问题中的较大数150-50/2=50,表示较慢的速度,方法是求和差问题中的较小数600÷100=6分钟,表示跑的快者用的时间600/50=12分钟,表示跑得慢者用的时间4、解:算式是140+125÷22-17=53秒可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和;5、解:300÷=500秒,表示追及时间5×500=2500米,表示甲追到乙时所行的路程2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇;6、解:算式:1360÷1360÷340+57≈22米/秒关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出1360÷340=4秒的路程;也就是1360米一共用了4+57=61秒;7、答案是猎犬至少跑60米才能追上;解:由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米;由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a3=5/3a米;从而可知猎犬与兔子的速度比是2a:5/3a=6:5,也就是说当猎犬跑60米时候,兔子跑50米,本来相差的10米刚好追完8、解:设全程为1,甲的速度为x乙的速度为y列式40x+40y=1x:y=5:4得x=1/72 y=1/90走完全程甲需72分钟,乙需90分钟故得解答案:18分钟9、解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍;即甲共走的路程是1203=360千米,从线段图可以看出,甲一共走了全程的1+1/5;因此360÷1+1/5=300千米10、解:1/6-1/8÷2=1/48表示水速的分率2÷1/48=96千米表示总路程11、解:相遇是已行了全程的七分之四表示甲乙的速度比是4:3时间比为3:4所以快车行全程的时间为8/43=6小时633=198千米12、解:把路程看成1,得到时间系数去时时间系数:1/3÷12+2/3÷30返回时间系数:3/5÷12+2/5÷30两者之差:3/5÷12+2/5÷30-1/3÷12+2/3÷30=1/75相当于1/2小时去时时间:1/2×1/3÷12÷1/75和1/2×2/3÷301/75路程:12×〔1/2×1/3÷12÷1/75〕+30×〔1/2×2/3÷301/75〕=千米八.比例问题1、解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元;又因为“甲钓了三条”,相当于甲吃之前已经出资36=18元,“乙钓了两条”,相当于乙吃之前已经出资26=12元;而甲乙两人吃了的价值都是10元,所以甲还可以收回18-10=8元乙还可以收回12-10=2元刚好就是客人出的钱;2、解:最好画线段图思考:把去年原来成本看成20份,利润看成5份,则今年的成本提高1/10,就是22份,利润下降了2/5,今年的利润只有3份;增加的成本2份刚好是下降利润的2份;售价都是25份;所以,今年的成本占售价的22/25;3、解:原来甲.乙的速度比是5:4现在的甲:5×1-20%=4现在的乙:4×1+20%甲到B后,乙离A还有:=总路程:10÷×4+5=450千米4、答案为64:27解:根据“周长减少25%”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16; 根据“体积增加1/3”,可知体积是原来的4/3;体积÷底面积=高现在的高是4/3÷9/16=64/27,也就是说现在的高是原来的高的64/27或者现在的高:原来的高=64/27:1=64:275、解:设不低于80分的为A人,则80分以下的人数是A-2/4,及格的就是A+22,不及格的就是A+A-2/4-A+22=A-90/4,而6A-90/4=A+22,则A=314,80分以下的人数是A-2/4,也即是78,参赛的总人数314+78=3926、解:718-619=126-114=12619-520=114-100=14去掉的两个数是12和14它们的乘积是1214=1687、解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分;因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1分;。

苏教版五年级奥数解决问题的策略(转化法)

苏教版五年级奥数解决问题的策略(转化法)

解决问题的策略(转化法)【知识概述】转化法就是把要解决的问题变换成另一个与此有关系的问题去解决,从而达到化难为易、化繁为简的目的。

【例题精学】例1:学校买来4张办公桌和9把椅子共用去2520元,已知一张办公桌的价格与3把椅子的价格相同,每张办公桌和每把椅子各多少元?【同步精炼】1、小明和爸爸今年的年龄之和是48岁,已知爸爸今年的年龄是小明的3倍,今年,小明和爸爸各多少岁?2、将2升的水倒入6个大杯和2个小杯,已知3个小杯的容量相当于1个大杯的容量,每个大杯和每个小杯的容量各是多少毫升?3、将300个乒乓球装进2个大盆和7个小盆中,正好装满,已知一个大盆的容量是一个小盆的4倍,大盆和小盆分别装多少个?【例题精学】例2:有货物306吨,用大、小两种汽车一次运完,已知大汽车的载重量是5吨,小汽车的载重量是3吨,大汽车的数量是小汽车的3倍,大汽车和小汽车各有多少辆?【同步精炼】1、妈妈用308元买了苹果和梨,已知每千克苹果5元,每千克梨3元,买梨的重量是苹果的3倍,苹果和梨各买了多少千克?2、五年级同学去植树,一共栽了120棵树,已知每个男生栽2棵,每个女生栽1棵,男生的人数是女生的一半,男女各有多少人?3、某车间的工人一共生产了407个零件,已知每个男职工做了8个,每个女职工做了5个,男职工的人数是女职工的4倍,这个车间男、女职工各有多少人?【例题精学】例3:一个绿化队,有男工15人,女工18人,全天共植树240棵,已知每个男工的工作效率是每个女工的2倍,每个男工和每个女工各植树多少棵?【同步精炼】1、妈妈买了6千克苹果和9千克梨,一共用了84元,已知苹果的单价是梨的2倍,苹果和梨的单价各是多少元?2、工地上用5辆大汽车和8辆小汽车运土方,一次性运了69方土,已知每辆大汽车的运土量是每辆小汽车的3倍,大汽车和小汽车各运多少方?3、学校买来8张办公桌和12把椅子,一共用了3960元。

已知每把椅子的钱是每张办公桌的13,每把椅子和每张办公桌各是多少元?【例题精学】例4、李老师带领学生去植100棵树,李老师先植了1棵,然后对同学们说:“男同学每人植树2棵,女同学每2人合作植树1棵。

五年级奥数最值问题

五年级奥数最值问题

五年级奥数最值问题一、最值问题题目及解析。

(一)题目1。

1. 题目。

用1、2、3、4、5、6这六个数字组成两个三位数,使这两个三位数的乘积最大,这两个三位数分别是多少?2. 解析。

要想让乘积最大,较大的数应在高位。

所以百位分别为6和5;十位分别为4和3;个位分别为2和1。

根据“和一定,差小积大”的原则,两个数为631和542时乘积最大。

(二)题目2。

1. 题目。

将1 - 9这九个数字填入下面的九个方格中,使得三个三位数的乘积最大,该怎么填?□□□×□□□×□□□.2. 解析。

要使得乘积最大,就要让每个因数都尽可能大。

首先百位分别为9、8、7;十位分别为6、5、4;个位分别为3、2、1。

按照“和一定,差小积大”的原则,最大的组合是941×852×763。

(三)题目3。

1. 题目。

一个长方形的周长是20厘米,它的长和宽都是整数厘米,那么这个长方形面积的最大值是多少平方厘米?2. 解析。

长方形周长 = 2×(长 + 宽),已知周长为20厘米,则长+宽=10厘米。

长和宽是整数,当长 = 5厘米,宽 = 5厘米(此时为正方形,正方形是特殊的长方形)时面积最大,面积为5×5 = 25平方厘米。

(四)题目4。

1. 题目。

有10个互不相同的自然数,它们的和是55,其中最大的数最大可能是多少?2. 解析。

要使最大的数最大,那么其他的数就要尽可能的小。

最小的9个自然数为0、1、2、3、4、5、6、7、8,它们的和为0 +1+2+3+4+5+6+7+8 = 36。

那么最大的数为55 - 36=19。

(五)题目5。

1. 题目。

若干个连续自然数的和是1994,这些自然数中最小的一个数是多少?2. 解析。

设这些连续自然数中最小的数为n,共有m个连续自然数。

根据等差数列求和公式S=((n + n + m - 1)m)/(2)=1994,即(2n+m - 1)m = 3988。

五年级奥数:问题解决

五年级奥数:问题解决

五年级奥数:问题解决知识讲解一、探究解决方案1、解决问题14辆汽车在5个生产厂之间循环运输零配件,每个站点所需装卸工如下:将工人全部安排站内,一共要31人.人手不够可以让随车工人去各站装卸.列表分析如下:解决这道题的过程中,你还想到了什么?选择下面的问题或自己编出类似的问题进行研究.并在小组内交流自己的想法.(1)如果在线路上增加一个需要10名装卸工人的站点,车的辆数保持不变,最少需要多少名工人.(2)如果线路上的站点不变,车的辆数减少1辆,最少需要多少名工人? 学生互相讨论、交流出示交流结果,并说出解题思路. 2、模仿练习五辆汽车在7个站点之间循环运输,每个站点所需装卸工人如图所示.怎样安排可以使运输工人人数最少?最少需要多少人?A B CGF ED 3、解决问题2AB 两地相距4a 千米,中间是荒无人烟的戈壁,只有一条公路连接,现有50辆卡车要从A 地到B 地,然后再返回A 地,已知卡车自身携带的汽油只能走3a 千米,为完成任务配备了运油车(耗油量与卡车相同),保证供油.运油车一次能运送一辆卡车行150a 千米的汽车.请你设计一个方案,用若干辆运油车保●●●证任务完成?解题方案:卡车自身携带的汽油可以行3a千米,卡车从A地到B地,然后再返回A地,一共需要行8a千米的汽油,还需要性5a千米的汽油,50辆卡车一共需要行5a ×50=250a千米的汽油.要使整个任务的耗油量最少,必须使运油车的耗油量最少;要使运油车的耗油量最少,必须使运油车行尽可能少的路,尽可能利用卡车的载油量,使加油地点到B地往返的距离等于3a,因此加油地点在离B地1.5a处.运油车携带能行150a千米的汽车,运到从A地到B地2.5a千米处停下,它为维持自身往返需要行5a千米的汽油,能为卡车提供145a千米的汽油.一共需要行250a千米的汽油,因此,至少需要2辆运油车:一辆满载,另一辆至少载行250a-145a+5a=110a千米汽油.4、巩固练习摩托小分队送一个重要文件到距驻地300千米以外的指挥部.每辆车装满油最多能行300千米,而途中又没有加油站.队长想出一个极其巧妙的方法:用三辆摩托车完成任务,恰好有一辆摩托车能把情报送到,另外两辆摩托车安全返回驻地.那么,指挥所距驻地多少千米?解决问题(二)知识讲解一、探究解决方案1、出示例题:卖哪个档次的服装所获得利润最大?利润最大的一天是多少天?A档次的服装每天可卖出120件,每件可获利润50元.每提高一个档次,卖出一件可增加利润10元,但销售量每天会减少8件.出示表格:这里是按价格从低到高的A、B、C、D、E、F、G、H八个档次的衣服.卖F档次的服装所获利润将会最大.最大利润一天将是8000元.2、模仿练习(1)、某商场购进一批单价为60元的商品,若按每件100元销售时,能卖出400件.为获得最大的利润,商场调整销售价格,当销售价格每提高1元,销售就减少20件,反之,销售价格每减少1元,销售量就增加20件.如何调整销售价格才能获得最大利润?(2)、某公司欲将一批不易存放的蔬菜,从A地运往B地,有汽车、火车、直升飞机三种运输工具可供选择.三种运输工具的主要参考数据如下:若这批蔬菜在运输过程中的损耗300元/小时.采用哪种运输工具比较好?(即运输过程中费用与损耗的和最小)(3)机器应使用一定年限,若更新过迟,生产效率低下,维修和损耗等费用增加,故需要确定机器最佳使用年限.现有一台机器价值8万元,因机器老化,每年维修机器、增加原料消耗等费用以每年1000元增加,求这台机器最佳使用年限.(精确到年)(4)游泳馆出售冬季学生游泳卡,每张240元.使用规定不记名,每卡每次1人,每天1次.某班有48名同学,老师组织集体游泳,除需买卡外,每次包一辆汽车,包车费40元,如果使每个同学游8次,买几张卡最合算,每人最少交多少钱?(5)某厂生产甲、乙两种产品,生产甲种产品每件要消耗煤9吨,电力4千瓦,使用劳动力3个,获利70元;生产乙种产品每件要消耗煤4吨,电力5千瓦,使用劳动力10个,获利120元.有一个生产日这个厂可动用的煤是360吨,电力200千瓦,劳动力是300个.应该如何安排甲、乙两种产品的生产,才能使工厂在当日的获利最大?是多少?。

五年级奥数—操作与策略(含解析)

五年级奥数—操作与策略(含解析)

1. 通过实际操作寻找题目中蕴含的数学规律2. 在操作和体会数学规律的过程中,设计最优的策略和方案实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因,因此在历届的杯赛中时常出现,尤其是在华杯、迎春杯中,常考查学生的动手能力【例 1】 (全国华罗庚杯少年数学邀请赛)如图,将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作以后,剪去所得小正方形的左下角.问:当展开这张正方形纸片后,一共有多少个小洞孔?【分析】 一次操作后,层数由1变为4,若剪去所得小正方形左下角,展开后只有1个小洞孔,恰是大正方形的中心.连续两次操作后,折纸层数为24,剪去所得小正方形左下角,展开后在大正方形上留有211444-==(个)小洞孔.连续三次操作后,折纸层数为34,剪去所得小正方形左下角,展开后大正方形留有3124416-==(个)小洞孔.按上述规律不难断定:连续五次操作后,折纸层数为54,剪去所得小正方形左下角,展开后大正方形纸片上共留有51444256-==(个)小洞孔.[巩固] 向电脑输入汉字,每个页面最多可输入1677个五号字.现在页面中有1个五号字,将它复制后操作与优化设计探索与操作粘贴到该面上,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字.每次复制和粘贴为1次操作,要使整个页面都排满五号字,至少需要操作次.[分析]每次操作页面上的字数就增加一倍,第一次操作后页面上有2个字,第2次操作后页面上有2=(个)字,…,则第10次操作后页面上有102个字,=(个)字,第3次操作后页面上有32824由于1011=<<=,因此使整个页面排满,至少需要操作11次.21024167722048【例 2】(第二届两岸四地“华罗庚金杯”少年数学精英邀请赛)有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k号白盒中恰有k个球,可将这k个球取出,并给0号、1号、…,(1)k-号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有个球.【分析】使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.[巩固](圣彼得堡数学奥林匹克)尤拉想出一个数,将它乘以13,删去乘积的末位数,将所得的数再乘以7,再删去乘积的末位数,最终得到的数为21.问:尤拉最初所想的是哪一个数?[分析]解法1(从分析结果入手)在第二次删去末位数之前,尤拉面临的是一个三位数,其值在210至219之间.在这些数中,只有两个数是7的倍数:210730=⨯.这就意味着在乘=⨯和217731以7之前,尤拉的数是30或31.因而在第一次删去末位数之前,尤拉所面临的数为300到319之间的一个三位数.在这些数中只有一个数是13的倍数:3122413=⨯,所以尤拉最初所想出的数是24.解法2(利用单调性)容易看出,如果增大一开始的数,发现最终所得的数不会减小,这是因为无论是乘法运算,还是删去末位数的操作,都具有“非降性”.如果开始所想的数是25,那么运算过程如下:25→325→32→224→22.综合上述两方面,即知尤拉最初所想的数是24.【例 3】(北大附中“资优博雅杯”数学竞赛)一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填黑或者白)【分析】由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【例 4】(北大附中“资优博雅杯”数学竞赛)有一只小猴子在深山中发现了一片野香蕉园,它一共摘了300根香蕉,然后要走1000米才能到家,如果它每次最多只能背100根香蕉,并且它每走10米就要吃掉一根香蕉,那么,它最多可以把根香蕉带回家?【分析】首先,猴子背着100根香蕉直接回家,会怎样?在到家的时候,猴子刚好吃完最后一根香蕉,其他200根香蕉白白浪费了!折返,求最值问题,我们需要设计出一个最优方案.3001003÷=.猴子必然要折返3次来拿香蕉.我们为猴子想到一个绝妙的主意:在半路上储存一部分香蕉.猴子的路线:家y储存点B 储存点A野香蕉园x这两个储存点A 与B 就是猴子放置香蕉的地方,怎么选呢?最好的情况是:(一)当猴子第①③④次回去时,都能在这里拿到足够到野香蕉园的香蕉.(二)当猴子第②④次到达储存点时,都能将之前路上消耗的香蕉补充好(即身上还有100个)(三)B 点同上.XA 的距离为10x ,路上消耗x 个香蕉.AB 的距离为10y ,路上消耗y 个香蕉.猴子第一次到达A 点,还有(100)x -个香蕉,回去又要消耗x 个,只能留下1002x -个香蕉.这(1002)x -个香蕉将为猴子补充②③④次路过时的消耗和需求,每次都是x 个,则1002320x x x -=⇒=.200XA ⇒=米,猴子将在A 留下60个香蕉.那么当猴子②次到达A 时,身上又有了100个香蕉,到⑤时还有100y -个,从⑤回③需要y 个,可在B 留下(1002)y -个,用于⑥时补充从④到⑥的消耗y 个.则:10010023y y y -=⇒=. 至此,猴子到家时所剩的香蕉为:100013004253103x y ---=. 因为猴子每走10米才吃一个香蕉,走到家时最后一个10米才走了23,所以还没有吃香蕉,应该还剩下54个香蕉.【例 5】 (武汉“明星奥数挑战赛”)设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为x 的筹码时,另一个人必须选取标号为99x -的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩 个筹码.【分析】 解若 x 99x -5 4747 1313 4343 77 2323 1919 5当一个人拿到19时,下一个人就要拿5了,故游戏结束,拿了7个.剩25718-=(个).[拓展] (武汉“明星奥数挑战赛”)有依次排列的3个数:2,0,5,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,2-,0,5,5,这称为第一次操作,第二次同样的操作后也可产生一个新数串:2,4-,2-,2,0,5,5,0,5.继续依次操作下去.问:从新数串2,0,5开始操作,第100次后产生的那个新数串的所有数之和是多少?[分析] 观察操作次数: 开始 第一次 第二次 第三次 …总 和: 7 10 13 16 …易发现每操作一次总和增加3.因此操作100次后产生的新数串所有数之和为73100307+⨯=.【例 6】 (武汉“明星奥数挑战赛”)将两个不同的自然数中较大数换成这两个数之差,称为一次操作.如对18和42可连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,.直到两数相同为止.试给出和最小的两个四位数,按照以上操作,最后得到的相同的数是15.这两个四位数是 与 .【分析】 由题意,我们可以多给几组数按题目所给操作方法进行操作,从中找出规律.例如:136,63→…→1,136,27→…→9,984,36→…→12,12考察操作后所得结果,不难发现每次所得的最终结果是开始两数的最大公约数,因此我们只需找到两个尽量小的四位数,他们都是15的倍数,可得1005和1020.[铺垫] (武汉“明星奥数挑战赛”)对任意两个不同的自然数,将其中较大数换成这两数之差,称为一次变换.如对18和42可作这样的连续变换:18,42→18,24→18,6→12,6→6,6直到两数相同为止.问:对1234和4321作这样的连续变换最后得到的两个相同的数是 .[分析] 操作如下:1234,4321→1234,3087→1234,1853→1234,619→615,619→615,44714243前一数每次减少→…→,4→3,4→3,1→2,1→1,1实际上按此法操作最后所得两相同的数为开始两数的最大公约数.即1234与4321的最大公约数为1.此法也称为辗转相减法求最大公约数.[拓展] (全国华罗庚金杯少年数学邀请赛)将两个不同的自然数中较大的数换成这两个数之差,称为一次操作.例如:对18和42连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,6.试给出和最小的两个五位数,按照以上操作,直到两数相同为止,如果最后得到的相同的数是15,这两个五位数是 与 .[分析] 观察题目中的例子,(18,42)=(18,24)=(18,6)=(12,6)=(6,6)=6,将会发现:将两个不同的自然数中较大的数换成这两个数之差会得到两个新的自然数,它们的最大公约数和初始的两个数的最大公约数相同,最后得到的是两个相同的自然数,是初始的两个数的最大公约数,所以,题目就是去求和最小的两个五位数,它们的最大公约数是15,即求两个能被3和5整除的和最小的两个五位数,1000566715=⨯和1002066815=⨯为所求.点评 题中操作的本质上是辗转相除法,最后所得到的相同的数是最初两个数的最大公约数,即(18,42)=6.实际上,这道试题是一个求最大公约数的反问题,即已知(X ,Y )=15,求X 和Y .但是,以15为最大公约数的数对有很多,应该选取哪一对呢?这就要求答案必须还满足其他的条件,本题要求解答最小的两个五位数.如果要求是最大的两个五位数,答案是什么?【例 7】 黑板上写着一个形如777…77的数,每次擦掉一个末位数,把前面的数乘以3,然后再加上刚才擦掉的数字.对所得的新数继续这样操作下去,证明:最后必获得数7.【分析】 黑板上起初数是777…77,每次操作后就变出一个新数.不妨设这个数的末位数为b ,前面的数为a ,所以就是形为10a b +的数.每次操作后,黑板上就成为3a b +,它比原数少了7a .由此可知:⑴每次操作将使原数逐步变小;⑵如果原数能被7整除,那么所得新数仍能被7整除.所以黑板上最后必将变成7,例如当原数为777时,就有777→238→77→28→14→7.【例 8】 (北京“数学解题能力展示”读者评选活动)在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【分析】 第一轮:分33次划1~9,后面写上6,15,24,…,294共33个数.第二轮:分11次划去这33个数,后面写上45,126,207,…,855,共11个数.之后的操作一次减少2个数,故还需操作5次.设这11个数为:1a ,2a ,…,11a .则接下去的数是:123()a a a ++,456()a a a ++,789()a a a ++,1011123()a a a a a ++++,4567891011123()a a a a a a a a a a a ++++++++++.因此最后一数为:1231112994950a a a a ++++=+++=L L .[拓展] (第六届“华杯赛”决赛)圆周上放有N 枚棋子,如右图所示,B 点的一枚棋子紧邻A 点的棋子。

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。

问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。

如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。

根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。

因此所求的答案为5人。

2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。

但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。

问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。

3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。

x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。

如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。

直到两数相同为止。

问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。

五年级奥数最优化问题

五年级奥数最优化问题

最优化问题例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?例2:用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?例3:一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?例4:把25拆成若干个正整数的和,使它们的积最大。

例5:A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?例6:甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产900套西服;乙厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?例7:今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?例8:有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?1、十个自然数之和等于1001,则这十个自然数的最大公约数可能取的最大值是多少?(不包括0)2、在两条直角边的和一定的情况下,何种直角三角形面积最大,若两直角边的和为8,则三角形的最大面积为多少?3、5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需要的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟,如果只有一个水龙头适当安排他们的打水顺序,就能够使每个人排队和打水时间的总和最小,那么这个最小值是多少分钟?4、某水池可以用甲、乙两水管注水,单放甲管需12小时注满,单放乙管需24小时注满。

五年级奥数难题及答案-步步为营的战略

五年级奥数难题及答案-步步为营的战略

五年级奥数难题及答案-步步为营的战略
编者小语:奥数题往往从结构到解法都充满着神奇的魅力,易于小学生尝到探索的乐趣,而在探索解题方法的过程中,小学生又亲身体验到数学思想的博大精深和数学方法的创造力。

下面是小编整理的五年级奥数题及参考答案:步步为营的战略。

一分耕耘一分收获,相信大家通过自己的努力,一定能够取得优异的成绩!!
由图中的左上角开始,走过一个方格到达1,再走两个方格到达2,然后再走3个方格到达3,以此类推。

行进过程中不得重复经过某一方格,最后要到达右下角的8。

只能直走或横走,不得沿对角线走。

请找出这样的路线。

分析与解答:
上面的答案是当初设计题目时的依据。

显然用这些数字还可以排出许多其他的路线。

利用不同方格的数字可以找到其他不同的答案,只不过这些答案绝非事先安排好的!
解这类问题的重要步骤,就是要以充分的耐心,由路线两端有系统地推敲。

要自行设计出一个类似的问题并不困难,而且很值得一试。

奥数:最优化问题

奥数:最优化问题

第十四讲最优化问题我国著名大数学家华罗庚爷爷曾积极推广、普及的“统筹方法”和“优选法“华罗庚曾利用数学知识创造许多优化解决问题的方法。

我们所破到的最优化问题,是通过适当规划安排,在许多方案中,寻找一个最合理、最节约、最省事的方案。

典型例题•例1妈妈让小明给客人烧开水切茶,洗开水壶要用1分钟,烧开水要用15分钟,洗茶壶要用2分钟,洗茶杯要用1分钟,拿茶叶要用2分钟。

小明估算了一下,完成这些工作要花20分钟。

为了使客人早点和上茶,按你认为最合理的安排,多少分钟就能切茶了?先决条件。

这1分钟不能省,而洗茶壶、洗开水杯、拿茶叶等切茶的准备工作都可以放在烧开水的15分钟里完成。

解最省时间的安排是:纤细开水壶(用1分钟),按着烧开水(用15分钟),在等待水烧开的时间里,可以洗茶壶、洗茶杯、拿茶叶,水开了就切茶。

这样一共用了16分钟。

•例2在一条公路上,每隔100其千米有一个仓库,共有5个仓库,一号仓库存有10 吨货物,二号仓库存有20吨货物,五号仓库存有40吨货物,其余两仓库是空的。

现在想把所有的货集中存在同一仓库里,如果每吨货物运输1千米需0.5元运费,那么最少要花多少运费才行?分析要做到所花运费最少,必须综合考虑两个因素:(1)运走的货物尽可能少;(2)要运货物运输的路程将可能短。

如果考虑第一因素,就要将货物集中在五仓库;如果考虑第二因素,就要将货物集中在四仓库。

比较这两种情况,选择运费最少的一种。

将货物集中到五号仓库。

解0.5x(10x400+20x300)=5000 (元)• 例3 A、B两批发部分别有电视机70台与60台,甲乙丙三个商店分别需要电视机30 台、40台和50台。

从A、B两批发部每运一台电视到三个销售店的运费如表所示。

如何调运才能使运费最少?分析该题中供应量70+60=130台,需求量为30+40+50=120台。

供求量不等,供大于求。

由表可知,由差价可知,A尽量供应给乙,即A给乙40台。

小学五年级奥数题讲解(问题+思路+答案)

小学五年级奥数题讲解(问题+思路+答案)

五年级奥数题讲解,问题+思路+答案1. 有7个数,它们的平均数是18。

去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。

求去掉的两个数的乘积。

解:7*18-6*19=126-114=126*19-5*20=114-100=14去掉的两个数是12和14它们的乘积是12*14=1682. 有七个排成一列的数,它们的平均数是30,前三个数的平均数是28,后五个数的平均数是33。

求第三个数。

解:28×3+33×5-30×7=39。

3. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。

问:第二组有多少个数?解:设第二组有x个数,则63+11x=8×(9+x),解得x=3。

4.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。

如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。

因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。

5. 妈妈每4天要去一次副食商店,每5天要去一次百货商店。

妈妈平均每星期去这两个商店几次?(用小数表示)解:每20天去9次,9÷20×7=3.15(次)。

6. 乙、丙两数的平均数与甲数之比是13∶7,求甲、乙、丙三数的平均数与甲数之比。

解:以甲数为7份,则乙、丙两数共13×2=26(份)所以甲乙丙的平均数是(26+7)/3=11(份)因此甲乙丙三数的平均数与甲数之比是11:7。

7. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。

已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。

糊得最快的同学最多糊了多少个?解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-74=14(个),而使大家的平均数增加了76-74=2(个),说明总人数是14÷2=7(人)。

五年级奥数.杂题.游戏与策略(ABC级).学生版

五年级奥数.杂题.游戏与策略(ABC级).学生版

实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因。

一、探索与操作【例 1】 将1—13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为 .【巩固】 在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【例 2】 在1,9,8,9后面写一串这样的数字:先计算原来这4个数的后两个之和8+9=17,取个位数知识框架例题精讲游戏与策略字7写在1,9,8,9的后面成为1,9,8,9,7;再计算这5个数的后两个之和9+7=16;取个位数字6写在1,9,8,9,7的后面成为1,9,8,9,7,6;再计算这6个数的后两个之和7+6=13,取个位数字3写在1,9,8,9,7,6的后面成为1,9,8,9,7,6,3. 继续这样求和,这样添写,成为数串1,9,8,9,7,6,3,9,2,1,3,4…那么这个数串的前398个数字的和是________.【巩固】 圆周上放有N 枚棋子,如图所示,B 点的那枚棋子紧邻A 点的棋子.小洪首先拿走B 点处的1枚棋子,然后沿顺时针方向每隔1枚拿走2枚棋子,这样连续转了10周,9次越过A .当将要第10次越过A 处棋子取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请精确算出圆周上现在还有多少枚棋子?【例 3】 有足够多的盒子依次编0,1,2,…,只有0是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k 白盒中恰有k 个球,可将这k 个球取出,并给0、1、…,(1)k -盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4盒中原有 个球.【巩固】 一个数列有如下规则:当数n 是奇数时,下一个数是1n +;当数n 是偶数时,下一个数是2n.如果这列数的第一个数是奇数,第四个数是11,则这列数的第一个数是.二、染色与操作(证明)【例4】六年级一班全班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫作它的邻座.如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?【巩固】图是学校素质教育成果展览会的展室,每两个相邻的展室之间都有门相通.有一个人打算从A 室开始依次而入,不重复地看过各室展览之后,仍回到A室,问他的目的能否达到,为什么?A【例5】右图是某套房子的平面图,共12个房间,每相邻两房间都有门相通.请问:你能从某个房间出发,不重复地走完每个房间吗?【巩固】有一次车展共6636⨯=个展室,如右图,每个展室与相邻的展室都有门相通,入口和出口如图所示.参观者能否从入口进去,不重复地参观完每个展室再从出口出来?【例6】如右图,在55⨯方格的A格中有一只爬虫,它每次总是只朝上下左右四个方向爬到相邻方格中.那么它能否不重复地爬遍每个方格再回到A格中?A模块三、染色与操作(剪拼)【例7】有7个苹果要平均分给12个小朋友,园长要求每个苹果最多分成5份.应该怎样分?【巩固】右图是由14个大小相同的方格组成的图形.试问能不能剪裁成7个由相邻两方格组成的长方形?【例8】你能把下面的图形分成7个大小相同的长方形吗?动手画一画.【巩固】有6张电影票(如右图) ,想撕成相连的3张,共有________种不同的撕法.模块四、操作问题(计算)【例9】对于任意一个自然数n,当n为奇数时,加上121;当n为偶数时,除以2,这算一次操作.现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么?【巩固】小牛对小猴说:“对一个自然数n进行系列变换:当n是奇数时,则加上2007;当n是偶数时,则除以2.现在对2004连续做这种变换,变换中终于出现了数2008.”小猴说:“你骗人!不可能出现2008.”请问:小牛和小猴谁说得对呢?为什么?【例10】在2009张卡片上分别写着数字1、2、3、4、……、2009,现在将卡片的顺序打乱,让空白面朝上,并在空白面上又分别写上1、2、3、4、……、2009.然后将每一张卡片正反两个面上的数字相加,再将这2009个和相乘,所得的积能否确定是奇数还是偶数?【巩固】先写出一个两位数62,接着在62右端写这两个数字的和8,得到628,再写末两位数字2和8的和10,得到62810,用上述方法得到一个有2006位的整数:6 2 8 1 0 1 1 2 3 ……则这个整数的数字之和是。

小学五年级奥数题解析(下册)精选

小学五年级奥数题解析(下册)精选

【导语】经验是数学的基础,问题是数学的⼼脏,思考是数学的核⼼,发展是数学的⽬标,思想⽅法是数学的灵魂。

数学思想⽅法是数学知识的精髓,是分析、解决数学问题的基本原则,也是数学素养的重要内涵,它是培养学⽣良好思维品质的催化剂。

以下是⽆忧考整理的相关资料,希望对您有所帮助。

【篇⼀】 ⼩华把数字2~9分成4对,使得每对数的和为质数.问⼀共有多少种不同的分法? 答案与解析: 由题⽬的条件可知,每对数必须由⼀个奇数和⼀个偶数组成.为了不遗漏,我们从⼩到⼤选取2,3,…,9中的数进⾏配对. 能够和2配对的数有3,5,9.下⾯分情况讨论: (a)2和3配成⼀对.则剩下最⼩的数为4.在剩下的数中,能够和4配对的数有7,9. ①.4和7配成⼀对,则5只能和6配对,8和9配对. ②.4和9配成⼀对,则5只能和8配对,6和7配对. 所以这种情况⼀共有2种分法. (b)2和5配成⼀对.则剩下最⼩的数为3.在剩下的数中,能够和3配对的数有4,8. ①.3和4配成⼀对,则6只能和7配对,8和9配对. ②.3和8配成⼀对,则4只能和9配对,6和7配对. 所以这种情况⼀共有2种分法. (c)2和9配成⼀对.则剩下最⼩的数为3.在剩下的数中,能够和3配对的数有4,8. ①.3和4配成⼀对,则5只能和8配对,6和7配对. ②.3和8配成⼀对,则4只能和7配对,5和6配对. 所以这种情况⼀共有2种分法. 综上所述,⼀共有6种不同的分法. 某班共有46⼈,参加美术⼩组的有12⼈,参加⾳乐⼩组的有23⼈,有5⼈两个⼩组都参加了.这个班既没参加美术⼩组也没参加⾳乐⼩组的有多少⼈? 答案与解析: 已知全班总⼈数,从反⾯思考,找出参加美术或⾳乐⼩组的⼈数,只需⽤全班总⼈数减去这个⼈数,就得到既没参加美术⼩组也没参加⾳乐⼩组的⼈数.根据包含排除法知,该班⾄少参加了⼀个⼩组的总⼈数为12+23-5=30(⼈).所以,该班未参加美术或⾳乐⼩组的⼈数是46-30=16(⼈)。

小学五年级经典奥数题+解析-(用鸡兔同笼方法解决)

小学五年级经典奥数题+解析-(用鸡兔同笼方法解决)

小学五年级经典奥数题题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?假设都是1元:28×1=28元5+0.5=5.5元28-5.5=22.5元1-0.1=0.9元1角:22.5÷0.9=25张 1元:28-25=3张题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?50-2=48张 116-2=114元(1+2)÷2=1.5元那么1元:36÷2+2=20张 2元,36÷2=18张假设都是5元:48×5=240元 240-114=126元 5-1.5=3.5元1.5元:126÷3.5=36张,5元:48-36=12张题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?(7+5)÷2=6元那么5元和7元:240÷2=120张假设都是3元:400×3=1200元 1920-1200=720元 6-3=3元6元:720÷3=240张3元:400-240=160题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?(3024-2520)÷2=252箱假设都是大汽车:18×18=324(箱)324-252=72(箱)18-12=6(箱)小汽车:72÷6=12(辆)大汽车:18-12=6(辆)题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?112÷14=8天假设都是晴天:8×20=160(次)160-112=48(次)20-12=8(次)雨天:48÷8=6(天)晴天:8-6=2(天)题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?(290-250)÷0.05=800千克假设都是小西瓜:800×0.3=240元 290-240=50元 0.4-0.3=0.1元大西瓜:50÷0.1=500千克小西瓜:800-500=300千克题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?152÷2=76分16÷2=8分乙:76-8=68分甲:76+8=84分乙:假设都投中:10×10=100分 100-68=32分 10+6=16分脱靶:32÷16=2次投中:10-2=8次甲:假设都投中:10×10=100分 100-84=16分 10+6=16分脱靶:16÷16=1次投中:10-1=9次题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?假设都答对:20×5=100分 100-86=14分 5+2=7分答错:14÷7=2道答对:20-2=18道1.甲、乙两地相距465千米,一辆汽车从甲地开往乙地,以每小时60千米的速度行驶一段后,每小时加速15千米,共用了7小时到达乙地。

小学五年级奥数题例题分析

小学五年级奥数题例题分析

小学五年级奥数题例题分析小学五年级奥数题例题分析【第一篇:猎狗要几步才能追上兔子】一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。

猎狗至少要跑多少步才能追上野兔?答案与解析:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。

所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。

【第二篇:能够分成多少小三角形】在三角形ABC内有100个点,以三角形的顶点和这100点为顶点,可把三角形剖分成多少个小三角形?答案与解析:整体法.100个点每个点周围有360度,三角形本身内角和为180度,所以可以分成(360×100+180)÷180=201个小三角形.【第三篇:需要操作电脑多少次】向电脑输入汉字,每个页面最多可输入1677个五号字。

现在页面中有1个五号字,将它复制后粘贴到该页面,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字。

每次复制和粘贴为1次操作,要使整个页面都排满五号字,至少需要操作多少次?答案与解析:根据题意,每次操作的结果字数都是前一次的2倍,2的10次方是1024,那么再复制粘贴一次就可超过1677,即需要11次。

【第四篇:这个结果的商是多少】1234567891011121314…20082009除以9,商的个位数字是多少?答案与解析首先看这个多位数是否能为9整除,如果不能,它除以9的.余数为多少。

由于任意连续的9个自然数的和能被9整除,所以它们的各位数字之和能被9整除,那么把这9个数连起来写,所得到的数也能被9整除。

由于2009÷9=223…2,所以1234567891011121314…20082009这个数除以9的余数等于20082009(或者12)除以9的余数,为 3.那么1234567891011121314…20082009除以9的商,等于这个数减去3后除以9的商,即1234567891011121314…20082006除以9的商,那么很容易判断商的个位数字为4。

小学五年级奥数题讲解(问题思路答案)

小学五年级奥数题讲解(问题思路答案)

小学五年级奥数题讲解(问题思路答案)小学五年级奥数题讲解(问题思路答案)在小学五年级的数学学习中,奥数题是一种常见的挑战,既能锻炼学生的逻辑思维能力,又能培养他们解决问题的技巧。

本文将为大家详细介绍几道小学五年级奥数题,并给出问题的思路和答案。

题目一:电脑屏幕上有一套数字密码,要求用其中4个数字构成一个最大的4位数,不能重复使用数字。

请问这个最大的4位数是多少?思路:我们需要找出数字中的最大值,然后根据题目要求,确定最大数的组成。

首先,观察到给出的是一套数字密码,因此不重复使用数字的规则是我们需要注意的。

而最大的4位数是9999,因此我们需要找到这个数字中最大的数字,即9。

答案:最大的4位数是9642。

题目二:一个鸡蛋篮里装有若干个鸡蛋,如果每次从篮子中拿走3个鸡蛋,则刚好拿完。

如果每次拿2个鸡蛋,则还剩1个鸡蛋。

请问,这个鸡蛋篮里最少有多少个鸡蛋?思路:根据题目描述可知,鸡蛋个数是一个未知数,我们可以设其为x。

根据题目中的条件,我们可以得到一个方程式:x mod 3 = 0(取3的模为0)和 x mod 2 = 1(取2的模为1)。

我们可以通过求解这个方程组来确定鸡蛋篮里最少的鸡蛋个数。

答案:通过求解方程组,得出最少有7个鸡蛋。

题目三:一个三位数减去一个两位数等于一个两位数,而且这个两位数正好等于三位数中的个位和十位数字的和。

请问,满足这个条件的三位数一共有多少个?思路:题目给出了条件,我们可以设三位数为abc,两位数为de。

根据题目的要求,可以列出以下方程:(100a + 10b + c) - (10d + e) = 10b + c。

通过整理方程,我们可以得到 100a - 10d = 9e。

答案:根据等式,我们可以发现a和d只能是相邻数,因为9e是十位数,因此a和d只有1和2这两个可能性。

而e只能是 1 到 9之间的奇数。

因此,满足这个条件的三位数共有18个。

通过以上几道题目,我们可以看到奥数题的思路和答案求解方法。

五年级《最优化问题》奥数教案

五年级《最优化问题》奥数教案

(五年级)备课教员:第十四讲最优化问题一、教学目标: 1. 通过简单的生活事例,体会策略优化在解决实际问题中的作用。

2.经历探索解决问题的过程,体验解决问题策略的多样性,在寻找解决问题的最优方案过程中积累生活经验。

3.感受生活与数学的紧密联系,培养学生解决问题及寻找最优化方案的能力,使学生学会合理安排时间。

二、教学重点:体会解决问题策略的多样性。

三、教学难点:寻找解决问题的最优方案。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分钟)师:同学们,阿博士最近在学校里遇到了一些麻烦,但是他又忙不过来,所以打电话给卡尔,让卡尔帮助阿博士快速联系班里的54个同学。

【课件演示动画,可以让两个来学生读】师:聪明的卡尔想了一会儿就想出了方法。

同学们,你们想知道卡尔是怎么想出来的吗?生:想。

师:嗯,今天我们就来学习最优化问题。

在学完了这两个课程以后,相信同学们就知道卡尔是怎么解决问题了。

【课件展示课题:最优化问题】二、探索发现授课(40分钟)(一)例题一:(13分钟)有157吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车和小卡车每运一次的耗油量分别为10升和5升。

请问:如何选派车辆才能使耗油量最少?师:同学们,如题,要使耗油量最少是什么意思呢?生:用的油最少。

师:怎么样是油最少呢?生1:如果我们都用大卡车来运的话,看看用了多少油;然后再算如果都用小卡车运的话,用多少油;最后比比哪种车用的油多。

师:嗯,很好,还有吗?生2:我们可以直接用每运一次的耗油量除以载重量,然后比一比。

师:嗯,同学们这个方法和上个方法相比有什么优点吗?生:更方便。

师:对,更方便,我们可以直观的比较哪个车更省油,每运一吨的耗油量是多少,对不对。

生:对。

师:那我们就来比一比哪个车辆更省油一些。

【教师配合课件讲解】师:我们可以算出大卡车每吨的耗油量是2升,小卡车每吨的耗油量是2.5升,谁的耗油量少?生:大卡车。

小学奥数 最优方案与最佳策略含解题思路

小学奥数 最优方案与最佳策略含解题思路

小学奥数最优方案与最佳策略含解题思路Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】3、最优方案与最佳策略【最优方案】例1 某工厂每天要生产甲、乙两种产品,按工艺规定,每件甲产品需分别在A、B、C、D四台不同设备上加工2、1、4、0小时;每件乙产品需分别在A、B、C、D四台不同设备上加工2、2、0、4小时。

已知A、B、C、D四台设备,每天最多能转动的时间分别是12、8、16、12小时。

生产一件甲产品该厂得利润200元,生产一件乙产品得利润300元。

问:每天如何安排生产,才能得到最大利润(中国台北第一届小学数学竞赛试题)讲析:设每天生产甲产品a件,乙产品b件。

由于设备A的转动时间每天最多为12小时,则有:(2a+2b)不超过12。

又(a+2b)不超过8,4a不超过16,4b不超过12。

由以上四个条件知,当b取1时,a可取1、2、3、4;当b取2时,a可取1、2、3、4;当b取3时,a可取1、2。

这样,就是在以上情况下,求利润200a+300b的最大值。

可列表如下:所以,每天安排生产4件甲产品,2件乙产品时,能得到最大利润1400元。

例2 甲厂和乙厂是相邻的两个服装厂。

它们生产同一规格的成衣,每个厂的人员和设备都能进行上衣和裤子生产。

由于各厂的特点不同,甲厂每月联合生产,尽量发挥各自的特长多生产成衣。

那么现在比过去每月能多生产成衣______套。

(1989年全国小学数学奥林匹克初赛试题)的时间生产上衣。

所以,甲厂长于生产裤子,乙厂长于生产上衣。

如果甲厂全月生产裤子,则可生产如果乙厂全月生产上衣,则可生产把甲厂生产的裤子与乙厂生产的上衣配成2100套成衣,这时甲厂生产150条裤子的时间可用来生产成套的成衣故现在比过去每月可以多生产60套。

【最佳策略】例1 A、B二人从A开始,轮流在1、2、3、……、1990这1990个数中划去一个数,直到最后剩下两个数互质,那么B胜,否则A胜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级奥数最优方案与策略例题分析和练习
[题型概述]
最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。

最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。

但解决这类问题需要的基础知识相当广泛,很难做到一一列举。

因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。

[经典例题]
例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?
[分析] 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。

所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。

例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。

因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。

例2:用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?
[分析] 一个10尺长的竹竿应有三种截法:
(1) 3尺两根和4尺一根,最省;
(2) 3尺三根,余一尺;
(3) 4尺两根,余2尺。

为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。

例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?
[分析] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。

例4: 把25拆成若干个正整数的和,使它们的积最大。

[分析] 先从较小数形开始实验,发现其规律:
把6拆成3+3,其积为3×3=9最大;
把7拆成3+2+2,其积为3×2×2=12最大;
把8拆成3+3+2,其积为3×3×2=18最大;
把9拆成3+3+3,其积为3×3×3=27最大;……
这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。

例5: A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?
[分析] 设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B 只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。

如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。

例6:甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产900套西服;乙厂每月用的时间生产上衣,的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?
[分析] 根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为2:3;因此在单位时间内甲厂生产的上衣与裤子的数量之比为2:3;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。

两厂联合生产,尽量发挥各自特长,安排乙厂全力生产上衣,由于乙厂生产月生产1200件上衣,那么乙厂全月可生产上衣1200÷ =2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900÷ =2250条。

为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服900×=60套,于是,现在联合生产每月比过去多生产西服
(2100+60)-(900+1200)=60套
例7今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?
[分析] 因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人轮流每次取P颗,谁最后取完谁获胜。

[解] 乙有必胜的策略。

由于200=4×50,P或者是2或者可以表示为4k+1或4k+3的形式(k为零或正整数)。

乙采取的策略为:若甲取2,4k+1,4k+3颗,则乙取2,3,1颗,使得余下的棋子仍是4的倍数。

如此最后出现剩下数为不超过20的4的倍数,此时甲总不能取完,而乙可全部取完而获胜。

[说明] (1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策略,关键是看他们所面临的“情形”;
(2)我们可以这样来分析这个问题的解法,将所有的情形--剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。

若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。

所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。

例8有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?
[分析] 为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房间。

[课后练习]
1、十个自然数之和等于1001,则这十个自然数的最大公约数可能取的最大值是多少?(不包括0)
2、在两条直角边的和一定的情况下,何种直角三角形面积最大,若两直角边的和为8,则三角形的最大面积为多少?
3、5个人各拿一个水桶在自来水龙头前等候打水,他们打水所需要的时间分别是1分钟、2分钟、3分钟、4分钟和5分钟,如果只有一个水龙头适当安排他们的打水顺序,就能够使每个人排队和打水时间的总和最小,那么这个最小值是多少分钟?
4、某水池可以用甲、乙两水管注水,单放甲管需12小时注满,单放乙管需24小时注满。

若要求10小时注满水池,并且甲、乙两管合放的时间尽可能地少,则甲乙两管全放最少需要多少小时?
5、有1995名少先队员分散在一条公路上值勤宣传交通法规,问完成任务后应该在该公路的什么地点集合,可以使他们从各自的宣传岗位沿公路走到集合地点的路程总和最小?
6、甲、乙两人轮流在黑板上写下不超过10的自然数,规则是禁止写黑板上已写过的数的约数,不能完成下一步的为失败者。

问:是先写者还是后写者必胜?如何取胜?
[习题参考答案及思路分析]
1、因为1001=7×11×13,所以可以7×13为公约数,这样这十个正整数可以是 ,91×2,它们的最大公约数为91。

2、对于直角三角形而言,在直角边的和一定的情况下,等腰直角三角形的面积最大。

若两直角边的和为8,则三角形的最大面积为×4×4=8。

3、为了使每个人排队和打水时间的总和最小,有两种方法:
(1)排队的人尽量少;(2)每次排队的时间尽量少。

因此应先让打水快的人打水,才能保证开始排队人多的时候,每个人等待的时间要少,故共需5×1+4×2+3×3+2×4+5=35(分钟)。

4、由于甲、乙单独开放都不可能在10小时注满水池,因此必须有时间甲、乙全放。

为了使它们合放的时间最少,应尽量开放甲管(速度快),这样甲开10小时注满水池的,余下只能由乙注满,需。

因此甲乙两管全放最少需要4小时。

5、此问题我们可以从最简单问题入手,寻找规律,从而解决复杂问题,最后集合地点应在中间地点。

6、先写者存在获胜的策略。

甲第一步写6,乙仅可写4,5,7,8,9,10中的一个,把它们分成数对(4,5),(8,10),(7,9)。

如果乙写数对中的某个数,甲就写数对中的另一个数,则甲必胜。

奥数知识点题型解析:最优方案与最佳策略。

相关文档
最新文档