第三讲基本体三面投影
投影基本知识—三面正投影(建筑构造)
规定正面V不动,将水平面H绕OX轴向下旋转90°,侧面W绕OZ 轴向右旋转90°,就得到如下图所示的在同一平面上的三个视图。
三面正投影 四、三面投影图的对应关系
长
X 长
宽
高
高
Z 宽
YH
V面投影反映物体长度、高度。 H面投影反映物体长度、宽度。 W面投影反映物体高度、宽度。
YW
V,H两面投影反映物体长度且左右对 齐,称为“长对正” V,W两面投影反映物体高度且上下对 齐,称为“高平齐” H,W两面投影反映物体宽度且前后对 齐,称为“宽相等”
三面正投影
三面正投影 一、正投影的特性
1.显实性 显实性:若线段和平面图形平行于投影面, 其投影反映实长或实形。
正投影的显实性
三面正投影 一、正投影的特性
2.积聚性 积聚性:若线段和平面图形垂直于投影面,其投影积聚为一点或一直线段。
正投影的积聚性
三面正投影 一、正投影的特性
3.类似性 类似性:若线段和平面图形倾斜于投影面,其投影短于实长或小于实形,但与 空间图形类似。
正投影的类似性
三面正投影
1、单面投影
二、三面正投影的由来
2、两面投影
单面投影只能反映物体两个方向的量
两面投影可以反映物 体三维方向的量
但是两面投影可能不是
唯一形体的投影
三面正投影 二、三面正投影的由来
右图为空间3个不同形状的形体,它们在同一投影面上的投影却 是相同的。
由图可以看出:虽然一个投影面能够准确的表现出形体的一个侧面 的形状,但不能表现出形体的全部形状。
三面正投影
举例画出三视图
五、三面正投影的绘制
正三棱锥
正视图
侧视图
俯视图
第三章 基本体的三视图
例3:如图所示,已知球面对V面的转向轮廓线上点的1’ 投影,求1”、1;又知它对V的转向轮廓线上的点水平 投影2,求2’、2”。
球面转向轮廓线上点的投影的求解步骤与上一图例相 似,作图过程如图所示。
2’ 1’ 2”
y
1”
2 y
1
练 习 题
1. 根据立体图,找出相对应的三视 图,并在括号内填写相应编号。 2. 根据立体图及所给观察方向,画 出相应的三视图。 3. 根据立体图及所给观察方向,画 出相应的三视图。
1. 根据立体图找出相应三视图,并在括号内填写相应编号。
11
12
请点击解答显示其内容
2. 根据立体图及所给观察方向,画出相应的三视图。
S
请点击解答显示其内容
3. 根据立体图及所给观察方向,画出相应的三视图。
S
请点击解答显示其内容
k
k
n
n
圆的半径?
辅助圆法
k
n
例1: 已知三棱锥棱线上一点的V面投影1′和另一点 的V面投影2′,求两点的其它各面相应投影1″、1及 2、2″。
作图步骤:
y 1“ 2′ 1′ 2″ ⑴过点的V面投影1’作水平投 射线,投射线与W面相应棱线 投影的交点即为投影1”;根 据“宽一致”的投影规律, 在W面投影中量取1”的Y坐标 值,然后在H面相应棱线的投 影上直接量取Y,得H面投影1。 ⑵过点的V面投影2’分别作水 平投射线和垂直投射线,水 平投射线与W面相应棱线投影 的交点即为投影2”,垂直投 射线与H面相应棱线投影的交 点即为投影2。
作投影图时,先画出正六棱柱的水平投影正六边形,再根据 其它投影规律画出其它的两个投影。如图所示。
三面投影图.ppt
正面投影—主视图 水平投影—俯视图 侧面投影—左视图
三个投影面上的三个投影图的展开 Z
X
O
YW YH
展开后的三面正投影图
V
W
H
展开后的三面正投影图
物体的三面正投影图
三面投影的形成 三面投影的特性 三面投影图的绘制
三面投影图与形体的方位关系
宽基准
三面投影图画法举例
宽基准
y
H
W V
上
上
左
右
后
前
下
下
后
左
右
前
正面投影图——反映形体的上、下、左、右 水平投影图——反映形体的左、右、前、后 侧面投影图——反映形体的上、下、前、后
三面投影图与形体的尺寸关系
宽
高
高
长
宽
长
宽
宽
总体相等
局部也相等
正面、水平投影图——都能反映形体长度 正面、侧面投影图——都能反映形体高度 水平、侧面投影图——都能反映形体宽度
总结三面投影图的特性:
长对正 高平齐 宽相等
正面投影图反映 形体上下、左右方位,
Z
及形体的高度和长度
水平投影图反映 形体前后、左右方位, X 及形体的宽度和长度
侧面投影图反映 形体上下、前后方位, 及形体的高度和宽度
O
YW
YH
三面投影的形成 三面投影的特性 三面投影图的绘制
三面投影图画法举例
三面投影图
主讲 曹晓冶
本讲的主要内容: 三面投影的形成 三面投影的特性 三面投影图的绘制
三面投影的形成 三面投影的特性 三面投影图的绘制
形体的三面正投影(基本体)
图3-3 4种工程形体的投影
2 棱锥
•正棱锥——底面为正 多边形,顶点过底面 中心垂线的棱锥体。
视图特征: 1)反映底面实形的视图 为多边形(三角形的组 合图形); 2)另两视图均为三角形。
三棱锥的投影图
s
s
b
a c
c
a
b
(b)
c
s
B
a
S C A
3 棱台
•棱台可看成是由棱锥用平行于锥底面的平面截去锥顶而形 成的形体,上、下底面为各对应边相互平行的相似多边形, 侧面为梯形。
【例3.4】如图所示,已知立体表面上的点K的正面投影k',求其 另外两面的投影k、k"。
(a) 已知条件
(b) 作图方法
【例3.5】如图所示,已知圆柱表面上线段AB的正面投影a'b', 求其另外两面上的投影。
(a) 已知条件
(b) 作图方法
【例3.6】如图所示,已知圆锥上点K的正面投影k',求其另两面 上的投影。
【例3.2】如图所示,已知立体表面上直线MK的正面投影m'k', 试作直线MK的水平投影mk和侧面投影m"k"。
(a) 已知条件
(b) 作图方法
【例3.3】如图所示,已知立体表面点K的正面投影k',试求其水 平与侧面投影k、k"。
(a) 已知条件
(b) 一般位置直线作为辅助线 求k点的投影
(c) 特殊位置直线作为辅助线 求k点的投影
视图特征: 1)反映底面实形的视图为两个相似多边形和反映侧面的 几个梯形; 2)另两视图均为梯形(或梯形的组合图形)。
2 曲面体的投影
常见的曲面体多是回转体,如圆柱、圆锥、圆球、圆环等。
第三讲 基本体三面投影
m’ c’
1
a’ a
b’ b
a”(b”)
求出Ⅰ点的水平投 c” 影1。
m
s
过1作1m ∥ac,再 根据点在直线上的几 何条件,求出m 。
再根据知二求三的 方法,求出m”。(具 体步骤略)
c
正三棱锥的三面投影图
18
s
s 2
2
S
b
b s
a
c
c
c (b)
Ⅱ
a C
B
2 A
a
19
s
23
在投影图上表示回转 体,就是把组成立体的 回转面或平面表示出来, 然后判断可见性。如图 所示。
回转面用转向轮廓 线表示。转向轮廓线是 与曲面相切的投射线与 投影面的交点所组成的 线段。
转向轮廓线
转向轮廓线
24
一、圆柱
圆柱表面由圆柱面和顶面、底面所组成。圆柱面是 由一直母线绕与之平行的轴线回转而成。 Z
a’
c’(d’) d
b’ d’
a”(b”)
c’
正面转向轮廓线
a c
b
c’d’ a’ 侧面转向轮廓线 A
d”
d C b c
a”b” c”
圆柱的投影
X
a
26
Y
2、圆柱表面上取点
已知圆柱表面上的点M及N正面投影a’、 b’、 m′和n′,求它们的其余两投影。
b’ a’
(b”)
a”
b a
在圆柱表面上取点
27
m’ a’
X
m”
a”(b”)
2’ c’
c”
YW
a
连接s2,即求出 直线SⅡ的水平投影。 根据在直线上的 点的投影规律,求出 M点的水平投影m。 再根据知二求三 的方法,求出m”。
第三章基本体的三视图分解
截交线的性质 (1)截交线是截平面与立体表面的共有线,截交线上
的点是截平面与立体表面的共有点。 (2)截交线是封闭的线条。 (3)截交线的形状决定于立体表面的形状和截平面 与立体的相对位置。
一、平面与平面立体相交
单一平面与平面立体相交,截交线是一个多边形,其 顶点是平面立体的棱线或底边与截平面的交点。 多个平面与平面立体相交,如切割与穿孔,则逐个作出截 平面与平面立体的截交线,并画出截平面之间的交线。
两截平面的交线
y1
若增加圆柱孔 结果将如何?
内、外交线分别求解
求外表面交线 求内表面交线 检查孔的轮廓线 检查交线
[例题七]画出左视图
(2)
作上部切片的投影
作下部通槽的投影
判别可见性,整理、加深完成全图
(二)平面与圆锥相交
[例题一] 求水平面与圆锥的截交线
截平面⊥圆锥轴线, 截交线是圆
多个截平面与回转体相交,截交线是各个截平面所 得截交线的结合,其结合点是相邻截平面交线与回转体表 面的交点。
P
P Q
(一)平面与圆柱相交
截平面轴线倾斜 截平面垂直 截平面平行轴 轴线 线 柱面 1底+柱面 2底+柱面
截交线为圆 截交线为矩形 截交线为椭圆
截交线为部分椭 圆
截交线为部分椭 圆
[例题一] 求侧平面与圆柱的截交线
b
1,求特殊点Ⅰ、Ⅱ、Ⅲ、 Ⅳ(长、短轴端点)
3
4
b
a
b 1 a
2,求一般点A、B
3 ,光滑且顺次地连接 各点,整理轮廓线。
a
4
b
Ⅳ
2
Ⅱ Ⅲ
1 a 3 b
Ⅰ
截平面倾斜圆柱轴线 截交线为椭圆
立体的三面投影三视图
(1). 三棱柱的视图
由两个底面和三个侧棱面组成。侧棱面 与侧棱面的交线叫侧棱线,侧棱线相互平行。
三棱柱的 两底面为水平 面,在俯视图 中反映实形。 其余三个侧棱 面都是铅垂面, 水平投影积聚, 与三角形的边 重合。
(2)
三棱柱表面的点
由于三棱柱的表面都是平面,所以在三棱 柱的表面上取点与在平面上取点的方法相同。
圆柱
圆锥
圆球
圆环
4.2.1 平面立体的投影
平面立体:是由若干个平面图形所围成的几 何体,如棱柱体、棱锥体等。
棱柱体
棱锥体
平面立体侧表面的交线称为棱线 若平面立体所有棱线互相平行,称为棱柱。 若平面立体所有棱线交于一点,称为棱锥。
平面立体的投影 是平面立体各表面投影的集合 ----由直线段组成的封闭图形。 1 棱 柱
a b a
(b)
采用辅助圆法 求圆球面上的 点或线
( c )
c
(c) a
b
圆的半径?
3. 圆球面上的曲线
(4) 圆环面
一圆母线绕其所在平面内的一条轴 线作回转而成。
1. 圆环的视图
主、左视图是极限位 置素线(图)和内、 外环分圆的投影; 俯视图是上、下的投 影。
2.
圆环面上的点
三等关系
长对正 高平齐 宽相等
3.三视图之间的方位对应关系
上 左 下 后 左 前 右 右 后 下 左 下 上 前
后
上 右 前
主视图反映:上、下 、左、右 俯视图反映:前、后 、左、右 左视图反映:上、下 、前、后
4.2
基本体的三视图
棱柱 棱锥
常 见 的 基 本 立 体
平 面 立 体
曲 面 立 体
(1) 圆柱
绘制基本体的三面投影讲解
图2-10 点的投影定比性
单元二 绘制基本体的三面投影
图2-11两平行直线的投影
单元二 绘制基本体的三面投影
学习任务一:用正投影特性画如图2-12所示物体的投影图。
图2-12物体的投影图(一)
位置的直角坐标系,沿不平行于任一坐标面的方向S投影到单一个 投影面P(轴测投影面) 得到的投影图为轴测投影图。轴测投影可分 为正轴测投影、斜轴测投影两类。如图2-34、 2-35所示。
单元二 绘制基本体的三面投影
2、轴测投影的参数
• (1)轴测投影面:轴测投影的投影面,图中的平面P。 • (2)轴测轴:坐标轴OX、OY、OZ的轴测投影O1X1、O1Y1、O1Z1,称为轴测轴。 • (3)轴间角:轴测轴之间的夹角∠X1O1Y1、∠X1O1Z1、∠Y1O1Z1,称为轴间
2、轴测投影法 轴测投影法是一种平行投影,采用单面投影,把物体按 平行投影法投射至单一投影面上所得到的投影图。如图2-5所示。
缺点:不能完整表达物体的形状,度量性差;优点:富有立体感,直观性好。
图2-5正投影与轴测投影的区别 (a)正投影;(b)轴测投影
单元二 绘制基本体的三面投影
3、透视投影法 透视投影法即中心投影,如图2-6所示。由于透视图和照相原理 相似,它符合人们的视觉,图像接近于视觉映象,图像逼真、直观性强,常作为 设计方案比较、展览用的图样。近年来透视图在平行于投影面的直线和平面,其投影反映实长或实形,如图2-9所 示。
(四)从属性 (1)若点在直线上,则该点的投影必在该直线的投影上。(2) 若点或直线在平面上,则该点或该直线的投影必在该平面的投影上。
立体的三面投影三视图
立面
体
立 体
圆球
圆环
➢.1 平面立体的投影
平面立体:是由若干个平面图形所围成的几 何体,如棱柱体、棱锥体等。
棱柱体 棱锥体
平面立体侧表面的交线称为棱线 若平面立体所有棱线互相平行,称为棱柱。 若平面立体所有棱线交于一点,称为棱锥。
平面立体的投影 是平面立体各表面投影的集合 ----由直线段组成的封闭图形。
➢1. 圆环的视图
主、左视图是极限位 置素线(图)和内、 外环分圆的投影;
俯视图是上、下的投 影。
➢2. 圆环面上的点
m'
(n')
(n)
采用 辅助 圆法 求圆 环面 上的 点或 线。
m
➢1 棱 柱
(1). 三棱柱的视图
由两个底面和三个侧棱面组成。侧棱面 与侧棱面的交线叫侧棱线,侧棱线相互平行。
三棱柱的 两底面为水平 面,在俯视图 中反映实形。 其余三个侧棱 面都是铅垂面, 水平投影积聚, 与三角形的边 重合。
➢(2) 三棱柱表面的点
由于三棱柱的表面都是平面,所以在三棱 柱的表面上取点与在平面上取点的方法相同。
k n
b s kn
k (n)
c a(c) b c
b
➢.2 曲面立体的投影
工程中常见的曲面立体,是回转体。 回转曲面是由母线(直线或曲线)绕 定轴线作回转运动生成的。
直母线生成的回转曲面称为直线回转面如: 圆柱面、圆锥面等。
曲母线生成的回转曲面称为曲线回转面如: 圆球面、圆环面等。
➢(1) 圆柱
➢1. 圆球的视图
三个视图均为与圆球的直径相等的 圆,它们分别是圆球三个方向轮廓素线 的投影。
注意:圆球的轮廓线的投影与曲面可 见性的判断。
第3章--基本体的三视图
例7. 画圆锥体及其表面上各点的三视图。 画圆锥体及其表面上各点的三视图。
k
A
B
S
k’
k ’’
a’
(c’) )
(a”) )
c”
1’
பைடு நூலகம்
b’
b”
(C)
作图步骤: 画各视图的轴线; (1)画各视图的轴线; (2)画俯视图的底圆轮廓; 画俯视图的底圆轮廓; 画主视图的轮廓素线; (3)画主视图的轮廓素线; (4)根据投影规律求第三投影; 根据投影规律求第三投影; 点的三投影; (5) 用素线法求 A 点的三投影; (6)根据B点的特殊位置求其三投影; 根据B点的特殊位置求其三投影; (7) 用辅助平面法求C点的三投影。 用辅助平面法求C点的三投影。
1、圆柱体
圆柱体表面由圆柱面和上、下两个平面组成。圆柱面由直 线AB绕与它平行的轴线等距旋转而成。
Z
O
素线
A V a' d' c' B
b' B A
母线
O
C
X 最左轮 廓素线
Y 最前轮 廓素线
(1)圆柱的投影图
a' b'
c'
d'
分析圆柱轮廓素线的投影
V面投影 轮廓素线
圆柱轮廓 素线(转向 轮廓线)
e
f
请点击鼠标左键显示后面内容
例4. 画正三棱锥及表面上各点的三视图。 画正三棱锥及表面上各点的三视图。
K
k’ k
k” k
D
P
A
作图步骤:
E
S
P
C
e’
b’ b
d’
(d”) )
第三~四章 基本体的投影及表面取点 PPT课件
辅助圆法
k
k
圆的半径?
例 已知属于圆球面的点K 的水平投影,求其另外两面投影
——水平圆为辅助线
例 已知属于圆球面的点K 的水平投影,求其另外两面投影
——正平圆为辅助线
例 已知属于圆球面的点K 的水平投影,求其另外两面投影
——侧平圆为辅助线
例 圆球表面上取点-特殊位置点
例 已知圆球面上的曲线AD 的正面投影,求另外两面投影
底面:水平面 顶面:水平面
侧面: 后面:正平面 左、右后面:铅垂面 左、右前面:铅垂面
正棱柱图例:
五棱柱 五棱柱
六棱柱 六棱柱
三棱柱
三棱柱
四棱四柱棱柱 (长方(长体方) 体)
斜四棱柱
作图步骤: 画底面的投影 画顶面的投影
正面投影 水平投影 判别可见性 水平投影 正面投影
例 已的知正斜面三投棱影柱,表求面该的直两线面段投的影水和平其投表影面的直线段A1I、I II
基本体的三视图
常见的基本几何体
平面基本体
曲面基本体一、平面基Fra bibliotek体1.棱柱
⑴ 棱柱的组成
由两个底面和若干侧棱面
组成。侧棱面与侧棱面的交线
叫侧棱线,侧棱线相互平行。
⑵ 棱柱的三视图
⑶ 棱在柱图示面位上置取时点,六棱柱 a
的点两的底可面见为性水规平定面:,在俯视
(b)
图中反若映由点实于所形棱在。柱的前的平后表面两面的侧都投棱
例 已知圆环面上的曲线AD 的水平投影,求正面投影
小结
重点掌握:
基本体的三视图画法及面上找点的方法。
⒈ 平面体表面找点,利用平面上找点的方法。 ⒉ 圆柱体表面找点,利用投影的积聚性。 ⒊ 圆锥体表面找点,用辅助线法和辅助圆法。 ⒋ 球体表面找点,用辅助圆法。
第3章.体的投影
二、简单叠加体的画图和看图方法
⒈ 画图时一定逐个形体画,同时注意分析表面的 过渡关系,以避免多线或漏线。 ⒉ 看图时切忌只抓住一个视图不放。利用封闭线 框分解形体和分析表面的相对位置关系。
立板 肋板
底板和立板右侧面共面叠加 肋板与底板和立板前后对称叠加
底板
⑵ 逐块画三视图并分析表面过渡关系。
①底板 ②立板 ③肋板 看得见的线画实线 看不见的线画虚线
表面共面, 应无线。
⑶ 检查、加深。
三、简单叠加体的读图方法
⒈ 弄清视图中图线的意义 ① 面的投影 ② 面与面的交线 ③ 回转面轮廓素线 的投影
3.1 体的三面投影—三视图
3.2 基本体的三视图 3.3 简单叠加体的三视图
本章小结
结束放映
3.1 体的三面投影 ——三视图
一、体的投影
体的投影,实质上是构成该体的所 有表面的投影总和。
V
二、三面投影与三视图
1.视图的概念
用正投影法绘制的物 体的投影图称为视图。 主视图 ——体的正面投影 俯视图 ——体的水平投影 左视图 ——体的侧面投影
圆柱面轮廓素线
交线
平面
⒉ 利用线框,分析体表面的相对位置关系。
视图中一个封闭线框一般情况下表示一个面的 投影,线框套线框,通常是两个面凹凸不平或者是 具有打通的孔。
两个线框相邻,表示两个面高低不平或相交。
⒊ 利用虚、实线区分各部分的相对位置关系。
⒋ 几个视图对照分析以确定物体的形状
例:已知物体的主视图和俯视图,画出左视图。
体3 体1 体2
⒈
分析投影,想象出物体的形状。 ⑴ 对线框,分解形体。 ⑵ 综合起来,想象整体。
立体的三面投影三视图
平面立体旳投影 是平面立体各表面投影旳集合 ----由直线段构成旳封闭图形。
➢1 棱 柱
(1). 三棱柱旳视图
由两个底面和三个侧棱面构成。侧棱面 与侧棱面旳交线叫侧棱线,侧棱线相互平行。
三棱柱旳 两底面为水平 面,在俯视图 中反应实形。 其他三个侧棱 面都是铅垂面, 水平投影积聚, 与三角形旳边 重叠。
➢(2) 三棱柱表面旳点
因为三棱柱旳表面都是平面,所以在三棱 柱旳表面上取点与在平面上取点旳措施相同。
点旳可见性鉴别: 若点所在旳
平面旳投影可见, 点旳投影也可见; 若平面旳投影积 聚成直线,点旳 投影也可见。
➢2.棱锥
S
⑴ 棱锥旳构成
由一种底面和若干侧 棱面构成。侧棱线交于有 限远旳一点——锥顶。
S称为锥顶,圆锥面上过锥顶旳任一直线 称为圆锥面旳素线。
➢1. 圆锥旳视图
如图示位置,俯视图为一圆。另两
注意:轮廓线旳投影与 曲面旳可见性旳判断
个视图为等边三角形,三角形旳底 边为圆锥底圆旳投影,两腰分别为 圆锥面不同方向旳两条轮廓素线旳
➢2. 圆锥面上旳点 投影。
1) 素线法
过
锥
顶
作
一
条
素 线
2)纬线圆法
⑵ 棱锥旳三视图
A
C
B
s
s
⑶ 在棱锥面上取点
棱锥处于图示位置时,
其底面ABC是水平面,在俯
视图上反应实形。侧棱面 a SAC为侧垂面,另两个侧棱 a 面为一般位置平面。
k n
b s kn
k (n)
c a(c) b c
b
➢4.2.2 曲面立体旳投影
工程中常见旳曲面立体,是回转体。 回转曲面是由母线(直线或曲线)绕 定轴线作回转运动生成旳。
第三~四章 基本体的投影及表面取点
3.圆球
⑴ 圆球的形成
圆母线以它的直 径为轴旋转而成。
⑵ 圆球的三视图
三个视图分别为三 ⑶ 轮廓线的投影与曲 个和圆球的直径相等的 面可见性的判断 圆,它们分别是圆球三 ⑷ 圆球面上取点 个方向轮廓线的投影。
k
k
圆的半径?
k
辅助圆法
例 已知属于圆球面的点K 的水平投影,求其另外两面投影 ——水平圆为辅助线
例 已知属于圆球面的点K 的水平投影,求其另外两面投影 ——正平圆为辅助线
例 已知属于圆球面的点K 的水平投影,求其另外两面投影 ——侧平圆为辅助线
例
圆球表面上取点-特殊位置点
例 已知圆球面上的曲线AD 的正面投影,求另外两面投影
例 已知圆球面上的曲线AD 的正面投影,求另外两面投影
4.圆环
a
(
a b)
b
b
a
五棱柱
作图步骤:
画底面和顶面的投影 画五条棱线的投影 判别可见性
五棱柱投影图分析:
底面:水平面 顶面:水平面 侧面: 后面:正平面 左、右后面:铅垂面 左、右前面:铅垂面
正棱柱图例:
五棱柱 五棱柱
六棱柱 六棱柱
三棱柱 三棱柱
四棱柱 四棱柱 (长方体) (长方体)
例:作三棱锥的侧面投影,并作出表面上的折线ABCD的正面投影和侧面投影。
d’
(d)”
a”
△Y
△Y
斜三棱锥 解题步骤: 画底面的投影 画锥顶的投影 画三条棱线的投影 判别可见性 水平投影可见性 正面投影可见性
二、回转体
1.圆柱体
⑴ 圆柱体的组成 由圆柱面和两个底面组成。 圆柱面是由直线AA1绕与 它平行的轴线OO1旋转而成。 3′ 1′ 直线AA1称为母线。 圆柱面上与轴线平行的任 a 一直线称为圆柱面的素线。
(完整版)第三章基本体的投影
3基本体投影立体的形状是各种各样的,但任何复杂立体都可以分析成是由一些简单的几何体组成,如棱柱、棱锥、圆柱、圆锥、球等,这些简单的几何体统称为基本几何体。
根据基本几何体表面的几何性质,它们可分为平面立体和曲面立体。
立体表面全是平面的立体称为平面立体;立体表面全是曲面或既有曲面又有平面的立体称为曲面立体。
3.1平面立体投影3.1.1平面立体的投影平面立体的各个边都是平面多边形,用三面投影图表示平面立体,可归纳为画出围成立体的各个表面的投影,或者是画出立体上所有棱线的投影。
注意作图时可见棱线应画成粗实线,不可见棱线应画成虚线。
(1)五棱柱如图3-1-1所示,分析五棱柱:五棱柱的顶面和底面平行于H面,它在水平面上的投影反映实形且重合在一起,而他们的正面投影及侧面投影分别积聚为水平方向的直线段。
五棱柱的后侧棱面EE1D1D为一正平面,在正平面上投影反映其实形,EE1 、D D1直线在正面上投影不可见,其水平投影及侧面投影积聚成直线段。
五棱柱的另外四个侧棱面都是铅垂面,其水平投影分别汇聚成直线段,而正面投影及侧面投影均为比实形小的类似体。
(a)立体图(b)五棱柱的投影(c)三面投影图图3-1-1投影图如图3-1-1所示,立体图形距离投影面的距离不影响各投影图形的形状及它们之间的相互关系。
为了作图简便、图形清楚,在以后的作图中省去投影轴。
作图步骤如图3-1-2所示:1.布置图面,画作图基线,如图3-1-2(a)所示;2.画出反映真实形状的面,如图3-1-2(b)所示;3.根据投影规律画出其他视图,如图3-1-2(c)所示;4.检查整理底稿后,加深三视图的可见线,将不可见线绘制成虚线,如图3-1-2(d)所示。
b)画V面投影(a)画作图基线((c)根据投影规律画出其他视图图3-1-2(2)三棱锥(a)立体图(b)投影图(c)三面投影图图3-1-3如图3-1-3所示,分析三棱锥:三棱锥的底面ABC平行于平面H在水平投影上反映真实形状;BCS垂直于V面,在正平面上投影为一条直线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、球面上取点
m’
m”
1’
o’
o”
已知M点的水 平投影,求出其它 两个投影。
过m作平行于V 面的正平圆12。
求正平圆的正面 投影。
在辅助正平圆上 求出m’和m”。
o
m
1
2
R 球的投影及表面上的点
37
2
3
2" 1"
ⅡⅠ
Ⅲ
3"
2 3
1
2′ 1′ 3′
2 31
1" 2"
3"
圆球的投影
38
39
四、圆环
平投影反映实形能,在其该投影面上画出,而在
正 为面一和直侧 线面。投而影圆其重柱它影面投影面上a’ 则c不’d’A再画出。d”a”b” c”
则用曲面投影的转向 X
d
Cb
轮廓线表示。
a
c
Y
圆柱的三面投影图 25
圆柱投影图的绘制:
(1) 先绘出圆柱的对
a’
c’(d’)
b’ d’ a”(b”) c’ 称线、回转轴线。 (2)绘出圆柱的顶面
圆锥的投影及表面上的点
34
已知圆锥表面上点M及 N的正面投影m′和n′,求 它们的其余两投影。
m
(n)
a’
m (n )
(a”)
n
a
m
在圆锥表面上定点
35
三、圆球
1、 圆球的形成
球的表面是球面。 球面是一条园母线绕过 圆心且在同一平面上的 轴线回转而形成的。
2、球的投影
球的三个投影均 为圆,其直径与球直 径相等,但三个投影 面上的圆是不同的转 向轮廓线。
b' c'
a" d"
AD
E
e"
b"
c"
X
B
C
ab
dc
e
Y
正六棱柱的投影
5
棱柱的其它四个侧棱面均为铅垂面,其水平投影 均重影为直线。正面投影和侧面投影均为类似形。
Z
e' a' d'
b' c'
a" d"
AD
E
e"
b"
c"
X
B
C
ab
dc
e
Y
正六棱柱的投影
6
2、 棱柱的三视图
作投影图时,先画出正六棱柱的水平投影正六边形,再
b’ a’
(b”) a”
b
a
在圆柱表面上取点
27
28
二、圆锥体
1、 圆锥的投影
圆锥表面由圆锥面和底圆组成。它是一母线绕与它相交
的轴线回转而成。
Z
如图所示,圆锥轴 线垂直H面,底面为水平 面,它的水平投影反映 实形,正面和侧面投影 重影为一直线。
s’ V
S
b’ a’ c’d’
对于圆锥面,要 分别画出正面和侧 面转向轮廓线
Z
s’
s”
a’
X
a
b’ c’ O a”(b”)
b s
c
YH 正三棱锥的三面投影图
c” V s'
YW
a' b'
X
A
a
Z
S s" W
Ca" c" s Bc b"
b
Y
15
16
3、三棱锥表面上取点1
作图步骤如下:
s’
Z
s”
连接s’m’并延长, 与a’c’交于2’,
m’
a’
X
2’ c’
a
s
2m
m” b’
a”(b”) b
建筑制图与施工图识读
基本体三面投影
常见的基本几何体
平面基本体
曲面基本体
2
立体表面是由若干面所组成。表面均为平面
的立体称为平面立体;表面为曲面或平面与曲 面的立体称为曲面立体。
在投影图上表示一个立体,就是把这些平面 和曲面表达出来,然后根据可见性原理判断那 些线条是可见的或是不可见的,分别用实线和
过m’作m’1’ ∥a’c’, 交s’a’于1’。
求出Ⅰ点的水平投 c” 影1。
过1作1m ∥ac,再 根据点在直线上的几 何条件,求出m 。
再根据知二求三的 方法,求出m”。(具 体步骤略)
18
s
s
2 2
b
a c
c
a
b
(b)
c
s
B
2
a
S
Ⅱ
C
A
19
s
s
(3)
3
b
b
a c
c
(b)
3
c
s
a
S
a
Ⅲ
C
B A
20
21
回转体
工程中常见的曲面立体是回转体,主要有圆柱、圆锥、 球、环等。回转体是一动线(直线、圆弧或其它曲线)绕 一定线(直线)回转一周形成的曲面。 回转体(面)的形成
22
O
轴线
母线
顶圆 素线
赤道圆
O
回转面的术语
喉圆 纬圆 底圆
23
回转面用转向轮廓 在投影图上表示回转 线表示。转向轮廓线是 体,就是把组成立体的 与曲面相切的投射线与 回转面或平面表示出来, 投影面的交点所组成的 然后判断可见性。如图 线段。 所示。
b
Y
正三棱锥的投影
13
Z
V
s'
a'
b'
X
A
a
S
s"
W
C a" c"
s B c b"
b
Y
正三棱锥的投影
底边AB、BC 为水平线,AC为 侧垂线,棱线SB为 侧平线,SA、SC为 一般位置直线,它 们的投影可根据不 同位置直线的投影 特性进行分析。
14
作图时,先画出底面△ABC的各个投影,再作出锥 顶S的各个投影,然后连接各棱线,即得正三棱锥的三 面投影。如图所示。
(1)圆环的形成 圆环面是由一个完整的圆绕轴线回转一周而形成,
轴线与圆母线在同一平面内,但不与圆母线相交。
40
(2)圆环的三视图
主、左视图是极限位 置素线(图)和内、 外环分圆的投影;
俯视图是上、下的投 影。
41
(3)圆环表面取点
k’’ k’ k
42
m'
(n') (n)
m
43
44
平面与立体表面相交——截交线 用平面与立体相交,截去体的一部分
s’
(3) 作出锥 顶的正面投 影和侧面投
V
S
s” W 影并画出正
面转向轮廓
a
s
b
c 圆锥的投影
a’
X
b’ c’d’
Ad
a
d”
线和侧面转
Ba”(b”) c” 向轮廓线。
bC
c
Y
30
2、圆锥表面上取点
在圆锥表面上求点,有两种方法:一种是素
线法,一种是辅助圆法。
Z
方法一:素线法
V
过M点及锥顶S作
一条素线SⅠ,先求
根据其它投影规律画出其它的两个投影。如图3-2所示。
Z
a’ d’ e’
a” d”
b’ c’
X
棱柱具有这样b”的投c”影Y特W
点:一个投影反映底面实
Z
a (b)
形,而其余两投影则为矩
形或复合矩形。
a' d'
e'
b' c'
AD
E
a" de""
b" c"
d(c) e
YH 正六棱柱的投影图
X
BC
a b dc e
二、回转体的截交线
截交线是截平面与回转体表面的共有线。 截交线的形状取决于回转体表面的形状及
截平面与回转体轴线的相对位置。 ⒈ 求截交线的方法:
求截平面与回转体表面的共有点。
⒉ 求截交线的步骤:
空间及投影分析
☆ 分析回转体的形状以及截平面与回转体轴线的 相对位置,以确定截交线的形状。
☆ 分析截平面及回转体与投影面的相对位置,明 确截交线的投影特性,如积聚性、类似性等。 找出截交线的已知投影,予见未知投影。
——截切。
用以截切立体的平面——截平面。 截平面与立体表面的交线——截交线。
截交线的性质:
⒈ 是一封闭的平面多边形。
⒉ 截交线的形状取决于被截立 体的形状及截平面与立体的 相对位置。 截交线的投影的形状取决于 截平面与投影面的相对位置。
⒊ 截交线是截平面与立体表面 的共有线。
一、平面体表面的截交线
c
YH 正三棱锥的三面投影图
在投影ac上求出 Ⅱ点的水平投影2。
c”
连接s2,即求出
YW 直线SⅡ的水平投影。
根据在直线上的 点的投影规律,求出 M点的水平投影m。
再根据知二求三 的方法,求出m”。
17
作图步骤如下:
s’
s”
1’ m’ a’
c’ a
1
s m
b’ a”(b”)
b
c
正三棱锥的三面投影图
画出截交线的投影
当截交线的投影为非圆曲线时,其作图步骤为:
☆ 先找特殊点,再补充中间点。
☆ 将各点光滑地连接起来,并判断截交线的可 见性。
㈠ 圆柱体表面的截交线
截平面与圆柱面的交线的形状取决于截 平面与圆柱轴线的相对位置。