最短距离问题分析

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3图

最短距离问题(课时一)

课题说明:最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)和利用一次函数和二次函数的性质求最值。 教学流程:

一、“最值”问题大都归于两类基本模型:

Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最

小值

Ⅱ、归于几何模型,这类模型又分为两种情况:

(1)归于“两点之间的连线中,线段最短”。凡属于求“变动的两线段之和的最小值”时,大都应用这

一模型。

(2)归于“三角形两边之差小于第三边”。凡属于求“变动的两线段之差的最大值”时,大都应用这一

模型。

几何模型: 1.立体图形中,表面折点距离最短问题。

2.平面图形中,直线同侧两点到直线上一点距离之和最短问题。

模型应用:

例1.如图1,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只

蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm .

1 图3

例2.如图2,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.则PB PE +的最小值是___________;

变式1.如图3所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )

变式2.如图4,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,

求PA PC +的最小值; 熟能生巧:

1(台州)如图,菱形ABCD 中,AB=2,∠A=120°,点P ,Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为( ) A .1

B C .2

D 1

2(兰州)如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为( ) A .130° B .120° C .110° D .100° 例3.一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;

(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,

A B

A '

P

l

A B

B 图2 A

B C

图4 P A D

E P B

C

求PC +PD 的最小值,并求取得最小值时P 点坐标.

例4.如图,抛物线35

18

532+-=

x x y 和y 轴的交点为M A ,为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长。

孰能生巧:

1已知:抛物线的对称轴为与x 轴交于A B ,两点,与y 轴交于点C ,其中A(-3,0)、B(1,0) C(0,-2). (1)求这条抛物线的函数表达式.

(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.

(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、

PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若

存在,请求出最大值;若不存在,请说明理由.

总结:不管在什么背景下,有关线段之和最短问题,总是化归到“两点之间的所有连线中,线段最短”,而转化的方法大都是借助于“轴对称点”

择优而用:

1.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是多少

1题图

x

C

2.(天津市)在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA =3,OB =4,D 为边OB 的中点.

(Ⅰ)若E 为边OA 上的一个动点,当△CDE 的周长最小时,求点E 的坐标;

(Ⅱ)若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,求点E 、F 的坐标.

3.如图,在矩形OABC 中,已知A 、C 两点的坐标分别为(40)(02)A C ,、

,,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合).

(1)试证明:无论点P 运动到何处,PC 总造桥与PD 相等;

(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式;

(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小求出此时点P 的坐标和PDE △的周长;

(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使90CPN ∠=°若存在,请直接写出点P 的坐标。

相关文档
最新文档