各种材料学分析测试技术总结
半导体材料检测种类、项目与方法总结
半导体材料检测种类、项目与方法总结半导体材料检测是对半导体材料的特性参数进行分析测试的技术,具体涉及到哪些材料的检测,目前常见的检测技术有哪些?我们不妨一起来看看。
半导体材料检测是对半导体材料的特性参数进行分析测试的技术,由于半导体材料种类繁多,加工工艺复杂,形态各异,技术难度高,这就需要我们通过对半导体材料的特性参数进行测定,真实的反映半导体材料质量情况,掌握其关键参数的生成工艺,从而指导研发技术的更新迭代。
常见半导体材料检测种类
1、湿电子化学品检测种类
(1)酸碱类:高纯盐酸、高纯硫酸、高纯硝酸、高纯氢氟酸、高纯冰Z酸、高纯草酸、电子级复水、电子级过氧化氢、氢氧化钾溶液、氢氧化钠溶液、电子级磷酸;
(2)蚀刻类:铝腐蚀液、铬鹰蚀液、镍银腐蚀液、硅腐蚀液、金蚀刻液、铜蚀刻液、显影液、剥离液、清洗液、ITO蚀刻液、缓释剂、BOE;
(3)溶剂类:甲醇、乙醇、异丙醇、丙酮、四甲基氢氧化铵、甲苯、二甲苯、三氯乙烯、环已烷、N-甲基吡略烷酮、丙二醇单甲醚、丙二醇单甲醚醋酸酯等。
2、光刻胶及配套试剂检测种类
光刻胶、负胶显影液、负胶漂洗液、负胶显影漂洗液、正胶显影液正胶稀释剂、边胶清洗剂、负胶剥离液、正胶剥离液等。
3、电池材料检测种类
(1)负极材料:碳材料、非碳负极材料、石里负极材料、锂电池负极材料、硅负极材料、锂离子负极材料、硅碳负极材料、碳素负极材料、沥青负极材料等;
(2)正极材料:钻酸锂、锰酸锂、磷酸铁锂、三元材料、镍,钻,锰酸锂、镍锰酸锂、正极材料镍钻锰酸锂等;
(3)电解液:锂离子电池用电解液、锂原电池用电解液、六氟磷酸锂、六氟磷酸锂电解液等;
(4)电池/电解液添加剂:成膜添加剂、导电添加剂、阻燃添加剂、过充保护添加剂、改善低温性能的添加剂、多功能添加剂等;。
材料测试与表征总结
最常见表面分析技术为三种:XPS、AES和SIMS。
(1)AES —空间分辨率最高。
适合做导体和半导体材料表面的微区成分、化学态和元素分布分析;(2)XPS —破坏性最小,化学信息丰富,定量分析较好。
适合做导体和非导体,有机和无机体材料的表面成分和化学态分析。
(3)SIMS—灵敏度最高。
可以做导体和非导体,有机和无机体材料中H、He以及元素同位素分析。
此三种技术相互补充,相互配合,可获得最有用的搭配。
AES俄歇电子能谱:1、俄歇电子能谱(AES)当采用聚焦电子束激发源时,亦称为:扫描俄歇微探针( SAM)AES分析是以e束(或X-射线束)为激发源, 激发出样品表面的Auger电子, 分析Auger电子的能量和强度,可获元素种类、含量与分布、以及化学态等信息。
2、AES的主要特点与局限性:主要特点:(1)由于e束聚焦后其束斑小,AES的分辨率高,适于做微区分析:可进行点分析,线和面扫描。
(2)仅对样品表面2nm以浅的化学信息灵敏。
(3)俄歇电子的能量为物质特有,与入射粒子能量无关。
(4)可分析除H和He以外的各种元素,轻元素的灵敏度较高.(5)AES可分析元素的价态。
由于很难找到化学位移的标准数据,因此谱图的解释比较困难。
(6)可借助离子刻蚀进行深度分析,实现界面和多层材料的剖析,深度分辨率较XPS更好。
局限:(1)e束带电荷,对绝缘材料分析存在荷电影响。
(2)e束能量较高,对绝热材料易致损伤。
(3)定量分析的准确度不高3、从Auger电子能谱图可以看出:(1)峰位(能量),由元素特定原子结构确定;(2)峰数,由元素特定原子结构确定(可由量子力学估计);(3)各峰相对强度大小,也是该元素特征;以上3点是AES定性分析的依据,这些数据均有手册可查.4、AES具有五个有用的特征量:①特征能量;②强度;③峰位移;④谱线宽;⑤线型。
由AES的这五方面特征,可获如下表面特征:化学组成、覆盖度、键中的电荷转移、电子态密度和表面键中的电子能级等。
材料分析测试方法考点总结
材料分析测试方法XRD1、x-ray 的物理基础X 射线的产生条件:⑴ 以某种方式产生一定量自由电子⑵ 在高真空中,在高压电场作用下迫使这些电子做定向运动⑶ 在电子运动方向上设置障碍物以急剧改变电子运动速度→x 射线管产生。
X 射线谱——X 射线强度随波长变化的曲线:(1)连续X 射线谱:由波长连续变化的X 射线构成,也称白色X 射线或多色X 射线。
每条曲线都有一强度极大值(对应波长λm )和一个波长极限值(短波限λ0)。
特点:最大能量光子即具有最短波长——短波限λ0。
最大能量光子即具有最短波长——短波限λ0。
影响连续谱因素:管电压U 、管电流 I 和靶材Z 。
I 、Z 不变,增大U→强度提高,λm 、λ0移向短波。
U 、Z 不变,增大I ;U 、I 不变,增大Z→强度一致提高,λm 、λ0不变。
(2)特征X 射线谱:由一定波长的若干X 射线叠加在连续谱上构成,也称单色X 射线和标识X 射线。
特点:当管电压超过某临界值时才能激发出特征谱。
特征X 射线波长或频率仅与靶原子结构有关,莫塞莱定律特定物质的两个特定能级之间的能量差一定,辐射出的特征X 射线的波长是特定。
特征x 射线产生机理:当管电压达到或超过某一临界值时,阴极发出的电子在电场加速下将靶材物质原子的内层电子击出原子外,原子处于高能激发态,有自发回到低能态的倾向,外层电子向内层空位跃迁,多余能量以X 射线的形式释放出来—特征X 射线。
X 射线与物质相互作用:散射,吸收(主要)(1)相干散射:当X 射线通过物质时,物质原子的内层电子在电磁场作用下将产生受迫振动,并向四周辐射同频率的电磁波。
由于散射线与入射线的波长和频率一致,位相固定,在相同方向上各散射波符合相干条件,故称相干散射→ X 射线衍射学基础 ()σλ-=Z K 1(2)非相干散射:X 射线光子与束缚力不大的外层电子或自由电子碰撞时电子获得一部分动能成为反冲电子,X 射线光子离开原来方向,能量减小,波长增加,也称为康普顿散射。
材料分析方法总结
材料分析方法总结材料分析方法是指通过一系列科学技术手段对材料进行分析和测试,以获取材料的组成、结构、性能等信息的过程。
材料分析方法在材料科学领域具有重要意义,它为材料研究和工程应用提供了可靠的数据支持。
下面将对常见的材料分析方法进行总结和介绍。
一、光学显微镜。
光学显微镜是一种常用的材料分析仪器,它能够通过光学放大原理对材料进行观察和分析。
通过光学显微镜可以观察材料的表面形貌、结构特征和晶体形貌,对金相组织、晶体缺陷等进行分析。
光学显微镜操作简单,成本低,适用于金属、陶瓷、塑料等材料的分析。
二、扫描电子显微镜(SEM)。
扫描电子显微镜是一种高分辨率的显微镜,它通过电子束与样品相互作用,利用信号的不同来获取样品表面形貌、成分分布、晶体结构等信息。
SEM具有高放大倍数、高分辨率、能够对非导电材料进行分析等特点,适用于金属、陶瓷、复合材料等材料的表面形貌和微观结构分析。
三、X射线衍射(XRD)。
X射线衍射是一种利用X射线与材料相互作用来获取材料结构信息的方法。
通过X射线衍射可以确定材料的晶体结构、晶粒尺寸、晶格常数等信息,对于无机材料、金属材料、无机非金属材料的结构分析具有重要意义。
四、质谱分析。
质谱分析是一种通过对材料中各种元素进行分析和检测,以获取材料成分和含量信息的方法。
质谱分析具有高灵敏度、高分辨率、能够对微量元素进行分析的特点,适用于材料成分分析、材料表面成分分析等领域。
五、热分析。
热分析是一种通过对材料在控制温度条件下的物理、化学性质变化进行分析的方法。
常见的热分析方法包括热重分析(TG)、差热分析(DSC)、热膨胀分析(TMA)等,它们可以用于材料的热稳定性、热动力学参数、相变温度等方面的分析。
六、原子力显微镜(AFM)。
原子力显微镜是一种近场显微镜,它能够对材料表面进行原子尺度的表征和分析。
AFM具有高分辨率、三维表征、原子尺度的表面形貌分析等特点,适用于纳米材料、生物材料、薄膜材料等的表面形貌和性能分析。
金属材料检测工作总结报告
金属材料检测工作总结报告一、引言。
金属材料作为工业生产中常见的材料之一,其质量和性能的稳定性对产品质量和安全性具有至关重要的影响。
因此,对金属材料进行有效的检测工作显得尤为重要。
本文将对金属材料检测工作进行总结,并提出一些改进意见,以期提高金属材料检测工作的效率和准确性。
二、检测方法。
1. 目视检测,目视检测是最基本的检测方法之一,通过观察金属材料的外观,可以初步判断其表面是否存在明显的缺陷或瑕疵。
2. 磁粉检测,磁粉检测是一种常用的无损检测方法,通过在金属表面喷洒磁粉,再施加磁场,可以有效地检测出金属表面的裂纹和疲劳损伤。
3. 超声波检测,超声波检测是利用超声波在材料中传播的特性,通过对金属材料进行超声波扫描,可以检测出其中的内部缺陷和异物。
4. X射线检测,X射线检测是一种常用的金属材料内部缺陷检测方法,通过对金属材料进行X射线透射,可以清晰地观察到其中的内部结构和缺陷。
三、存在问题。
1. 检测设备老化,部分检测设备由于长期使用或维护不当,已经出现了一定程度的老化,导致检测结果不够准确。
2. 人为操作不当,部分操作人员对检测设备的操作流程和技术要求不够熟悉,导致了检测结果的误差。
3. 检测标准不统一,由于各地区和企业对金属材料的检测标准不统一,导致了检测结果的可比性不足。
四、改进意见。
1. 更新检测设备,对已经老化的检测设备进行更新和维护,以确保其检测结果的准确性和稳定性。
2. 加强人员培训,对操作人员进行系统的培训,提高其对检测设备的操作技术和流程的熟练程度,从而提高检测结果的准确性。
3. 统一检测标准,各地区和企业应该加强沟通和协作,共同制定金属材料的统一检测标准,以确保检测结果的可比性和准确性。
五、结论。
金属材料检测工作是保障产品质量和安全性的重要环节,通过对检测方法、存在问题和改进意见的总结,可以为金属材料检测工作的提升提供一定的参考和指导。
希望各相关单位能够重视金属材料检测工作,不断改进和提高其效率和准确性,以确保产品质量和安全性的稳定性和可靠性。
[材料检测工作总结]-工作总结怎么写
[材料检测工作总结]-工作总结怎么写
材料检测工作总结。
承担的工作内容。
材料的力学性能检测,包括拉伸、压缩、弯曲、剪切和疲劳试验。
材料的物理性能检测,包括密度、孔隙率、吸水率和热导率。
材料的化学成分分析,包括元素分析、光谱分析和热重分析。
材料的表面分析,包括表面形态、成分和涂层厚度。
取得的成果。
完成了超过 500 个材料样品的检测,为产品开发和质量控制提供了可靠的数据。
协助研发团队优化新材料的性能,缩短了产品上市时间。
通过持续监控材料性能,帮助生产部门识别并解决潜在的质量问题,避免了重大损失。
参与了多个行业标准制定项目,为材料检测行业贡献了技术经验。
应对挑战的方法。
挑战 1,检测设备复杂,操作程序要求高。
方法,严谨培训人员,制定详细操作指南,并定期校准设备。
挑战 2,材料类型多样,检测方法繁杂。
方法,建立全面材料数据库,根据不同材料制定针对性的检测方案。
挑战 3,检测周期长,影响项目进度。
方法,优化检测流程,使用自动化设备,并与供应商协商缩短交货时间。
挑战带来的启示和教训。
持续学习和更新行业知识至关重要,以应对不断变化的检测技术。
团队合作和经验共享可以显著提高检测效率和准确性。
解决挑战时保持灵活性和创造力,可以找到创新的解决方案。
数据和统计信息。
检测样品数量,532。
检测项目类型,力学性能(25%)、物理性能(30%)、化学成分(35%)、表面分析(10%)。
检测准确率,99.7%。
检测周期,平均 3 天。
材料分析方法总结
材料分析方法总结材料分析方法是指一套用于对材料进行结构、成分、性能等方面的分析与测试的手段和技术。
材料分析方法的选择和应用能够帮助科研人员、工程师等从不同的角度了解材料的实际情况,进一步改进材料的性能,提高材料的应用价值。
本文将从几个主要的材料分析方法进行总结。
1.光学分析方法光学分析方法是利用光学原理对材料进行观测、测量和分析的方法。
常见的光学分析方法包括光学显微镜观察、扫描电子显微镜(SEM)观察、透射电子显微镜(TEM)观察等。
这些方法可以用来观察材料的表面形貌、内部结构、晶体缺陷等,对材料的性能和结构进行分析。
2.物理分析方法物理分析方法是通过对物理性质的测量与测试来分析材料的方法。
常见的物理分析方法包括热分析、电学测试、磁学测试等。
热分析方法可以通过对材料在不同温度下的热行为进行测试,了解材料的热稳定性、热膨胀性等;电学测试可以通过测量材料的导电、绝缘性能等来了解材料的电学特性;磁学测试可以测量材料的磁性,包括磁化率、磁导率等。
这些方法可以用来分析材料的物理性质以及材料与外界的相互作用。
3.化学分析方法化学分析方法是通过对材料进行化学性质的测量与测试来分析材料的方法。
常见的化学分析方法包括光谱分析、质谱分析、电化学分析等。
光谱分析可以通过测量材料对光的吸收、发射等来推断其成分,可以用来分析材料的种类、含量等;质谱分析可以通过测量材料中的分子或原子的质谱图谱来分析其化学成分;电化学分析可以通过测量材料在电场或电流的作用下的化学反应来分析其化学性质。
这些方法可以用来分析材料的成分、结构和化学性质等。
4.结构分析方法结构分析方法是通过对材料的晶体结构、分子结构等进行表征和分析来了解材料的性质和性能。
常见的结构分析方法包括X射线衍射分析、核磁共振分析、电子衍射分析等。
X射线衍射分析可以通过测量材料对X射线的散射来推断其晶体结构;核磁共振分析可以通过测量材料中原子核的共振频率来了解其分子结构。
这些方法可以用来研究材料的晶体结构、分子结构、晶格缺陷等。
XRD分析总结范文
XRD分析总结范文X射线衍射(XRD)是一种常用的材料分析技术,用于研究材料的晶体结构、晶体有序性以及晶格参数等方面。
通过与标准样品或数据库中的数据进行比对,可以确定材料的物相组成和晶体结构信息。
以下是对XRD分析的总结:XRD分析是一种非破坏性测试方法,可以针对各种材料进行分析,包括晶体、无定形材料和薄膜等。
它不需要对样品进行特殊处理或制备,通常只需要将样品装入特定的样品杯中即可进行分析。
因此,XRD分析非常适合于材料的快速初步表征。
XRD分析可以提供丰富的信息。
通过对X射线的衍射图谱进行解析,可以确定材料的物相组成,即材料由哪些晶体相构成。
此外,XRD还可以提供晶格参数和晶胞体积等结构信息,从而帮助研究人员更全面地了解样品的晶体结构。
XRD分析通常需要配备一台X射线衍射仪。
X射线衍射仪由X射线发生器、样品支架、X射线探测器和计算机控制系统等组成。
X射线发生器产生高能X射线,照射到样品上后会发生衍射现象,衍射的X射线通过探测器检测后转换成电信号,并传输到计算机进行数据处理和分析。
在进行XRD分析时,还需要有标准样品或数据库中的数据进行对比。
通过与标准样品或数据库中的数据进行比对,可以确定材料的物相组成和晶体结构。
通常可以使用国际晶体学数据库(ICSD)或材料先进开发工具箱(Materials Project)等资源进行数据比对。
XRD分析的结果可以以衍射图谱的形式呈现。
衍射图谱通常是以2θ角度为横坐标,以衍射强度为纵坐标的曲线形式展示。
在衍射图谱中,每个峰代表了材料中存在的晶体相,而峰的位置、强度和形状等特征可以提供关于晶体结构和有序性的信息。
XRD分析在材料科学研究和工业应用中具有广泛的应用。
例如,它可以用于矿石分析、材料的相变研究、薄膜生长的监测以及缺陷的分析等方面。
同时,XRD分析还可以与其他表征技术相结合,如扫描电子显微镜(SEM)和透射电子显微镜(TEM)等,以实现对材料更全面的研究。
材料检测实验室工作总结
材料检测实验室工作总结
材料检测实验室是一个非常重要的部门,它承担着对各种材料进行检测和分析的任务。
在这个实验室中,我们需要严格按照标准操作规程进行工作,以确保测试结果的准确性和可靠性。
在过去的一段时间里,我有幸在这样一个专业的环境中工作,积累了一些经验和体会。
首先,我认识到在材料检测实验室工作需要高度的责任感和细心。
在进行各种检测和分析时,我们必须严格按照标准程序操作,不能有丝毫马虎。
任何一个细小的疏忽都可能导致测试结果的失真,甚至给生产和使用过程中带来隐患。
因此,我在工作中始终保持高度的警惕和细心,力求做到万无一失。
其次,我深刻体会到团队合作的重要性。
在材料检测实验室中,我们需要与同事紧密配合,共同完成各项任务。
只有团结一致,互相协助,才能保证工作的高效进行。
在团队合作中,我学会了倾听和尊重他人的意见,学会了主动承担责任,学会了与他人和睦相处。
这些都是我在实验室工作中成长的重要经验。
最后,我认识到在材料检测实验室工作需要不断学习和提高自己的专业能力。
材料科学是一个不断发展和更新的领域,我们需要随时关注最新的技术和方法,不断学习和提高自己的知识水平和实验技能。
在这段时间里,我积极参加各种培训和学习,不断充实自己的专业知识,提高自己的实验技能,以更好地适应实验室工作的需要。
总的来说,我在材料检测实验室的工作经历让我受益匪浅。
我深刻认识到在这个领域工作需要高度的责任感和细心,团队合作的重要性,以及不断学习和提高自己的专业能力。
我将继续努力,不断提升自己,为实验室的发展和进步贡献自己的力量。
金属材料材质检验工作总结
金属材料材质检验工作总结金属材料在工业生产中扮演着重要的角色,而金属材料的质量和性能直接影响着产品的质量和安全性。
因此,对金属材料的材质进行检验是非常重要的工作。
在这篇文章中,我们将对金属材料材质检验工作进行总结,以期为相关工作者提供一些参考和借鉴。
首先,金属材料的材质检验包括对其化学成分、组织结构、力学性能等方面的检测。
化学成分的检验通常通过光谱仪等设备进行,以确保金属材料的成分符合标准要求。
而对金属材料的组织结构进行检验则需要借助金相显微镜等设备,以观察金属的晶粒大小、析出相等微观结构,从而评估其组织性能。
此外,金属材料的力学性能检验也是非常重要的,包括硬度、强度、韧性等指标的检测,以确保金属材料具有良好的力学性能。
其次,金属材料的材质检验需要严格遵循相关的标准和规范。
各种金属材料都有相应的国家标准和行业标准,对其材质检验的方法、设备、标准值等都有详细的规定。
因此,在进行金属材料材质检验时,必须严格按照相关标准进行,以确保检验结果的准确性和可靠性。
另外,金属材料的材质检验还需要具备一定的专业知识和技能。
对金属材料的化学成分、组织结构、力学性能等方面进行检验需要借助各种先进的检测设备和技术手段,而这些设备和技术的应用需要检验人员具备一定的专业知识和操作技能。
因此,金属材料材质检验工作者需要具备较高的专业素养和技术水平,以确保检验工作的准确性和可靠性。
最后,金属材料的材质检验是一个综合性的工作,需要各个环节的密切配合和协同合作。
从样品采集、试样制备、检测分析到结果评定,都需要各个环节的协同合作,以确保检验工作的顺利进行和准确完成。
因此,金属材料材质检验工作者需要具备良好的团队合作精神和沟通能力,以确保整个检验工作的顺利进行。
总之,金属材料的材质检验工作是非常重要的,对于保障产品质量和生产安全具有重要的意义。
在今后的工作中,我们将继续加强金属材料材质检验工作,不断提高检验水平和技术能力,为企业的发展和产品质量保驾护航。
材料专业实践报告总结
材料专业实践报告总结材料学是一个解决人类生产生活中所用的各种材料的学科。
作为材料专业的学生,我们需要通过实践来深入理解所学的理论知识。
在本次实践报告中,我将总结我在材料实践中所学到的知识和经验。
第一部分:实验室在实验室中,我们学习了材料的性质和特征,了解了材料对实际应用的影响。
我们主要是对材料的分析和测试进行实践,比如金属材料、高分子材料和陶瓷材料的测试、分析和加工。
金属材料测试的主要目的是为了研究材料的性能和用途,我们需要了解不同类型的金属材料,并学习如何进行拉伸测试和硬度测试。
在拉伸测试中,我们通过测试材料在不同应变率下会发生断裂的应力来评估材料的强度。
在硬度测试中,我们通过对机械划痕来计算材料的硬度。
通过这些测试,我们可以为材料的应用提供参考。
高分子材料是材料学中不可或缺的重要材料。
我们在实验室中学习了如何测试高分子材料的力学性能和热性能,并了解了高分子材料在生产中的应用。
我们通过实验了解了材料的塑性、韧性、张力和压缩等性能,以及热稳定性、热加工性能和氧气氧化等热性质。
陶瓷材料也是我们实验室中研究的一个重点材料。
我们了解了陶瓷结构的特点,包括微观结构和组分成分。
我们学习了陶瓷材料的机械性能、电学性能、高温性能和辐射性能等,以及陶瓷材料的加工方法和制造流程。
通过实际观察和测试,我们熟悉了陶瓷材料在生产中的应用。
第二部分:项目实践在项目实践中,我们学习了如何应用所学的理论知识来解决实际问题。
我们的团队选择了开发一种新型的复合材料,该材料可以在特定环境下具有特殊的性能。
我们通过大量的实验研究和数据分析,最终成功地开发了一种符合要求的复合材料,并获得了专利。
在项目实践中,我们学到了团队协作和领导技能。
我们团队中的每个成员都有自己的专业知识和技能,我们需要合理分工和积极配合,以达到最终目标。
领导者需要合理规划项目,控制进度,以及协调和解决团队中的问题。
我们还学到了如何进行有效的团队沟通和大量文献研究。
现代材料分析技术期末总结
现代材料分析技术期末总结一、引言现代材料分析技术是指应用各种先进的科学和技术手段来对材料进行分析和研究的过程。
随着科学技术的不断发展,材料分析技术也取得了巨大的进展,涵盖了物理、化学、生物等多个领域。
本文将对现代材料分析技术进行总结,从光学显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射、质谱仪、红外光谱仪、核磁共振仪和热分析等技术进行详细介绍。
二、光学显微镜光学显微镜是一种常用的材料分析技术,通过可见光对材料进行观察和测量。
使用透射光和反射光来照射样品,通过目镜和物镜将图像放大到人眼可以识别的范围。
该技术可以观察材料的形貌、颗粒分布和晶粒结构等。
光学显微镜广泛应用于金属材料、生物材料和无机材料等研究领域。
三、扫描电子显微镜扫描电子显微镜是一种可以高分辨率地观察样品表面形貌和组织结构的技术。
通过束缚电子的扫描和检测,得到样品的二维和三维图像。
扫描电子显微镜可以观察到样品微观结构的细节,如晶体缺陷、晶界和纳米颗粒等。
该技术对金属材料、半导体材料和生物材料等的分析具有重要意义。
四、透射电子显微镜透射电子显微镜是一种可以观察材料内部的高分辨率分析技术。
通过将电子束通过样品,利用电子的衍射和透射来观察材料的晶体结构和原子成分。
透射电子显微镜可以观察到样品的晶体结构、晶界和位错等,可以分析材料的化学成分和晶态状态。
透射电子显微镜在材料科学、纳米材料和生物材料等研究领域具有重要的应用价值。
五、X射线衍射X射线衍射是一种分析材料晶体结构的技术。
通过用X射线照射样品,利用X射线与样品的晶胞相互作用来得到样品的衍射图像。
可以通过衍射图像来确定材料的晶胞参数、晶体结构和晶面取向等。
X射线衍射技术广泛应用于材料科学、金属材料和矿物材料等领域。
六、质谱仪质谱仪是一种通过分析样品中的离子和分子来测定其化学成分和结构的技术。
通过将样品中的分子或原子离子化并加速到一个高速运动状态,利用它们在磁场和电场中的行为,来分析它们的质量和相对丰度。
材料分析方法总结
材料分析方法总结材料分析是一门重要的科学技术,它在工程、材料科学、地质学、化学等领域都有着广泛的应用。
在材料分析中,我们需要运用各种方法来对材料的成分、结构、性能进行分析,以便更好地理解和利用材料。
本文将对常见的材料分析方法进行总结,希望能够对相关领域的研究者和工程师有所帮助。
首先,光学显微镜是材料分析中常用的方法之一。
通过光学显微镜,我们可以观察材料的形貌、颗粒大小、晶粒结构等信息。
这对于金属、陶瓷、塑料等材料的分析都非常有帮助。
同时,透射电子显微镜和扫描电子显微镜也是常用的分析工具,它们可以提供更高分辨率的图像,帮助我们观察材料的微观结构。
除了显微镜,X射线衍射也是一种常用的材料分析方法。
通过X射线衍射,我们可以确定材料的晶体结构和晶格参数,从而了解材料的晶体学性质。
X射线衍射在材料科学、地质学和化学领域都有着广泛的应用,是一种非常有效的分析手段。
此外,光谱分析也是材料分析中常用的方法之一。
光谱分析包括紫外可见吸收光谱、红外光谱、拉曼光谱等,它们可以用于分析材料的组成、结构和性能。
光谱分析在材料科学、化学和生物学领域都有着重要的应用,是一种非常有力的分析工具。
在材料分析中,热分析也是一种常用的方法。
热分析包括热重分析、差热分析、热膨胀分析等,它们可以用于研究材料的热稳定性、热分解过程、相变行为等。
热分析在材料科学、化学工程和材料加工领域都有着广泛的应用,是一种非常重要的分析手段。
最后,表面分析也是材料分析中不可或缺的方法。
表面分析包括扫描电子显微镜、原子力显微镜、X射线光电子能谱等,它们可以用于研究材料的表面形貌、化学成分和电子结构。
表面分析在材料科学、电子工程和纳米技术领域都有着重要的应用,是一种非常有效的分析手段。
综上所述,材料分析是一门重要的科学技术,它涉及到多个领域的知识和技术。
在材料分析中,我们可以运用光学显微镜、X射线衍射、光谱分析、热分析和表面分析等方法来对材料进行分析,从而更好地理解和利用材料。
几种常用的材料测试方法分析总结
成分分析成分分析按照分析对象和要求可以分为微量样品分析和痕量成分分析两种类型。
按照分析的目的不同,又分为体相元素成分分析、表面成分分析和微区成分分析等方法。
体相元素成分分析是指体相元素组成及其杂质成分的分析,其方法包括原子吸收、原子发射ICP、质谱以及X射线荧光与X射线衍射分析方法;其中前三种分析方法需要对样品进行溶解后再进行测定,因此属于破坏性样品分析方法;而X射线荧光与衍射分析方法可以直接对固体样品进行测定因此又称为非破坏性元素分析方法。
表面与微区成份分析X射线光电子能谱(X-ray Photoelectron Spectroscopy, XPS);(10纳米,表面)俄歇电子能谱(Auger electron spectroscopy,AES);(6nm,表面)二次离子质谱(Secondary Ion Mass Spectrometry, SIMS);(微米,表面)电子探针分析方法;(0.5微米,体相)电镜的能谱分析;(1微米,体相)电镜的电子能量损失谱分析;(0.5nm)为达此目的,成分分析按照分析手段不同又分为光谱分析、质谱分析和能谱分析。
光谱分析主要包括火焰和电热原子吸收光谱AAS,电感耦合等离子体原子发射光谱ICP-OES,X-射线荧光光谱XFS和X-射线衍射光谱分析法XRD;(1)原子吸收光谱(Atomic Absorption Spectrometry, AAS)又称原子吸收分光光度分析。
原子吸收光谱分析是基于试样蒸气相中被测元素的基态原子对由光源发出的该原子的特征性窄频辐射产生共振吸收,其吸光度在一定范围内与蒸气相中被测元素的基态原子浓度成正比,以此测定试样中该元素含量的一种仪器分析方法。
原子吸收分析特点:(a)根据蒸气相中被测元素的基态原子对其原子共振辐射的吸收强度来测定试样中被测元素的含量;(b)适合对纳米材料中痕量金属杂质离子进行定量测定,检测限低,ng/cm3,10-10—10-14g;(c)测量准确度很高,1%(3—5%);(d)选择性好,不需要进行分离检测;(e)分析元素范围广,70多种;应该是缺点(不确定):难熔性元素,稀土元素和非金属元素,不能同时进行多元素分析;(2)电感耦合等离子体原子发射光谱(Inductivelycoupledplasmaatomicemissionspectrometry,ICP-AES)ICP是利用电感耦合等离子体作为激发源,根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法;可进行多元素同时分析,适合近70种元素的分析;很低的检测限,一般可达到10-1~10-5μg/cm-3;稳定性很好,精密度很高,相对偏差在1%以内,定量分析效果好;线性范围可达4~6个数量级;但是对非金属元素的检测灵敏度低。
材料科学学习总结材料性能测试和表征的实验方法
材料科学学习总结材料性能测试和表征的实验方法在材料科学学习中,材料性能测试和表征的实验方法是非常重要的环节,它们可以帮助我们了解材料的特性、性能和结构。
本文将对材料性能测试和表征的实验方法进行总结,旨在帮助读者了解这一领域的基本知识和技术。
一、材料性能测试方法材料性能测试是研究材料特性和性能的重要手段,它可以通过实验手段来确定材料的力学、热学、电学等性能。
以下是一些常见的材料性能测试方法:1. 强度测试:强度是材料的重要性能之一,它可以反映材料的抗拉、抗压、抗弯等能力。
常用的强度测试方法有拉伸试验、压缩试验和弯曲试验等。
2. 硬度测试:材料的硬度是指材料抵抗形变和磨损的能力,它可以用来判断材料的耐磨性和耐腐蚀性。
常用的硬度测试方法有布氏硬度试验、洛氏硬度试验和维氏硬度试验等。
3. 热学性能测试:热学性能是材料在热力学过程中的性能表现,包括热导率、热膨胀系数、热稳定性等。
常用的热学性能测试方法有热导率测试、热膨胀系数测试和热分析测试等。
4. 电学性能测试:电学性能是材料在电场中的性能表现,包括电导率、介电常数、电阻率等。
常用的电学性能测试方法有电导率测试、介电常数测试和电阻率测试等。
二、材料表征的实验方法材料表征是研究材料结构和性能的重要手段,它可以通过实验手段来观察和分析材料的形貌、组织结构和成分等。
以下是一些常见的材料表征实验方法:1. 显微观察:显微观察是观察材料形貌和组织结构的主要方法,包括光学显微镜观察、扫描电子显微镜观察和透射电子显微镜观察等。
2. 物相分析:物相分析可以确定材料的组成和相变规律,常用的方法有X射线衍射、电子衍射和质谱分析等。
3. 红外光谱分析:红外光谱可以用来研究材料分子的振动和转动,常用于组分分析和结构鉴定。
4. 热分析:热分析可以研究材料在加热或冷却过程中的热行为,包括差热分析和热重分析等。
5. 界面分析:界面分析是研究材料界面性质和结构的重要手段,包括原子力显微镜观察、透射电子显微镜观察和扫描电子显微镜观察等。
材料分析测试方法
材料分析测试方法1. 扫描电子显微镜 (Scanning Electron Microscopy, SEM): SEM通过照射材料表面并收集所产生的散射电子来观察材料的形貌和表面特征。
它能够提供高分辨率和高深度的表面图像,并且可以通过能谱分析来确定元素的分布情况。
2. 透射电子显微镜 (Transmission Electron Microscopy, TEM): TEM是一种在材料中传输电子束来观察材料的内部结构和晶体缺陷的技术。
它提供了更高分辨率的图像和更详细的结构信息,可以用来研究纳米材料、薄膜、合金和晶体等。
3. X射线衍射 (X-ray Diffraction, XRD): XRD可以通过照射材料表面或内部来观察和分析材料的结构和有序性。
通过测量X射线入射和出射角度的差异,可以确定材料中的晶格参数和晶体结构。
4. 热重-差热分析 (Thermogravimetric Analysis, TGA): TGA可以通过对材料在加热过程中的质量变化进行监测和分析,以确定其热稳定性、失重行为、热分解特性和热化学性质等信息。
同时,差热分析可以提供材料热量变化的信息。
5. 红外光谱 (Infrared Spectroscopy, IR): 红外光谱可以通过测量材料对红外辐射的吸收和散射来分析其分子结构、功能团和化学键。
通过红外光谱可以确定材料的组成和结构信息,并且可以应用于材料识别、质量控制和病理分析等领域。
6. 核磁共振 (Nuclear Magnetic Resonance, NMR): NMR通过对材料中的核磁共振信号进行测量和分析,可以了解材料的分子结构和化学环境。
NMR广泛应用于有机化学、化学物理学和生物化学领域,可以确定化学物质的结构、反应动力学和分子间相互作用等。
7. 拉伸试验 (Tensile Test): 拉伸试验是一种用来测量材料力学性能的常见方法。
通过施加拉伸力并测量拉伸过程中的载荷和变形,可以确定材料的屈服强度、抗拉强度、伸长率和断裂韧性等。
材料分析测试技术2篇
材料分析测试技术2篇材料分析测试技术(一)随着科技的快速发展,材料分析测试技术也得到了卓越的进步。
这项技术可以在材料的不同阶段进行测试和分析,以评估其性能及其他相关特性。
已经有许多技术和方法的出现,可以在材料分析测试方面提供全面的解决方案。
现在,我们来看看可能使用的一些最常见的材料分析测试技术。
1.扫描电镜(SEM)扫描电镜是一种基于高能电子束相互作用原理的分析技术。
它可以检测材料的表面形貌、结构、成分、尺寸和形状。
今天,扫描电镜已经成为所有材料分析测试中最最主要的技术。
你可以使用不同模式的扫描电镜来检测不同类型的材料,例如一些更具透明性的材料,例如硅胶。
2.X射线衍射(XRD)X射线衍射是一种重要的分析技术,它主要用于检测材料的晶格结构和成分。
该技术使用X射线作为激发光源,通过样品散射所形成的衍射图谱,可以得到材料的化学组成和结晶结构。
由于其易于操作并且快速分析能力,X射线衍射成为材料鉴定中的主要技术之一。
3.拉曼光谱(Raman)拉曼光谱是一种快速、无损的分析技术,用于材料的化学分析和表征。
它可以用于检测有机、无机和混合材料的成分和结构,还可以用于检测化学分子之间的相互作用。
用于检测和分析几乎所有类型的材料,包括纳米材料、生物材料和钙化聚合物。
4.原子力显微镜(AFM)原子力显微镜是一种扫描探针显微镜,可以用于检测不同类型的材料表面形貌、摩擦和力学性质。
在许多应用中,原子力显微镜在材料表面的观察和表征方面表现出极高的分辨率。
总的来说,材料分析测试技术的应用范围非常广泛,很多技术甚至可以实现多种科学研究方法的同时测试。
了解并掌握这些技术,对于材料分析测试工作的完成和研究的准确性和可靠性都至关重要。
材料分析测试技术(二)材料分析测试是现代科学以及各种材料科学领域中的一项重要组成部分。
这是一种实践方法,用于评估、监测和确定材料的物理特性、化学成分、结构和其它各方面的相关特性。
以下是一些主要的材料分析测试技术。
材料分析测试技术第二版教学反思
材料分析测试技术第二版教学反思前言材料分析和测试技术在工业生产和科学研究中占有重要地位,而本文则是对教学过程中的一些反思和总结。
我们在教学过程中发现,许多学生在学习过程中都存在一些困难和问题,本文将对这些问题进行探究并提出相应的解决方案。
问题反思1. 学生自主学习能力不足在教学过程中,我们发现许多学生在学习过程中面临着自主学习的困难。
虽然我们给予了学生相应的课堂笔记和教材,但是在实际操作过程中很多学生还是依赖老师和其他同学的帮助。
这一现象的存在说明学生缺乏自主学习能力,无法根据自己的实际情况进行学习调整和改进。
2. 实验操作能力有限材料分析和测试技术属于一门实践性很强的学科,因此实验操作能力的提升是学生学好此门学科的基础。
然而,我们在教学过程中发现许多学生对实验操作的理解存在一些困难,有些甚至无法独立完成实验。
这一现象的出现说明学生对实验操作能力的培养也需要着重考虑。
3. 对理论知识的理解不深刻材料分析和测试技术作为一门专业的学科,其理论体系深奥且复杂,需要学生具备较高的理论水平才能够熟练应用。
但是,我们在教学过程中发现许多学生对于理论知识的理解不够深刻。
有些学生只是照搬不加思考,有些则是对理论的掌握不够充分,导致实际操作时出现了一些问题。
4. 缺少实例分析和案例研究在学习材料分析和测试技术的过程中,实例分析和案例研究是非常重要的。
然而,在教学过程中我们发现选材不够科学且准确,学生缺少实例分析和案例研究的机会。
这些机会可以使学生更好的理解理论知识的实际应用,从而提升自己的实践能力。
解决方案1. 培养自主学习能力为了培养学生的自主学习能力,我们应该在课堂中加强学生对于基础知识的学习和强化对知识点的解读能力,同时在授课过程中引导学生独立思考,并在实际操作过程中鼓励学生自主完成。
同时,我们可以通过布置一些情境题和难度适当的网上作业等方式,来让学生进行自我测试和巩固知识。
2. 加强实验操作能力的培养要加强学生的实验操作能力,我们应该在教学过程中注重实践操作环节,直接引导学生完成实验操作并及时纠正学生操作中的错误,如此不断提高学生实验操作能力的水平。
材料科学实训课程学习总结材料性能测试与分析实践
材料科学实训课程学习总结材料性能测试与分析实践在材料科学实训课程学习中,我深入了解了材料性能测试与分析实践的重要性和应用价值。
通过实践操作,我对材料的性能测试方法有了更全面的了解,并掌握了一些常用的测试仪器和设备的使用技巧。
在实验中,我不仅学到了理论知识,还培养了实际动手操作和分析数据的能力。
本文将对我在材料科学实训课程中的学习总结进行回顾和总结。
首先,我在材料性能测试与分析实践中学到了材料测试的基本原理和常见测试方法。
通过实际操作,我掌握了硬度测试、拉伸测试、冲击试验等常用测试方法的步骤和操作要点。
在硬度测试中,我学习了使用洛氏硬度计、维氏硬度计等仪器进行硬度测试,并通过对测试结果的分析,评价了材料的硬度。
在拉伸测试中,我学会了使用拉伸试验机进行材料的拉伸强度和伸长率测试,通过拉伸曲线的分析,了解了材料的力学性能。
此外,我还学习了冲击试验的方法和仪器的使用,通过对材料的冲击韧性测试,评估材料的抗冲击性能。
其次,我在实践中学到了材料性能测试的数据分析和结果评价方法。
在实验中,我积累了大量的测试数据,通过对数据的处理和分析,我能够准确地评价材料的性能。
例如,在硬度测试中,我通过计算硬度值,结合材料的组织结构和成分,评估材料的耐磨性和抗变形能力。
在拉伸测试中,我通过绘制拉伸曲线,分析曲线所表现的材料的屈服强度、断裂强度和伸长率等属性,判断材料的韧性和强度。
通过对测试数据的分析和结果的评价,我可以全面了解材料的性能,并对材料进行合理选择和使用。
此外,我在材料科学实训课程中还学习了一些高级的材料测试方法和技术。
例如,我学习了扫描电子显微镜(SEM)和能谱仪的使用,通过对材料的形貌和成分进行观察和分析,深入了解材料的微观结构和特性。
我还学会了使用光谱仪进行材料的光谱分析,通过对材料的吸收谱、发射谱等进行研究,了解材料的光学性能和化学组成。
这些高级的测试方法和技术为我对材料性能的研究提供了更广阔的视野和更深入的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OM
光学显微镜
optical microscope
显微镜是利用凸透镜的放大成像原理,将人眼不能分辨的微小物体放大到人眼能分辨的尺寸,其主要是增大近处微小物体对眼睛的张角(视角大的物体在视网膜上成像大),用角放大率M表示它们的放大本领。
大于0.2nm
看不清亚结构
EDS
能谱仪
(Energy Dispersive Spectrometer)
使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构,比光学显微镜所能够观察到的最小的结构小数万倍。
sem
tem
区别
SEM的样品中被激发出来的二次电子和背散射电子被收集而成像. TEM可以表征样品的质厚衬度,也可以表征样品的内部晶格结构。TEM的分辨率比SEM要高一些。
SEM样品要求不算严苛,而TEM样品观察的部分必须减薄到100nm厚度以下,一般做成直径3mm的片,然后去做离子减薄,或双喷。
扫描SEM
EDS(能谱)(分为点、线、面扫map)
TEM透射电镜
HRTM高分辨电镜
明场像
暗场像
选区电子衍射SAED
EBSD被散射模式(测晶粒角度)
光学显微镜OM
体势显微镜(涉及金属材料)
背散射电子(back scattered electron)
当电子束照射样品时,入射电子在样品内遭到衍射时,会改变方向,甚至损失一部分能量(在非弹性散射的情况下)。在这种弹性和非弹性散射的过程中,有些入射电子累积散射角超过90度,并将重新从样品表面逸出。那么背散射电子就是由样品反射出来的初次电子,
XRD
利用二次电子信号成像来观察样品的表面形态,即用极狭窄的电子束去扫描样品,通过电子束与样品的相互作用产生各种效应,其中主要是样品的二次电子发射
介于透射电镜和光学显微镜之间的一种微观性貌观察手段
当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。
到目前为止的大部分差热分析技术还不能进行定量分析工作,只能进行定性或半定量的分析工作,难以获得变化过程中的试样温度和反应动力学的数据。
DSC分析与差热分析相比,可以对热量作出更为准确的定量测量测试,具有比较敏感和需要样品量少等特点。
xrd是x射线衍射,可以分析物相,SEM是扫描电镜,主要是观察显微组织,TEM是透射电镜,主要观察超限微结构。AES是指能谱,主要分析浓度分布。STM扫描隧道显微镜,也是观察超微结构的。AFM是原子力显微镜,主要是观察表面形貌用的
背散射电子像是在扫描电子显微镜中,通过电子枪产生的电子,经过加速磁场、偏转磁场后,照射到待检测的样品表面,待检测样品会反射一部分的电子,在扫描电子显微镜的工作镜腔里的背散射电子探头就会检测到这些被反射的电子,进而在检测器上所成的像。
电子照射到待测样品的过程中,样品能发射一部分电子,背散射电子探头就会检测到这些电子,从而产生相应的电信号,通过放大电路之后,在对其进行相应的转换,后在检测器上显示相应待检测样品表面的相关信息图像。
BSE
背散射电子成像
Back scattered Electron Imaging
背散射电子成像的衬度是由于原子序数的不同引起的,所以背散射电子一般用于区别不同的相,用来看金相试样的不同区
依托扫描电镜的一种电子成像技术,它的成像原理和特点非常适合用来研究那些表皮尚存的各类笔石标本,是二次电子成像(SEM)无法替代的。当前BSE图象显示了许多以往其他途径无法观察到的笔石微细结构,特别是笔石复杂的始端发育特征。
电子探针(光谱仪)Z: 11(Na)~92(U)
特殊Z: 4(Be)~92(U)
能谱仪Z: 12(Mg)~92(U)目前超薄窗口应用后可以达到Be
配合扫描附件时,可将形貌和成份分布显现出来z非破坏性测试,制样简单(断口、金相磨片)z相对可见光,谱线简单,分析方便
z能鉴别其他化学方法难分辨的稀土
背散射电子像
在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。
X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的粒子(原子、离子或分子)所产生的相干散射将会发生光的干涉作用,从而使得散射的X射线的强度增强或减弱。由于大量粒子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。
试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿加热丝的热功率之差随时间t的变化关系。如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。
在发生热效应时,试样与参比物及试样周围的环境有较大的温差,它们之间会进行热传递,降低了热效应测量的灵敏度和精确度。
分辨率:3-4nm
放大倍数:20万倍
特征X射线、背散射电子的产生过程均与样品原子性质有关,可用于成分分析。
由于电子束只能穿透很浅表面,只能用于表面分析。
有很大的景深,视野大,成像立体,可直接观察表面的细微结构;
试样制备简单。
目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析
(分为点、线、面扫map)
各种元素具有自己的X射线特征波长,特征波长的大小则取决于能级跃迁过程中释放出的特征能量△E,能谱仪就是利用不同元素X射线光子特征能量不同这一特点来进行成分分析的。
探头:一般为Si(Li)锂硅半导体探头
探测面积:几平方毫米
分辨率(MnKa):~133eV
SEM
扫描电子显微镜
(scanning electron microscope)
用波谱仪(WDS)分析特征性X射线的波长
(或)用能谱仪(EDS)分析特征性X射线的能量。
由于X射线的波长与能量的关系为:γ=1.2396/E;式中波长γ的单位为纳米,能量E的单位是千电子伏。据此可以达到对微区中某种元素成分、含量范围进行定量分析的目的。
能分析微区、微粒(1μm3)成份(其他方法多为分析平均成份)z被测元素绝对感量可达10-14gz测量的相对灵敏度可达万分之一z分析元素范围:
TEM
透射电镜(transmission electron microscope
把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件上显示出来。
由于电子波长非常短,透射电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。
类TEM
EPMA
(波谱)(背散射电子成像BSE)
电子探针显微分析仪
electron probe micro-analyzer
electronicprobe wavelength
/energy dis-persive spectrometry
通过电磁线圈把电子束压缩的很细,可以想象成一个针尖,所以叫电子探针,一般电子探针特指配备了3~5道波谱系统,具有光学显微镜定位试样分析位置(满足罗兰圆需求,布拉格衍射原理)的微区分析仪器。电子探针EPMA有其独特的优势特点,是SEM EDS或SEM WDS所不能取代的。
与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。
透射电镜是以电子束透过样品经过聚焦与放大后所产生的物像, 投射到荧光屏上或照相底片上进行观察
SEM是电子束激发出表面次级电子,而TEM是穿透试样,而电子束穿透能力很弱,所以TEM样品要求很薄,
0.2nm
近百万倍
亚显微结构、超微结构
利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。
其工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子 束同步的扫描图像。图像为立体形象,反映了标本的表面结构。
2.精密测定点阵参数 常用于相图的固态溶解度曲线的测定。
3.取向分析 包括测定单晶取向和多晶的结构(见择优取向)。
DSC
差示扫描量热法(differential scanning calorimetry)
在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。
DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。
高速运动电子束经电磁透镜聚焦成极细的探针(0.2μm到1μm)打在试样上,激发微区产生特征X-ray,再经X-ray光谱仪(WDS)或能谱仪(EDAX、EDS)测量特征X-ray的波长或能量,达到分析微区成分的目的。
运用电子探针发射具有10^3~10^4量级电子伏的电子微束,轰击固体试样表面的微区,激发其中的原子产生表微成分的物理信息(电子激发特征X射线);
满足衍射条件,可应用布拉格公式:2dsinθ=nλ
X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。
1.物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。