虚拟制造技术
虚拟制造技术
简介
虚拟制造技术是由多学科先进知识形成的综合系统技术,是以计算机仿真技术为前提,对设计、制造等生产 过程进行统一建模,在产品设计阶段,实时地并行地模拟出产品未来制造全过程及其对产品设计的影响,预测产 品性能、产品制造成本、产品的制造性,从而更有效、更经济地灵活地组织制造生产,使工厂和车间的资源得到 合理配置,以达到产品的开发周期和成本的最小化,产品设计质量的最优化,生产效率的最高化之目的。
优点
可以在产品的设计阶段就模拟出产品及其性能和制造过程,以此来优化产品的设计质量和制造过程,优化生 产管理和资源规划,以达到产品开发周期和成本的最小化,产品设计质量的最优化和生产效率最高化,从而形成 企业的市场竞争优势。
举例
如波音777,其整机设计、部件测试、整机装配以及各种环境下的试飞均是在计算机上完成的,其开发周期 从过去的8年缩短到5年;Chrycler公司与IBM合作开发在虚拟制造环境用于其新型车的研制,在样车生产之前, 即发现其定位系统及其他许多设计有缺陷,从而缩短了研制周期。尽管虚拟制造技术的出现只有短短的几年时间, 虚拟制造的应用将会对未来制造业的发展产生深远的影响。
虚拟制造技术
由多学科先进知识形成的综合系统技术
01 简介
03 举例
目录
02 优点 04 效益
05 关键技术
07 应用
目录
06 发展策略
虚拟制造技术是由多学科先进知识形成的综合系统技术,是以计算机仿真技术为前提,对设计、制造等生产 过程进行统一建模,在产品设计阶段,实时地并行地模拟出产品未来制造全过程及其对产品设计的影响,预测产 品性能、产品制造成本、产品的制造性,从而更有效、更经济地灵活地组织制造生产,使工厂和车间的资源得到 合理配置,以达到产品的开发周期和成本的最小化,产品设计质量的最优化,生产效率的最高化之目的。
虚拟制造技术的相关概念及其应用
虚拟制造技术的相关概念及其应用【摘要】虚拟制造技术是一种基于计算机仿真和虚拟现实技术的创新性制造方法。
它通过数字化建模和仿真,实现了全生命周期的产品设计、工艺规划、生产执行、质量控制和维护管理等各个阶段的优化和智能化。
在产品设计阶段,虚拟制造技术可以帮助设计师实现产品的虚拟验证和优化设计;在工艺规划阶段,它可以模拟制造过程,提高生产效率;在生产执行阶段,它可以优化生产计划和资源调配,实现智能化制造;在质量控制阶段,它可以实时监测和调整生产过程,确保产品质量;在维护管理阶段,它可以预测设备故障和优化维护方案。
未来,虚拟制造技术的发展趋势是向更智能、更数字化、更集成化的方向发展,其重要性和应用前景将会逐渐凸显。
【关键词】虚拟制造技术、产品设计、工艺规划、生产执行、质量控制、维护管理、未来发展趋势、重要性、应用前景。
1. 引言1.1 虚拟制造技术的定义虚拟制造技术是一种利用计算机仿真和虚拟现实技术,将产品的设计、工艺规划、生产执行、质量控制和维护管理等各个阶段都进行虚拟模拟和优化的先进制造技术。
通过虚拟制造技术,可以在产品实际制造之前进行全面的数字化仿真,及时发现和解决问题,降低生产成本,缩短产品开发周期,提高产品质量和生产效率。
虚拟制造技术的发展已经经历了多个阶段,从最初只能进行简单模拟的2D平面图到今天可以实现高度真实感的3D虚拟仿真。
随着计算机性能的不断提升和虚拟现实技术的成熟,虚拟制造技术正在逐渐成为制造业中不可或缺的重要技术手段。
通过虚拟制造技术,企业可以在产品整个生命周期中进行全面的数字化管理和优化,提高整体竞争力,实现智能制造的目标。
1.2 虚拟制造技术的发展历程虚拟制造技术的发展历程可以追溯到上个世纪80年代初。
当时,随着计算机技术的不断发展和成熟,虚拟制造技术开始引起人们的关注。
最初,虚拟制造技术主要应用于汽车、航空航天等行业,用来验证产品设计方案和模拟生产过程。
随着计算机性能的不断提升和软件技术的不断完善,虚拟制造技术在逐渐扩展到了更多的领域,如电子产品、机械设备等。
虚拟制造技术名词解释
虚拟制造技术名词解释
虚拟制造技术是一种新兴的制造技术,利用计算机系统模拟机械装配线的操作,以快速准确的方式模拟制造过程,使设计者在虚拟环境中就能模拟、比较和实现制造过程。
下面简单介绍一些虚拟制造技术名词:
1. 仿真模拟(Simulation):是将复杂的系统或机械零件进行数字化建模,并通过计算机模拟机器运动,以获取制造过程中参数,是虚拟制造的基础。
2. 虚拟装配(Virtual Assembly):也称为虚拟组装,是指利用仿真技术对机械装配线进行模拟,以获得装配步骤以及参数,从而更快、更好的实现装配。
3. 虚拟测量(Virtual Measurement):是指利用虚拟制造技术对机械零件进行测量,从而获得更准确的测量结果,并对制造过程中的参数进行实时监控,从而提高制造质量。
4. 虚拟质量保证(Virtual Quality Assurance):也称为质量保证仿真,是在虚拟系统中模拟制造过程,并依据设定的质量指标进行检查,以获得准确的质量控制。
5. 虚拟仿真加工(Virtual Simulation Manufacturing):是指利用计算机技术对机械零件进行3D建模,结合仿真技术,在虚拟环境中进行机械零件加工模拟,以实现最佳的加工结果。
现代虚拟制造技术及应用
现代虚拟制造技术及应用现代虚拟制造技术是指利用虚拟现实(VR)、增强现实(AR)、计算机仿真技术等,模拟和预测产品设计、生产和运营过程的一种制造技术。
它通过数字化、模拟化和仿真化的手段,将真实制造环境转化为虚拟的数字世界,实现产品的全生命周期管理和优化。
虚拟制造技术在产品设计阶段的应用:1. 产品设计:传统产品设计往往需要制造出多个样品进行试制和测试,而虚拟制造技术可以在计算机中进行三维设计和仿真分析,减少了物理样品制造的成本和时间,同时避免了一些物理试制无法表现出的问题。
2. 产品装配:虚拟装配可以将产品的各个零部件进行虚拟的装配,模拟真实的装配过程,分析和优化装配工艺、方法和工作环境,提高装配质量和效率。
3. 故障分析:利用虚拟制造技术可以将产品的工作状态进行虚拟仿真,模拟和分析产品的故障情况,帮助设计人员找到并修复潜在的故障问题,提高产品的可靠性和使用寿命。
虚拟制造技术在生产制造阶段的应用:1. 数字化工厂:虚拟制造技术可以将整个工厂的设备、物料和人员进行虚拟建模,对生产线进行仿真和优化,降低生产成本、提高生产效率。
2. 生产过程仿真:利用虚拟制造技术可以对生产过程进行虚拟仿真和优化,预测生产能力、排程、物料流动和生产质量等,提高生产计划的准确性和制造执行能力。
3. 操作培训:虚拟制造技术可以打造虚拟现实的生产环境,用于对生产操作人员进行培训,提高其操作技能和遵循生产流程的能力。
虚拟制造技术在产品服务和维护阶段的应用:1. 服务支持:虚拟制造技术可以将产品的维修和保养过程进行虚拟模拟,帮助服务人员更快速地定位问题和解决故障,提高产品的可维护性和服务效率。
2. 远程支持:通过虚拟现实技术,远程支持人员可以在实际操作中提供在线指导,帮助用户解决问题,解决产品使用过程中的疑难问题,节约服务成本和时间。
总之,虚拟制造技术的应用范围非常广泛,从产品设计到生产制造再到售后服务,都可以利用虚拟制造技术进行模拟和优化,提高产品的设计质量、生产效率和服务水平。
虚拟制造技术
虚拟制造与实际制造的关系
虚拟制造是实际制造(真实制造)在计算机上的 映射
虚拟制造系统是通过对实际制造系统进行抽象、 分析、综合得到实际生成的全部数字化模型
虚拟制造的最终目标是指导实际生产 虚拟制造是实际制造的抽象,实际制造是虚拟制 造的实例
几个概念
• • • • • • • • RPS: Real Physical System,真实物理系统 RIS: Real Information System,真实信息系统 VPS: Virtual Physical System,虚拟物理系统 VIS: Virtual Information System,虚拟信息系统 RPS+RIS:真实制造系统 RPS+VIS:自动化制造系统 VPS+RIS:虚拟制造系统 VPS+VIS:虚拟制造系统
3.虚拟制造系统的体系结构
• 怎样的体系结构才算好?
能把虚拟产品开发过程中的设计、制造及装配、生产调度、质 量管理等环节有机集成起来
实现产品开发全过程的信息、功能、过程的集成
实现并行运作,包括异地并行 发挥人在其中的能动性
实现人、组织、管理、技术的协同工作
支持生产活动、生产资源的分布式特性 开放式的结构:层次化的控制、即插即用等
网络层
网络及物理链路、硬件设备
西北工业大学 冯涛等
4 虚拟制造技术分类
• • • • 1996年,美国马里兰大学提出三种模式: 以设计为中心的虚拟制造(DCVM) 以生产为中心的虚拟制造(PCVM) 以控制为中心的虚拟制造(CCVM)
以设计为中心的VM
Design-Centered VM
强调以统一制造信息模型为基础,对数字化产品 模型进行仿真与分析、优化,进行产品的结构性 能、运动学、动力学、热力学方面的分析和可装 配性分析,获得对产品的设计评估与性能预测结 果,以便作出正确决策。 成功事例:美国波音公司波音777喷气式客机的研 制。仅用了3年零8个月时间,一次试飞成功,投 入运营。波音公司777客机数以万计的零部件中任 何一种的设计,观察、研究、讨论都是在计算机 上完成,所有零部件均是三维实体模型。可见虚 拟产品设计给企业带来的效益。
虚拟制造及其关键技术
虚拟制造及其关键技术虚拟制造是指利用计算机技术和虚拟现实技术开展产品设计、生产制造和工艺优化等工作的一种集成虚拟化技术。
它通过模拟和仿真技术,实现了从产品设计到生产制造的全过程数字化,将设计、工艺制造和产品质量等因素纳入统一的虚拟环境进行集成,是实现智能制造的重要手段。
虚拟制造的核心技术是虚拟现实技术,在实现产品设计、工艺规划、生产过程模拟等方面发挥了重要作用。
虚拟现实技术通过利用计算机图形学、机器视觉、模型重建等技术,将现实中的物体、场景以虚拟的方式呈现出来,使用户能够与虚拟环境进行交互,获得更加直观、真实的感觉。
虚拟制造的关键技术还包括工艺规划和模拟、数字化加工和装配等。
工艺规划和模拟技术利用计算机辅助设计、虚拟现实技术等手段,模拟和优化产品的生产工艺过程,减少资源消耗和生产时间,提高生产效率和产品质量。
数字化加工技术是指利用数控机床等设备进行数字化加工,将设计数据直接转换成制造过程中所需的指令,实现高效、精确的加工。
数字化装配技术则是利用虚拟现实技术对产品进行虚拟组装,检测产品在装配过程中的合理性和可行性,提高装配效率和产品质量。
虚拟制造的应用领域非常广泛,包括航空航天、汽车制造、机器制造、电子信息等各个行业。
在航空航天领域,虚拟制造可以帮助设计师和工程师们对飞机进行全面的仿真和模拟,包括外形设计、结构强度分析、机载设备布局等方面。
在汽车制造领域,虚拟制造可以对整个汽车生产过程进行优化和模拟,包括车身焊接、喷涂、总装等方面。
在机器制造领域,虚拟制造可以模拟和优化机械设备的加工过程,提高生产效率和产品质量。
在电子信息领域,虚拟制造可以模拟和测试电子产品的制造工艺和性能,提高研发和生产效率。
虚拟制造的发展离不开计算机技术和软件技术的支持。
计算机技术的不断进步为虚拟制造提供了强大的计算能力和存储能力,使得虚拟制造可以处理更加复杂的问题和大规模的数据。
软件技术的不断创新为虚拟制造提供了各种工具和平台,包括三维建模软件、仿真软件、虚拟装配软件等,使得虚拟制造可以更加快速、准确地进行产品设计和制造过程的模拟和优化。
虚拟制造
虚拟制造1.虚拟制造的定义与特征虚拟现实技术对身临其境的真实感和对超越现实的虚拟性以及建立个人能够沉浸其中,超越其上,自如交互的多维信息系统的追求推动了虚拟现实技术在制造业中的发展和应用。
虚拟制造技术是近年来先进制造技术领域内的一门新兴技术,由于概念出现时间比较短,目前国际上还没有对它作统一的定义,研究人员根据各自不同的研究内容和应用背景,做出各具特色的定义。
同时,由于虚拟制造技术本身的不断发展,工程技术人员对它的认识也是一个动态的过程。
综合起来说,虚拟制造技术是由许多先进学科领域知识的综合集成与应用,它以数字化建模技术,计算机仿真技术,分析优化技术为基础,在产品设计阶段或产品制造之前,实时、并行地模拟出产品的未来制造全过程及其对产品设计的影响,预测产品的性能、成本和可制造性,以达到产品的开发周期和成本的最优化,生产效率的最高化之目的。
虚拟制造中的“虚拟”是相对于实物产品的实际制造系统而言的,它强调的是制造系统运行过程的计算机化,虚拟制造是实际制造的抽象,生产出的是全数字化的产品,是在计算机及网络系统和相关软件系统中进行的制造,所处理的对象是有关产品和制造系统的信息和数据,处理结果是全数字化产品,而不是真实的物质产品,但是它是现实物质产品的一个数字化模型,即是一个虚拟产品,是现实产品在虚拟环境下的映射,并具有现实产品所必须具有的特征和性能2.虚拟制造的分类根据虚拟制造应用环境和对象的侧重点不同,虚拟制造分为三类:以设计为中心的虚拟制造,以生产为中心的虚拟制造和以控制为中心的虚拟制造。
(1)设计为中心的虚拟制造为设计者提供产品设计阶段所需的制造信息,从而使设计最优。
设计部门和制造部门之间在计算机网络的支持下协同工作,以统一的制造信息模型为基础,对数字化产品模型进行仿真与分析、优化,从而在设计阶段就可以对所设计的零件甚至整机进行加工工艺分析、运动学和动力学分析、可装配性分析等可制造性分析,以获得对产品的设计评估与性能预测结果。
虚拟制造
车间机床 控制系统
虚拟设计/制造技术的作用 虚拟设计 制造技术的作用
减少资源浪费 降低产品开发风险 加快产品上市速度 推进远程协同产品开发 促进创新设计 提高技术培训与教育质量 增强企业竞争力
国内外应用概况
波音公司:波音777 777开发 波音公司:波音777开发 Rockwell: Rockwell:虚拟装配 虚拟组装生产线 Nabisco :虚拟组装生产线
波音777飞机数字化装配 波音777飞机数字化装配 777
VM在波音 在波音777飞机设计中的应用 在波音 飞机设计中的应用
波音777飞机有300万个零件,这些零件的设计以及 整体的设计在一个由数百台工作站组成的虚拟环境中 得以成功进行。这个VM系统是在原有的Boeing CAD 的基础上建立起来的。当设计师戴上头盔显示器后, 就能穿行于这个虚拟的“飞机”中,审视其各项设计。 过去为设计一架新型飞机,必须先建造两个实体模型, 每个造价60万美元。应用VMT后,不只是节省了经费, 也缩短了研究周期,使最终的实际飞机与原方案相比, 偏差小于1‰,且实现了机翼和机身结合的一次成功, 缩短了数千小时设计工作量。
虚拟制造( 虚拟制造(Virtual manufacturing) )
主讲:徐超
基本概念
虚拟制造技术(VMT):可以通俗而形象地理 解为“在计算机上模拟产品的制造和装配全过 在计算机上模拟产品的制造和装配全过 程。”换句话说,借助建模和仿真技术,在产品 设计时,就可以把产品的制造过程、工艺设计、 作业计划、生产调度、库存管理以及成本核算和 零部件采购等生产活动在计算机屏幕上显示出来, 以便全面确定产品设计和生产过程的合理性。
虚拟制造--展望 虚拟制造 展望
在制造业中,从概念设计到生产加工直至装配虚拟现实技术都有 着广泛的应用。虚拟设计、虚拟装配是其具体的应用,加上虚拟 企业等统称为虚拟制造。 虚拟制造是由许多先进学科、先进知识形成的综合系统技术,是 一个极具潜力的前沿研究方向,由于现在多媒体技术和网络技术 的迅速发展,虚拟制造将是下一代生产制造的趋势。由于 CAD/CAE /CAM 系统基本上解决了虚拟产品的概念设计和详细设 计部分,目前虚拟制造主要研究的是生产制造,装配部分以及各 个环节信息的综合。 在宏观上虚拟制造要仿真整个工厂,仿真工厂中的物流、信息流、 能量流,这对实际生产中如何控制物料、掌握生产节拍有指导意 义。在微观上虚拟制造要细化到仿真每个细节,这为宏观虚拟制 造奠定了基础。
虚拟制造技术
虚拟制造技术一、技术概述虚拟制造技术(Virtual Manufacturing Technology, or VMT)是80年代后期提出并得到迅速发展的一个新思想。
它是以虚拟现实和仿真技术为基础,对产品的设计、生产过程统一建模,在计算机上实现产品从设计、加工和装配、检验、使用整个生命周期的模拟和仿真。
这样,可以在产品的设计阶段就模拟出产品及其性能和制造过程,以此来优化产品的设计质量和制造过程,优化生产管理和资源规划,以达到产品开发周期和成本的最小化,产品设计质量的最优化和生产效率最高化,从而形成企业的市场竞争优势。
虚拟制造技术按其功能可划分为:1.产品的虚拟设计技术。
面向产品的原理、结构和性能的设计、分析、模拟和评测,以优化产品本身的性能、成本为目标。
2.产品的虚拟制造技术。
面向产品制造过程模拟、检验和优化,检验产品的可制造性、加工方法和工艺的合理性,以优化产品的制造工艺过程、保证产品的制造质量、制造周期和最低的制造成本为目标。
3.虚拟制造系统。
着重于生产过程的规划、组织管理、资源调度、物流、信息流等的建模、仿真与优化。
如虚拟企业、虚拟研发中心等。
虚拟制造技术是CAD/CAE/CAM/CAPP和仿真技术的更高阶段。
利用虚拟现实技术、仿真技术等在计算机上建立起的虚拟制造环境是一种接近人们自然活动的一种“自然”环境,人们的视觉、触觉和听觉都与实际环境接近。
人们在这样环境中进行产品的开发,可以充分发挥技术人员的想象力和创造能力,相互协作发挥集体智慧,大大提高产品开发的质量和缩短开发周期。
二、现状及国内外发展趋势虚拟制造技术的发展首先是在其支撑技术的发展上取得进展,例如,虚拟现实技术、仿真技术等。
特别是一些单元技术与制造业的紧密结合不断深入,并为其作出了巨大的贡献,更推动了这些技术的进一步发展。
同时,支撑技术和单元技术的不断成熟和在制造业中发挥越来越大的作用,也推动了虚拟制造技术的组合和集成。
但由于各技术的相对独立性,其统一的特征模型的建立、数据共享和交换等遇到了巨大的挑战。
虚拟制造
1。
虚拟制造的定义:虚拟制造是实际制造过程在计算机上的本质实现,即采用计算机建模与仿真技术,虚拟现实或可视化技术,在计算机网络环境下群组协同工作,模拟产品的整个制造过程,对产品设计,工艺规划,加工制造,性能分析,生产调度和管理,销售及售后服务等做出综合评价,以增强制造过程各个层次或环节的正确决策和控制能力2.映射的特性:(1)映射的定义域是实际制造过程,值域是虚拟制造过程,直接结果是全数字化产品,映射的介质是网络计算机环境。
(2)该映射是非线性迭代过程,需要多次循环直到满足要求为止。
(3)虚拟制造的结果千差万别,难以预测,因而可能是一个混沌的过程。
(4)由于人是整个系统的主体,将人的智能以控制参数的形式复合进去,该映射在一定程度上也是可控的。
由于不同的人其技术水平和经验不同,因而控制参数具有模糊特性。
3 虚拟制造的优势:1缩短了产品的研发周期2 降低了产品的研发成本3 提供了一个先进的制造系统仿真平台4 虚拟制造系统是通过对实际制造系统进行抽象,分析,综合,得到实际生产的全部数字化模型 5 虚拟制造的相关技术包括:输入,输出设备及计算机硬件技术、集成这些硬件系统的电子技术和软件技术。
6 虚拟制造技术的核心与关键技术:计算机仿真优化设计、三维建模技术和网络技术。
7其他的先进技术有哪些: 1 计算机集成制造系统与虚拟制造系统2 敏捷制造与虚拟制造技术3 并行工程与虚拟制造技术4 精益生产与虚拟制造技术5 绿色制造与虚拟制造技术6智能制造与虚拟制造技术1 虚拟现实(VR、Virtual Reality)又称虚拟环境(VE):虚拟现实是由计算机生成的,通过视听触觉、嗅觉等多通道作用于用户,使之生产身临其境感的交互式计算机仿真,是一种可以创造和体验虚拟世界的计算机系统。
2,虚拟现实的特征(1)多感知性(2)沉浸感(3)自治性(4)交互性3,虚拟现实的系统组成(1)检测输入装置(2)图像生成和显示系统(3)音频系统(4)力、触觉系统(5)高性能计算机系统(6)建模系统4虚拟对象的模型主要包括:几何模型、物理模型、运动模型、声音模型等5对象的几何模型:就是用来描述对象固有形状和外表的抽象模型,通常首先用三角形或多边形构造对象的几何外形,然后对几何模型进行纹理,颜色,光照等处理,后者称之为形象建模6 几何模型的生成方法:1测试法 2 CAD法 3二维视图变换法7 纹理的定义:是指物体表面细微的凹凸不平的条纹,可以用随机扰动法生成,即在表面各点法线方向附加微小的随机扰动量,从而产生表面微观不平度。
虚拟制造技术的相关概念及其应用
虚拟制造技术的相关概念及其应用虚拟制造技术指的是通过计算机模拟技术来创建虚拟制造场景,对产品进行数字化设计、模拟验证、工艺设备优化及数字化制造等一系列生产过程的管理,在实际制造中减少试错成本,加快产品开发及上市时间,提高产品质量和竞争力。
虚拟制造技术通过将数字化方法与传统制造技术相结合,可以大大缩短产品研发周期、提高生产效率和质量,并极大地降低生产成本和环境污染。
虚拟制造技术的应用十分广泛,包括数控机床复杂零部件加工、机器人智能制造、空间航空工程的设计与生产、汽车制造的过程优化等。
在汽车制造方面,虚拟制造技术可以为各种智能制造流程提供重要的支持,比如在产品开发阶段,通过数字化设计、可视化仿真和虚拟验证等手段,把握产品性能及市场需求,从而减少开发成本和提高产品质量。
在之后的生产阶段,通过数字化工厂和虚拟制造技术,实现了自动化生产线智能化、感知化和自适应化,提高生产效率、节约成本、降低质量风险。
虚拟制造技术的核心理念在于数字化和智能化,数字化是指将产品和生产过程转化为数字化数据,以便进行仿真和虚拟验证。
在数字化的基础上,虚拟制造技术可以实现产品的可视化、交互式仿真,以及设计、制造和工程性能优化,并通过对生产过程的模拟和协调最大限度地提高生产效率和质量。
虚拟制造技术的另一个核心理念是智能化,即在生产过程中采用智能化技术实现生产线的感知、控制和优化,以最大限度地提高生产过程的效率和质量。
虚拟制造技术的未来发展趋势是数字化、智能化和可持续化。
数字化将在越来越多的工业领域实现,基于AI、大数据和物联网等技术的智能制造和自适应制造也将成为行业的发展方向,同时,可持续制造原则也被越来越多的企业所认同,把制造过程中的环境影响降到最低。
总之,随着虚拟制造技术的不断发展,数字化、智能化和可持续制造已成为发展趋势,通过虚拟制造技术的应用,可以有效降低制造成本、提高产品质量、加快产品研发周期,为产业的现代化和高效化作出贡献。
机械工程中的虚拟制造技术
机械工程中的虚拟制造技术
虚拟制造技术是一种在计算机上执行制造过程的技术,它采用计算机仿真与虚拟现实技术,在计算机上群组协同工作,实现产品的设计、工艺规划、加工制造、性能分析、质量检验,以及企业各级过程的管理与控制等产品制造的本质过程。
在机械工程中,虚拟制造技术可以应用于以下方面:
1. 设计和工艺规划:通过虚拟制造技术,可以在计算机上模拟产品的设计和工艺规划过程,从而在制造之前发现和解决潜在的问题,提高产品的质量和可制造性。
2. 加工制造:虚拟制造技术可以模拟产品的加工制造过程,从而优化加工参数和流程,提高加工效率和产品质量。
3. 性能分析:通过虚拟制造技术,可以对产品的性能进行模拟和分析,从而预测和优化产品的性能。
4. 质量检验:虚拟制造技术可以模拟产品的质量检验过程,从而在制造之前发现和解决潜在的质量问题。
5. 企业各级过程的管理与控制:虚拟制造技术可以对企业各级过程进行管理和控制,从而提高企业的生产效率和产品质量。
总之,虚拟制造技术在机械工程中具有广泛的应用前景,可以提高企业的生产效率和产品质量,降低生产成本和风险。
虚拟制造技术
产品的虚拟控制技术
虚拟制造技术的分类
CAD/CAM 供设计者参考的制造信息 虚拟产品原型 成本估算 新产品模型、工艺、制造信息 工厂资源(人、设备)
生产为核心 优化资源 选择评价工艺 验证新工艺 设计为核心 优化产品设计、 工艺设计 加工方案评价
产品概念设计
虚拟生产计划 新工艺及对应信息、如成本
M! M2 M3 M4 M1:已有的模型和工艺 M2:日程模型、逻辑模型 M3:过程模型 M4:成品模型参数
虚拟制造技术的应用 虚拟制造技术的应用 2009年12月4日,中国南方航空公司订购的2架波音777货机正 式交付使用,南航成为国内首家使用波音777货机的航空公司
虚拟制造技术的应用 使用电脑进行无纸 设计是波音自777以 来的技术创新,波音 在787的研制中也继 续使用计算机无纸化 作业
CATIA,ENOVIA和 DELMIA等,在波音公司 787的开发过程中,得到 了全面的应用,从而实现 了设计、分析、制造的紧 密继承和数据共享
虚拟制造技术的应用 • 在模拟碰撞实验中,超级计 算机需要动用它的八个处理 器,工作22小时,研发人员 然后以毫米为单位休整,修 正后继续重复这一实验,当 开发完成,这款车已经经历 了大约2000虚拟碰撞,相 同的时间,如果用真车,只 能做40次,而且,碰撞过程 要毁掉40辆真车。
虚拟制造技术的应用
奥迪Q7虚拟碰撞两千次 汽车研发三维仿真
虚拟制造和仿真建模大大提 高了研发和制造效率。研发 团队可以用三维立体方式, 模拟任何内容,包括车身部 件、强度、动力系统性能、 碰撞性能等。如奥迪Q7车 头的一个碰撞试验需要100 万个数据来支持,电脑可以 在150毫秒内计算出结果。 这一时间比真车碰撞的时间 节省数千倍。
虚拟制造的核心技术
虚拟制造的核心技术虚拟制造技术涉及面很广,如环境构成技术、过程特征抽取、元模型、集成基础结构的体系结构、制造特征数据集成、多学科交叉功能、决策支持工具、接口技术、虚拟现实技术、建模与仿真技术等。
1、建模技术虚拟制造系统VMS是现实制造系统RMS在虚拟环境下的映射,是RMS的模型化、形式化和计算机化的抽象描述和表示。
VMS 的建模包括生产模型、产品模型和工艺模型。
(1)生产模型。
可归纳为静态描述和动态描述两个方面。
静态描述是指系统生产能力和生产特性的描述。
动态描述是指在已知系统状态和需求特性的基础上预测产品生产的全过程。
(2)产品模型。
产品模型是制造过程中,各类实体对象模型的集合。
目前产品模型描述的信息有产品结构、产品形状特征等静态信息。
而对VMS来说,要使产品实施过程中的全部活动集成,就必须具有完备的产品模型,所以虚拟制造下的产品模型不再是单一的静态特征模型,它能通过映射、抽象等方法提取产品实施中各活动所需的模型,包括三维动态模型,干涉检查,应力分析等。
(3)工艺模型。
将工艺参数与影响制造功能的产品设计属性联系起来,以反应生产模型与产品模型之间的交互作用。
工艺模型必须具备以下功能:计算机工艺仿真、制造数据表、制造规划、统计模型以及物理和数学模型。
2、仿真技术仿真就是应用计算机对复杂的现实系统经过抽象和简化形成系统模型,然后在分析的基础上运行此模型,从而得到系统一系列的统计性能。
由于仿真是以系统模型为对象的研究方法,不会干扰实际生产系统,同时利用计算机的快速运算能力,仿真可以用很短时间模拟实际生产中需要很长时间的生产周期,因而可以缩短决策时间,避免资金、人力和时间的浪费,并可重复仿真,优化实施方案。
仿真的基本步骤为:研究系统一收集数据、建立系统模型一确定仿真算法、建立仿真模型、运行仿真模型*输出结果并分析。
产品制造过程仿真,可归纳为制造系统仿真和加工过程仿真。
虚拟制造系统中的产品开发涉及到产品建模仿真、设计过程规划仿真、设计思维过程和设计交互行为仿真等,以便对设计结果进行评价,实现设计过程早期反馈,减少或避免产品设计错误。
虚拟制造
装配体建模
SolidWorks软件自底向上建模技术的过程是:零件草图→零件 →装配。根据零件模型,建立装配体模型,将齿轮轴、直齿轮2、 斜齿轮3、斜齿轮4、中间轴、输出轴装配在一起,如下图所示:
装配体模型
Virtual Manufacturing
Motion插件仿真
用SolidWorks中的Motion插件进行运动仿真,可得到齿轮上任一点的速度、 角速度、角加速度等运动参数分析图。根据得到的运动线图可以对减速器的运动 进行分析,从而对其运动规律进行研究。同时,二级圆柱齿轮减速器运动仿真对 实际生产具有重大意义,对突破一些技术性难题,开发新技术,研究新产品奠定 基础。
Virtual Manufacturing
零件建模
利用SolidWorks建立零件模型,可得到直齿轮2、斜齿轮3、 斜齿轮4、齿轮轴、中间轴、输出轴的模型分别如下图所示:
直齿轮2
斜齿轮3
斜齿轮4
齿轮轴(输入轴)
Virtual Manufacturing
中间轴
输出轴
Virtual Manufacturing
信息
智能
人机
虚拟制 造系统
资源
过程 组织 管理
技术
Virtual Manufacturing
六、虚拟制造的分类
虚 拟 制 造 VM
Virtual Manufacturing
七、虚拟制造实例研究
SolidWorks软件在产品性能优化和仿真(运动和 干涉检查、整机运动分析、零部件设计优化等)、结 构特征建模、分析评价等方面具有独到的优势。故以 SolidWorks软件作为虚拟设计平台,对二级圆柱齿轮 减速器(一级为直齿轮传动,一级为斜齿轮传动)进 行虚拟设计,齿轮减速器由8种零部件所组成,通过 对主要零部件进行建模,然后进行组装形成装配体, 现对齿轮和三根轴(输入轴、中间轴和输出轴)进行 建模,并进行装配的虚拟设计,建立减速器三维模型 并进行仿真。
虚拟制造技术
虚拟制造技术的内涵
以模型信息集成为根本:产品模型、过程模型、 活动模型、资源模型之间的信息集成 以高逼真度仿真为特色:仿真结果的高可信度, 以及人与这个虚拟制造环境的交互的自然化。
虚拟制造技术的内涵
2、特点 以模型为核心:产品模型、过程模型、活动模 型、资源模型
产品模型:产品信息在计算机上的表示。
虚拟制造的使能技术
使能技术之四
数据转换与处理技术
数 据 文 件 格 式 转 换 技 术
产 品 数 据 管 理 技 术
虚拟制造的使能技术
使能技术之五
网络环境下知识获取与建库技术
据网 信络 息化 的异 统构 一知 表识 达与 数 的分 协布 同式 与虚 自拟 治仿 真 节 点 绘虚 制拟 与场 网景 络的 传快 输速 漫 游 、 与基 制于 造 集的 成产 过品 程设 链计 VR 企基 业于 信多 息 重 组 与的 集虚 成拟 Agent 据网 与络 指环 令境 的下 传虚 输拟 与产 共品 享数
虚 拟 加 工
虚 拟 测 量 技 术
虚拟制造的关键技术
关键技术之三
虚拟检测与评价技术
虚 拟 表 面 接 触 刚 度 分 析 干刀 涉位 检轨 验迹 检 查 及 碰 撞 工 艺 过 程 规 划 与 仿 真 评基 价于 应 力 的 加 工 质 量
装 配 信 息 建 模
虚拟制造的关键技术
关键技术之四
虚拟实验技术
虚拟制造技术的内涵
虚拟制造系统
虚拟信息系统
技术人员 客户
实际制造系统
虚拟产品
实际信息系统
需求 工人
实际产品
计算机仿真 虚拟现实
基于网络的VPS
工厂
RPS
确认和验证
虚拟制造技术
2)仿真技术
3)对象可视化技术
4)虚拟实验室
5)虚拟电力控制室
6)分布式虚拟现实系统
7)扩增实境
六、虚拟制造技术的发展趋势
从局部应用到集成应用发展 将在复杂高科技产品开发中得到更多应 用 与其他先进制造技术的融合或结合更加 紧密 将在企业和教育部门的技术培训中大显 身手
四、虚拟制造技术分类
以设计为中心的VM 以生产为中心的VM 以控制为中心的VM
四、虚拟制造技术分类
产品的虚拟设计技术
面向产品的原理、结构和性能的设计、 分析、模拟和评测,以优化产品的性能 例:主轴箱/立柱热变形分析 例:发动机曲轴连杆运动仿真
四、虚拟制造技术分类
产品的虚拟加工技术
一、什么是虚拟制造技术
虚拟制造:Virtual
Manufacturing(VM) 虚拟制造是实际制造过程在计算机上的本 质实现。 采用计算机仿真与虚拟现实技术,在计算 机上群组协同工作; 通过三维模型及动画,实现产品的设计、 工艺规划、加工制造、性能分析、质量检 验,以及企业各级过程的管理与控制等产 品制造的本质过程。 目的:增强制造过程各级的决策与控制能 力。
虚拟现实技术VRT(Virtual
Reality
Technology)
五、虚拟制造技术的关键技术
虚拟现实技术是在为改善人与计算机的
交互方式,提高计算机可操作性中产生 的,它是综合利用计算机图形系统、各 种显示和控制等接口设备,在计算机上
生成可交互的三维环境(称为虚拟环境)
中提供沉浸感觉的技术。
产品模型—是制造过程中,各类实体对象模型的集合。 目前产品模型描述的信息有产品结构明细表、产品形状 特征等静态信息。
虚拟制造技术定义及应用
四、虚拟制造技术定义及应用1、虚拟制造技术的定义:是一门以计算机仿真技术、制造系统与加工过程建模理论、VR技术、分布式计算理论、产品数据管理技术等为理论基础,研究如何在计算机网络环境及虚拟现实环境下,利用制造系统各层次及各环节的数字模型,完成制造系统整个过程的计算与仿真的技术。
2、虚拟制造系统的定义:是一个在虚拟制造技术的指导下,在计算机网络和虚拟现实环境中建立起来的,具有集成、开放、分布、并行、人机交互等特点的,能够从产品生产全过程的高度来分析和解决制造系统各个环节的技术问题的软硬件系统。
虚拟制造的关键技术:虚拟设计与装配技术、虚拟产品实现技术、虚拟检测与评价技术、虚拟纹理分析技术、虚拟实验技术、虚拟生产技术。
3、虚拟制造技术的应用:虚拟环境与工具、虚拟产品建模、动态装配仿真、热变形分析、模态分析、有限元分析、运动分析与仿真、虚拟加工、加工过程仿真、虚拟测试、虚拟生产调度控制仿真4、虚拟制造技术的应用研究虽然刚刚起步,却已经有了一些成功的应用,展现了巨大的经济效益和美好的前景。
在美国,采用虚拟制造技术成功地设计了波音777飞机,飞机的整体及其300万个零件,从设计到加工完全实现了无图纸化,利用建立逼真的虚拟三维实体模型对飞机的各种性能进行分析、模拟,因而缩短了数千小时的工作量并节省了大量经费[4]。
福特、通用等汽车公司都成功地运用了部分虚拟制造技术,设计发动机、车体、电气线路等,建立了三维实体模型并进行了碰撞分析和运动特性分析等,还进行了模拟数控加工和质量检查等,大大缩短了设计周期,降低了设计成本[5]。
在国内,北京科学研究院把虚拟制造技术应用于立体车库设计,初步实现直观地布局、参数化设计分析和运动模拟。
5 虚拟制造在我国的研究及应用情况2005年3月份,上海理工大学宣布成立虚拟制造技术研究院。
这是继清华大学CIMS工程研究中心虚拟制造研究室在国内最早开展虚拟制造研究以来又一个成立的进行虚拟制造技术研究的机构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、前言随着国民经济的高速发展,人民生活水平的大幅提高,人们对汽车的需求量越来越大,汽车模具的市场竞争也越来越激烈。
“质量好”、“精度高”、“价格低”、“交货期短”等是人们对现代汽车模具的基本要求。
但是,汽车模具是一种大型模具,它体积庞大、结构复杂、尺寸精度和表面粗糙度要求较高,制造相当困难。
而且,为了减轻模具的重量采用的底座掏空的薄壁式结构和为了维修容易中间型面采用的镶拼结构,给设计和制造带来了更大的困难。
通常来说,一个汽车覆盖件零件需要3道或3道以上的工序才能完成,也就是说,生产一个汽车覆盖件零件至少需要3副或3副以上的模具。
如果汽车覆盖件零件在设计的时候没有考虑到实际制造情况,那么设计出来的模具在制造的时候可能根本就无法进行加工,或者是制造出来的模具无法生产出预期的产品,从而导致模具的报废,延长产品的开发周期,这种经济损失是无法想象的。
但是,模具在设计阶段是无法预料在制造过程中将出现的困难的。
虚拟制造技术是一种软件技术,是CAD/CAE/CAM/CAPP和仿真技术的更高阶段,它能在计算机上实现模具从设计到制造到检验的全过程,根据虚拟模型的仿真过程,可以在计算机上根据“实际”的加工情况来修改模具的设计,避免了在模具制造过程中可能出现的问题,从而达到缩短模具的开发周期、降低开发成本、提高生产效率的目的,因而是汽车模具开发最有潜力最实用最有效的技术之一。
2、虚拟制造(VM)虚拟制造(VirtualM anufacturing)又叫拟实制造,是80年代后期美国首先提出来的一种新思想,它是利用信息技术、仿真技术、计算机技术等对现实制造活动中的人、物、信息及制造过程进行全面的仿真,以发现制造中可能出现的问题,在产品实际生产前就采取预防措施,使得产品一次性制造成功,以达到降低成本、缩短产品开发周期,增强企业竞争力的目的。
在虚拟制造中,产品从初始外形设计、生产过程的建模、仿真加工、模型装配到检验整个的生产周期都是在计算机上进行模拟和仿真的,不需要实际生产出产品来检验模具设计的合理性,因而可以减少前期设计给后期加工制造带来的麻烦,更可以避免模具报废的情况出现,从而达到提高产品开发的一次成品率,缩短产品开发周期,降低企业的制造成本的目的。
虚拟制造自从产生以来人们就力图给它一个统一的定义,但虚拟制造涉及的知识范围十分广泛,不同的研究人员,出发点和侧重点也不同,因而理解也大不相同,导致虚拟制造至今为止仍没有一个确切的定义。
在不同的定义中,我们可以把虚拟制造理解为产品的虚拟设计技术、产品的虚拟制造技术和虚拟制造系统3方面关键技术的一个技术综合。
2.1 产品的虚拟设计技术(VDT)产品的虚拟设计技术(VirtualD esignT echnology)是面向数字化产品模型的原理、结构和性能在计算机上对产品进行设计,仿真多种制造方案,分析产品的结构性能和可装配性,以获得产品的设计评估和性能预测结果,从而优化产品设计和工艺设计,减少制造过程中可能出现的问题,以到达降低成本、缩短生产周期的目的。
2.2 产品的虚拟制造技术(VMT)产品的虚拟制造技术(VirtualM anufacturingTechnology)是利用计算机仿真技术,根据企业现有的资源、环境、生产能力等对零件的加工方法、工序顺序、工装及工艺参数进行选用,在计算机上建立虚拟模型,进行加工工艺性、装配工艺性、配合件之间的配合性、连接件之间的连接性、运动构件之间的运动性等的仿真分析。
通过分析,可以提前发现加工中的缺陷及装配时出现的问题,从而对制造工艺过程进行相应修改,直到整个制造过程完全合理,来达到优化的目的。
产品的虚拟制造技术主要包括材料热加工工艺模拟、装配工艺模拟、板材成形模拟、加工过程仿真、模具制造仿真、产品试模仿真等。
2.3 虚拟制造系统(VMS)虚拟制造系统(VirtualM anufacturingS ystem)是将仿真技术引入到数控模型中,提供模拟实际生产过程的虚拟环境,即将机器控制模型用于仿真,使企业在考虑车间控制行为的基础上对制造过程进行优化控制,其目标是实际生产中的过程优化,更优的配置制造系统随着网络时代的来临虚拟制造技术得到了快速的发展,研究的领域也越来越宽,除了虚拟制造领域本身包含的虚拟制造的理论体系、设计信息和生产过程的三维可视化、虚拟环境下系统全局最优决策理论和技术、虚拟制造系统的开放式体系结构、虚拟产品的装配仿真、虚拟环境中及虚拟制造过程中的人机协同作业等内容外,现阶段专家们正投人大量的时间精力研究虚拟制造技术集成系统和相关的软件开发。
美国华盛顿州立大学在PTC的Pro/enginee:等CAD/CAM系统上开发了面向设计与制造的虚拟环境VEDAM系统,它包括加工设备建模环境、虚拟设计环境、虚拟制造环境和虚拟装配环境。
新加坡国立大学Lee和Noh等人利用因特网、专家系统开发工具、HTML/VRML和数据库系统开发了一个作为工程和生产活动实验台的虚拟制造原型系统。
国外软件公司在巨大应用需求的推动下,也先后推出了Deneb, Multigen, dVISE, World-ToolKit, EA1等一批支持虚拟制造的软件。
虚拟制造技术是一个多学科多技术的综合,它的相关技术支持包括仿真技术、建模技术、计算机图形学、可视化技术、多媒体技术、虚拟现实技术等,把这些技术很好的集成起来应用是目前研究的重点。
3、虚拟制造在汽车覆盖件模具中的应用汽车覆盖件模具的开发要受到可靠性、美观性、经济性、可制造性及可维护性等多方面的制约。
在传统的汽车覆盖件模具开发过程中,当模具设计及制造完成后,需要经过反复的调试修改,才能得到满意的汽车零件。
在调试过程中,一些成形缺陷,如破裂、起皱、回弹、翘角等问题,主要是凭借模具钳工师的经验,通过试模、修模、再试模、再修模的循环过程才能解决。
这种方法不但降低了生产效率,而且生产出的模具精度往往达不到预期的要求,还会加长模具的开发周期。
而虚拟制造技术可以大大缩短这一周期。
因为在虚拟现实环境下,设计和制造汽车不需要建造实体模型,工程师可以利用虚拟的“自然”环境的可视化优势,把汽车模具的结构分析、虚拟设计、部件装配和性能优化等融合在计算机虚拟制造系统中进行,在综合考虑汽车车身件的外观总体布局及零部件之间的相互衔接相互作用等因数基础上,对模具几何尺寸、技术性能、生产和制造等方面进行交互式的快速建模和仿真分析,从而避免了反复修模,保证了模具的精度要求;而且因为生成的仿真模型可被直接操纵与修改,数据可以反复利用,因而大大缩短了模具开发的周期Cs-i21虚拟制造技术与快速成形技术、反向设计、逆向工程、基于知识的工程设计等技术相比具有非常好的优势。
因为虚拟制造技术具有独特的虚拟设计制造环境,可以让模具整个开发过程完全在虚拟的“实际”环境中进行,在达到预期的性能质量等方面的要求后才开始进行实物制造,从而使制造出的模具一次性的满足用户需求,大大降低了模具的废品率,减少企业的开发成本。
3.1 汽车覆盖件模具虚拟制造的开发流程汽车覆盖件模具的虚拟制造开发流程如图1所示,首先从产品需求分析开始,然后进行概念设计,再从优化设计到系统集成,通过使用相关开发软件,在虚拟环境中,构造产品的虚拟模型。
这是一个循环渐进的过程,基于产品的开发需求,采用相应的仿真分析工具对虚拟模型的功能和性能进行仿真分析,对虚拟模型的行为进行模拟分析,并基于仿真分析的结果,通过反复建模~仿真分析~模型的改进,直到虚拟制造出的模具满足预期设计的目标,才开始进行实物制造F1s7。
由图1可知,汽车覆盖件模具在投人生产前就已经通过了虚拟的“实际环境”的检验,把实际制造中可能遇到的困难和设计上的不合理全部检验出来,再让设计工作人员进行修改或者重新设计,直到整个制造过程能够完全合理、顺利的完成。
这样不但能缩短产品的研发周期,降低企业的研发成本,还可以提高产品的质量。
图1 汽车覆盖件模具得虚拟制造的一般流程3.2 汽车覆盖件模具虚拟制造中的关键技术在汽车覆盖件模具虚拟制造过程中,涉及的相关技术非常多,任何一项技术应用的好坏都会影响模具的最后质量,这也是虚拟制造技术应用进展缓慢的原因之一。
只有每项技术都掌握应用的很好,虚拟制造出的产品才能和实际制造出的产品达成一致,才能达到减少开发成本、缩短开发周期、提高模具质量的目的。
其中比较难于掌握而又非常关键的技术:(1) 数学模型的建立建立一个简单而又能反映动态制造过程的数学模型是虚拟制造技术在汽车覆盖件模具中应用的关键。
数学模型建立的不合理,那么虚拟环境下仿真出来的制造过程就会与实际制造过程不一样,起不到优化模具设计的作用,从而达不到缩短开发周期和减少开发费用的目的。
因此,在使用虚拟制造技术来开发汽车覆盖件模具的时候,必须建立一套合理的数学模型。
在建立数学模型的时候,要认真分析汽车覆盖件模具的特征,根据模具功能和制造需求,找出其中主要的影响因数,提出合理的假设。
建立的模型必须能反映模具全部的功能和制造关系,包括工作时模具型面受力的变化关系和冲压件受力形状的变化关系等,这样才能仿真出实际的生产关系,才能预测生产中可能产生的问题,达到优化设计和制造的目的。
(2) 系统集成与方案评估这是汽车模具虚拟制造中前期工作的基础。
系统集成就是一个最优化的综合统筹设计,需要诸多的技术支持,包括计算机软件、硬件、操作系统技术、数据库技术、网络信息等,需要从全局出发考虑各子系统之间的关系,研究各子系统之间的接口关系。
系统集成所要达到的目标—整体性能最优,即所有部件和成分合在一起后不但能工作,而且全系统是低成本的、高效率的、性能匀称的、可扩充和可维护的系统。
但是对于一般企业来说,购置齐全仿真分析的软件系统是一个高成本的投人,而且,没有专业的人员是无法让这些软件发挥淋漓尽致的作用的。
在计算机虚拟制造系统提供的良好的拟实环境下,工作人员可以对建立起的虚拟模型进行评价与修改。
在这个阶段,可以模拟模具的制造过程,解决各部件制造的可行性和难易性;可以模拟模具的装配过程,解决各部件之间的连接性和装备性及操作的难易程度;可以进行虚拟测试,通过测试检验模具的生产能力和生产质量。
在多种方案中评定各方案的执行难易度、耗费成本高低度、花费时间长短度等,选择最适合生产条件的最优生产方案。
(3) 并行工程其实质就是集成地、并行地设计产品及其零部件和相关各种过程的一种系统方法。
这种方法要求产品开发人员与其他人员一起共同工作,在设计一开始就考虑产品整个生命周期中从概念形成到产品报废处理的所有因素,包括质量、成本、进度计划和用户的要求等。
并行工程强调的是所有工作人员的所有工作同时进行,强调的是团队工作精神,因而工作链上的每一个人都有权利对设计的产品进行审查,力求让设计的产品更便于加工、便于装配、便于维修,制造成本更低,制造周期更短。