第八章-PID控制器的参数整定
PID控制器设计及其参数整定
一、绪论PID 参数的整定就是合理的选取PID 三个参数。
从系统的稳定性、响应速度、超调量和稳态误差等方面考虑问题,三参数作用如下:比例调节作用:成比例地反映系统的偏差信号,系统一旦出现了偏差,比例调节立即产生与其成比例的调节作用,以减小偏差。
随着P K 增大,系统的响应速度加快,系统的稳态误差减小,调节应精度越高,但是系统容易产生超调,并且加大P K 只能减小稳态误差,却不能消除稳态误差。
比例调节的显著特点是有差调节。
积分调节作用:消除系统的稳态误差,提高系统的误差度。
积分作用的强弱取决于积分时间常数i T ,i T 越小,积分速度越快,积分作用就越强,系统震荡次数较多。
当然i T 也不能过小。
积分调节的特点是误差调节。
微分调节作用:微分作用参数d T 的作用是改善系统的动态性能,在d T 选择合适情况下,可以减小超调,减小调节时间,允许加大比例控制,使稳态误差减小,提高控制精度。
因此,可以改善系统的动态性能,得到比较满意的过渡过程。
微分作用特点是不能单独使用,通常与另外两种调节规律相结合组成PD 或PID 控制器。
二、设计内容1. 设计P 控制器控制器为P 控制器时,改变比例系数p K 大小。
P 控制器的传递函数为:()P P K s G =,改变比例系数p K 大小,得到系统的阶跃响应曲线当K=1时,P当K=10时,PK=50时,当P当P K =100时,p K 超调量σ% 峰值时间p T 上升时间r T 稳定时间s T 稳态误差ss e 1 49.8044 0.5582 0.2702 3.7870 0.9615 10 56.5638 0.5809 0.1229 3.6983 0.7143 50 66.4205 0.3317 0.1689 3.6652 0.3333 10070.71480.25060.07443.64100.2002仿真结果表明:随着P K 值的增大,系统响应超调量加大,动作灵敏,系统的响应速度加快。
pid参数的整定过程
pid参数的整定过程
PID(比例-积分-微分)控制器是一种常用的反馈控制器,用于调节和稳定系统。
PID控制器的参数整定过程通常包括以下几个步骤:
1.初始参数设定:根据系统的性质和需求,设置PID控制器的初
始参数。
通常情况下,可以将三个参数(比例增益Kp、积分时
间Ti、微分时间Td)都设为一个较小的初始值。
2.比例增益调整:从零开始逐步增加比例增益Kp的数值,观察
系统响应的变化。
如果Kp过小,系统响应可能过慢;如果Kp
过大,系统可能会出现超调或不稳定的情况。
通过不断调整Kp
的数值,直到找到一个合适的值,使得系统响应快速且稳定。
3.积分时间调整:在找到合适的Kp之后,开始调整积分时间Ti
的数值。
增大Ti会增加积分作用的影响,降低控制器对于持续
偏差的敏感度。
然而,过大的Ti可能导致系统响应的延迟和振
荡。
通过逐步调整Ti的数值,找到一个使系统响应稳定且快速
的值。
4.微分时间调整:在完成比例增益和积分时间的调整后,可以开
始调整微分时间Td的数值。
微分作用可以抑制系统响应中的
过冲和振荡,并提高系统的稳定性。
然而,过大的Td可能会引
入噪声的放大。
通过逐步调整Td的数值,找到一个能够平衡系
统响应速度和稳定性的值。
5.反复迭代:整定PID参数是一个迭代的过程。
一旦完成了上述
步骤,需要对整个系统进行测试和观察,以确定参数的最佳组合。
如果发现系统仍然存在问题,可以根据实际情况再次进行参数调整,直到达到满意的控制效果。
PID控制器的参数整定
PID控制器的参数整定PID控制器是一种常用的闭环控制器,可以根据系统的输入和输出之间的误差来调整控制器的参数,从而实现对系统的稳定控制。
PID控制器的参数整定是指确定控制器的比例系数Kp、积分时间Ti和微分时间Td的过程。
下面将详细介绍PID控制器的参数整定方法和相关的考虑因素。
一、参数整定方法:1.经验整定法:根据经验将控制器的参数进行初步设定。
经验整定法通常通过试验或先验知识来确定参数,根据具体的应用场景不断调整,以达到较好的控制效果。
该方法常用与简单的控制系统或者无法获得系统数学模型的情况下。
2. Ziegler-Nichols整定法:Ziegler-Nichols整定法是一种基于试验的整定方法。
该方法首先暂时关闭积分和微分控制,只调整比例控制系数Kp,使系统达到临界稳定状态。
然后测量临界增益Ku和临界周期Pu,根据不同类型的控制系统(比例型、积分型和微分型),采用不同的参数整定公式确定Kp、Ti和Td的初始值,再根据系统的实际响应实时调整。
3. Ziegler-Nichols改进整定法(Chien-Hrones-Reswich法):该方法是对Ziegler-Nichols整定法的改进,可以更精确地测定控制器参数。
该方法同样通过测量系统的临界增益Ku和临界周期Pu,但是对参数的计算公式进行了修正,提高了参数整定的准确性。
4. 极点配置法(Pole Placement):极点配置法是一种基于系统数学模型的整定方法。
通过分析系统的传递函数,确定控制器的极点位置,从而使系统的闭环响应满足所需的性能指标。
该方法需要对系统的数学模型有较详细的了解,适用于相对复杂的控制系统。
5.自整定法:自整定法是一种自动寻优的整定方法,常用于智能控制器中。
该方法通过观察系统的动态性能,通过迭代寻找最优的参数组合。
自整定法通常采用优化算法(如遗传算法、粒子群算法等)来最优参数,在一定的性能和收敛速度之间进行权衡。
二、参数整定的考虑因素:1.系统的稳定性:控制器的参数整定应确保系统的闭环响应稳定。
PID控制原理与参数整定方法
PID控制原理与参数整定方法PID控制是一种常用的反馈控制方法,它通过测量控制系统的输出与期望输入之间的差异,计算出一个控制信号来调节控制系统的行为。
PID 控制器的主要参数有比例增益(Proportional),积分时间(Integral)和微分时间(Derivative)。
通过调节这些参数,可以实现对控制系统的动态响应和稳定性的优化。
首先,我们来了解一下PID控制器的工作原理。
PID控制器是基于控制误差和误差的变化率来计算输出控制信号的,它包含三个部分:比例控制项、积分控制项和微分控制项。
比例控制项(P项)以控制误差的比例关系来计算输出信号。
它的计算公式为:P=Kp*e(t),其中Kp为比例增益,e(t)为控制误差。
比例增益越大,控制器对误差的纠正力度越大,但过大的比例增益会引起震荡。
积分控制项(I项)以控制误差的累积值来计算输出信号。
它的计算公式为:I = Ki * ∫e(t)dt,其中Ki为积分时间,∫e(t)dt为控制误差的累积值。
积分控制项主要用于消除稳态误差,但过大的积分时间会引起超调和不稳定。
微分控制项(D项)以控制误差的变化率来计算输出信号。
它的计算公式为:D = Kd * de(t)/dt,其中Kd为微分时间,de(t)/dt为控制误差的变化率。
微分控制项主要用于抑制系统的震荡和快速响应,但过大的微分时间会引起噪声放大。
接下来,我们来介绍一下PID参数整定的方法。
在实际应用中,PID 参数的选择通常需要经验和试验。
以下是常用的PID参数整定方法。
1.经验设置法:根据经验设置PID参数的初始值,然后根据实际系统的响应进行调整。
这种方法需要经验和实践的积累,适用于经验丰富的控制工程师。
2. Ziegler-Nichols方法:这是一种基于实验步骤响应曲线的整定方法。
该方法通过观察控制系统的临界点,确定比例增益、积分时间和微分时间的初始值,然后通过试探法逐步调整,直到系统达到所需的动态响应。
PID控制器的参数整定
PID控制器的参数整定PID控制器是一种常用的控制器,可以通过调节其参数来实现系统的稳定性和性能要求。
PID控制器的参数整定是指通过试验和经验总结来确定合适的比例系数Kp、积分时间Ti和微分时间Td,从而使得控制系统的闭环响应最优。
在进行PID控制器参数整定之前,首先需要清楚系统的控制目标和性能指标,例如稳态误差要求、响应时间要求、超调量要求等。
根据这些要求,可以选择不同的参数整定方法。
一般来说,PID控制器参数整定可以分为以下几个步骤:1.基本参数选择:首先根据系统特性选择基本的调节参数范围,比如比例系数Kp通常在0.1-10之间选择,积分时间Ti通常在1-100之间选择,微分时间Td通常在0-10之间选择。
2.步进试验法:通过给系统输入一个步进信号,观察系统的输出响应,并根据实验数据计算系统的动态响应特性,如超调量、峰值时间、上升时间等指标。
根据这些指标可以初步估计出Kp、Ti和Td的数量级。
3. Ziegler-Nichols法:这是一种经典的参数整定方法。
首先将积分时间Ti和微分时间Td设置为0,只有比例系数Kp。
逐渐增大Kp的值,观察系统响应的特性,当系统开始出现超调时,记录下此时的比例系数Kp为Kp_c。
然后,根据实验结果计算出Kp_c对应的周期时间Tu,即峰值时间的时间。
最后,根据经验公式,可以得到Kp=0.6*Kp_c,Ti=0.5*Tu,Td=0.12*Tu的参数。
4.直接调节法:根据实际控制需求和经验,直接选择合适的比例系数Kp、积分时间Ti和微分时间Td。
比如,Kp较大时可以提高系统的响应速度,但可能会增加超调量;Ti较大时可以消除稳态误差,但会延长系统的响应时间;Td较大时可以提高系统的稳定性,但可能会引入噪声。
5.整定软件辅助:现在有很多控制软件可以辅助进行参数整定,可以通过输入系统的数学模型、参数范围和性能指标,来进行自动参数整定和优化。
总的来说,PID控制器参数整定是一个基于试验和经验的过程,需要根据具体的系统和性能要求来选择合适的方法和参数。
PID控制器的作用分析及参数整定
PID控制器的作用分析及参数整定PID控制器是一种常用的自动控制器,可以根据系统的反馈信号和设定值进行调整,从而实现控制系统的稳定和精确控制。
PID控制器通过调整输出信号,使得被控对象的输出值尽可能地接近设定值,通过不断地迭代修正,实现对系统的自动调节和控制。
1.实现系统的稳定控制:PID控制器通过不断地调整输出信号,使得被控对象的输出值尽可能地接近设定值,从而实现系统的稳定控制。
PID 控制器的输出信号与系统的误差、误差变化率以及误差积分值有关,通过调整这些参数的权重,可以实现对系统的稳定控制。
2.快速响应和抗干扰能力:PID控制器能够根据系统的反馈信号和设定值的变化情况,快速地调整输出信号,使得系统能够快速响应,并具有一定的抗干扰能力。
通过合理地设置PID控制器的参数,可以提高系统的响应速度和抗干扰能力,实现更加准确的控制。
3.自动调节和优化:PID控制器可以根据系统的反馈信号和设定值自动调节输出信号,实现对系统的自动调节和优化。
通过不断地迭代修正,PID控制器可以根据系统的实际状况和要求,自动调整参数,使得系统的控制效果达到最佳状态。
参数整定是PID控制器应用的关键环节,合理的参数设置可以有效地提高PID控制器的性能。
常见的PID控制器参数包括比例增益(Kp)、积分时间(Ti)和微分时间(Td)。
1.比例增益(Kp):控制器输出与误差的线性关系,越大控制器对误差的修正约大。
Kp的选择会影响系统的响应速度和稳定性,过大会导致震荡或不稳定,过小则响应较慢或无法消除稳态误差。
2.积分时间(Ti):控制器对误差累积值的补偿作用,用于消除稳态误差。
Ti的选择对系统的响应速度和稳态误差的消除有影响,过大会导致响应变慢,过小则可能导致震荡。
3.微分时间(Td):控制器对误差变化率的补偿作用,用于消除超调和减小误差上升的速率。
Td的选择可以改善系统的动态响应速度和稳定性,但过大或过小可能引起震荡。
参数整定的方法较为复杂,常用的方法包括经验调整法、试探法、理论分析法和优化算法等。
PID参数整定方法
• 作图程序
close all; figure(1); plot(t,y(:,1),'k','linewidth',2); xlabel('time(s)');ylabel('y');
• (2)由图可以近似得到ԏ=80,Τ=60,从 而得到 1 1,
60
• 则对象模型可以表示为 • (3)采用pid控制算法,根据表可以计算得 • 0.855 0.85 1 80 1.1333 即
(3)有了KC和Tk这两个试验数据,按下表给出的经验公式,就可以计算 出当采用不同类型的控制器参数值。
• 设被控对象为
GP ( s )
1 e 80 s 60 s 1
• 第一步,取Ti=无穷大,Td=0,不断改变kc的值, • 直到出现等幅震荡,如图
• • • • • • •
此时的kc=2.1,Tk=220 根据表,可以计算kp=0.6kc=1.2 Τi=0.5×Τk=0.5×220=110 Τd=0.12×Τk=0.12×220=26.4 ki=kp/Τi=1.2/110 kd=kp×Τd=1.2×26.4 (4)可适当对计算出来的值做一点调整, 直到过渡过程满意为止。
• 响应曲线整定pid参数
控制器类型 P PI PID 比例度 ԑԏ 1.1ԑԏ 0.85ԑԏ 3.3ԏ 2ԏ 0.5ԏ 积分时间 微分时间
仿真实例
• 设被控对象为 • 响应曲线法整定分为以下三步: • (1)首先断开反馈通道,给被控对象一个 阶跃输入信号,仿真程序
G p ( s) s e s 1
60
kp 1
GP ( s )
1 e 80 s 60 s 1
pid控制器参数整定方法及应用
pid控制器参数整定方法及应用PID控制器是工业自动化中常用的一种控制器,其参数整定方法及应用对于控制系统的稳定性和性能有着至关重要的作用。
本文将详细介绍PID控制器参数整定方法及应用。
一、PID控制器概述PID控制器是由比例控制器、积分控制器和微分控制器三部分组成的,利用反馈信号进行控制。
其中比例控制器通过测量误差的大小,对被控制对象进行控制,积分控制器通过测量误差的积分,对被控制对象进行控制,微分控制器通过测量误差的微分,对被控制对象进行控制。
PID控制器通过组合三个控制方式,可以对被控制对象进行更加精确的控制。
二、PID控制器参数整定方法1. 经验法PID控制器参数整定的第一步是通过经验法确定参数初值。
经验法是根据实际经验和实验数据得出的整定参数,是参数初值的基础。
经验法的参数初值如下:比例系数Kp取值为被控对象动态响应曲线的最大斜率处的斜率倒数;积分时间Ti取值为被控对象动态响应曲线从起点到终点的时间长度;微分时间Td取值为被控对象动态响应曲线的最大曲率处的时间。
2. Ziegler-Nichols法Ziegler-Nichols法是广泛应用的PID控制器参数整定方法之一,其步骤如下:a.将比例系数Kp调至临界增益Kcr处,此时系统开始振荡;b.测量振荡周期Tu;c.根据系统类型选择合适的参数整定公式,计算出参数初值:系统类型 Kp Ti TdP型系统 0.5Kcr ——PI型系统 0.45Kcr Tu/1.2 —PD型系统 0.8Kcr — Tu/8PID型系统 0.6Kcr 0.5Tu Tu/83. Chien-Hrones-Reswick法Chien-Hrones-Reswick法是另一种常用的PID控制器参数整定方法,其步骤如下:a.测量被控对象的动态响应曲线,并计算出其惯性时间常数L、时延时间T和时间常数K;b.根据系统类型选择合适的参数整定公式,计算出参数初值:系统类型 Kp Ti TdP型系统 0.5K ——PI型系统 0.45K L —PD型系统 0.8K — TPID型系统 0.6K 0.5L 0.125T三、PID控制器应用PID控制器广泛应用于工业自动化中,例如温度控制、压力控制、流量控制等。
PID控制器的参数整定(经验总结)
PID控制器的参数整定(1)PID是比例,积分,微分的缩写.比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。
比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
积分调节作用:是使系统消除稳态误差,提高无差度。
因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。
积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。
反之Ti大,则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。
积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。
因此,可以改善系统的动态性能。
在微分时间选择合适情况下,可以减少超调,减少调节时间。
微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。
此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。
微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。
(2) PID具体调节方法①方法一确定控制器参数数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。
在选择数字PID参数之前,首先应该确定控制器结构。
对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。
对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。
一般来说,PI、PID和P控制器应用较多。
对于有滞后的对象,往往都加入微分控制。
选择参数控制器结构确定后,即可开始选择参数。
参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。
工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。
PID控制原理与参数的整定方法
PID控制原理与参数的整定方法PID控制器是一种常用的自动控制器,在工业控制中广泛应用。
它的原理很简单,即通过不断调节控制信号来使被控制物体的输出接近给定值。
PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成。
下面将详细介绍PID控制的原理和参数整定方法。
一、PID控制原理1.比例(P)控制比例控制根据被控制量的偏差的大小,按照一定比例调节控制量的大小。
当偏差较大时,调节量增大;当偏差较小时,调节量减小。
此项控制可以使系统快速响应,并减小系统稳态误差。
2.积分(I)控制积分控制根据被控制物体的偏差的积分值来调节控制量。
积分控制的作用主要是消除系统的稳态误差。
当偏差较小但持续较长时间时,积分量会逐渐增大,以减小偏差。
3.微分(D)控制微分控制根据被控制物体的偏差的变化率来调节控制量。
当偏差的变化率较大时,微分量会增大,以提前调整控制量。
微分控制可以减小系统的超调和振荡。
综合比例、积分和微分控制,PID控制器可以通过不同的控制参数整定来适应不同的被控制物体的特性。
二、PID控制参数整定方法1.经验整定法经验整定法是根据对被控制系统的调试经验和运行情况来选择控制参数的方法。
它是通过实际试验来调整控制参数,通过观察系统的响应和稳定性来判断参数的合理性。
2. Ziegler-Nichols整定法Ziegler-Nichols整定法是根据系统的临界响应来选择PID控制参数的方法。
在该方法中,首先将I和D参数设置为零,然后不断提高P控制参数直到系统发生临界振荡。
根据振荡周期和振荡增益的比值来确定P、I和D的参数值。
3.设计模型整定法设计模型整定法是根据对被控系统的数学建模来确定PID控制参数的方法。
通过建立被控系统的数学模型,分析其频率响应和稳态特性,从而设计出合理的控制参数。
4.自整定法自整定法是通过主动调节PID控制器的参数,使被控系统的输出能够接近给定值。
该方法可以通过在线自整定或离线自整定来实现。
PID控制原理与参数的整定方法
PID控制原理与参数的整定方法PID控制(Proportional, Integral, Derivative)是一种常用的控制算法,广泛应用于工业控制中。
PID控制的原理在于根据系统的偏差来调整控制器的输出,通过比例、积分和微分三个部分的组合来实现稳定控制。
PID控制具有简单、易于实现以及对多种控制系统都适用的优点。
1. 比例部分(Proportional):控制器的输出与系统偏差成比例关系。
比例参数Kp越大,控制器对于系统偏差的响应越强烈。
2. 积分部分(Integral):控制器的输出与系统偏差的积分成比例关系,用于消除偏差的累积效应。
积分参数Ki越大,积分作用越明显,能够更快地消除较大的稳态偏差。
3. 微分部分(Derivative):控制器的输出与系统偏差的导数成比例关系,用于预测系统响应趋势。
微分参数Kd越大,控制器对于系统变化率的响应越快,从而减小超调和加快系统的响应速度。
1.经验整定法:通过试验和经验来估计PID参数。
该方法适用于绝大多数工控场合,但需要经验丰富的工程师进行调试。
2. Ziegler-Nichols整定法:由Ziegler和Nichols提出的一种经典的整定方法。
通过增大比例参数Kp,逐步增大积分参数Ki和微分参数Kd,直到系统出现震荡,然后通过震荡周期和幅值来计算PID参数。
3. Chien-Hrones-Reswick整定法:由Chien、Hrones和Reswick提出的整定方法。
通过对系统的动态响应进行数学分析,求解PID参数的合理取值。
4. Lambda调整法:通过修正Ziegler-Nichols整定法的参数,通过对系统的响应特性进行校正来得到优化的PID参数。
5.自适应整定法:通过分析系统的响应特性,利用数学模型和自适应算法来实时调整PID参数,以使系统保持最佳的控制性能。
需要指出的是,PID控制器参数的整定是一个复杂的问题,依赖于具体的控制对象和控制要求。
PID控制器的参数整定
PID控制器的参数整定PID定PID控制器的比例系数、积分时间和微分时间的大小。
PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。
它主要是依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。
二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。
PID控制器参数的工程方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。
现在一般采用的是临界比例法。
利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)公式计算得到PID控制器的参数。
在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。
对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3对于流量系统:P(%)40--100,I(分)0.1--1对于压力系统:P(%)30--70,I(分)0.4--3对于液位系统:P(%)20--80,I(分)1--5参数整定找最佳,从小到大顺序查先是比例后积分,最后再把微分加曲线漂浮绕大湾,比例度盘往小扳曲线偏离回复慢,积分时间往下降曲线波动周期长,积分时间再加长曲线振荡频率快,先把微分降下来动差大来波动慢。
微分时间应加长理想曲线两个波,前高后低4比1一看二调多分析,调节质量不会低P 、I 、 D 参数的预置与调整比例增益P变频器的PID 功能是利用目标信号和反馈信号的差值来调节输出频率的,一方面,我们希望目标信号和反馈信号无限接近,即差值很小,从而满足调节的精度:另一方面,我们又希望调节信号具有一定的幅度,以保证调节的灵敏度。
解决这一矛盾的方法就是事先将差值信号进行放大。
比例增益P 就是用来设置差值信号的放大系数的。
PID控制器参数的整定(新)
PID控制器参数的整定摘要:比例(Proportion)、积分(Intergral)、和微分(Differential)控制(以下简称PID控制),是控制系统中应用最广泛的一种控制规律。
实际运行经验及理论分析充分证明,这种控制规律在相当多的工业对象中,都能得到满意的控制效果。
它是从事自动控制领域的工程技术人员在模拟控制系统中最常使用的的一种方法。
关键词:比例、积分、微分、控制系统、整定在工业控制中,目前应用最多的控制方法仍然是PID控制,PID工作基理:由于来自外界的各种扰动不断产生,要想达到现场控制对象值保持恒定的目的,控制作用就必须不断的进行。
若扰动出现使得现场控制对象值(以下简称被控参数)发生变化,现场检测元件就会将这种变化记录并传送给PID控制器,改变过程变量值(以下简称PV值),经变送器送至PID 控制器的输入端,并与其给定值(以下简称SP值)进行比较得到偏差值(以下简称e值),调节器按此偏差并以我们预先设定的整定参数控制规律发出控制信号,去改变调节器的输出指令,从而使现场控制对象值发生改变,并趋向于给定值(SP值),以达到控制目的。
但PID 控制器的参数与系统所处的稳态工况有关。
一旦工况改变了,控制器参数的“最佳”值也就随着改变,这就意味着需要适时地整定控制器的参数。
但PID参数复杂繁琐的整定过程一直困扰着工程技术人员。
因此研究PID参数整定技术具有十分重大的工程实践意义。
本文对PID控制器参数的整定做以详细说明。
PID其控制图如下图所示。
在实时控制中,一般要求被控过程是稳定的,对给定量的变化能够迅速跟踪,超调量要小且有一定的抗干扰能力。
一般要同时满足上述要求是很困难的,但必须满足主要指标,兼顾其它方面。
参数的选择可以通过实验确定,也可以通过试凑法或者经验数据法得到。
一、P ID参数对输出响应的作用下面以PID输入E(k)的阶跃变化,描述K、Ti、Td、Kd参数在PID运算中的作用,适当地修改各参数的数值,可以获得不同的控制特性,满足不同的控制要求,从而完成PID 参数的整定。
PID控制及参数整定
PID控制及参数整定PID控制是一种常用的控制器设计方法,广泛应用于各种自动控制系统中。
PID控制器基于被控对象的误差信号,通过比例、积分和微分三个部分进行加权计算,生成控制量来驱动被控对象,使其输出接近设定值。
参数整定是指通过调整PID控制器的比例系数、积分时间和微分时间等参数,使得控制系统性能最佳化。
本文将详细介绍PID控制及参数整定的相关内容。
一、PID控制原理F(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,Kp、Ki和Kd分别是比例增益、积分时间和微分时间,e(t)为被控系统目标值与实际值之间的误差,de(t)/dt为误差的变化速率。
-比例作用:比例增益Kp使得控制器能够对误差进行直接补偿,其作用是使系统更快地接近目标值。
当比例增益增大时,系统响应速度更快,但可能引起过冲或稳定性问题。
-积分作用:积分时间Ki使得控制器能够记录误差的累积量,并对其进行补偿。
积分作用可以消除稳态误差,提高系统的精度。
但积分时间过长可能引起系统的振荡或不稳定。
-微分作用:微分时间Kd使得控制器对误差的变化率进行补偿,以避免系统过冲或振荡。
微分作用可以提高系统的稳定性和抗干扰能力。
但微分时间过大可能引起系统的噪声放大或响应迟滞。
二、PID参数整定方法PID参数整定是为了找到合适的Kp、Ki和Kd值,以获得最佳的控制系统性能。
常用的PID参数整定方法有以下几种:1.经验调整法:根据经验公式或类似系统的参数进行估计。
这种方法简单易行,但精度较低,适用于对控制精度要求不高的系统。
2. Ziegler-Nichols方法:这是一种经典的PID参数整定方法,通过系统的临界增益和临界周期来确定合适的参数。
具体步骤是先将系统增益逐渐增大,直到系统开始振荡,记录振荡的周期和振幅。
然后根据临界周期和振幅计算出Kp、Ki和Kd值。
这种方法相对简单,但对系统的稳定性有一定要求。
3.调整法:根据控制系统的特性和需求进行逐步调整。
PID控制器参数整定的一般方法
PID控制器参数整定的一般方法1.基于经验法:通过经验法简单快速地调整PID控制器的参数。
这种方法适用于一些简单的控制系统,但不适用于复杂的或非线性系统。
其中包括以下三种方法:-手动调节法:根据系统的实际情况,通过人工调节参数来达到系统的期望控制效果。
通常是先调节比例参数,再逐步调节积分和微分参数,直到系统响应稳定且无超调。
- Ziegler-Nichols法:该方法通过系统的阶跃响应曲线来确定参数。
首先,关闭积分和微分控制,只保留比例控制。
然后,逐步提高比例增益,直到系统发生持续的振荡。
根据系统的振荡周期和幅值,可以计算出适合的参数。
最后,再根据经验公式计算出最终的参数。
- Cohen-Coon法:该方法同样通过系统的阶跃响应曲线来确定参数。
首先,关闭积分和微分控制,只保留比例控制。
然后,根据系统的响应曲线,计算出滞后时间和时间常数。
再根据经验公式计算出最终的参数。
2.基于频率响应法:频率响应法通过分析系统的幅频特性和相频特性,确定PID控制器的参数。
其中包括以下两种方法:- 波特曼法:该方法通过对系统的开环频率响应曲线进行测量和分析,从而得到PID控制器的参数。
首先,绘制系统的Bode图,并测量得到相角裕度和增益裕度。
然后,根据经验公式计算出最终的参数。
-相位余量补偿法:该方法通过补偿系统的幅频特性和相频特性来确定PID控制器的参数。
首先,根据系统的开环传递函数,计算出稳定裕度。
然后,根据经验公式计算出最终的参数。
3.基于优化算法:优化算法通过数学求解或计算机迭代的方式,自动调节PID控制器的参数。
其中包括以下两种方法:-正交设计法:该方法通过正交试验设计的方法,选取一组试验点来进行系统响应的测量。
然后,根据系统的响应数据,使用数学模型或优化算法来计算出最优的参数组合。
-遗传算法:该方法通过模拟生物进化的过程,使用基因编码和自然选择的原理来进行参数调节。
首先,随机生成一组初始参数,并计算出适应度函数。
过程控制系统PID控制器的参数整定
过程控制系统PID控制器的参数整定1. 简介过程控制系统(PCS)是指在工业自动化生产中对于液体、气体、固体等各类物质的生产、输送、储存等全过程中的自动化控制系统。
其中,PID控制器是最常用的控制器之一。
PID控制器可以通过对系统反馈信号进行分析和处理,得到一个校正偏差的控制信号,从而使被控制的物体更加稳定,精确地达到期望目标。
PID控制器的参数整定,是指对PID控制器的比例系数Kp、积分时间Ti和微分时间Td进行合理的选择和调节,使得控制器的运行效果更加稳定,更加能够适应物体的变化和噪声的影响。
本文将介绍PID控制器的参数整定方法。
2. PID控制器的参数PID控制器的参数包括比例系数Kp、积分时间Ti和微分时间Td。
其中,比例系数Kp决定了响应的灵敏度和速度,积分时间Ti决定了系统的稳定性和动态性能,微分时间Td决定了在处理变化过程中的响应速度。
3. PID控制器参数整定方法在实际应用中,人们常常采用试错法和经验法来进行PID控制器的参数整定。
3.1 试错法试错法是人们最常用的PID控制器参数整定方法。
它的基本步骤如下:1.首先,将Kp设为一个比较小的数值(如0.5),将Ti设为一个比较大的数值(如300),将Td设为一个比较小的数值(如3)。
2.对实际被控对象进行调节,并观察其响应情况。
如果响应太慢,可以增大Kp和Td的值;如果响应过快,可以减小Kp和Td的值;如果存在静态误差,可以增大Ti的值。
3.重复以上步骤,直到系统的响应达到了预期要求。
3.2 经验法PID控制器的参数整定也可以参照经验公式。
根据推导,PID控制器的参数与被控对象实际响应的时间间隔有关系,可以利用以下经验公式进行计算:•持续时间法则–Kp = 0.6 * Kc,Ti = 0.5 * τc,Td = 0.125 * τc(τc为被控系统的持续时间)•Ziegler-Nichols法则–P型控制器:Kp = 0.5 * Kcu,Ti = 无限大,Td = 0。
PID控制原理及参数整定方法
PID控制原理及参数整定方法PID控制是一种经典的控制策略,广泛应用于各种工业自动化系统。
其通过比较设定值与实际输出值,根据误差及其变化趋势,实时调整控制器的参数,以达到期望的控制效果。
本文将详细介绍PID控制原理及参数整定方法,旨在帮助读者更好地理解和应用PID控制。
PID控制模型是由比例(P)、积分(I)和微分(D)三个环节组成的。
在工业自动化中,PID控制器作为一种核心组件,用于维持系统输出值与设定值之间的误差为最小。
PID控制器具有结构简单、稳定性好、易于实现等优点,因此被广泛应用于各种工业控制系统中。
PID控制原理基于控制系统的稳态误差,通过比例、积分和微分三个环节的作用,达到减小误差的目的。
比例环节根据误差信号的大小,产生相应的控制输出;积分环节根据误差信号的变化率,进一步调整控制输出;微分环节则根据误差信号的变化趋势,提前进行控制调整,以迅速消除误差。
PID参数整定的目的是选择合适的控制器参数,以满足系统的动态性能和稳态性能要求。
整定过程中,需要合理调整比例系数、积分时间和微分增益等参数。
其中,比例系数主要影响系统的稳态误差;积分时间用于控制积分环节的灵敏度;微分增益则决定了微分环节的作用强度。
针对不同的控制对象和系统要求,需要灵活调整这些参数,以获得最佳的控制效果。
以某化工生产线的液位控制为例,说明PID控制原理及参数整定的应用。
在此案例中,液位控制器通过比较设定值与实际液位值的误差,实时调整进料泵的转速,以维持液位稳定。
选择一个合适的比例系数Kp,使得系统具有较快的响应速度;调整积分时间Ti,以避免系统出现稳态误差;适当微分增益Kd的设定,可以改善系统的动态性能。
通过合理的参数整定,液位控制系统可以取得良好的控制效果。
然而,若比例系数过大,系统可能会出现振荡现象;若积分时间过长,系统可能无法达到预期的稳态性能;若微分增益过强,系统可能会对噪声产生过度反应。
因此,在参数整定过程中,需要根据实际情况进行反复调整,以达到最佳的控制效果。
PID控制器参数整定的一般方法
PID控制器参数整定的一般方法PID控制器是最常用的自动控制算法之一,在许多工业过程中都得到了广泛的应用。
PID控制器的性能取决于其参数的选择,因此进行参数整定是非常重要的。
一般来说,PID控制器参数整定的方法有试验法、经验法和优化法等。
下面将详细介绍这几种方法。
1.试验法:试验法是最简单直接的一种参数整定方法。
通过对控制系统施加特定的输入信号,观察输出响应的变化,然后根据试验结果来调整PID控制器的参数。
试验法的常用方法有步跃法、阶跃法和波形法等。
-步跃法:将控制系统的输入信号从零突变到一个固定值,观察输出信号的响应曲线。
根据响应曲线的时间延迟、超调量以及过渡过程等特性,来调整PID参数。
-阶跃法:将控制系统的输入信号从零线性增加到一个固定值,观察输出信号的响应曲线。
通过测量响应曲线的时间延迟、超调量和稳定性等指标,来调整PID参数。
-波形法:将控制系统的输入信号设定为一个周期性的波形,观察输出信号对输入信号的跟踪能力。
通过比较输出信号与输入信号的相位差和幅值差,来调整PID参数。
2. 经验法:经验法是基于控制技术专家的经验和实践总结而来的一种参数整定方法。
根据不同的工业过程,控制技术专家给出了一些常用的PID控制器参数整定规则,如Ziegler-Nichols法和Chien-Hrones-Reswick法等。
- Ziegler-Nichols法是一种经验性的整定方法,它基于一种称为临界增益法的原理。
通过逐渐增大PID控制器的增益参数,当系统的输出信号开始出现稳定的周期性振荡时,此时的控制器增益即为临界增益。
然后按照一定的比例来设定PID控制器的参数。
- Chien-Hrones-Reswick法是另一种经验性的整定方法,它基于一种称为极点配置法的原理。
通过观察控制系统的频率响应曲线,根据不同的频率和相位的变化情况来调整PID控制器的参数。
经验法的优点是简单易行,但其缺点是只适用于一些特定的工业过程,且对于复杂的系统来说可能无法得到最佳的参数。
PID控制及参数整定
PID控制及参数整定PID控制是一种经典的反馈控制方法,广泛应用于工业控制领域。
PID控制器根据输入信号和反馈信号的差异,计算出控制信号,使得反馈信号与期望值之间的差异尽可能小。
PID控制器由比例项、积分项和微分项组成,具体的控制信号计算公式为:u(t) = Kp * e(t) + Ki * ∫e(t) dt + Kd * de(t)/dt其中,u(t)为控制信号,Kp、Ki、Kd为三个参数,e(t)为输入信号与反馈信号的差异,de(t)/dt为误差变化率。
比例项(Proportional)是根据输入信号和反馈信号之间的差异进行比例放大,用于补偿系统中的静态误差。
增大比例参数Kp可提高系统的响应速度,但可能导致系统的超调和震荡。
积分项(Integral)是对误差的累积进行补偿,用于消除系统中的稳态误差。
增大积分参数Ki可提高系统的稳态精度,但可能导致系统的超调和震荡。
微分项(Derivative)是根据误差的变化率进行补偿,用于预测系统的未来状态,减小系统的超调和震荡。
增大微分参数Kd可提高系统的稳定性,但可能导致系统的响应速度变慢。
参数整定是确定PID控制器的参数数值,使得系统的控制性能达到最优。
一种常用的方法是经验整定法,即根据经验规则或者试错法对参数进行调整。
以下是一种常见的整定方法,调整比例参数Kp、积分参数Ki和微分参数Kd。
首先,将积分参数Ki和微分参数Kd设为0,只调整比例参数Kp。
增大Kp至系统出现轻微超调,然后再略微减小Kp,使系统稳定。
此时可以得到比例增益Kp。
然后,调整积分参数Ki。
先增大Ki至系统的稳定性能有所改善,然后再略微减小Ki,使系统更加稳定,避免超调或震荡。
最后,调整微分参数Kd。
增大Kd可提高系统的稳定性和响应速度,但过大的Kd可能导致系统出现震荡或振荡。
根据系统的特性,逐步增大Kd,并观察系统的响应,找到一个合适的Kd值。
整定参数时,可以通过试错法进行反复调整,根据系统的实际响应情况来优化参数的数值。
PID参数的整定
PID参数的含义: 比例系数P:增大比例系数P一般将加快系统的响应,在有静差的情况下有利于减小静差,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。
积分时间Ti:增大积分时间Ti有利于减小超调,减小振荡,使系统的稳定性增加,但是系统静差消除时间变长。
微分时间Td:增大微分时间Td有利于加快系统的响应速度,使系统超调量减小,稳定性增加,但系统对扰动的抑制能力减弱。
PID参数整定:1.在凑试时,可参考以上参数对系统控制过程的影响趋势,对参数调整实行先比例、后积分,再微分的整定步骤;2.首先整定比例部分。
将比例参数由小变大,并观察相应的系统响应,直至得到反应快、超调小的响应曲线;3.如果系统没有静差或静差已经小到允许范围内,并且对响应曲线已经满意,则只需要比例调节器即可;4.如果在比例调节的基础上系统的静差不能满足设计要求,则必须加入积分环节。
在整定时先将积分时间设定到一个比较大的值,然后将已经调节好的比例系数略为缩小(一般缩小为原值的0.8),然后减小积分时间,使得系统在保持良好动态性能的情况下,静差得到消除。
在此过程中,可根据系统的响应曲线的好坏反复改变比例系数和积分时间,以期得到满意的控制过程和整定参数;5.如果在上述调整过程中对系统的动态过程反复调整还不能得到满意的结果,则可以加入微分环节。
首先把微分时间D设置为0,在上述基础上逐渐增加微分时间,同时相应的改变比例系数和积分时间,逐步凑试,直至得到满意的调节效果。
PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。
一般可以通过理论计算来确定,但误差太大。
目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。
各种方法的大体过程如下:(1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。
若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制系统仿真与CAD
第八章 PID 控制器的参数整定
东北大学信息学院 薛定宇
控制系统仿真与CAD 国家级精品课程
2020/5/18
1/14
PID类控制器的参数整定
PID 类控制器是工业过程中应用最广泛的 一类控制器
本章主要内容
PID 控制系统的结构 PID 控制器的参数整定方法
10/14
改进的 PID 控制器参数整定方法
各种各样的改进
Aidan O’Dwyer. Handbook of PI and PID controller tuning rules. Imperial College Press, 2003
对 FOPDT 模型,PID_Tuner界面可以直接用于PI 或PID控制器参数的直接整定
控制系统仿真与CAD 国家级精品课程
2020/5/18
3/14
其 Laplace 变换为 实际应用的 PID 为
PID 控制器的标准结构为
其 Laplace 变换为
控制系统仿真与CAD 国家级精品课程
2020/5/18
4/14
离散 PID 控制器
并联 PID 控制器
MATLAB 函数 pid() 和pidstd() 可用 PID 控制器的其他变形
积分分离式 PID 离散增量式 PID 控制器
控制系统仿真与CAD 国家级精品课程
2020/5/18
5/14
8.2 PID 控制器参数整定方法
过程受控对象的低阶近似
FOPDT 模型 由响应曲线识别、基于频域响应的近似方法、
次最优降阶方法等 MATLAB 函数
例
控制系统仿942, Ziegler-Nichols 整定算法
经验公式
MATLAB 函数
控制系统仿真与CAD 国家级精品课程
2020/5/18
7/14
例 Ziegler-Nichols法设计控制器 受控对象
FOPDT近似
特征参数 K=1, L =2.7639, T =2.2361 Ziegler-Nichols控制器设计
PID控制器结构、支持驱动饱和的非线性环节 全局最优化方法,得出真正的最优控制器 针对伺服控制,SISO受控对象任意复杂 可以人为选择超调量等约束 不同目标函数的选择,推荐 ITAE 指标 可视优化,观察优化的进程 程序结构易读,可以容易地扩展
控制系统仿真与CAD 国家级精品课程
2020/5/18
pid_tuner: 总结前人算法,用界面实现
optimpid:可以解决其他算法无法求解的问题, 控制效果最好
控制系统仿真与CAD 国家级精品课程
2020/5/18
9/14
OptimPID程序界面
OptimPID控制器界面比现在控制器设计程
序都好,对已知对象模型的系统来说可以 直接使用,简单易用,无需命令,特点:
12/14
例 可以转换为内部延迟的受控对象
受控对象的MATLAB/Simulink描述mod_lti.mdl
MATLAB R2011b以后版本支持内部延迟? 早期版本得给对象画出 Simulink 模型 mod_1.mdl
控制系统仿真与CAD 国家级精品课程
2020/5/18
13/14
控制系统仿真与CAD 国家级精品课程
无须用户编程,程序界面直接可用 支持驱动饱和非线性环节、超调量约束等 任意复杂的非线性系统模型 线性系统模型无需编写一条程序, MATLAB新
版本下支持内部延迟的模型 可视优化、全局优化 版本只支持MATLAB R2009a 之后版本
控制系统仿真与CAD 国家级精品课程
2020/5/18
设计界面存在的问题
其他类型的受控对象模型没有现成的设计界面, 只能根据算法自己编程设计
Sisotool 界面能解决的问题局限性也很大
无法处理复杂结构和非线性环节
控制系统仿真与CAD 国家级精品课程
2020/5/18
11/14
OptimPID——最优PID控制器设计界面
针对伺服控制的经典结构 OptimPID特点
经典方法、其他方法
PID 控制器的设计程序 最优 PID 控制器设计界面——OptimPID
控制系统仿真与CAD 国家级精品课程
2020/5/18
2/14
8.1 PID 控制器的结构
PID 控制系统的结构
由误差信号 e(t) 过去、现在和将来的信息 生成控制信号,去控制受控对象
PID 控制器的典型结构(并联结构)
2020/5/18
14/14
控制效果不佳,需要改进
控制系统仿真与CAD 国家级精品课程
2020/5/18
8/14
PID控制器设计小结
这里介绍的是书中第八章的一个部分
设计思路
找一个FOPDT的近似模型:getfopdt()
根据模型设计控制器:ziegler()
设计方法有无数,只介绍ZIegler-Nichols
介绍了两个PID控制器设计界面