土的抗剪强度
《土的抗剪强度》课件
边坡稳定性分析的方法包括极限平衡法、有限元法和 离散元法等。这些方法可以根据工程实际情况选择, 以获得更准确的边坡稳定性评估结果。
挡土墙设计
挡土墙是工程中常用的支挡结构,主要用于防止土体滑移和坍塌。在挡土墙设计中,需要考 虑土的抗剪强度,以确保挡土墙的稳定性和安全性。
挡土墙的设计需要考虑多种因素,如土的性质、挡土墙的高度和宽度、荷载类型和大小等。 这些因素都会影响土的抗剪强度,进而影响挡土墙的稳定性和安全性。
提出了相应的加固措施和监测方案。
总结与展望
06
本课程主要内容总结
土的抗剪强度定义
土的抗剪强度影响因素
土的抗剪强度是指土体抵抗剪切破坏的极 限能力,是土力学中的重要参数。
土的抗剪强度受到多种因素的影响,如土 的颗粒组成、含水量、密度、孔隙比、有 机质含量等。
土的抗剪强度指标
土的抗剪强度与工程实践
通过试验测定土的抗剪强度指标,包括内 摩擦角和粘聚力,是评价土体稳定性的重 要依据。
了解土的抗剪强度对于工程实践具有重要 的意义,如地基承载力计算、边坡稳定性 分析、挡土墙设计等。
未来研究方向与展望
新型试验方法研究
随着科技的发展,未来可以探索更加准确、高效、环保的土的抗剪强 度试验方法。
非均质土的抗剪强度研究
对于非均质土,其抗剪强度具有空间变异性和各向异性,未来可以深 入研究其抗剪强度的变化规律。
土的抗剪强度理论
库伦-摩尔理论
库伦-摩尔理论是土的抗剪强度理论的经典理论之一,它基于摩擦和粘聚力原理,描述了土的剪切破坏 机理。
该理论认为,土的抗剪强度是由剪切面上的摩擦力和粘聚力共同作用的结果,其中摩擦力主要取决于土 颗粒之间的摩擦角,而粘聚力则与土的粘聚力和孔隙水压力有关。
土的抗剪强度的概念_概述说明以及解释
土的抗剪强度的概念概述说明以及解释1. 引言1.1 概述土的抗剪强度是土体工程中非常重要的一个概念。
它指的是在土体内部存在切变作用时,土体能够抵抗该切变作用并保持形状稳定的能力。
抗剪强度是评估土的力学性质、承载能力和稳定性的重要指标之一。
1.2 定义土的抗剪强度可以分为两个方面来理解:首先,从宏观角度来看,抗剪强度是指应变固结下产生切线应力所需达到最大值。
在一定条件下,当施加沿某一平面方向的剪切应变时,通过实验可以测得该平面上允许达到的最大应力值。
其次,从微观角度来看,抗剪强度是由于岩石或土壤颗粒之间产生摩擦造成接触邻近颗粒受到相互作用而形成的。
1.3 目的本文旨在全面介绍关于土的抗剪强度概念,并说明其重要性和应用。
通过详细解释土壤抗剪强度的定义和影响因素,以及传统试验方法和先进试验方法的介绍,读者可以深入了解土壤抗剪强度与土体工程应用之间的关系。
在展示几个土体加固和处理技术的工程实践案例后,我们还将讨论抗剪强度在土体设计中的重要作用。
通过这篇文章,读者将能够更好地理解土的抗剪强度的概念及其在土体工程中的意义,并对未来研究方向提出展望。
2. 土的抗剪强度概念2.1 概述土的抗剪强度是指土体在受到剪切力作用时能够抵抗变形破坏的能力。
它是土体力学中一个重要的参数,对于工程设计、施工和地质灾害预测等具有重要意义。
2.2 抗剪强度的定义土的抗剪强度可以分为有效应力状态下的抗剪强度和总应力状态下的抗剪强度。
在有效应力状态下,土体颗粒之间由于摩擦及内聚力的作用而形成一种阻止相对滑动或破坏的抵抗力。
该抵抗力即为土体的有效应力抗剪强度。
有效应力状态下,如果施加额外水平力,就会导致不可逆性变形,并可能引发失稳。
在总应力状态下,考虑了地下水对土体孔隙水压造成的影响。
总应力状态下的土壤承受着来自地表荷载及孔隙水压带来的综合作用,在这种情况下衡量土壤较为复杂。
当存在地下水流动时,因渗流带来部分应力的释放,土壤受到的总应力也会相应减小。
漫谈土的抗剪强度和抗剪强度指标
漫谈土的抗剪强度和抗剪强度指标土的抗剪强度是指土体在受到剪切力作用时所能承受的最大剪应力。
土体的抗剪强度是土的力学性质之一,对土的工程应用具有重要意义。
抗剪强度指标是对土体抗剪强度进行定量描述的参数。
以下将对土的抗剪强度和相关的抗剪强度指标进行漫谈。
首先,了解土的抗剪强度的概念是理解抗剪强度指标的基础。
土是由颗粒间填充或胶结而成的,具有一定的内聚力和摩擦阻力。
当土受到剪切力作用时,颗粒之间会发生相对位移,从而产生抗剪强度。
土的抗剪强度受到多种因素的影响,包括土的粒径组成、密实程度、含水量、胶结性质等。
通常情况下,土的抗剪强度随着土的密实程度的增加而提高,但当密实程度过高时,土的抗剪强度反而会下降。
抗剪强度指标是一种定量描述土体抗剪强度的参数,通常可以通过试验来确定。
常见的抗剪强度指标包括内摩擦角(φ)和剪切强度指数(C)等。
内摩擦角是指土体在受到剪切力作用时颗粒间的摩擦阻力大小,是衡量土的抗剪强度的重要参数。
内摩擦角的大小与土的结构、颗粒形状、含水量等有关。
剪切强度指数是表示土抗剪强度的另一个指标,它是土的剪切强度与有效应力之间的比值。
剪切强度指数可以用来比较不同土体之间的抗剪强度差异。
除了内摩擦角和剪切强度指数,还有一些其他的抗剪强度指标。
如粘聚力是指土表面或颗粒间存在的一种吸附力,是衡量土抗剪强度的另一个重要指标。
粘聚力的大小与土的胶结性质、颗粒形状等有关。
另外,抗剪强度指标还可以根据土壤类型的不同而有所差异。
例如,对于粘性土来说,塑性指数(PI)是表示土抗剪强度的一个重要指标,它是液限和塑限之差。
在实际土木工程中,抗剪强度指标的选择和使用是非常重要的。
不同的工程项目需要不同的土体抗剪强度,因此需要合理地选择相应的抗剪强度指标。
常见的工程应用中,一般会选择内摩擦角和剪切强度指数进行描述土的抗剪强度。
通过试验可以得到这些指标的值,从而为工程师提供合适的参考。
综上所述,土的抗剪强度是土体在受到剪切力作用时所能承受的最大剪应力。
第六章-土的抗剪强度
➢ 2、固结不排水试验(CU)
学 ➢ 3、固结排水试验(CD)
三轴压缩实验优缺点
土 ➢ 优点:
(1)可严格控制排水条件
力 (2)可量测孔隙水压力 (3)破裂面在最软弱处 ➢ 缺点:
学 (1)2=3,轴对称 (2)实验比较复杂
三、真三轴试验
土 力 学
四、无侧限抗压强度试验
力
f
cu
1 2
1
3
13 1uf 3uf 13
学 在不排水条件土 下体 ,孔 饱隙 和水压 B力 1,系改数变周
压力增量只会水 引压 起力 孔的 隙变化引 ,起 而土 不体 会 有效应力的变样 化在 ,剪 各切 试破坏应 前力 的相 有等 效 以抗剪强度不变。
二、固结不排水抗剪强度
0点说明未受任何固结压力的土,它不具有抗
学 ③土单元体的任何一个面上τ=τf时,就会发生剪 切破坏。此时土单元体的应力状态满足极限平 衡条件。
四 极限平衡条件的应用
土 已知土内一点M的主应力σ1m和σ3m ,以及土的内 摩擦角C、φ,可以判断该点土体是否破坏。
对于无粘性土
力1
m
sin
1 1 m 1m
3m 3m
m
学
>
m
m
<
m
莫尔应力圆的
半径
1 2
1
3
圆心:
(1 2
1
3
,0 )
土
A
I. II. III.
c
力
莫尔圆与抗剪强度之间的关系
抗剪强度包线与莫尔应力圆之间的关系有三种:
学 •(1)整个莫尔圆位于抗剪强度包线的下方 •(2)莫尔圆与抗剪强度包线相切(切点为A) •(3)莫尔圆与抗剪强度包线相割
土的抗剪强度
第4章土的抗剪强度§4.1概述土的抗剪强度是指土体对外荷载所产生的剪应力的极限抵抗能力。
在外荷载作用下,土体中将产生剪应力和剪切变形,当土体某点由外力产生的剪应力达到土的抗剪强度时,土就沿着剪应力作用方向产生相对滑移,该点便发生剪切破坏。
工程实践和室内试验都证明了土是由于受剪而产生破坏,剪切破坏是土体强度破坏的重要特点,因此,土的强度问题实质就是土的抗剪强度问题。
在工程实践中与土的抗剪强度有关的工程问题,主要有以下三类(图4-1):第一,是土作为材料构成的土工构筑物的稳定问题,如土坝、路堤等填方边坡以及天然土坡等稳定问题(图4-1a);第二,是土作为工程构筑物的环境的问题,即土压力问题,如挡土墙、地下结构等的周围土体,它的强度破坏将造成对墙体过大的侧向土压力,以至可能导致这些工程构筑物发生滑动、倾覆等破坏事故(图4-1b);第三,是土作为建筑物地基的承载力问题,如果基础下的地基土体产生整体滑动或因局部剪切破坏而导致过大的地基变形,都会造成上部结构的破坏或影响其正常使用的事故(图4-1c)。
图4-1 工程中土的强度问题(a)土坡滑动;(b)挡土墙倾覆;(c)地基失稳§4.2土的强度理论与强度指标4.2.1 抗剪强度的库仑定律土体发生剪切破坏时,将沿着其内部某一曲线面(滑动面)产生相对滑动,而该滑动面上的剪应力就等于土的抗剪强度。
1776年,法国学者库仑(C.A.Coulomb)根据砂土的试验结果(图4-2a),将土的抗剪强度表达为滑动面上法向应力的函数,即(4-1)τtanσϕ=⋅f以后库仑又根据粘土的试验结果(图4-2b),提出更为普遍的抗剪强度表达形式:(4-2)τtanσϕ⋅=c+f式中τ—土的抗剪强度,kPa;fσ—剪切滑动面上的法向应力,kPa;c—土的粘聚力,kPa;ϕ—土的内摩擦角,( )。
式(4-1)和式(4-2)就是土的强度规律的数学表达式,它是库仑在十八世纪七十年代提出的,所以也称为库仑定律,它表明对一般应力水平,土的抗剪强度与滑动面上的法向应力之间呈直线关系,其中c、ϕ称为土的抗剪强度指标。
土的抗剪强度指标的计算
土的抗剪强度计算公式是什么?
土的抗剪强度计算公式是:
其中φ为内摩擦角,c为土的粘聚力。
在以土的抗剪强度为纵坐标、剪切破坏面上的法向应力为横坐标的坐标系中,土的抗剪强度包线对横坐标轴的倾角。
通常以φ表示,即内摩擦角,是土的抗剪强度参数之一,其值与土的初始孔隙比、土粒形状、土的颗粒级配和土粒表面的粗糙度等因素有关。
可由土的直接剪切试验或三轴压缩试验测定,根据不同的试验方法和分析方法可得出总应力内摩擦角和有效应力内摩擦角。
土的抗剪强度的影响因素主要有土的组成、土的密实度和含水量、以及所受的应力状态等。
扩展资料
一般认为,有效应力强度指标宜用于分析地基的长期稳定性,而对于饱和软粘土的短期稳定间题,则宜采用不固结不排水试验或快剪试验的强度指标。
一般工程问题多采用总应力分析法,其指标和测试方法的选择大致如下:若建筑物施工速度较快,而地基土的透水性和排水条件不良时,可采用不固结不排水试验或快剪试验的结果。
如果地基荷载增长速率较慢,地基土的透水性不太小(如低塑性的粘土)以及排水条件又较佳时(如粘土层中夹砂层),则可以采用固结排水试验和慢剪试验指标;如果介于以上两种情况之间,可用固结不排水或固结快剪试验结果。
由于实际加荷情况和土的性质是复杂的,而且在建筑物的施工和使用过程中都要经历不同的固结状态,因此,在确定强度指标时还应结合工程经验。
常规试验方法所得到的非饱和压实土抗剪强度指标是综合的指标,其中包含了试验时不饱和状态对抗剪强度指标的贡献。
含水状态变化对压实土抗剪强度指标具有显著的影响,设计时必须充分考虑压实土含水状态变化来选取合理的抗剪强度指标。
其机理可用非饱和土理论解释;基质吸力对吸附强度的影响是非线性的。
土的抗剪强度(第四章)
不同试验方法的剪切试验结果
(1)不固结不排水剪(UU)
饱和粘性土在三组3下的不排水剪试验得到A、B、C三个 不同3作用下破坏时的总应力圆
结 不 排 水 剪 的 剪 切 试 验 结 果
cu
uA
有效应力圆 A
3A
总应力圆
u=0
B
1A
C
试验表明:三个试样的周围压力3不同,但破坏时的主应力差相 等,三个极限应力圆的直径相等,因而强度包线是一条水平线 三个试样只能得到一个有效应力圆
q
CU应力路径 K’f C
Kf
B p A
利用有效应力强度指标估算
f
cos
f
sin
f (1 -3)/2
’
K
1
1
cos
’3
’ 1
cos sin cos sin K 1U f 1 1 1 sin 1 sin cos sin f 1U 1 sin
45
cu
2
45
tanc
sin cu coscu 1 sin cu
f 1 3 / 2 sin cu tanc 3 3 1 sin cu
六 软粘土在荷载作用下的强度增长
饱和软粘土地基在外荷载作用下,随着孔隙水压力的消散以 及土层的固结,土的抗剪强度也将会随之增长。
总应力法(固结不排水强度为例)
q
tan cu
f
nf
f
O
3 =3 1
cu
1 3 sin cu 1 3 f
p(p)
土的抗剪强度指标
土的抗剪强度指标土的抗剪强度是土体在受到剪切力作用下能够抵抗破坏的能力。
它是土体的重要力学性质之一,用以描述土体抵抗剪切破坏的能力大小。
土体的抗剪强度受到多种因素的影响,包括土体类型、土结构、颗粒大小、含水量、固结状态等。
土体的抗剪强度可以通过剪切试验来测定。
在剪切试验中,应用剪切力作用于土样上,并测量剪切应力与剪切变形之间的关系,以确定土体的抗剪强度参数。
常用的土体抗剪强度指标有以下几种:1.摩擦角(φ):摩擦角是描述土体内部颗粒之间的摩擦力大小的指标。
它表示土体在受到剪切力作用下,颗粒之间能够抵抗剪切破坏的能力大小。
摩擦角是土体抗剪强度的主要指标,常用于描述非饱和土、粘性土和黏性土的抗剪强度。
2.内聚力(c):内聚力是描述含有粘性物质的土体抵抗剪切破坏的能力大小的指标。
内聚力是由于土体中吸附水分、胶结物质的存在而产生的内聚作用,与土体的粘聚力和表面张力有关。
内聚力通常用于描述粘性土和黏性土的抗剪强度。
3.剪切强度参数(c'和φ'):当土体处于饱和状态时,土体的抗剪强度可用剪切强度参数c'和φ'来表示。
剪切强度参数c'表示土体的内聚力,即无论剪切面上的剪切应力多小,土体都能够保持稳定。
剪切强度参数φ'表示土体的摩擦角,即土体在剪切面上具有一定的摩擦阻力。
4.渗透剪切强度(c'p和φ'p):当土体处于非饱和状态时,土体的抗剪强度表现出与饱和土不同的特性。
非饱和土的渗透剪切强度参数c'p和φ'p与剪切强度参数c'和φ'不同,它们分别表示非饱和土的渗透剪切内聚力和渗透剪切摩擦角。
在实际工程中,土体的抗剪强度是一个重要的参数,用于评估土体的稳定性和承载力。
在土方工程、地基工程、岩土工程等领域中,土体的抗剪强度参数通常被用于计算土体的承载能力、确定土体的稳定坡度和坝体形状等。
总结起来,土体的抗剪强度指标主要包括摩擦角、内聚力、剪切强度参数以及渗透剪切强度参数。
土的抗剪强度
Charles Augustin de Coulomb (1736 - 1806)
Christian Otto Mohr (1835-1918)
第五章 土的抗剪强度
§5.1 概述
高等土力学内容
三、抗剪强度理论的发展
(2)现代强度理论(考虑了中间主应力效应的强度理论) Lade-Duncan强度准则 Matsuoka-Nakai(SMP)强度准则 俞茂宏双剪应力强度准则
作用机理:库伦力(静电力)、范德华力、 胶结作用力和毛细力等 影响因素:地质历史、黏土颗粒矿物成分、 密度与离子浓度
粗粒土:一般认为是无黏性土,不具有黏聚强度:
当粗间有胶结物质存在时可具有一定的粘聚强度 非饱和砂土,粒间受毛细压力,具有假粘聚力
凝聚强度
第五章 土的抗剪强度
一、库仑定律 (2)有效应力法
摩擦强度
第五章 土的抗剪强度
§5.2 土的抗剪强度及强度理论
摩擦强度:决定于剪切面上的正应力σ和土的内摩擦角
A B B C 剪切面
A
C
包括如下两个 组成部分 : 滑动摩擦
• 是指相邻颗粒对于相对移动的约束作用 • 当发生剪切破坏时,相互咬合着的颗粒A 必须抬起,跨越相邻颗粒B,或在尖角处 被剪断(C),才能移动 • 土体中的颗粒重新排列,也会消耗能量
§5.2 土的抗剪强度及强度理论
2、库仑定律
τ f σ tg c
二、摩尔-库仑强度理论 极限平衡状态:在荷载作用下,地基内任一点都将产生应力, 当通过该点某一方向的平面上的剪应力等于土的抗剪强度时, 称该点处于极限平衡状态。 极限平衡条件(剪切破坏条件):
f
第五章 土的抗剪强度
乌江武隆县兴顺乡鸡冠岭山体崩塌
(完整版)土的抗剪强度
一、土的抗剪性
土是由固体颗粒组成的,土粒间的连结强度远远小于土粒本身的强度,故在外力作用下土粒 之间发生相互错动,引起土中的一部分相对另一部分产生滑动。土粒抵抗这种滑动的性能, 称为土的抗剪性。 土的抗剪性是由土的内摩擦角 φ 和内聚力 c 两个指标决定。对于高层建筑地基稳定性分析、 斜坡稳定性分析及支护等问题,c、φ 值是必不可少的指标。 无粘性土一般没有粘结力,抗剪力主要由颗粒间的滑动摩擦以及凹凸面间镶嵌作用所产生的 摩擦力组成,指标"内摩擦角 φ"值的大小,体现了土粒间摩擦力的强弱,也反映了土的抗 剪能力; 粘性土的抗剪力不仅有颗粒间的摩擦力,还有相互粘结力,不同种类的粘性土,具有不同的 粘结力,指标"内聚力 c"值的大小,体现了粘结力的强弱。因此,对于粘性土的抗剪能力, 由内摩擦角 φ 和粘聚力 c 两个指标决定。
三、影响土体抗剪强度的因素分析
决定土的抗剪强度因素很多,主要为:土体本身的性质,土的组成、状态和结构;而 这些性质又与它形成环境和应力历史等因素有关;此外,还决定于它当前所受的应力状态。
土的抗剪强度主要依靠室内经验和原位测试确定,试验中,仪器的种类和试验方法以 及模拟土剪切破坏时的应力和工作条件好坏,对确定强度值有很大的影响。
一、直接剪切试验
直接剪切仪分为应变控制式和应力控制式两种,前者是等速推动试样产生位移,测定相应的 剪应力,后者则是对试件分级施加水平剪应力测定相应的位移,目前我国普遍采用的是应变 控制式直剪仪。
应变控制式直剪仪主要部件由固定的上盒和活动的下盒组成,试样放在盒内上下两块透 水石之间。试验时,由杠杆系统通过加压活塞和透水石对试件施加某一垂直压力 σ,然后等 速转动手轮对下盒施加水平推力,使试样在上下盒的水平接触面上产生剪切变形,直至破坏, 剪应力的大小可借助与上盒接触的量力环的变形值计算确定。假设这时土样所承受的水平向 推力为 T,土样的水平横断面面积为 A,那么,作用在土样上的法向应力则为σ=P/A,而 土的抗剪强度就可以表示为 f =T/A。ຫໍສະໝຸດ 主要内容第一节 概述
土的抗剪强度
第四节 土的抗剪强度
• 二 库仑强度条件
图3.4-1 抗剪强度与法向应力之间的关系 (a)无粘性土; (b)粘性土 )无粘性土; )
第四节 土的抗剪强度
• 二 库仑强度条件
1776年,法国学者库仑(C、A、Coulomb)根据砂土的试验结果 (图3.4-1a),将土的抗剪强度表达为破坏面上法向应力的函数,即 τ f = σ ⋅ tan ϕ (3.4-1) 此后库仑又根据粘土的试验结果(图3.4-1b),提出更为普遍的抗剪 强度表达形式: τ f = σ ⋅ tan ϕ + c (3.4-2) 式中: τ f ——土的抗剪强度(kPa); σ ——剪切破坏面上的法向应力(kPa);
由式(3.4-4)可知,当平面 mn 与大主应力σ 1作用面的夹 mn 角 α 变化时, 平面上的 σ 和 τ 亦相应变化。为了表达 某一土体单元所有各方向平面上的应力状态,可以引用材 料力学中有关表达一点的应力状态的摩尔应力圆方法(图 3.4-3c)),即在 σ —τ 坐标系中,按一定的比例尺,在横 坐标上截取 σ 3和σ1 的线段 OB 和OC ,再以 BC 为直径作圆, 取圆心为 D ,自 DC 逆时针旋转2α 角,使DA 与圆周交于A 点 。不难证明, 点的横坐标即为平面 mn 上的法向应力σ A ,纵坐标即为剪应力 τ 。由此可见,摩尔应力圆圆周可以 完整地表示一点的应力状态。
第四节 土的抗剪强度
• 三 摩尔 库仑强度理论 摩尔—库仑强度理论
理论分析和实验研究表明,在各种破坏理论中,对土最适 用的是摩尔—库仑理论。1910年摩尔(Mohr)提出: 1)材料的破坏是剪切破坏 2)任何面上的抗剪强度τ f 是作用于该面上的法向应力 σ 的函数,即 τ f = f (σ ) (3.4-3) 3)当材料中任何一个面上的剪应力τ 等于材料的抗剪强 度 τ f 时,该点便被破坏。
土抗剪强度包括的技术参数
土抗剪强度包括的技术参数
土壤的抗剪强度是指土壤在受到外部剪切力作用时所能抵抗剪切变形的能力。
它主要包括以下几个技术参数:
1. 孔隙比(Void ratio):表示土壤颗粒与孔隙之间的比例关系,是描述土壤孔隙特性的一个重要参数。
2. 土壤容重(Bulk density):表示土壤的密实程度,是单位
体积土壤重量和其体积之比。
3. 泥土流动性指数(Soil consistency index):用来评估土壤的流动性和可塑性特性。
4. 剪切模量(Shear modulus):表示土壤抵抗剪切变形的能力,是衡量土壤刚性的一个重要参数。
5. 黏聚力(Cohesion):表示土壤颗粒间的吸附力或聚合力,
是土壤抵抗剪切力的主要来源之一。
6. 内摩擦角(Internal friction angle):描述土壤颗粒之间的摩
擦特性,是土壤抗剪强度的另一个重要参数。
以上参数通常通过室内试验(如剪切试验、压缩试验等)或现场测试(如钻孔土样采集、动力触探等)获得,并用于土壤力学分析和工程设计中。
需要注意的是,不同类型的土壤具有不同的抗剪强度特性,因此需要针对具体土壤类型进行相应的测试和分析。
土的抗剪强度理论
莫尔应力圆
可以证明:D点对应的正应力和剪应力刚好等于面上等于 正应力和剪应力。
莫尔应力圆圆周上的任意点,都代表着单元土体中相应面上的应力状 态。
θ
3
1
土的极限平衡条件 根据这一准则,当土处于极限平衡状态即应理解为破坏状 态,此时的莫尔应力圆即称为极限应力圆或破坏应力圆, 相应的一对平面即称为剪切破坏面(简称剪破面)。
下面将根据莫尔-库仑破坏准则来研究某一土体单元处于 极限平衡状态时的应力条件及其大、小主应力之间关系, 该关系称为土的极限平衡条件。
根据莫尔-库仑破坏准则,当单元土体达到极限平衡状态 时,莫尔应力圆恰好与库仑抗剪强度线相切。
根据图中的几何关系并经过三角公式的变换,可得
1 3
s cot
2
上式即为土的极限平衡条件。当土的强度指标c,φ 为已知,若土中某点的大小 主应力σ1和σ3满足上列关系式时,则该土体正好处于极限平衡或破坏状态。 上式也可适用于有效应力,相应c,φ应该用c’,φ’。
上式也可适用于有效应力,相应c,φ应该用c’,φ’
3f
1f
tg
2
(45
2
)
2c
•
tg(45
2
)
1f
τ <τ f 稳定 τ =τ f 极限 τ >τ f 破坏
二、莫尔-库仑强度理论及土的极限平衡条件
τ=τf 时的极限平衡状态作为土的破坏准则:土体中 某点任意面上剪应力满足该式,该点破坏。
可以把莫尔应力圆与库仑抗剪强度定律互相结合起 来。通过两者之间的对照来对土所处的状态进行判 别。把莫尔应力圆与库仑抗剪强度线相切时的应力 状态,破坏状态—称为莫尔-库仑破坏准则,它是 目前判别土体(土体单元)所处状态的最常用或最基本 的准则。
土的抗剪强度
构造
② 试验方法:套橡皮膜圆柱状土样(试验前饱和器内养护), 围压σ3(三向受力)、竖向压力 1 3 ③数据测读:各级压力作用下对应的体积变形和竖向变形以及孔隙水压力、 静止侧压力系数等 ④数据整理(多个试样):~ 曲线定大小主应力,进而作应力圆,可求 抗剪强度指标 、 和 f ,并据公式(5-4)求破坏面的 、 。
【岩土力学】
第五章 土的抗剪强度
19
极限应力园
【岩土力学】
第五章 土的抗剪强度
20
图中: ①任意截面 f ②其中一截面 f 该点处于极限平衡状 态,属于极限应力圆 ③有些截面 f 这些截面的平面剪应 力超过抗剪强度(当然不可能存在此状态)
【岩土力学】
第五章 土的抗剪强度
中密 28~32 30~34 34~40 36~42
密 30~34 32~36 38~46 40~48
6பைடு நூலகம்
26~30 26~30 30~34 32~36
第五章 土的抗剪强度
无粘性土的τf主要来源于内摩擦力 粘性土因 较小,则较多依靠粘聚力(原始粘聚 力、固化粘聚力)。 原始粘聚力 ——土颗粒之间的分子引力 固化粘聚力 ——化合物的胶结作用。 其中,固化粘聚力会因土结构的破坏而丧失, 故不能扰动基底土。
1 ds cos ds cos ds sin 0 3 ds sin ds sin ds cos 0
联立求解得:
1 1 = ( 1+ 3〕+ ( 1- 3 ) cos 2 2 2 1 ( 1 3 ) sin 2 2
土的抗剪强度
莫尔包线
土中应力与土的平衡状态 随着土中应力状态的改变,应力圆与强度包线之间的位置关系 将发生三种变化情况,土中也将出现相应的三种平衡状态 。
III II
f f f
稳定平衡状态
极限平衡状态 破坏状态
c
I
摩尔-库仑破坏准则:摩尔应力圆与库仑强度线相切的应力状态作为土的破坏准则
总应力强度参数与有效应力强度参数 正常固结试样分别在三种不同排水条件下进行试验,当以总 应力表示强度时,不同试验方法引起的强度差异是通过不同 的强度参数来反映的,亦即在总应力强度参数中包含了孔隙
水压力的影响;当以有效应力表示强度时,这种强度差异可
直接通过有效应力项来反映,而不同试验方法测得的有效强 度参数一般彼此接近,即若以有效应力表示,则不论采用那 种试验方法,都得到近乎同一条有效应力破坏包线,说明抗 剪强度与有效应力有唯一的对应关系。
qu f cu 2
十字板剪切试验
十字板剪切试验是一种土的抗剪强度的原位测试方法,它在反 映土体原始抗剪强度方面比室内试验有明显的优势,在实际工 程中得到了较广泛的应用。
qu f 2
适用范围:现场测定 饱和粘性土的不排水 强度,尤其适用于均 匀的饱和软粘土。
有效应力强度指标
用有效应力法及相应指标进行计算,概念明确。当土中的孔 隙水压力能通过实验、计算或其他方法加以确定时,宜采用 有效应力法。有效应力强度指标可用三轴排水剪或三轴固结 不排水剪(测孔隙水压力)测定。
3 1
粘性土的极限平衡条件为:
1 3 tan (45 ) 2c tan( 45 )
2 0 0
3 1 tan (45 ) 2c tan( 45 )
土的抗剪强度
第5章土的抗剪强度5.1概述土的抗剪强度是指土体对于外荷载所产生的剪应力的极限抵抗能力。
当土中某点由外力所产生的剪应力达到土的抗剪强度时,土体就会发生一部分相对于另一部分的移动,该点便发生了剪切破坏。
工程实践和室内试验都验证了建筑物地基和土工建筑物的破坏绝大多数属于剪切破。
例如堤坝、路堤边坡的坍滑(图5.1a),挡土墙墙后填土失稳(图5.1b)建筑物地基的失稳(图 5.1c),都是由于沿某一些面上的剪应力超过土的抗剪强度所造成。
因此土的抗剪强度是决定地基或土工建筑物稳定性的关键因素。
所以研究土的抗剪强度的规律对于工程设计、施工和管理都具有非常重要的理论和实际意义。
由于土的抗剪强度是岩土的重要力学性质之一,本章主要讲述叙述土抗剪强度的基本概念、土地抗剪强度的基本理论、土的抗剪强度的试验方法及土的抗剪强度指标的应用。
5.2土的抗剪强度的基本理论5.2.1直剪试验土的抗剪强度可以通过室内试验与现场试验测定。
直剪试验是其中最基本的室内试验方法。
直剪试验使用的仪器称直剪仪。
按加荷方式分为应变式和应力式两类。
前者是以等速推动剪切盒使土样受剪,后者则是分级施加水平剪力于剪力盒使土样受剪。
目前我国普遍应用的是应变式直剪仪如图5.2所示。
试验开始前将金属上盒和下盒的内圆腔对正,把试样置于上下盒之间。
通过传压板和滚珠对土样先施加垂直法向应力σ=p/F(F-土样的截面积),然后再施加水平剪力T,使土样沿上下盒水平接触面发生剪切位移直至破坏。
在剪切过程中,隔固定时间间隔,测读相应的剪变形,求出施加于试样截面的剪应力值。
于是即可绘制在一定法应力条件下,土样剪变形λ与剪应力τ的对应关系(图5.3a)。
τf。
同一种土的几个不同土样分别施加不同的垂直法向应力σ做直剪试验都可得到相应的剪应力-剪切位移曲线(图5.3a),根据这些曲线求出相应于不同的法向应力σ试样剪坏时剪切面上的剪应力τf。
在直角坐标σ-τ关系图中可以作出破坏剪应力的连线(图 5.3b)。
第5章土的抗剪强度
A
如果 σ1 <σ1f :不破坏; 如果 σ1 ≥σ1f :破坏。
f c tan
A
3 3f 3
1 1
3 1
1f
1
【例题1】已知某土体单元的大主应力σ1=480kPa,小主应力σ3= 210kPa。通过试验测得土的抗剪强度指标c=20kPa,φ=18°,问该 单元土体处于什么状态?
现场试验:十字板剪切试验、现场大型直剪试验
影响土抗剪强度指标的因素 土的种类 土样的天然结构是否被扰动 应力状态和应力历史 排水条件(室内试验时的一个需要考虑的最重要影响因 素)
室内直剪仪
室内直剪仪
三轴仪
三轴仪
无恻限压缩仪
抗剪强度理论的发展
本科只介绍的部分
(1)经典强度理论(Mohr- Coulomb强度理论)
n 1
3
m
1 (ds cos ) ( cos ) ds ( sin ) ds 0
求得
1 2
(1
3)
1 2
(1
3) cos 2
1 2
(1
3)sin 2
1
2
2
2
2
1
3
2
2
ds
3 ds sin
1 ds cos
2、莫尔应力圆
正应力:压为正,拉为负; 剪应力:逆时针为正,顺时针为负。
1、不能用于反映土体的抗拉强度及破坏特性; 2、不能反映高压下土体的强度及破坏特性; 3、不能反映土体强度及破坏的中间主应力效应。
(a) 红砂岩
(b) 花岗岩
(c)破坏面方向
现代强度理论(考虑了中间主应力效应的强度理论)
Lade-Duncan强度准则 Matsuoka-Nakai(SMP)强度准则 俞茂宏双剪应力强度准则 Drucker-Prager强度准则 其它
第五章 土的抗剪强度
土的抗剪强度
5.1 概述
土的抗剪强度
是指土体对外荷载所产生的剪应力的 极限抵抗能力。剪切破坏是土体破坏的重 要特征。 砂土:其抗剪强度由内摩擦阻力构成, 其大小取决于土粒表面的粗糙度、密实度、 凸颗粒大小及级配等因素。 粘性土:其抗剪强度由粘结力和内摩 擦阻力两部分组成。
与土的抗剪强度有关的工程问题
u B 3 A( 1 3 )
式中:A、B-分别为不同应力条件下的孔隙压力系数。
1、试样在各向均等的初始应力作用下固结完毕
u0 0
2、试样受到各向均等的周围压力作用,试样体积变化主 要是孔隙空间的压缩所致(固体颗粒和水体积视为不可压 缩)。 孔隙体积 VV VV 压缩系数 CV u1
f
2M
D 2 ( H
D ) 3
5.3 孔隙压力系数A、B
英国斯肯普顿(Skempton) 等于1954年根据三轴压缩试验的 结果,首先提出孔隙压力系数的 概念,并用以表示土中孔隙压力 (饱和土体的孔隙压力即为孔隙 水压力)的大小。他们在三轴试 验的基础上提出了复杂压力状态 下的孔隙压力表达式为:
原理:土体剪切破坏时所施加的扭矩,与剪切破坏圆柱 面(侧面和上下面)上土的抗剪强度所产生的抵抗力矩相 等。即:
M M1 2M 2
(1)圆柱体侧面上的抗扭力矩: D M 1 DH f 2 (2)圆柱体上、下表面上的抗扭力矩: D D 2 M2 ( ) f 3 4 (3)土的抗剪强度:
中灵敏度土:2 < St ≤4
高灵敏度土: St > 4 土的灵敏度越高,其结构性越强,受扰动后土的强度降低就越多。粘 性土受扰动而强度降低的性质,一般而言对工程建设是不利的。
四、十字板剪切验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 土的抗剪强度第一节 概述建筑物由于土的原因引起的事故中,一部分是沉降过大,或是差异沉降过大造成的;另一方面是由于土体的强度破坏而引起的。
对于土工建筑物(如:路堤、土坝等)来说,主要是后一个原因。
从事故的灾害性来说,强度问题比沉降问题要严重的多。
而土体的破坏通常都是剪切破坏;研究土的强度特性,就是研究土的抗剪强度特性。
①土的抗剪强度(τf ):是指土体抵抗抗剪切破坏的极限能力,其数值等于剪切破坏时滑动的剪应力。
②剪切面(剪切带):土体剪切破坏是沿某一面发生与剪切方向一致的相对位移,这个面通常称为剪切面。
其物理意义:可以认为是由颗粒间的内摩阻力以及由胶结物和束缚水膜的分子引力所造成的粘聚力所组成。
无粘性土一般无连结,抗剪强度主要是由颗粒间的摩擦力组成,这与粒度、密实度和含水情况有关。
粘性土颗粒间的连结比较复杂,连结强度起主要作用,粘性土的抗剪强度主要与连结有关。
决定土的抗剪强度因素很多,主要为:土体本身的性质,土的组成、状态和结构;而这些性质又与它形成环境和应力历史等因素有关;此外,还决定于它当前所受的应力状态。
土的抗剪强度主要依靠室内经验和原位测试确定,试验中,仪器的种类和试验方法以及模拟土剪切破坏时的应力和工作条件好坏,对确定强度值有很大的影响。
第二节 抗剪强度的基本理论一、库仑定律(剪切定律) 1773年 法国学者在法向应力变化范围不大时,抗剪强度与法向应力的关系近似为一条直线,这就是抗剪强度的库仑定律。
无粘性土:φστtg f ⋅= 粘性土:φστtg f ⋅=+c式中:f τ:土的抗剪强度,Kpa ;σ:剪切面的法向压力,Kpa ;φtg :土的内摩擦系数;φ:土的内摩擦角,度; c :土的内聚力,Kpa 。
σφtg :内摩擦力。
库仑定律说明:(1)土的抗剪强度由土的内摩擦力σφtg 和内聚力c 两部分组成。
(2)内摩擦力与剪切面上的法向应力成正比,其比值为土的内摩擦系数φtg 。
(3)表征抗剪强度指标:土的内摩擦角φ和内聚力c 。
无粘性土的c =0,内摩擦角(φtg )主要取决于土粒表面的粗糙程度和土粒交错排列的情况;土粒表面越粗糙,棱角越多,密实度越大,则土的内摩擦系数大。
粘性土的内聚力c 取决于土粒间的连结程度;内摩擦力(σφtg )较小。
二、总应力法和有效应力法总应力法是用剪切面上的总应力来表示土的抗剪强度,即:φστtg f ⋅=+c有效应力法是用剪切面上的有效应力来表示土的抗剪强度,即:c tg f +⋅=φστ或c tg f '+'⋅'=φστ式中:φ,c 或φ',c '分别为有效内摩擦角和有效内聚力。
饱和土的抗剪强度与土受剪前在法向应力作用下的固结度有关。
而土只有在有效应力作用下才能固结。
有效应力逐渐增加的过程,就是土的抗剪强度逐渐增加的过程。
剪切面上的法向应力与有效应力之间有如下关系:u +'=σσ土的强度主要取决于有效应力大小,故抗剪强度的关系式中应反映有效应力σ'更为合适。
即:c tg u c tg f '+'⋅-='+'⋅'=φσφστ)(总应力法与有效应力法的优缺点:1.总应力法:优点:操作简单,运用方便。
(一般用直剪仪测定) 缺点:不能反映地基土在实际固结情况下的抗剪强度。
2.有效应力法:优点:理论上比较严格,能较好的反映抗剪强度的实质,能检验土体 处于不同固结情况下的稳定性。
缺点:孔隙水压力的正确测定比较困难。
三、莫尔~库仑破坏标准1).莫尔~库仑破坏理论:以库仑公式φστtg f ⋅=+c 作为抗剪强度公式。
根据剪应力是否达到抗剪强度(τ=τf )作为破坏标准的理论就称为莫尔~库仑破坏理论。
2).莫尔~库仑破坏准则(标准):研究莫尔~库仑破坏理论如何直接用主应力表示,这就是莫尔~库仑破坏准则,也称土的极限平衡条件。
1.单元体上的应力和应力圆任取某一单元土体mjnk ,其面积为dxdz ,在单元体上任取某一截面mn ,则得公式:⎪⎩⎪⎨⎧-=-++=ασστασσσσσ2sin )(212cos )(21)(21313131 式中:σ:任一截面mn 上的法向应力(Kpa );τ:任一截面mn 上的剪应力(Kpa ); σ1:最大主应力; σ3:最小主应力;α:截面mn 与最小主应力作用方向的夹角。
上述应力间的关系也可用应力圆(莫尔圆)表示。
将上两式变为:⎪⎩⎪⎨⎧-=-=+-ασστασσσσσ2sin )(212cos )(21)(21313131取两式平方和,即得应力圆的公式:2312221)2()2(σστσσσ-=+--表示为纵、横坐标分别为τ及σ的圆,圆心为(231σσ+,0),圆半径等于231σσ-。
2、极限平衡条件通过土中一点,在1σ,3σ方向的交角α为)245(ϕα+=这一对破裂面之间的夹角在1σ作用方向等于ϕθ-=90。
从应力圆的几何条件可知:oao o aba o ab Sin +==''ϕ 而:c ctg o o ∙=ϕ'231σσ-=ab231σσ+=oa代入上式得:ϕσσσσσσϕσσϕctg c ctg c Sin ∙++-=++∙-=2)()(31313113121进一步整理可得:ϕσσϕσσSin c 2cos 23131++∙=-)245(2)245(231ϕϕσσ+∙++= tg c tg)245(2)245(213ϕϕσσ-∙--= tg c tg注:(1)由实最小主应力3σ及公式)245(2)245(231ϕϕσσ+∙++=tg c tg 可推求土体处于极限状态时,所能承受的最大主应力σ1f (若实际最大主应力中σ1); (2)同理,由实测σ1及公式)245(2)245(213ϕϕσσ-∙--=tg c tg 可推求土体处于极限平衡状态时所能承受的最小主应力σ3f (若实测最小主应力为σ3);(3)判断当σ1f >σ1 或σ3f <σ3时,土体处于稳定平衡 当σ1f =σ1 或σ3f =σ3时,土体处于极限平衡 当σ1f <σ1 或σ3f >σ3时,土体处于失稳状态。
第三节 抗剪强度的试验方法 一、按排水条件分快剪(不排水剪)固结快剪(固结不排水剪) 慢剪(排水剪)1、快剪(不排水剪)这种试验方法要求在剪切过程中土的含水量不变,因此,无论加垂直压力或水平剪力,都必须迅速进行,不让孔隙水排出。
适用范围:加荷速率快,排水条件差,如斜坡的稳定性、厚度很大的饱和粘土地基等。
2、固结快剪(固结不排水剪)试样在垂直压力下排水固结稳定后,迅速施加水平剪力,以保持土样的含水量在剪切前后基本不变。
试用范围:一般建筑物地基的稳定性,施工期间具有一定的固结作用。
3、慢剪(排水剪)土样的上、下两面均为透水石,以利排水,土样在垂直压力作用下,待充分排水固结达稳定后,再缓慢施加水平剪力,使剪力作用也充分排水固结,直至土样破坏。
适用范围:加荷速率慢,排水条件好,施工期长,如透水性较好的低塑性土以及再软弱饱和土层上的高填土分层控制填筑等等。
二、按试验仪器分1、直接剪切试验优点:仪器构造简单,操作方便 缺点:(1)剪切面不一定是试样抗剪能力最弱的面;(2)剪切面上的应力分布不均匀,而且受剪切面面积愈来愈小; (3)不能严格控制排水条件,测不出剪切过程中孔隙水压力的变化。
2、三轴剪切试验优点:(1)试验中能严格控制试样排水条件及测定孔隙水压力的变化;(2)剪切面不固定; (3)应力状态比较明确(4)除抗剪强度外,尚能测定其它指标。
缺点:(1)操作复杂;(2)所需试样较多;(3)主应力方向固定不变,而且是再令'32σσ=的轴对称情况下进行的,与实际情况尚不能完全符合。
三、按控制方法分剪切试验控制方法分为应变控制式和应力控制式两种。
四、直接剪切试验1、取样要求:用环刀取,环刀面积不小于30cm 2,环刀高度不小于2cm ,同一土样至少切取4个试样。
2、试验方法(1)快剪(q ):试样在垂直压力施加后立即进行快速剪切,试验全过程都不许有排水现象产生。
(2)固结快剪(Cq ):试样在垂直压力下经过一定程度的排水固结后,再进行快速剪切。
(3)慢剪(S ):试样在垂直压力排水固结后慢慢的进行剪切,剪切过程中孔隙水可自由排出。
试验结果:一般情况下,快剪所得的ϕ值最小,慢剪所得的ϕ值最大,固结快剪居中。
3、指标计算直接剪切试验的结果用总应力法按库仑公式ϕστtg c f +=,计算抗剪强度指标。
用同一土试样切取不少于四个试样进行不同垂直压力作用下的剪切试验后,用相同的比例尺在坐标纸上绘制抗剪强度f τ与垂直压力P 的相关直线,直线交f τ轴的截距即为土的内聚力c ,直线倾斜角即为土的内摩擦角ϕ,相关直线可用图解法或最小二乘法确定。
图见教材4、残余抗剪强度(1)物理意义:土的剪应力~剪应变关系可分为两种类型:一种是曲线平缓上升,没有中间峰值,如松砂;另一种剪应力~剪应变曲线有明显的中间峰值,在超越峰值后,剪应变不断增大,但抗剪强度确下降,如密砂。
在粘性土中,坚硬的、超压密的粘土的剪应力~剪应变曲线常呈现较大峰值,正常压密土或软粘土则不出现峰值,或有很小的峰值。
(图见教材)超过峰值后,当剪应变相当大时,抗剪强度不再变,此时稳定的最小抗剪强度,称为土的残余抗剪强度;而峰值剪应变则称为峰值强度。
残余抗剪强度以下式表达:r r fr tg c ϕστ+=式中:fr τ:土的残余抗剪强度(Kpa )r c :残余内聚力(一般r c ≈0)KPar ϕ:残余内摩擦角(º)σ :垂直应压力(Kpa )在进行滑坡的稳定性计算或抗滑计算时,土的抗剪强度的取值,一般需要考虑土的残余抗剪强度。
(2)试验方法一般采用排水反复直接剪切试验,剪切速率应低于0.02mm/min ,取土要求同上。
五、三轴剪切试验 1、原理三轴剪切试验的原理是在圆柱形试样上施加最大主应力(轴向压力)1σ和最小主应力(周围压力)3σ。
保护其中之一(一般是3σ)不变,改变另一个主应力,使试样中的剪应力逐渐增大,直至达到极限平衡而剪坏,由此求出土的抗剪强度。
2、试验方法(1)快剪(不固结不排水剪)UU试样在完全不排水条件下施加周围压力后,快速增大轴向压力到试样破坏。
控制方法:应变控制式。
(2)固结快剪(固结不排水剪)CU试样先在周围压力下进行固结,然后在不排水条件下快速增大轴向压力到试样破坏。
控制方法:应变控制式。
(3)慢剪(固结排水剪)CD试样先在周围压力下进行固结,然后继续在排水条件下缓慢增大轴向压力到试样破坏。
控制方法:应力控制式。
3、试样控制(1)取土要求:试样制备的数量一般不少于4件。