(完整版)立体几何证明方法——证线面垂直
高中数学必修2立体几何专题-线面、面面垂直专题总结
![高中数学必修2立体几何专题-线面、面面垂直专题总结](https://img.taocdn.com/s3/m/972ce2015022aaea988f0f7c.png)
∵AD平面ABC,
∴平面ABC⊥平面SBC.
证法二:∵SA=SB=SC=a,又 ∠ASB=∠ASC=60°, ∴△ASB,△ASC都是等边三角形. ∴AB=AC=a. 作AD⊥平面BSC于点D, ∵AB=AC=AS, ∴D为△BSC的外心. 又∵△BSC是以BC为斜边的直角三角形,
2 3
.
即CE与底面BCD所成角的正弦值为
2 3
.
【评析】求平面的斜线与平面所成的角的一般方法是: 在斜线上找一具有特殊性的点,过该点向平面作垂线, 连接垂足和斜足,即为斜线在平面上的射影,进而作出 斜线与平面所成的角,再解直角三角形求出线面角的大 小,同时要注意其取值范围.
在三棱锥O—ABC中,三条棱OA,OB,OC两两
又∵CE∩BE=E,
∴SA⊥平面BCE.∵BC平面BCE,
图2-4-2
返回目录
∴SA⊥BC. 又∵AD⊥BC,AD∩AS=A, ∴BC⊥平面SAD.
∵SH 平面SAD,∴SH⊥BC.
又∵SH⊥AD,AD∩BC=D, ∴SH⊥平面ABC.
【评析】证明线面垂直,需先有线线垂直,抓住条件中 两个等腰三角形共用一条边,抓住公共边的中点,通过 作辅助平面,找到所需要的另一条直线.
【分析】欲证面面垂直,需证线面垂直.故找出垂线是关键.
【证明】证法一:如图1-10-4所示,取BC的中点D,连
接AD,SD.
由题意知△ASB与△ASC是等边三角形,则AB=AC,
∴AD⊥BC,SD⊥BC. 令SA=a,在△SBC中,SD=2 a,
2
又AD=AC2 -CD=2 a,2
2
∴AD2+SD2=SA2,即AD⊥SD.
立体几何中垂直的证明
![立体几何中垂直的证明](https://img.taocdn.com/s3/m/e7bc6dcf2af90242a995e590.png)
全方位教学辅导教案4、如图,在多面体ABCDE 中,AE⊥面ABC ,BD∥A E ,且AC =AB =BC =BD =2,AE =1,F 为CD 中点.(1)求证:EF⊥面BCD ;5、如图,在底面为平行四边形的四棱锥P ABCD -中,,AB AC PA ABCD ⊥⊥平面,且PA AB =,点E 是PD 的中点。
⑴求证:AC PB ⊥; ⑵求证:PB AEC ∥平面;6、 如图,在四棱锥P -ABCD 中, PA ⊥底面ABCD ,AB ⊥AD ,AC ⊥CD , ∠ABC =60°,PA =AB =BC ,E 是PC 的中点. (1)求证:CD ⊥AE ;(2)求证:PD ⊥面ABE.题型二、面面垂直的判定与性质1、如图AB 是圆O 的直径,PA 垂直于圆O 所在的平面,C 是圆周上不同于A 、B 的任意一点,求证:平面PAC 垂直平面PBC 。
2、如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥证明:平面1ABC ⊥平面11A BC ;3、已知:如图,将矩形ABCD 沿对角线BD 将BCD 折起,使点C 移到点1C ,且 1C ABD O AB 在平面上的射影恰好在上。
11(2).BDC ⊥⊥11()求证:AD BC 求证:面ADC 面4、如图所示,在长方体1111ABCD A BC D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值; (Ⅱ)证明:平面ABM ⊥平面A 1B 1M 15、已知四面体ABCD 中,CD BD AC AB ==,,平面⊥ABC 平面BCD ,E 为棱BC 的中点。
(1)求证:⊥AE 平面BCD ; (2)求证:BC AD ⊥;OBC 1ADC6、S 是△ABC 所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BC.7、在四棱锥中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD⊥底面ABCD 证明:AB⊥平面VADSACBVD CBA8、如图所示,在四棱锥P —ABCD 中,底面ABCD 是∠DAB=60°且边长为a 的菱形,侧面PAD 为正三角形,其所在平面垂直于底面ABCD ,若G 为AD 边的中点, (1)求证:BG⊥平面PAD ; (2)求证:AD⊥PB;(3)若E 为BC 边的中点,能否在棱PC 上找到一点F ,使平面DEF⊥平面ABCD ,并证明你的结论.题型三、平行与垂直的综合题(2)PDA=45.PA ABCD CDMN PCD ⊥⊥∠⊥。
立体几何基本知识总结和线面垂直平行六种关系的证明方法
![立体几何基本知识总结和线面垂直平行六种关系的证明方法](https://img.taocdn.com/s3/m/22c7ac886294dd88d0d26b72.png)
立体几何基本知识总结I. 基础知识要点 一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个. 4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向) 二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图). (二面角的取值范围[]180,0∈θ)(异面直线所成角(] 90,0∈θ)(斜线与平面成角()90,0∈θ)(直线与平面所成角[]90,0∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. 5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面) 三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线)③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性12方向相同12方向不相同证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交) ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直. ● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理),得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .●三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行) ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√) 5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短. [注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都POAaPαβθM AB O取加则必有⎥⎦⎤⎝⎛∈2,0πθ)7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图) ⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条. 成角比交线夹角一半大,又比交线夹角补角小,一定有2条. 成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 五、 棱锥、棱柱. 1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的. ②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全.等的矩形..... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是钜形可如图) ②(直棱柱定义)棱柱有一条侧棱和底面垂直.⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.推论一:长方体一条对角线与同一个顶点的三条棱所成的角为γβα,,,则1cos cos cos 222=++γβα. 推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. [注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形)④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.图1θθ1θ2图2⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心. [注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α)附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =. 注:S 为任意多边形的面积(可分别多个三角形的方法). ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高). ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)ii. 若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直. 简证:A B ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令b AC c AD a AB ===,,得c a c b AD BC c AD a b AB AC BC -=⋅⇒=-=-=,,已知()()0,0=-⋅=-⋅c a b b c a0=-⇒c b c a 则0=⋅AD BC .iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形. 简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形. 3. 球:⑴球的截面是一个圆面. ①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. l ab c FEH GBCDAO'⑵纬度、经度:①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数.②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧ACD B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.构造以半径为斜边的直角三角形线面垂直平行六种关系的证明方法总结一、线线平行的证明方法:1、利用平行四边形。
立体几何常见证明方法
![立体几何常见证明方法](https://img.taocdn.com/s3/m/78eae0d684254b35eefd34ee.png)
立体几何方法归纳小结一、线线平行的证明方法1、根据公理4,证明两直线都与第三条直线平行。
2、根据线面平行的性质定理,若直线a平行于平面A ,过a的平面B与平面A相交于b ,则a//b。
3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b 。
4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线a与直线b,则a//b 。
二、线面平行的证明方法1、根据线面平行的定义,证直线与平面没有公共点。
2、根据线面平行的判定定理,若平面A内存在一条直线b与平面外的直线a平行,则a//A 。
(用相似三角形或平行四边形)3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。
三、面面平行的证明方法1、根据定义,若两平面没有公共点,则两平面平行。
2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。
或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。
3、垂直同一直线的两平面平行。
4、平行同一平面的两平面平行。
四、两直线垂直的证明方法1、根据定义,证明两直线所成的角为90°2、一直线垂直于两平行直线中的一条,也垂直于另一条.3、一直线垂直于一个平面,则它垂直于平面内的所有直线.4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).五、线面垂直的证明方法1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.3、一直线垂直于两平行平面中的一个,也垂直于另一个.4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.六、面面垂直的证明方法1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。
第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习
![第8章立体几何专题4 垂直的证明-人教A版(2019)高中数学必修(第二册)常考题型专题练习](https://img.taocdn.com/s3/m/56074b8277232f60dccca147.png)
垂直的证明【方法总结】1、证明线面垂直的方法:①利用线面垂直定义:如果一条直线垂直于平面内任一条直线,则这条直线垂直于该平面;②用线面垂直判定定理:如果一条直线与平面内的两条相交直线都垂直,则这条直线与平面垂直;③用线面垂直性质:两条平行线中的一条垂直于一个平面,则另一条也必垂直于这个平面.2、证明线线(或线面)垂直有时需多次运用线面垂直的定义和线面垂直的判定定理,实现线线垂直与线面垂直的相互转化.3、证明面面垂直一般要先找到两个面的交线,然后再在两个面内找能与交线垂直的直线,最后通过证明线面垂直证明面面垂直。
【分类练习】考向一线面垂直例1、在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AB BC ⊥,1AB BC ==,2DC =,点E 在PB 上求证:CA ⊥平面PAD ;【答案】(1)证明见解析;(2)2.【解析】(1)过A 作AF ⊥DC 于F ,则CF =DF =AF ,所以∠DAC =90°,即AC ⊥DA ,又PA ⊥底面ABCD ,AC ⊂面ABCD ,所以AC ⊥PA ,因为PA 、AD ⊂面PAD ,且PA ∩AD =A ,所以AC ⊥平面PAD .例2、如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;解析:(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .例3、如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点求证:AC ⊥平面BEF ;【解析】(1)在三棱柱111ABC A B C -中,∵1CC ⊥平面ABC ,∴四边形11A ACC 为矩形.又E ,F 分别为AC ,11A C 的中点,∴AC ⊥EF .∵AB BC =.∴AC ⊥BE ,∴AC ⊥平面BEF .例4、如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:BD ⊥平面PAB ;【解析】因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA .所以222AD AB BD =+,所以BD AB ⊥.因为PA AB A = ,所以BD ⊥平面PAB .【巩固练习】1、如图,在三棱柱ABC-A 1B 1C 1中,AB=AC,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.证明:A 1D⊥平面A 1BC;【答案】见解析【解析】证明:设E 为BC 的中点,连接A 1E,AE.由题意得A 1E⊥平面ABC,所以A 1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A 1BC.连接DE,由D,E 分别为B 1C 1,BC 的中点,得DE∥B 1B 且DE=B 1B,从而DE∥A 1A 且DE =A 1A,所以AA 1DE 为平行四边形.于是A 1D∥AE.因为AE⊥平面A 1BC,所以A 1D⊥平面A 1BC.2.(2019·上海格致中学高三月考)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .(1)证明:PA ∥平面EDB ;(2)证明:PB ⊥平面EFD .【答案】(1)详见解析;(2)详见解析.【解析】(1)设AC 与BD 相交于O ,连接OE ,由于O 是AC 中点,E 是PC 中点,所所以PA ∥平面EDB .(2)由于PD ⊥底面ABCD ,所以PD BC ⊥,由于,BC CD PD CD D ⊥⋂=,所以BC ⊥平面PCD ,所以BC DE ⊥.由于DP DC =且E 是PC 中点,所以DE PC ⊥,而PC BC C ⋂=,所以DE ⊥平面PBC ,所以DE PB ⊥.依题意EF PB ⊥,DE EF E = ,所以PB ⊥平面EFD .3.(2019·江苏高三月考)如图,在四棱锥P ABCD -中,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,OP OC =,E 为PC 的中点,PA PD ⊥.(1)求证://PA 平面BDE ;(2)求证:PA ⊥平面PCD【答案】(1)详见解析(2)详见解析【解析】(1)连结OE .因为四边形ABCD 是平行四边形,AC ,BD 相交于点O ,所以O 为AC 的中点.因为E 为PC 的中点,所以//OE PA .因为OE ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE .(2)因为OP OC =,E 为PC 的中点,所以OE PC ⊥.由(1)知,//OE PA ,所以PA PC ⊥.因为PA PD ⊥,PC ,PD ⊂平面PCD ,PC PD P ⋂=,所以PA ⊥平面PCD .考向二面面垂直例1、如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ;(2)求证:平面PAC ⊥平面PDE .【答案】(1)详见解析(2)详见解析【解析】证明:(1)取PD 中点G ,连AG ,FG ,F ,G 分别是PC ,PD 的中点又E 为AB 中点//AE FG ∴,AE FG=四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H= 由AEH CDH ∆∆ 及E 为AB 中点又BAD ∠为公共角GAE BAC∴∆∆ 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A= DE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE例2、如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .例3、如图,在梯形ABCD 中,AB ∥CD ,AD=DC=CB=a ,∠ABC=3π,平面ACFE ⊥平面ABCD ,四边形ACFE 是矩形,AE=AD ,点M 在线段EF 上。
证明线面垂直过程详解
![证明线面垂直过程详解](https://img.taocdn.com/s3/m/2b4f7fb5f01dc281e43af07e.png)
证明线面垂直过程详解证明线面垂直过程∵PA⊥平面α,直线L∈平面α∴PA⊥L========================①∵PB⊥平面β,直线L∈平面β∴PB⊥L========================②综合①②得:直线L⊥平面PAB(垂直于平面两条相交直线的直线垂直于这个平面)∴L⊥AB(垂直于平面的直线垂直于平面内的任一直线)线面垂直的判定定理证明,我一直觉得证明过程太过复杂。
前年曾经这样证明,今天写在这里。
m和n为平面中两条相交直线,通过平移或者说原本就在,使得l经过m、n的交点O,我们只需证明l垂直与平面中的任意一条直线g 即可!在m、n上分别以O点为中点截取AC、BD,则得到平行四边形ABCD。
此时不难由三角形全等的知识得到l⊥g。
答案补充证明:已知直线L1 L22相交于O点且都与直线L垂直,L3是L1 L2所在平面内任意1条不与L1 L2重合或平行的直线(重合或平行直接可得它与L1平行) 在L3上取E、F令OE=OF,分别过E、F作ED、FB交L2于D、B (令OD=OB)则�SOED ≌�S OFB (SAS) 延长DE、BF分别交L1于A、C 则�SOEA≌�SOFC(ASA)(注意角AEO与角CFO的补角相等所以它们相等)。
所以OA=OC,所以�SOAD≌�SOBC(SAS)所以AD=CB 因为L3垂直于L1 L2所以MA=MC,MD=MB 所以�SMAD≌�SMCD(SSS)所以角MAE= 角MCF 所以�SMAE≌�SMCF(SAS) 所以ME=MF,所以�SMOE≌�SMOF(SSS),所以角MOE=角MOF 又因为角MOE与角MOF互补,所以角MOE=角MOF=90度,即L⊥L31利用直角三角形中两锐角互余证明由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90° ,即直角三角形的两个锐角互余。
2勾股定理逆定理3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。
2017年__高二年级立体几何垂直证明题常见模型和方法
![2017年__高二年级立体几何垂直证明题常见模型和方法](https://img.taocdn.com/s3/m/7c29bcbbcc22bcd126ff0cf2.png)
立体几何垂直证明题常见模型及方法垂直转化:线线垂直线面垂直面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面A B C D 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A. 求证:'A D EF ⊥;类型二:线面垂直证明BE 'ADFG方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A BC D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1AO BDE ⊥平面变式1:在正方体1111ABCD A BC D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 .求证:CD ⊥平面A 1ABB 1;变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =,6BC =C○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
高中数学必修立体几何专题线面垂直方法总结
![高中数学必修立体几何专题线面垂直方法总结](https://img.taocdn.com/s3/m/ecb62600df80d4d8d15abe23482fb4daa58d1db9.png)
棱
柱
A
B
C
D-
A1
B1C
1
D
中
1
,
侧
棱
A
A1=
6,
底 面 A B C D 是 菱 形 , A B= 2, A B C= 60, P为 侧 棱
B B1上 的 动 点 .
1求 证 : D1P AC;
2 设 AC BD= O,
求 当 B1P 等 于 多 少 时 , PB
PO 平 面 D1AC ?
【 解 析 】1 证 明 :
因为E是PC的中点,所以AE⊥PC. 由(1)知,AE⊥CD,且PC∩CD=C, 所以AE⊥平面PCD. 而PD 平面PCD,所以AE⊥PD. 又因为PA⊥底面ABCD,所以PA⊥AB. 由已知得AB⊥AD,且PA∩AD=A,所以AB⊥ 平面PAD. 又PD 平面PAD,所以AB⊥PD. 因为AB∩AE=A,所以PD⊥平面ABE.
【证明】(1)连结AC,取其 中点O,连结NO、MO,并 延长MO交CD于R. 因为N为PC的中点, 所以NO为△PAC的中位线,所以NO∥PA. 而PA⊥平面ABCD,所以NO⊥平面ABCD,所 以NO⊥CD. 又四边形ABCD是矩形,M为AB的中点,O为 AC的中点,所以MO⊥CD. 而MO∩NO=O, 所以CD⊥平面MNO,所 以 CD⊥MN.
BB1C1C.
【
证
明
】
直
棱
柱
A
B
C
D-
A1 B 1C
1
D
中
1
,
BB1 平 面 ABC D, 所 以 BB1 AC .
又 因 为 B A D= A D C = 9 0 , A B
= 2AD= 2C D= 2,
立体几何垂直证明题常见模型及方法
![立体几何垂直证明题常见模型及方法](https://img.taocdn.com/s3/m/184771e64afe04a1b071de13.png)
立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直 (只需要同学们掌握以下几种模型)○1 等腰(等边)三角形中的中线○2 菱形(正方形)的对角线互相垂直 ○3勾股定理中的三角形 ○4 1:1:2 的直角梯形中 ○5 利用相似或全等证明直角。
例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED,△DCF 分别沿,DE DF 折起,使,A C 两点重合于'A . 求证:'A D EF ⊥;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形,∠P AC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O BDE ⊥平面变式1:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;BE'ADFG变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,AB =6BC =C类型3:面面垂直的证明。
空间立体几何中的平行、垂直证明
![空间立体几何中的平行、垂直证明](https://img.taocdn.com/s3/m/c6611b4b58eef8c75fbfc77da26925c52cc59108.png)
∴DE∥平面 PAB.
精选ppt
H
构造平行四边行法
23
(2)证明 在直角梯形中,CB⊥AB, 又∵平面 PAB⊥平面 ABCD, 且平面 PAB∩平面 ABCD=AB, ∴CB⊥平面 PAB. ∵CB⊂平面 PBC, ∴平面 PBC⊥平面 PAB.
精选ppt
看到中点找中点
D1 A1
DE A
C1
B1
F
C B
精选ppt
7
定理应用
空间中的平行
方法一):构造平行四边形
D1 A1
DE A
M
C1
B1
F
C
N
B
精选ppt
8
定理应用
空间中的平行
方法二):构造平行平面
D1 A1
DE A
C1
B1
F
HC B
精选ppt
9
定理应用
空间中的平行
例 2.如图所示, P在 AB四 C 中D 棱 ,锥 已知 A四 BC 是 边 D 形 平行四M 边 ,N分 形别 ,是PA点 ,, BC的中 证明:MND //面PPC
精选ppt
25
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感 谢
感 谢
阅阅
读读
分析: (1)证明线面平行只需在平面内找一条和 该直线平行的直线即可,也可转化为经过这条直线 的平面和已知平面平行;(2)证明面面垂直,只需在 一个平面内找到另一个平面的垂线.
精选ppt
21
2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第四节 直线、平面垂直的判定及其性质
![2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第四节 直线、平面垂直的判定及其性质](https://img.taocdn.com/s3/m/6ba43021eef9aef8941ea76e58fafab069dc44eb.png)
第四节直线、平面垂直的判定及其性质【知识点15】直线与平面垂直的判定1.直线与平面垂直的定义画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直2.直线和平面垂直的判定定理典型例题:【例1】(概念的理解)下列命题中,正确的序号是________.①若直线l与平面α内的无数条直线垂直,则l⊥α;②若直线l与平面α内的一条直线垂直,则l⊥α;③若直线l不垂直于平面α,则α内没有与l垂直的直线;④若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;⑤过一点和已知平面垂直的直线有且只有一条.【反思】(1)对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事,后者说法是不正确的,它可以使直线与平面斜交.(2)判定定理中要注意必须是平面内两相交直线.【变式1】(1)若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABC(2)如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________.(填序号)【变式2】已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是()A.α∥β,且m⊂αB.m∥n,且n⊥β C.m⊥n,且n⊂βD.m⊥n,且n∥β【变式3】下列说法中,正确的有()①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直;②过直线l外一点P,有且仅有一个平面与l垂直;③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面;④垂直于角的两边的直线必垂直角所在的平面;⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.A.2个B.3个C.4个D.5个例2(线面垂直的判定)如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.【反思】(1)利用线面垂直的判定定理证明线面垂直的步骤①在这个平面内找两条直线,使它们和这条直线垂直;②确定这个平面内的两条直线是相交的直线;③根据判定定理得出结论.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.【变式1】如图,正方体ABCD-A1B1C1D1的棱长为2.求证:AC⊥B1D;【变式2】如图所示,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=90°,C点到AB1的距离为CE,D为AB的中点.求证:(1)CD⊥AA1;(2)AB1⊥平面CED.【练习3】如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥平面ABCD,AP=AB=2,BC=22,E,F分别是AD,PC的中点.证明:PC⊥平面BEF.知识点【能力提升思考】已知∠BAC在平面α内,P∠α,∠PAB=∠PAC.求证:点P在平面α内的射影在∠BAC的平分线上.【变式1】如图所示,在斜三棱柱ABC—A1B1C1中,∠BAC=90°,BC1⊥AC,C1H⊥AB,证明:点H是C1在平面ABC内的射影.【反思】(1)求直线和平面所成角的步骤①寻找过斜线上一点与平面垂直的直线;②连结垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.(2)在上述步骤中,其中作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,图形中的特殊点是突破口.【知识点16】直线与平面所成的角典例讲解:【例1】(直线与平面所成的角)如图,在正方体ABCD-A1B1C1D1中,(1)求A1B与平面AA1D1D所成的角;(2)求A1B与平面BB1D1D所成的角.【反思】求直线与平面所成角的步骤:(1)寻找过斜线上一点与平面垂直的直线.(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角.(3)把该角归结在某个三角形中,通过解三角形,求出该角.【变式1】如图所示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,且AB=BC=2,∠CBD=45°,求直线BD与平面ACD所成角的大小.【变式2】如图,已知∠BOC在平面α内,OA是平面α的斜线,且∠AOB=∠AOC=60°,OA=OB=OC=1,BC=2,求OA与平面α所成的角的大小.【思考1】把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A.90° B.60° C.45° D.30°【变式1】如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【例4】(综合应用)如图,P A⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点.(1)求证:MN∥平面P AD;(2)若PD与平面ABCD所成的角为45°,求证:MN⊥平面PCD.【方法小结】1.直线和平面垂直的判定方法:(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.线线垂直的判定方法:(1)异面直线所成的角是90°.(2)线面垂直,则线线垂直.3.求线面角的常用方法:(1)直接法(一作(或找)二证(或说)三计算).(2)转移法(找过点与面平行的线或面).(3)等积法(三棱锥变换顶点,属间接求法).【知识点17】距离问题典型例题:【例1】如图,已知AB是圆O的直径,C为圆上一点,AB=2,AC=1,P为∠O所在平面外一点,且PA垂直于圆O所在平面,PB与平面ABC所成的角为45°.(1)求证:BC∠平面PAC;(2)求点A到平面PBC的距离.【变式1】已知△ABC 的三条边长分别是5,12,13,点P 到A ,B ,C 三点的距离都等于7,则点P 到平面ABC 的距离为____【例2】如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.【反思】 求点到平面距离的方法总结:PA BCD E(1)过已知点作出平面的垂线段是关键. 作垂线段通常要借助于垂面,然后利用面面垂直性质定理作出平面的垂线.(2)作出垂线段后,通常利用等面积法求得距离.【变式1】如图,直四棱柱1111ABCD A B C D -中,//AB CD ,AD AB ⊥,2AB =,2AD =,1=3AA ,E 为CD 上一点,1DE =,3EC =.(1)证明:BE ⊥平面11BB C C ; (2)求点1B 到平面11EA C 的距离.【反思】 求点到平面距离的方法总结:(1)当直接作出垂线段比较困难时,可以考虑利用等体积法求距离. (2)用等体积法求距离,一般用三棱锥体积相等来求解.(3)可以用线面平行关系,转化到一个更容易求解的三棱锥去求距离;也可以利用比例关系,化为其他点到平面的距离来求解.【例题3】如图,在长方体1111ABCD A B C D -中,2AB =,1AD =,11A A =.ABCD EA 1B 1C 1D 1(1)证明:直线1BC 平行于平面1D AC ; (2)求直线1BC 到平面1D AC 的距离.【反思】 求直线到平面距离的方法总结:(1)求线面距离,根据直线上的点到平面距离相等,所以可以转化为点面距离来求解. (2)在转化为点面距的时候,选择合适的点会对解题有促进作用.【变式1】在直三棱柱111ABC -A B C 中,90 ABC =∠︒,11,2AB =BC =BB =,求: (1)异面直线11B C 与1A C 所成角的余弦值; (2)直线11B C 到平面BC A 1的距离.【思考】已知在直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点.求异面直线1CC 和AB 的距离;ABCD A 1B 1C 1D 1ACBA 1B 1C 1C1A1B1CA BD【感悟】求两条异面直线距离的方法总结:(1)利用图形关系作出两条异面直线的公垂线,是求两异面直线距离的基本方法,但难度较大.(2)过两条异面直线中的一条直线作另一条直线的平行线,构造线面平行,将异面直线距离化为线面距离,进而转化为点面距离,是求异面直线距离的常用方法.(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离,再化为点面距离.【知识点18】二面角的概念【例1】(概念的理解)有下列结论:①两个相交平面组成的图形叫作二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是()A.①③B.②④C.③④D.①②【例2】如图,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.【反思】(1)定义法:在二面角的棱上找一点,在两个半平面内过该点分别作垂直于棱的射线.(2)垂面法:过棱上一点作与棱垂直的平面,该平面与二面角的两个半平面形成交线,这两条射线(交线)所成的角,即为二面角的平面角.(3)垂线法:利用线面垂直的性质来寻找二面角的平面角,这是最常用也是最有效的一种方法.(1)定义:从一条直线出发的两个半平面所组成的图形.(2)相关概念:①这条直线叫做二面角的棱,②两个半平面叫做二面角的面.(3)画法:(4)记法:二面角α-l-β或α-AB-β或P-l-Q或P-AB-Q.(5)二面角的平面角:若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l -β的平面角是∠AOB.【变式1】如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上的一点,且P A =AC ,求二面角P -BC -A 的大小.【变式2】在正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值为( ) A.32 B.22C. 2D.3【思考1】已知在直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点.(1)求异面直线1CC 和AB 的距离;(2)若11AB A C ⊥,求二面角11A CD B --的平面角的余弦值.C1A1B1CA BD【变式1】如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)求AE为何值时,二面角D1-EC-D的大小为45°?【方法小结】1.求二面角大小的步骤简称为“一作二证三求”.【知识点19】平面与平面垂直(1)平面与平面垂直①定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.②画法:③记作:α⊥β.(2)判定定理文字语言一个平面过另一个平面的垂线,则这两个平面垂直图形语言符号语言l⊥α,l⊂β⇒α⊥β【例1】(概念理解)下列不能确定两个平面垂直的是()A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面α内的直线a垂直于平面β内的直线b【例2】已知直线m,n与平面α,β,给出下列三个结论:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则m⊥n;③若m⊥α,m∥β,则α⊥β.其中正确结论的个数是()A.0 B.1 C.2 D.3【变式1】过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C .有且只有一个或无数个D .可能不存在【变式2】α,β是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题_____.【例2】(证明面面垂直)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由. (2)证明:平面P AB ⊥平面PBD .【延申变式1】如图,在四棱锥P -ABCD 中,P A 垂直于矩形ABCD 所在的平面,试证明:平面PCD ⊥平面P AD .【延申变式2】如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,PB =BC ,M 是PC 中点,试证明:平面MBD ⊥平面PCD .【反思】证明面面垂直常用的方法(1)定义法:即说明两个半平面所成的二面角是直二面角.(2)判定定理法:在其中一个平面内寻找一条直线与另一个平面垂直,即把问题转化为线面垂直.(3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面. 【变式1】 如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,∠ACB =90°,AC =12AA 1,D 是棱AA 1的中点.证明:平面BDC 1⊥平面BDC .【变式2】如图,四棱锥P -ABCD 的底面ABCD 为正方形,P A ⊥底面ABCD ,AC ,BD 交于点E,F是PB的中点.求证:(1)EF∥平面PCD;(2)平面PBD⊥平面P AC.【思考3】如图所示,在正三棱柱ABC-A1B1C1中,E为BB1的中点,求证:截面A1CE⊥侧面ACC1A1.【方法小结】平面与平面垂直的判定定理的应用思路(1)本质:通过直线与平面垂直来证明平面与平面垂直,即线面垂直⇒面面垂直.(2)证题思路:处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题来解决.【能力提升】垂直问题难点突破专题【例1】(空间位置关系相关定理)如图,PA⊥平面ABCD,AD//BC,AD=2BC,AB⊥BC,点E为PD中点.(1)求证:AB⊥PD;(2)求证:CE//平面PAB.【变式1】如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC , AB =BC =2,∠ACB =30°AA 1=3, 11,BC A C E ⊥为AC 的中点.求证: 1A C ⊥平面1C EB ;求二面角1A AB C --的余弦值.【例2】(数量关系)如图,三棱锥P ABC -中,PB ⊥底面ABC ,2PB BC ==,1AC =,AB = E 为PC 的中点,点F 在PA 上,且2PF FA =.(1)求证:平面PAC ⊥平面BEF ;【变式2】已知多面体ABCDEF 中,四边形ABCD 为平行四边形, EF CE ⊥,且AC =, 1AE EC ==, 2BC EF =, //AD EF . (1)求证:平面ACE ⊥平面ADEF ;【例3】在三棱柱111ABC A B C -中,已知侧棱1CC ⊥底面,ABC M 为BC 的中点,13,2,AC AB BC CC ===.(1)证明: 1B C ⊥平面1AMC ;(2)求点1A 到平面1AMC 的距离.【变式3】.如图,直三棱柱(侧棱与底面垂直的棱柱)ABC ﹣A 1B 1C 1中,点G 是AC 的中点.(1)求证:B 1C ∥平面 A 1BG ;(2)若AB=BC , 1AC ,求证:AC 1⊥A 1B .【例4】(几何图形的特征).如图,在多面体ABCDFE中,四边形ADFE是正方形,在等腰梯形ABCD中,AD∥BC,AB=CD=AD=1,BC=2,G为BC中点,平面ADFE⊥平面ADCB.(1)证明:AC⊥BE;(2)求三棱锥A−GFC的体积.-中,PD⊥底面ABCD,底面ABCD为菱形,【变式4】已知四棱锥P ABCD=∠=,E为AB的中点.AD DAB2,60(1)证明:平面PAB⊥平面PED;(2)若PD=,求E到平面PBC的距离.-中,底面ABCD为矩形,PA⊥平面【例5】(存在性问题). 如图,四棱锥P ABCDABCD,PA=AD=1,AB=√3,点E为PD的中点,点F在棱DC上移动.(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;⊥.(2)求证:无论点F在DC的何处,都有PF AE。
立体几何知识点总结完整版讲解
![立体几何知识点总结完整版讲解](https://img.taocdn.com/s3/m/7fd0e6dd844769eae009edd0.png)
立体几何知识点总结完整版讲解-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN立体几何知识点【考纲解读】1、平面的概念及平面的表示法,理解三个公理及三个推论的内容及作用,初步掌握性质与推论的简单应用。
2、空间两条直线的三种位置关系,并会判定。
3、平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问题,掌握证明空间两直线平行及角相等的方法。
4、异面直线所成角的定义,异面直线垂直的概念,会用图形来表示两条异面直线,掌握异面直线所成角的范围,会求异面直线的所成角。
5.理解空间向量的概念,掌握空间向量的加法、减法和数乘;了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算;掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式.6.了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念.掌握棱柱,棱锥的性质,并会灵活应用,掌握球的表面积、体积公式;能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.7.空间平行与垂直关系的论证.8. 掌握直线与平面所成角、二面角的计算方法,掌握三垂线定理及其逆定理,并能熟练解决有关问题,进一步掌握异面直线所成角的求解方法,熟练解决有关问题.9.理解点到平面、直线和直线、直线和平面、平面和平面距离的概念会用求距离的常用方法(如:直接法、转化法、向量法).对异面直线的距离只要求学生掌握作出公垂线段或用向量表示的情况)和距离公式计算距离。
【知识络构建】【重点知识整合】1.空间几何体的三视图(1)正视图:光线从几何体的前面向后面正投影得到的投影图;(2)侧视图:光线从几何体的左面向右面正投影得到的投影图;(3)俯视图:光线从几何体的上面向下面正投影得到的投影图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.2.斜二测画水平放置的平面图形的基本步骤 (1)建立直角坐标系,在已知水平放置的平面图形中取互相垂直的Ox ,Oy ,建立直角坐标系;(2)画出斜坐标系,在画直观图的纸上(平面上)画出对应的Ox ′,Oy ′,使∠x ′Oy ′=45°(或135°),它们确定的平面表示水平平面;(3)画对应图形,在已知图形中平行于x 轴的线段,在直观图中画成平行于x ′轴,且长度保持不变;在已知图形中平行于y 轴的线段,在直观图中画成平行于y ′轴,且长度变为原来的一半;(4)擦去辅助线,图画好后,要擦去x 轴、y 轴及为画图添加的辅助线(虚线).3.体积与表面积公式:(1)柱体的体积公式:V =柱Sh ;锥体的体积公式: V =锥13Sh ; 台体的体积公式: V =棱台1()3h S SS S ''+;球的体积公式: V =球343r π. (2)球的表面积公式: 24S R π=球.【高频考点突破】考点一 空间几何体与三视图1.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度与正视图的长度一样,侧视图放在正视图的右面,高度与正视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.画直观图时,与坐标轴平行的线段仍平行,与x 轴、z 轴 平行的线段长度不变,与y 轴平行的线段长度减半.例1、将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为 ( )【方法技巧】该类问题主要有两种类型:一是由几何体确定三视图;二是由三视图还原成几何体.解决该类问题的关键是找准投影面及三个视图之间的关系.抓住“正侧一样高,正俯一样长,俯侧一样宽”的特点作出判断.考点二 空间几何体的表面积和体积常见的一些简单几何体的表面积和体积公式:圆柱的表面积公式:S =2πr 2+2πrl =2πr (r +l )(其中r 为底面半径,l 为圆柱的高);圆锥的表面积公式:S =πr 2+πrl =πr (r +l )(其中r 为底面半径,l 为母线长);圆台的表面积公式:S =π(r ′2+r 2+r ′l +rl )(其中r 和r ′分别为圆台的上、下底面半径,l 为母线长);柱体的体积公式:V =Sh (S 为底面面积,h 为高);锥体的体积公式:V =13Sh (S 为底面面积,h 为高);台体的体积公式:V =13(S ′+S ′S +S )h (S ′、S 分别为上、下底面面积,h 为高); 球的表面积和体积公式:S =4πR 2,V =43πR 3(R 为球的半径). 例 2、如图所示,某几何体的正视图是平行四边形,侧视图和俯视图都是矩形,则该几何体的体积为 ( )A.6 3B.9 3C.12 3 D.18 3【方法技巧】1.求三棱锥体积时,可多角度地选择方法.如体积分割、体积差、等积转化法是常用的方法.2.与三视图相结合考查面积或体积的计算时,解决时先还原几何体,计算时要结合平面图形,不要弄错相关数量.3.求不规则几何体的体积常用分割或补形的思想将不规则几何体转化为规则几何体以易于求解.4.对于组合体的表面积要注意其衔接部分的处理.考点三球与空间几何体的“切”“接”问题1.长方体、正方体的外接球其体对角线长为该球的直径.2.正方体的内切球其棱长为球的直径.3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线.4.正四面体的外接球与内切球的半径之比为3∶1.例3、一个棱锥的三视图如图,则该棱锥的外接球的表面积为________.【方法技巧】1.涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问题.2.若球面上四点P、A、B、C构成的线段PA、PB、PC两两垂直,且PA=a,PB=b,PC=c,则4R2=a2+b2+c2(R为球半径).可采用“补形”法,构造长方体或正方体的外接球去处理.考点四空间线线、线面位置关系(1)线面平行的判定定理:a?α,b?α,a∥b?a∥α.(2)线面平行的性质定理:a∥α,a?β,α∩β=b?a∥b.(3)线面垂直的判定定理:m?α,n?α,m∩n=P,l⊥m,l⊥n?l⊥α.(4)线面垂直的性质定理:a⊥α,b⊥α?a∥b.例4、如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.【方法技巧】1.证明线线平行常用的两种方法:(1)构造平行四边形;(2)构造三角形的中位线.2.证明线面平行常用的两种方法:(1)转化为线线平行;(2)转化为面面平行.3.证明直线与平面垂直往往转化为证明直线与直线垂直.而证明直线与直线垂直又需要转化为证明直线与平面垂直.考点五 空间面面位置关系1.面面垂直的判定定理:a ?β,a ⊥α?α⊥β.2.面面垂直的性质定理:α⊥β,α∩β=l ,a ?α,a ⊥l ?a ⊥β.3.面面平行的判定定理:a ?β,b ?β,a ∩b =A ,a ∥α,b ∥α?α∥β.4.面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ?a ∥b .5.面面平行的证明还有其它方法:⎭⎪⎬⎪⎫?1?a 、b ?α且a ∩b =A c 、d ?β且c ∩d =B a ∥c ,b ∥d ?α∥β,(2)a ⊥α、a ⊥β ?α∥β.例5、如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.【方法技巧】1.垂直问题的转化方向面面垂直?线面垂直?线线垂直.主要依据有关定义及判定定理和性质定理证明.具体如下:(1)证明线线垂直:①线线垂直的定义;②线面垂直的定义;③勾股定理等平面几何中的有关定理.(2)证明线面垂直:①线面垂直的判定定理;②线面垂直的性质定理;③面面垂直的性质定理.(3)证明面面垂直:①面面垂直的定义;②面面垂直的判定定理.2.证明面面平行的常用的方法是利用判定定理,其关键是结合图形与条件在平面内寻找两相交直线分别平行于另一平面.例6、如图,平面PAC⊥平面ABC,△ABC是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,AC=16,PA=PC=10.(1)设G是OC的中点,证明:FG∥平面BOE;(2)证明:在△ABO内存在一点M,使FM⊥平面BOE.【方法技巧】1.用向量法来证明平行与垂直,避免了繁杂的推理论证而直接计算就行了.把几何问题代数化.尤其是正方体、长方体、直四棱柱中相关问题证明用向量法更简捷.但是向量法要求计算必须准确无误.2.利用向量法的关键是正确求平面的法向量.赋值时注意其灵活性.注意(0,0,0)不能作为法向量.考点七利用空间向量求角1.向量法求异面直线所成的角:若异面直线a,b的方向向量分别为a,b,异面直线所成的角为θ,则cosθ=|cos〈a,b〉|=|a·b||a||b|. 2.向量法求线面所成的角:求出平面的法向量n,直线的方向向量a,设线面所成的角为θ,则sinθ=|cos〈n,a〉|=|n·a| |n||a|.3.向量法求二面角:求出二面角α-l-β的两个半平面α与β的法向量n1,n2,若二面角α-l-β所成的角θ为锐角,则cosθ=|cos〈n1,n2〉|=|n1·n2| |n1||n2|;若二面角α-l-β所成的角θ为钝角,则cosθ=-|cos〈n1,n2〉|=-|n1·n2||n1||n2|.例7、如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD =60°.(1)求证:BD⊥平面PAC;(2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.考点八利用空间向量解决探索性问题利用空间向量解决探索性问题,它无需进行复杂繁难的作图、论证、推理,只须通过坐标运算进行判断,在解题过程中,往往把“是否存在”问题,转化为“点的坐标是否有解,是否有规定范围的解”等,可以使问题的解决更简单、有效,应善于运用这一方法.例8、如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【难点探究】难点一 空间几何体的表面积和体积例1、(1)一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80(2)某几何体的三视图如图所示,则该几何体的体积为( )A .92π+12B .92π+18C .9π+42D .36π+18难点二 球与多面体例 2、已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( )A .3 3B .2 3 C. 3 D .1【解题规律与技巧】 .【历届高考真题】【2012年高考试题】 一、选择题1.【2012高考真题新课标理7】如图,格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 182.【2012高考真题浙江理10】已知矩形ABCD ,AB=1,BC=2。
立体几何常用定理和方法
![立体几何常用定理和方法](https://img.taocdn.com/s3/m/6a9fc34fa417866fb84a8ee8.png)
(2)
a b
b
∥
c
a
b
,(平行不变);
(3)
a b
a
b
;
2.线面垂直的证明方法: (1)用定义,证明直线与平面内的所有直线都垂直(常体现在反证法中);
a (2)b
b
b, a c ,c cP
a
;
(3)a
∥
a
;
(4) , a ,a b
b
a
.
3.面面垂直的证明方法: (1)用定义,证明平面角是 90 ;
(1)证明直线的方向向量与平面的法向量是共线向量;
(2)证明直线的方向向量与平面内的两个不共线的向量互相垂直. 6.证明面面垂直的方法: (1)转化为线线垂直、线面垂直来处理; (2)证明两个平面的法向量互相垂直.
五 利用空间向量解决角和距离 1.求异面直线所成角的关键是作出异面直线所成角的平面角,常用的方法有:
A. l
B. l ⊥
C. l ∥
D. l 或 l ∥
2.若两直线 a⊥b,且 a⊥平面,则 b 与的位置关系是
()
A.相交
B.b∥
C.b
D.b∥,或 b
3.下面各命题中正确的是(
)
A.直线 a,b 异面,a,b ,则∥ ;
C.直线 a⊥b,a⊥,b⊥,则⊥;
B.直线 a∥b,a,b,则∥; D.直线 a,b,∥,则 a,b 异面.
则 H 是 ABC 的外心.其中正确说法的序号依次
是
.
9. 如图, 在直三棱柱 ABC-A1B1C1 中, AC BC ,点 D 是
AB 的中点,求证:(1) AC BC1
(2)AC 1//平面 CDB1;
立体几何线面垂直的证明
![立体几何线面垂直的证明](https://img.taocdn.com/s3/m/4ab18212cc22bcd126ff0cfd.png)
立体几何证明【知识梳理】1.直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行⇒线面平行”)相交,那么这条直线和交线平行.(“线面平行⇒线线平行”)2..直线与平面垂直判定定理一如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直⇒线面垂直”)判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.性质1.如果一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线。
(线面垂直⇒线线垂直)性质2:如果两条直线同垂直于一个平面,那么这两条直线平行.三。
平面与平面空间两个平面的位置关系:相交、平行.1.平面与平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(“线面平行⇒面面平行”)2. 两个平面垂直判定定理:如果一条直线与一个平面垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直⇒面面垂直”)性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.(面面垂直⇒线面垂直)知识点一 【例题精讲】1.在棱长为2的正方体1111D C B A ABCD -中,E 、F 分别为1DD 、DB 的中点。
(1)求证:EF//平面11D ABC ;(2)求证: 平面B 11D C C B 1⊥ EF C B 1⊥; (3)求三棱锥EFC B -1的体积V.2.如图所示, 四棱锥P -ABCD 底面是直角梯形,,,2,BA AD CD AD CD AB PA ⊥⊥=⊥底面ABCD , E 为PC 的中点, PA =AD =AB =1. (1)证明: //EB PAD 平面; (2)证明: BE PDC ⊥平面; (3)求三棱锥B -PDC 的体积V .3、如图所示,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点,证明:(1)AE⊥CD(2)PD⊥平面ABE.4、.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;练习1、如图,菱形ABCD与等边△PAD所在的平面相互垂直,AD=2,∠DAB=60°.(Ⅰ)证明:AD⊥PB;(Ⅱ)求三棱锥C﹣PAB的高.2.如图14所示,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F,G分别为AC,DC,AD的中点.求证:EF⊥平面BCG;3.如图11所示,三棱柱ABCA1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;4、如图,在三棱台ABC﹣DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求直线BD与平面ACFD所成角的余弦值.5、三棱锥P﹣ABC中,∠BAC=90°,PA=PB=PC=BC=2AB=2,(1)求证:面PBC⊥面ABC6.已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥底面ABCD,E为PC的中点.(1)求证:PA∥平面EDB;(2)求证:平面EDB⊥平面PBC;7、如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.(1)求证:AP∥平面BDE;2.求证BE 垂直平面PAC8、将如图一的矩形ABMD沿CD翻折后构成一四棱锥M﹣ABCD(如图二),若在四棱锥M﹣ABCD中有MA=.(1)求证:AC⊥MD;(2)求四棱锥M﹣ABCD的体积.作业1、如图1,菱形ABCD的边长为12,∠BAD=60°,AC交BD于点O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M,N分别是棱BC,AD 的中点,且DM=6.(Ⅰ)求证:OD⊥平面ABC;2、如图,在斜三棱柱ABC﹣A1B1C1中,O是AC的中点,A1O⊥平面ABC,∠BCA=90°,AA1=AC=BC.(Ⅰ)求证:A1B⊥AC1;3、如图所示,四棱锥P﹣ABCD的侧面PAD是边长为2的正三角形,底面ABCD 是∠ABC=60°的菱形,M为PC的中点,PC=.(Ⅰ)求证:PC⊥AD;AD,E,4、如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.5、如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=1,SD=.(1)证明:CD⊥SD;6.如图,四棱锥S ﹣ABCD 中,△ABD 是正三角形,CB=CD ,SC ⊥BD .(Ⅰ)求证:SB=SD ;(Ⅱ)若∠BCD=120°,M 为棱SA 的中点,求证:DM ∥平面SBC .7、如图,在矩形ABCD 中,点E 为边AD 上的点,点F 为边CD 的中点,234A E D B A A ===,现将ABE ∆沿BE 边折至PBE ∆位置,且平面PBE ⊥平面BCDE .(1)求证:平面PBE ⊥平面PEF ;8、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60︒,2PA PD ==,PB=2,E,F 分别是BC,PC 的中点.(1) 证明:AD ⊥平面DEF;AB CDEBCDEFP9、在如图所示的多面体ABCDEF 中,ABCD 为直角梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为等腰梯形,//EF AD ,已知AE EC ⊥,2AB AF EF ===,4AD CD ==.(Ⅰ)求证:平面ABCD ⊥平面ADEF10.如图,在底面为平行四边形的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点. (Ⅱ)求证://PB 平面AEC ;11.棱长为2的正方体ABCD﹣A1B1C1D1中,M是棱AA1的中点,过C、M、D1作正方体的截面,则截面的面积是。
高中数学必修二《立体几何垂直证明题常见模型及方法》优秀教学设计
![高中数学必修二《立体几何垂直证明题常见模型及方法》优秀教学设计](https://img.taocdn.com/s3/m/0e3556f4dd3383c4bb4cd2b7.png)
立体几何垂直证明题常见模型及方法证明空间线面垂直需注意以下几点:①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
垂直转化:线线垂直 线面垂直 面面垂直;基础篇类型一:线线垂直证明(共面垂直、异面垂直)(1) 共面垂直:实际上是平面内的两条直线的垂直○1 等腰(等边)三角形中的中线 ②菱形(正方形)的对角线互相垂直 ③勾股定理中的三角形 ④1:1:2 的直角梯形中 ⑤ 利用相似或全等证明直角。
例:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O OE ⊥(2) 异面垂直 (利用线面垂直来证明,高考中的意图) 例1 在正四面体ABCD 中,求证AC BD ⊥变式 1 如图,在四棱锥ABCD P -中,底面ABCD 是矩形,已知60,22,2,2,3=∠====PAB PD PA AD AB .证明:AD PB ⊥;变式2 如图,在边长为的正方形中,点是的中点,点是的中点,将△AED,△DCF 分别沿折起,使两点重合于.求证:;变式3如图,在三棱锥P ABC -中,⊿PAB 是等边三角形, ∠P AC =∠PBC =90 º证明:AB ⊥PC类型二:线面垂直证明方法○1 利用线面垂直的判断定理例2:在正方体1111ABCD A B C D -中,O 为底面ABCD 的中心,E 为1CC ,求证:1A O BDE ⊥平面变式1:在正方体1111ABCD A B C D -中,,求证:11AC BDC ⊥平面 变式2:如图:直三棱柱ABC -A 1B 1C 1中, AC =BC =AA 1=2,∠ACB =90︒.E 为BB 1的中点,D 点在AB 上且DE = 3 . 求证:CD ⊥平面A 1ABB 1;2ABCD E AB F BC ,DE DF ,A C 'A 'A D EF ⊥变式3:如图,在四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2, 2.CA CB CD BD AB AD ======求证:AO ⊥平面BCD ;变式4 如图,在底面为直角梯形的四棱锥P ABCD -中,AD BC ∥,90ABC ∠=°,PA ⊥平面ABCD .3PA =,2AD =,23AB =,6BC =()1求证:BD ⊥平面PAC○2 利用面面垂直的性质定理 例3:在三棱锥P-ABC 中,PA ABC ⊥底面,PAC PBC ⊥面面,BC PAC ⊥求证:面。
线、面平行和垂直关系的证明
![线、面平行和垂直关系的证明](https://img.taocdn.com/s3/m/628ef34826fff705cd170a40.png)
【针对训练】 1.如图,平面 ABB1A1 为圆柱的轴截面,点 C 为底面 圆周上异于 A,B 的任意一点.
热点2 向量法证明平行和垂直
【方法结论】
设空间两条直线 l1,l2 的方向向量分别为 e1,e2,两个
平面 α1,α2 的法向量分别为 n1,n2,则有如下结论:
直线、平面
平行
垂直
l1 与 l2 l1 与 α1 α1 与 α2
e1=λe2 el11⊄·nα11=0
n1=λn2
e1·e2=0 e1=λn1 n1·n2=0
解答题 规范踩点 多得分
立体几何
线、面平行和垂直关系的 证明
[考情分析] 立体几何的解答题着重考查线线、线面与 面面平行和垂直的判定与性质,且多以棱柱、棱锥、棱台或 其简单组合体为载体进行考查,难度中等.
热点题型分析
热点1 综合法证明平行和垂直 【方法结论】 1.线、面平行问题解题策略 (1)证明线面平行:利用线面平行的定义、判定定理,面 面平行的性质定理、性质等; (2)证明面面平行:利用面面平行的定义、判定定理、垂 直于同一直线的两个平面平行、平行于同一平面的两个平面 平行; (3)利用线线、线面、面面平行的相互转化.
解 (1)证明:如图所示,连接 BC1.因为 BB1C1C 为菱形, 所以 BC1⊥B1C.又因为 AA1B1B 为正方形,所以 AB⊥BB1, 因为平面 AA1B1B⊥平面 BB1C1C,平面 AA1B1B∩平面 BB1C1C =BB1,AB⊂平面 AA1B1B,所以 AB⊥平面 BB1C1C.又 B1C ⊂平面 BB1C1C,于是 AB⊥B1C.又因为 AB∩BC1=B,所以 B1C⊥平面 ABC1.因为 AC1⊂平面 ABC1,所以 B1C⊥AC1.
高二数学立体几何知识点_立体图形公式_立体几何学习方法
![高二数学立体几何知识点_立体图形公式_立体几何学习方法](https://img.taocdn.com/s3/m/7d139ac57e192279168884868762caaedd33ba74.png)
高二数学立体几何知识点_立体图形公式_立体几何学习方法立体几何方是高中数学的重要知识点,那么你知道立体几何知识点和立体图形公式有哪些吗今天,店铺为大家整理了立体几何知识点和立体图形公式,欢迎阅读。
高二数学立体几何知识点1.位置关系:(1)两条异面直线相互垂直证明方法:①证明两条异面直线所成角为90o;②证明线面垂直,得到线线垂直;③证明两条异面直线的方向量相互垂直。
(2)直线和平面相互平行证明方法:①证明直线和这个平面内的一条直线相互平行;②证明这条直线的方向量和这个平面内的一个向量相互平行;③证明这条直线的方向量和这个平面的法向量相互垂直。
(3)直线和平面垂直证明方法:①证明直线和平面内两条相交直线都垂直,②证明直线的方向量与这个平面内不共线的两个向量都垂直;③证明直线的方向量与这个平面的法向量相互平行,高考。
(4)平面和平面相互垂直证明方法:①证明这两个平面所成二面角的平面角为90o;②证明一个平面内的一条直线垂直于另外一个平面;③证明两个平面的法向量相互垂直。
2.求距离:求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。
(1)两条异面直线的距离求法:利用公式法。
(2)点到平面的距离求法:①“一找二证三求”,三步都必须要清楚地写出来。
②等体积法。
③向量法。
3.求角(1)两条异面直线所成的角求法:①先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;②通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。
(2)直线和平面所成的角求法:①“一找二证三求”,三步都必须要清楚地写出来。
②向量法,先求直线的方向量于平面的法向量所成的角α,那么所要求的角为或。
(3)平面与平面所成的角求法:①“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。
证明两线互相垂直的常用方法
![证明两线互相垂直的常用方法](https://img.taocdn.com/s3/m/4b9d31d9db38376baf1ffc4ffe4733687f21fc42.png)
证明两线互相垂直的常用方法我们学习了平面与直线垂直的定义、判定定理和性质定理,大家可以体会线线垂直在证明线面垂直时的重要性,将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法.在处理实际问题过程中,可以先从题设条件入手,分析已有的垂直关系,再从结论入手分析所要证明的重要垂直关系,从而架起已知与未知的“桥梁”,同学们下面欣赏常见的线面垂直证明方法.一、利用定义垂直的定义:如果两条直线相交成直角,那么这两条直线互相垂直。
从定义可以看出,只要说明两条直线相交的角是直角,就可以说明两条直线互相垂直。
例1:如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.求证:PC是⊙O的切线;分析:因为点C在圆上,只要说明OC⊥CP即可。
解:∵OA=OC,∴∠A=∠ACO∵∠COB=2∠ A ,∠COB=2∠PCB∴∠A=∠ACO=∠PCB∵AB是⊙O的直径∴∠ACO+∠OCB=90°∴∠PCB+∠OCB=90°,即OC⊥CP∵OC是⊙O的半径∴PC是⊙O的切线例2:(1)把两个含有45°角的直角三角板如图1放置,点D在BC上,连结BE,AD,AD的延长线交BE于点F.求证:AF⊥BE.分析:线段之间的垂直,只要说明∠BFD=90°,直接计算不出来,通过三角形全等,间接证明角度为90°。
证明:在△ACD和△BCE中,AC=BC,∠DCA=∠ECB=90°,DC=EC,∴ △ACD≌△BCE(SAS)∴ ∠DAC=∠EBC.∵ ∠ADC=∠BDF,∴ ∠EBC+∠BDF=∠DAC+∠ADC=90°.∴ ∠BFD=90°∴ AF⊥BE.(2)把两个含有30°角的直角三角板如图2放置,点D在BC上,连结BE,AD,AD的延长线交BE于点F.问AF与BE是否垂直?并说明理由.分析:题目同(1)类似,类比(1)思路,这里△ACD和△BCE,显然不全等,考虑相似即可。