方格网土方量计算方法

合集下载

方格网法计算土方量的计算公式

方格网法计算土方量的计算公式

【目前最精确的方格网法计算土方量的计算公式】方格网法土方计算常采用三角棱柱体法计算土方量。

三角棱柱体法的计算公式是根据立体几何体积计算公式推导出来的,公式严密,计算结果精确。

(以前是采用四棱柱法,计算出每个四棱柱体积,从而将所有四棱柱的体积汇总得到总的土方量。

在传统的方格网计算中,土方量的计算精度不高。

)根据各角点施工高度的不同,零线(即方格边上施工高度为零、不填不挖的点的连线)可能将三角形划分为两种情况:三角形全部为挖方或全部为填方以及部分挖方和部分填方。

1、全填全挖的计算公式:
V=[a2*(h1+h2+h3)]/6
公式中 a—方格的边长
h1、h2、h3—三角形各角点的施工高度
2、部分挖方和部分填方的计算公式:
由于零线将三角形划分成底面为三角形的锥体和底面为四边形的锲体,锥体和楔体体积公式分别为:锥体的体积公式:
V锥体=(a2/6)×{h33/[(h1+h3) ×(h2+h3)]}
楔体的体积公式:
V楔体=(a2/6)×{h33/ [(h1+h3) ×(h2+h3)]-h3+h2+h1}
V锥体—锥体的体积(挖方或填方)
V楔体—楔体的体积(填方或挖方)
h1、h2、h3—三角形角点的施工高度(均用绝对值代入),但是h3指锥体顶点的施工高度。

方格网法计算土方

方格网法计算土方

方格网法常用方格网计算公式横截面计算步骤及方法1.方格网法方格网计算步骤及方法图示计算步骤方法适用范围1.划方格网根据地形图划分方格网,尽量使其与测量或施工坐标网重合,方格一般采用20m×20m~40m×40m,将相应设计标高和自然地面标高分别标注在方格点的右上角和右下角,求出各点的施工高度(挖或填),填在方格网左上角,挖方为(+),填方为(-)。

2.计算零点位置计算确定方格网中两端角点施工高度符号不同的方格边上零点位置,标于方格网上,联接零点,即得填方与挖方区的分界线。

零点的位置按下式计算,见图(a):;式中、——角点至零点的距离 m;、——相邻两角点的高程 m,均用绝对值;a——方格网的边长 m。

零点亦可采用图解法求出,如图(b)用尺在各角上标出相应比例,用尺相接,与方格相交点即为零点位置。

3.计算土方工程量按方格网底面图形和下表体积计算公式,计算每个方格内的挖方或填方量。

4.汇总分别将挖方区和填方区所有方格计算土方量汇总,即得该建筑场地挖方区和填方区的总土方量。

适于地形较平缓或台阶宽度较大的地段采用计算方法较为复杂,但作为平整场地土方量计算,精度较高。

2. 常用方格网计算公式项目图示计算公式一点填方或挖方(三角形)当时,二点填方或挖方(梯形)三点填方或挖方(五角形)四点填方或挖方(正方形)注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h1,h2,h3,h4——方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的总和 ,m,用绝对值代入;——挖方或填方体积,m。

2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。

3. 横截面计算步骤及方法图示计算步骤方法适用范围1.划分横截面根据地形图、竖向布置图或现场检测,将要计算的场地划分为若干个横截面; ; ……,使截面尽量垂直等高线或建筑物边长;截面间距可不等,一般取10 m或20 m,但最大不大于100 m.2.划横截面按比例绘制每个横截面的自然地面和设计地面的轮廓线。

方格网土方计算公式

方格网土方计算公式

11.2.1方格网法土方计算
方格网法土方计算适用于地形变化比较平缓的地形情况,用于计算场地平整的土方量计算较为精确。

具体做法如下:
首先建立地形的坐标方格网,方格网的一边与地形等高线或场地坐标网平行,大小根据地形变化的复杂程序和设计要求的精度确定,边长一般常采用20m×20m或40m×40m(地形平坦、机械化施工时也可采用100m×100m)。

然后求出方格各个角点的自然标高、设计标高以及施工高程。

计算零点位置,在每相邻的填方点和挖方点之间总存在一个零点,零点的确定方法如下:
说明:
X t:零点据填方角顶的距离;X w:零点据挖方角顶的距离
h t:填方高度;h w:挖方高度;a:方格边长
连接每个方格上的相邻两个零点,根据零线将方格划分的情况,采用相应公式来计算,如表11-2所示。

汇总,分别将填方区、挖方区所有土方汇总,得到填、挖土方总量。

说明:
a:方格边长(m)
h1、h2、h3、h4:方格网角点的施工高度,正值代表填方,负值代表挖方V+、V-:填方(或挖方)的体积(m3)。

网格法土方量计算公式

网格法土方量计算公式

网格法平整场地土方量计算公式:1、方格四个角点全部为填土式挖方,其土方量:2a)h?h?(h?h?Vh,h,h,h为角点填方高度,为绝对值。

)(注:4321432142、方格的相邻两角点为挖方,另两角点为填方。

其挖方部分工程量:21)??(V4h?hh?h3214222hha其222hha填方部分工程量:34)(?V?4h?hh?h3421h,hhh,为需填方角点填方高度。

皆为绝对值。

(注:为需挖方角点挖方高度,)43213、方格的三个角点为挖方,另一个角点为填方。

其填方部分工程量:4?V46(h?h)(h?h)43142a其挖方32ha部分工程量:V?h)??2hh?2hV?(4143,1,2326hhh,h,为需填方角点填方高度。

皆为绝对值。

)(注:为需挖方角点挖方高度,43124、方格的一个角点为挖方,相对的角点为填方。

另两个角点为零点时2a(零线为方格的对角线),其挖填方工程量为:hV?b4/ 142 /常用方格网计算公式2.计算公式项目图示一点填方或挖方(三角形)当时,二点填方或挖方(梯)形三点填方或挖方(五角形)四点填方正(或挖方方形)4/ 3注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h,h,h,h方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的——1423)本表公式是按各计算图形底面积乘以平均施工高程而得出的。

2。

挖方或填方体积,用绝对值代入; ,m总和——,m4/ 4。

(整理)方格网法计算土方

(整理)方格网法计算土方

方格网法常用方格网计算公式横截面计算步骤及方法1.方格网法方格网计算步骤及方法图示计算步骤方法适用范围1.划方格网根据地形图划分方格网,尽量使其与测量或施工坐标网重合,方格一般采用20m×20m~40m×40m,将相应设计标高和自然地面标高分别标注在方格点的右上角和右下角,求出各点的施工高度(挖或填),填在方格网左上角,挖方为(+),填方为(-)。

2.计算零点位置计算确定方格网中两端角点施工高度符号不同的方格边上零点位置,标于方格网上,联接零点,即得填方与挖方区的分界线。

零点的位置按下式计算,见图(a):;式中、——角点至零点的距离 m;、——相邻两角点的高程 m,均用绝对值;a——方格网的边长 m。

零点亦可采用图解法求出,如图(b)用尺在各角上标出相应比例,用尺相接,与方格相交点即为零点位置。

3.计算土方工程量按方格网底面图形和下表体积计算公式,计算每个方格内的挖方或填方量。

4.汇总分别将挖方区和填方区所有方格计算土方量汇总,即得该建筑场地挖方区和填方区的总土方量。

适于地形较平缓或台阶宽度较大的地段采用计算方法较为复杂,但作为平整场地土方量计算,精度较高。

2. 常用方格网计算公式项目图示计算公式一点填方或挖方(三角形)当时,二点填方或挖方(梯形)三点填方或挖方(五角形)四点填方或挖方(正方形)注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h1,h2,h3,h4——方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的总和 ,m,用绝对值代入;——挖方或填方体积,m。

2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。

3. 横截面计算步骤及方法图示计算步骤方法适用范围1.划分横截面根据地形图、竖向布置图或现场检测,将要计算的场地划分为若干个横截面; ; ……,使截面尽量垂直等高线或建筑物边长;截面间距可不等,一般取10 m或20 m,但最大不大于100 m.2.划横截面按比例绘制每个横截面的自然地面和设计地面的轮廓线。

土方方格网计算方法

土方方格网计算方法

土方方格网计算方法土方方格网是土方工程中常用的一种计算方法,通过将土地分割成方格网,对每个方格内的土方进行计算,可以更精确地评估土地的开挖量和填方量。

本文将介绍土方方格网的计算方法,包括方格网的划分、土方量的计算等内容。

1. 方格网的划分。

在进行土方计算之前,首先需要对土地进行方格网的划分。

一般来说,可以根据土地的实际情况确定方格的大小,通常情况下,方格的大小可以选择为10米×10米或20米×20米。

在确定了方格的大小后,可以利用测量工具对土地进行划分,确保每个方格都能够清晰地被划分出来。

2. 土方量的计算。

一旦完成了方格网的划分,接下来就是对每个方格内的土方进行计算。

土方量的计算可以通过以下步骤进行:(1)测量每个方格的高程。

首先,需要对每个方格的高程进行测量。

可以利用测量仪器对方格内的几个关键点进行高程测量,然后通过插值法计算出整个方格的平均高程。

(2)计算土方量。

在得到了每个方格的平均高程后,可以通过以下公式计算出每个方格内的土方量:土方量 = 方格面积×(挖方高程填方高程)。

其中,方格面积可以直接通过方格的大小得到,挖方高程和填方高程分别为该方格内的地面高程和设计高程。

3. 土方量的累加。

完成了每个方格内土方量的计算后,就可以将所有方格内的土方量进行累加,得到整个土地的总土方量。

通过这种方法,可以更准确地评估土地的开挖量和填方量,为土方工程的施工提供重要参考。

4. 注意事项。

在进行土方方格网计算时,需要注意以下几点:(1)方格网的划分应当尽量均匀,确保每个方格内的土方量计算准确;(2)测量方格内的高程时,应当选择代表性的点进行测量,确保计算结果的准确性;(3)在进行土方量累加时,需要对累加的结果进行核对,确保计算结果的准确性。

总之,土方方格网计算方法是土方工程中常用的一种计算方法,通过对土地进行方格网的划分,可以更精确地评估土地的土方量。

在实际应用中,需要严格按照计算步骤进行操作,并注意各项计算的准确性,以确保土方计算结果的准确性和可靠性。

方格网法计算土方工程量

方格网法计算土方工程量

方格网法计算土方工程量方格网法是一种常用于土方工程量计算的方法。

它通过将工程区域划分成等大的方格,然后通过计算方格中的土方高差来确定土方的开挖或填方量。

方格网法的主要步骤如下:第一步:确定工程区域首先,确定需要计算土方工程量的区域范围。

这个区域可以是整个工程场地,也可以是工程场地的一个部分。

第二步:划分方格根据实际情况,将工程区域划分成等大的方格。

方格的大小可以根据实际情况来确定,通常根据工程的尺寸和要求来选择合适的大小。

第三步:测量高程在每个方格的四个角或者中心点测量地面高程。

可以使用水准仪、全站仪或者GPS等仪器进行测量。

第四步:计算高差计算每个方格的高差。

可以通过将每个方格的最高和最低高程相减来得到高差。

第五步:计算土方量根据每个方格的高差,可以计算出每个方格的土方开挖或填方量。

如果高差为正值,则表示需要填方;如果高差为负值,则表示需要开挖。

第六步:汇总计算将每个方格的土方量累加起来,得到整个工程区域的土方工程量。

方格网法的优点是简单、直观、易于计算。

它不需要复杂的测量和计算,只需测量每个方格的高程,然后根据高差来计算土方量。

此外,方格网法还可以应用于各种不同类型的工程场地,无论是平坦的地势还是复杂的地形,都可以使用方格网法来计算土方工程量。

然而,方格网法也有一些限制。

首先,方格网法假设每个方格内的土方高差是均匀分布的,可能忽略了地势的复杂性。

其次,方格网法适用于土方高差相对较小的情况,如果土方高差差异较大,可能需要其他更精确的方法来计算土方工程量。

总之,方格网法是一种简单、直观且常用的方法,用于计算土方工程量。

通过将工程区域划分成等大的方格,并测量每个方格的高程,可以计算出每个方格的土方量,最后汇总计算出整个工程区域的土方工程量。

然而,在应用方格网法时,需要考虑实际情况,并根据实际需求选择合适的方格大小和其他计算方法。

方格网法最新

方格网法最新

方格网法是将基地化分为若干个方格,根据自然地面与设计地面的高差,计算挖方和填方的体积,分别汇总即为土方量。

该方法一般适用于平坦场地。

设计时要求填方和挖方基本相等,即要求土方就地平衡,平整前后这块土体的体积是相等的。

对于一块表面上崎岖不平的土体,经整平后使其表面成为平面。

设平整前的土方体积为V :V=)(4)432(441243212∑∑∑∑∑∑=+++ijj j j j hPi a h h h h a式中:V ——土体自水准面起算自然地面下土体的体积; a ——方格边长(m );——方格网交点的权值,i=1表示角点,i=2表示边点,i=3表示凹点,i=4表示中间点,其权值分别为1,2,3,4。

h 1j h 2j h 3j h 4j ——各角点,边点,凹点,中间点的自然地面的标高(m 3)。

h ij ——各角点(或边点,凹点,中间点)的自然地面的标高(m 3)。

设方格坐标原点的设计标高为x ,则整平后土体的体积为:∑∑=412'))((4x f P a V i式中:——土体自水准面起算平整后土体的体积(m 3); x ——方格网坐标原点的设计标高(m ); a ——方格边长(m );m ,i ——X 轴方向的放个数与设计坡度(%),从原点起,上坡为证,下坡为负;n ,j ——Y 轴方向的放个数与设计坡度(%),从原点起,上坡为证,下坡为负;当土方平衡时,平整前后这块土体的体积是相等的,即'V V =∑∑41ijh Pi =∑∑41))((x f P i由于式中只有x 为未知数,所以可以求出来,从而求出方格网各个交叉点的设计标高。

由此求出的设计地面标高,能使填方量和挖方量基本平衡。

2.布置方格网在绘有地形的平面图上布置方格网,使其一边与用地长轴方向平行。

边长采用20m*20m 。

将方格网交叉点编上顺序号,填在其左下方。

详细布置见附件。

3.确定自然地面标高从地形图上求出自然地面标高,根据等高线数值,利用内插法求出各方格交叉点的自然地面标高,填在方格交叉点的右下方。

建筑工程技术土方量(方格网)计算

建筑工程技术土方量(方格网)计算

建筑工程技术土方量(方格网)计算一、方格网识图:方格网图由设计单位(一般在1:500的地形图上)将场地划分为边长a=10~40m的若干方格,与测量的纵横坐标相对应,在各方格角点规定的位置上标注角点的自然地面标高(H)和设计标高(Hn),如图1-3所示.图1-3 方格网法计算土方工程量图二、场地平整土方计算考虑的因素:① 满足生产工艺和运输的要求;② 尽量利用地形,减少挖填方数量;③争取在场区内挖填平衡,降低运输费;④有一定泄水坡度,满足排水要求.⑤场地设计标高一般在设计文件上规定,如无规定:A.小型场地――挖填平衡法;B.大型场地――最佳平面设计法(用最小二乘法,使挖填平衡且总土方量最小)。

1、初步标高(按挖填平衡),也就是设计标高。

如果已知设计标高,1.2步可跳过。

场地初步标高:H0=(∑H1+2∑H2+3∑H3+4∑H4)/4MH1--一个方格所仅有角点的标高;H2、H3、H4--分别为两个、三个、四个方格共用角点的标高.M ——方格个数.2、地设计标高的调整按泄水坡度、土的可松性、就近借弃土等调整.按泄水坡度调整各角点设计标高:①单向排水时,各方格角点设计标高为: Hn = H0 ± Li②双向排水时,各方格角点设计标高为:Hn = H0 ± Lx ix ± L yi y3.计算场地各个角点的施工高度施工高度为角点设计地面标高与自然地面标高之差,是以角点设计标高为基准的挖方或填方的施工高度.各方格角点的施工高度按下式计算:式中hn------角点施工高度即填挖高度(以“+”为填,“-”为挖),m;n------方格的角点编号(自然数列1,2,3,…,n).Hn------角点设计高程,H------角点原地面高程.4.计算“零点”位置,确定零线方格边线一端施工高程为“+”,若另一端为“-”,则沿其边线必然有一不挖不填的点,即“零点”(如图1-4所示).图1-4 零点位置零点位置按下式计算:式中x1、x2 ——角点至零点的距离,m;h1、h2 ——相邻两角点的施工高度(均用绝对值),m;a —方格网的边长,m.5.计算方格土方工程量按方格底面积图形和表1-3所列计算公式,逐格计算每个方格内的挖方量或填方量.表1-3 常用方格网点计算公式6.边坡土方量计算场地的挖方区和填方区的边沿都需要做成边坡,以保证挖方土壁和填方区的稳定。

方格网土方量计算步骤及公式

方格网土方量计算步骤及公式

1.场地设计标高H0的计算
H0=(ΣH1+2ΣH2+3ΣH3+4ΣH4)/4N
N-场地中方格的个数;
H1-一个方格仅有的角点标高;
H2-两个方格共有的角点标高;
H3-三个方格共有的角点标高;
H4-四个方格共有的角点标高。

2.如果有排水坡度的话,按此图调整设计标高,
Ix,iy分别指排水坡度系数
3.计算场地各个方格角点的施工高度:
hn---角点施工高度,即挖填高度。

以“+”为填,“-”为挖;
---角点的设计标高(若无泄水坡度时,即为场地的设计标高H0);
H'n---角点的自然地面标高。

公式hn=Hn-H'n
4.确定零线
X=ah1/(h1+h2) h1为填方角点的填方高度,h2为挖方角点的挖方高度。

5.计算方格挖填土方量:
方格网中零线将方格划分为三种类型
1)方格四个角点全部为挖(或填),其土方量为v=a²/4(h1+h2+h3+h4)
2)方格网的相邻两角点为挖,另两角点为填,土方量为:
挖方V1,2=[h1²/(h1+h4)+h2²/(h2+h3)]*a²/4;
填方V3,4=[h3²/(h2+h3)+h4²/(h1+h4)]*a²/4;
3)方格网为三个角点为挖,另一个角点为填(或相反),其填方部分土方量为:V4= a²/6乘以h4³/(h1+h4)*(h3+h4)
挖方部分土方量为:V1,2,3= a²/6乘以(2h1+h2+2h3-h4)+V4。

CASS方格网法如何计算土方量

CASS方格网法如何计算土方量

CASS方格网法如何计算土方量
1.采样点选择:首先需要在待计算土方量的区域内选择一定数量的采
样点。

采样点的选择应该尽可能均匀地分布在整个区域内,以保证计算结
果的准确性。

采样点的数量取决于区域的大小和复杂程度,通常在50个
到数百个之间。

2.高程测量:在每个采样点上进行高程测量,可以使用全站仪、GPS
等精确的测量仪器进行测量,也可以使用水准仪进行相对较粗略的测量。

3.方格网建立:将整个区域划分成一系列方格,方格的大小应该根据
采样点的密度和区域的复杂程度进行合理的选择。

通常情况下,方格的边
长为采样点间距的2-4倍。

4.方格高程插值:根据采样点的高程数据,对方格内的高程进行插值。

常用的插值方法有反距离权重法、克里金法等。

插值过程中,可以考虑采
样点的距离、高程差异等因素,以获得更准确的结果。

5.土方量计算:根据方格内插值后的高程数据,可以计算出每个方格
的地面积和土方体积。

地面积可以通过方格的边长进行计算,土方体积可
以通过计算方格内的高程差乘以地面积得到。

6.土方量累积:对所有方格的土方体积进行累积求和,即可得到整个
区域的土方量。

需要注意的是,CASS方格网法对于地形起伏较大、土方量变化较大
的区域可能会导致误差较大,因此在实际应用中需要根据具体情况进行调
整和修正。

总结起来,CASS方格网法计算土方量的步骤包括采样点选择、高程测量、方格网建立、方格高程插值、土方量计算和土方量累积。

通过这个方法,可以较为准确地计算出待测区域的土方量。

方格网计算土方量原理

方格网计算土方量原理

方格网计算土方量原理
方格网计算土方量原理即通过在地面上划分方格网,并计算每个方格中的土方体积,进而得出总的土方量。

具体原理可分为以下几步:
1. 划分方格网:首先在待测量区域的地面上进行方格网的划分,通常使用水平标杆和粉笔线等工具,将地面划分为等大的方格。

2. 计算单个方格的土方体积:对每个方格进行土方体积的计算。

土方体积的计算可以通过以下公式进行:
土方体积 = 方格面积 ×层高
其中,方格面积为方格的水平投影面积,层高为该方格内土
方堆积的高度,可以通过测量或估算得出。

3. 累加各个方格的土方体积:将所有方格内的土方体积累加起来,得到总的土方体积。

可以通过逐个方格计算土方体积,并将其累加到总体积中的方法来实现。

4. 随机抽查方格:为了验证计算结果的准确性,可以随机抽取部分方格进行测量和计算,然后与计算结果进行对比。

需要注意的是,在进行方格网计算土方量时,应当注意以下几点:
- 方格的大小应根据实际情况进行选择,一般应适当缩小,以
提高计算精度。

- 方格网的划分应在待测量区域的整个范围内进行,确保所有
区域被覆盖。

- 土方体积计算中的方格面积和层高都应该准确测量或者经过合理估算。

- 测量时要确保准确性,避免误差的产生,可选用高精度的测量工具,并进行多次测量取平均值。

综上所述,方格网计算土方量原理是通过划分方格网,计算每个方格内的土方体积,累加得到总的土方体积。

该方法可以提高土方量计算的准确性和效率。

土方工程量计算方格网法

土方工程量计算方格网法

2021/5/27
25
精品课件!
2021/5/27
26
精品课件!
2021/5/27
27
作业2
2021/5/27
28
2021/5/27
18
2021/5/27
公 园 广 场 挖 填 方 区 划 图
19
8.土方计算
方 格 网 计 算 土 方 量 公 式
2021/5/27
20
8.土方计算
在例题中方格Ⅳ四个角点的施工标高值全为”+”号,是挖 方,用公式(1-22)计算
VⅣ= a2*∑h/4=106m3
方格Ⅰ中二点为挖方,二点为填方用公式(1-23)计算。则
2021/5/27
16
7. 求零点线 所谓零点是指不挖不填的点,零点的联线就 是零点线,它是挖方和填方区的分界线,因而零点线成为土 方计算的重要依据之一。
在相邻二角点之间,如若施工标高值一为”+”数,一为 “-”数,则它们之间必有零点存在,其位置可用下式求 得。
2021/5/27
X–零点距h1一端的距离(m) h1,h2 -方格相邻两角点的 施工标高绝对值(m) a-方格边长(m)
Ha——位于低边的等高线高程(m); x——角点至低边等高线的距离(m); h——等高距(m); L——相邻两等高线间最短距离(m)。
2021/5/27
5
插入法求高程通常会遇到3种情况: (1) 待求点标高Hx在二等高线之间(如下图①)
hx∶h=x∶L hx=xh/L ∴Hx=Ha+xh/L (2) 待求点标高Hx在低边等高线Ha的下方(如下图②) hx∶h=x∶L hx=xh/L ∴Hx=Ha-xh/L (3) 待求点标高Hx在高边等高线Hb的上方(如下图③) hx∶h=x∶L hx=xh/L ∴Hx=Ha+xh/L

常用方格网法计算土方工程量

常用方格网法计算土方工程量

方格网法:方格网法是把平整场地的设计工作与土方量计算工作结合在一起进行的。

方格网法的具体工作程序为:在附有等高线的施工现场地形图上作方格网控制施工场地,依据设计意图,如地面形状、坡向、坡度值等。

确定各角点的设断面法:是以一组等距(或不等距)的相互平行的截面将拟计算的地块、地形单体(如山、溪涧、池、岛等)和土方工程(如堤、沟渠、路堑、路槽等)分截成"段",分别计算这些"段"的体积,再将各段体积累加,以求得该计算对象的总土方量。

交叉口的立面设计有三种方法:方格网法、设计等高线法和方格网设计等高线法三种。

方格网法是在交叉口的设计范围内,以相交道路的中心线为坐标基线打方格网,方格网线一般用5×5米或10×10米平行于路中线,斜交道路应选便于施工放线的测量的方向,测出方格网上的地面高程并求出其设计标高,从而算出施工高度。

设计等高线法是在交叉口的设计范围内,选定路脊线和划分标高计算网,算出路脊线和标高计算线上的各点的设计标高,最后勾画出设计等高线。

并算出各点的施工高度。

设计等高线法的主要优点是比方格网法能更加清晰地反映出交叉口的设计地形,其缺点是设计等高线上的各点不易放样。

通常是两种方法结合使用,取长补短1.方格网法方格网计算步骤及方法2. 常用方格网计算公式当注:1)a——方格网的边长,m;b、c——零点到一角的边长,m;h1,h2,h3,h4——方格网四角点的施工高程,m,用绝对值代入;Σh——填方或挖方施工高程的总和 ,m,用绝对值代入;——挖方或填方体积,m。

2)本表公式是按各计算图形底面积乘以平均施工高程而得出的。

3. 横截面计算步骤及方法常用横截面计算公式土方量汇总表边坡土方计算步骤及方法边坡土方计算K D、K V值表。

最全土方计算方法(CASS11方格网计算土方)

最全土方计算方法(CASS11方格网计算土方)

土方工程量计算几种比较经常计算土方量的方法有:公式法预估、方格网法、等高线法、断面法、DTM法、区域土方量平衡法和平均高程法等。

一、公式法预估方法原理:即把地形近似的假定为锥体、棱台、球缺、圆台等几何体,利用立体几何公式计算土方量此法简单易于操作但精确度差,所以一般多用于方案规划、设计阶段的土方量估算。

二、方格网法方法原理:系统将方格的四个角上的高程相加(如果角上没有高程点,通过周围高程点内插得出其高程),取平均值与设计高程相减。

然后通过指定的方格边长得到每个方格的面积,再用长方体的体积计算公式得到填挖方量。

方格网法计算的设计面可以是平面或斜面(A.一个方向放坡:斜面【基准点】、B.二个不同方向放坡:斜面【基准线】),也可以是多个坡面(利用三角网文件完成),能够满足不同情况下的土方计算,尤其是在处理多级放坡非常出色。

方法原理:两条等高线所围面积可求,两条等高线之间的高差已知,可求出这两条等高线之间的土方量。

适用于用户将白纸图扫描矢量化后得到的图形,因为这样的图形没有高程数据文件,所以无法用前面的几种方法计算土方量。

用等高线法可计算任两条等高线之间的土方量,但所选等高线必须闭合。

山体水方法原理:道路断面、场地断面、任意断面、二断面线间土方计算。

其工作原理为根据纵断面上各个里程处实际测量的地面横断面线与设计横断面线,获得各个里程处的横断面的填挖面积,并由相邻两横段面的间距计算出土石方量,最终汇总出纵断面上所有两相邻横断面间的土石方量,并绘出土石方量计算表。

五、DTM法方法原理:根据实测的地面点坐标(X,Y,Z )和设计高程,建立三角网并计算每一个三棱锥的填挖方量,最后累加得到指定范围内填挖方量,并绘制出填挖分界线。

DTM法主要适用于设计面为平面或单一斜面情况,DTM法可以进行坡边设置,根据坡度及放坡方向计算填挖方量,因此可用于道路施工的土方测量;DTM法还可以将两次观察数据建模后叠加(蓝色部分表示高程已经变化,红色部分表示没有变化),因此可用于计算同一区域两时期间的土方量变化。

方格网土方量计算

方格网土方量计算

方格网土方量计算
1.划定方格网区域:首先,需要在土方工程区域进行合适的划分,划
定出方格网的范围。

根据项目需要,可以根据工程地形和土方工程的特点,适当调整方格网的大小和形状。

2.设置基准点:在方格网的角点或中点位置确定基准点。

基准点的设
置应考虑方便测量高程和进行坐标计算。

3.进行高程测量:在每个方格的角点或中点位置,使用高程测量仪或
水准仪进行高程的测量。

测量时要保证仪器的准确性和稳定性。

可以使用
给定点的高程作为参考,或进行相对高程测量。

4.记录测量数据:将每个方格点的高程测量数据记录下来。

可以使用
表格进行整理记录,对每个方格点的坐标和高程进行标注。

5.计算方格网土方量:根据方格网的高程测量数据,可以计算出每个
方格内的土方量。

一般可以使用体积计算公式进行计算,即土方量等于方
格的面积乘以平均高程。

土方量=方格面积×平均高程
平均高程=(四个角点高程之和)/4
6.汇总计算结果:将每个方格的土方量进行汇总,得到整个方格网区
域的土方量。

可以使用表格或图表进行数据记录和结果汇总,方便后续的
土方计划和施工安排。

此外,方格网土方量计算还可以通过三维建模软件进行自动计算。


过将方格网的高程数据导入三维建模软件,可以自动生成方格区域内土方
的量,并进行可视化展示和分析。

总之,方格网土方量计算是一种实用的土方计算方法,可以准确快速
地计算出方格网区域内的土方量,为土方工程提供有效的测量和计算支持。

方格网挖填方量的计算公式

方格网挖填方量的计算公式

方格网挖填方量的计算公式在土方工程中,挖填方量是一个非常重要的参数,它直接影响着工程的施工进度和成本。

方格网挖填法是一种常用的土方量计算方法,通过将工程现场划分成等大小的方格网,然后对每个方格内的土方量进行测量和计算,最终得到整个工程的挖填方量。

本文将介绍方格网挖填法的计算公式和具体步骤。

方格网挖填法的计算公式如下:挖方量 = ∑(A×h)。

填方量 = ∑(A×h)。

其中,A为每个方格的面积,h为每个方格的高度,∑表示对所有方格进行求和。

具体步骤如下:1. 划分方格网。

首先,需要对工程现场进行测量,确定整个工程的范围和边界。

然后,将工程现场划分成等大小的方格网,每个方格的大小可以根据实际情况确定,一般为1米×1米或2米×2米。

2. 测量高程。

对每个方格内的土方进行高程测量,可以使用水准仪或全站仪进行测量。

将每个方格的高程记录下来,作为后续计算的数据。

3. 计算挖方量。

对每个方格的面积和高程进行计算,得到每个方格的挖方量。

然后将所有方格的挖方量进行求和,得到整个工程的挖方量。

4. 计算填方量。

同样的方法,对每个方格的面积和高程进行计算,得到每个方格的填方量。

然后将所有方格的填方量进行求和,得到整个工程的填方量。

通过以上步骤,就可以得到整个工程的挖填方量。

这种方法相对简单直观,适用于一些较小规模的土方工程。

但需要注意的是,方格网挖填法只能得到整个工程的总挖填方量,无法得到每个方格内的不均匀挖填情况,因此在实际应用中需要结合实际情况进行分析和调整。

除了方格网挖填法,还有一些其他常用的土方量计算方法,比如横断面法和三角测量法等。

每种方法都有其适用的场景和局限性,需要根据实际情况选择合适的方法进行计算。

总之,挖填方量的计算是土方工程中非常重要的一环,直接影响着工程的进度和成本。

方格网挖填法是一种常用的计算方法,通过简单的公式和步骤就可以得到整个工程的挖填方量。

希望本文对大家了解方格网挖填法有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方格网法。

将场地划分为边长10—40m的正方形方格网,通常以20m居多。

再将场地设计标高和自然地面标高分别标注在方格角上,场地设计标高与自然地面标高的差值即为各角点的施工高度(挖或填),习惯以“+”号表示填方,“-”表示挖方。

将施工高度标注于角点上,然后分别计算每一方格地填挖土方量,并算出场地边坡的土方量。

将挖方区(或填方区)所有方格计算的土方量和边坡土方量汇总,即得场地挖方量和填方量的总土方量。

为了解整个场地的挖填区域分布状态,计算前应先确定“零线”的位置。

零线即挖方区与填方区的分界线,在该线上的施工高度为零。

零线的确定方法是:在相邻角点施工高度为一挖一填的方格边线上,用插入法求出零点的位置,将各相邻的零点连接起来即为零线。

零线确定后,便可进行土方量计算。

方格中土方时的计算有两种方法,即四角棱柱体和三角棱柱体法。

①四角棱柱的体积计算方法。

方格四个角点全部为填或全部为挖,其挖方或填方体积为:
V=a2(h1+h2+h3+h4)/4
式中:h1、h2、h3、h4—方格四然点挖或填的施工高度,均取绝对值,m;
a—方格边长。

方格四个角点中,部分是挖方、部分是填方时,其挖方或填方体积分别为:
V1、2=a2/4×[h12/(h1+h4)+h22/(h2+h3)]
V3、4=a2/4×[h32/(h2+h3)+h42/(h1+h4)]
方格中三个角点为挖方(或填方)另一角点为填方时(或挖方)时,其填方部分的土方量为:
V4=a2h43/6(h1+h4)(h3+h4)
其挖方部分土方量为:
V1、2、3=a2(2h1+h2+2h3-h4)/6+V4
②三角棱柱体的体积计算方法。

计算时先顺地形等高线将各个方格划分成三角形,每个三角形三个角点的填挖施工高度用h1、h2、h3表示。

当三角形三个角点全部为挖或全部为填时,其挖填方体积为:
V=a2(h1+h2+h3)/6
式中:a—方格边长,m;
h1、h2、h3—三角形各角点的施工高度,用绝对值代入,m。

三角形三个角点有填有挖时,零线将三角形分成两部分,一个是底面为三角形的锥体,一个是底面为四边形的楔体,其锥体部分体积为:
V锥=a2h33/6(h1+h3)(h2+h3)
楔形部分的体积为:
V楔=a2/6[h33/(h1+h3)(h2+h3)-h3+h2+h1]
式中:h1、h2、h3—三角形各角点的施工高度,取绝对值,m。

其中h3指的是锥体顶点的施工高度。

相关文档
最新文档