4、金属切削机床、切削原理

合集下载

《金属切削原理与刀具》知识点总结

《金属切削原理与刀具》知识点总结

《金属切削原理与刀具》知识点总结第一章金属切削原理金属切削原理是金属切削工艺的基础,本章主要介绍了金属切削的基本原理,包括金属切削过程、刀具与被切削材料接触形式、切削能量与热力学原理、切削硬度与切削力的关系等。

第二章刀具材料与结构刀具材料与结构对切削加工的质量和效率有重要影响,本章主要介绍了刀具材料的选择与评价,以及刀具的结构与分类。

刀具材料的选择包括一般刀具材料、质子刀具材料和陶瓷刀具材料等。

第三章切削力分析与测定切削力是切削加工过程中的重要参数,正确定量和测定切削力对于提高切削加工的效率和质量至关重要。

本章主要介绍了切削力的分析与计算方法,以及切削力的测定方法,包括间隙力法、应力传感器法、功率法和应力波法等。

第四章刨削刨削是一种通过切削工具的多齿切削运动将金属材料切割成所需形状和尺寸的加工方法。

本章主要介绍刨削的工艺流程、刨削用刀具和切削参数的选择,以及刨削的切削力分析与测定方法。

第五章车削车削是一种利用车床刀具进行切削的加工方法,广泛应用于金属加工领域。

本章主要介绍了车削的工艺流程、车削刀具的选择和切削参数的确定,以及车削的主要工艺规律和效果评定方法。

第六章铣削铣削是一种通过旋转刀具进行切削的加工方法,广泛应用于金属加工和模具制造等领域。

本章主要介绍了铣削的工艺流程、铣削刀具的选择和切削参数的确定,以及铣削中的刀具磨损与刀具寿命评价方法。

第七章钻削钻削是一种利用钻头进行切削的加工方法,广泛应用于孔加工和螺纹加工等领域。

本章主要介绍了钻削的工艺流程、钻头的选择和切削参数的确定,以及钻削中的刀具磨损与刀具寿命评价方法。

第八章线切割线切割是一种利用细金属丝进行切削的加工方法,主要用于金属板材的切割。

本章主要介绍了线切割的工艺流程、线切割刀具的选择和切削参数的确定,以及线切割中的切削质量评价方法和切削速度对切割效果的影响。

此外,本书还包括金属切削中的润滑与冷却、数控机床中的刀具管理、切削机床中的刀具装夹等内容,为读者提供了全面的金属切削工艺和刀具知识。

04第四章:金属切削机床

04第四章:金属切削机床

例:CA6140; X6132; X5132 Y3150E; M7120; Z5140
2.专用机床的型号编制
专用机床型号表示方法
专用机床的型号一 般由设计单位代号和设计顺序号组成,其 表示方法为: (△)-△ 例如,北京第一机床厂设计制造的第100种 专用机床为专用铣床,其型号为B1-100。
联系动力源与执行机构之间的传动链。它使执行件获得动力以及一定的速 度和运动方向,其传动比的变化,只影响生产率或表面粗糙度,不影响加工 表面的形状和精度,如下图4-4所示的主运动传动链。

(2)内联系传动链

联系一个执行机构和另一个执行机构之间运 动的传动链。它决定着加工表面的形状和精度, 对执行机构之间的相对运动有严格要求。因此, 内联系传动链的传动比必须准确,不应有摩擦传 动或瞬时传动比变化的传动副(如皮带传动和链 传动),如下图4-4所示的进给运动传动链。
③组、系代号 为了区分机床的结构、布局和所能加工的 零件特征,每类机床可分为“0~9”十个组别。 为了更细的区分机床的结构特征,机床在组下 面又可细分为“0~9”十个系别。同一组、系 的机床,其主要结构及布局形式基本相同。机 床组、系代号用阿拉伯数字表示。机床的类、 组代号的含义见教材P5表2,组、系代号见表 2.3。
图2.8 车削成需要成形运动。 导线(母线1绕轴线O-O旋转的运动轨迹),由轨迹 法形成,需要1个成形运动B1。 形成成形回转表面的成形运动总数是形成母线和导 线所需成形运动的和,即1个成形运动(B1)。
例2 如图2.9所示,用螺 纹60°成形车刀车削三角 螺纹,试分析其母线、导 线的成形方法及所需要的 成形运动,并说明形成该 表面共需要几个成形运动。
图4-4 CA6140车床的传动系统图

机床加工的工作原理

机床加工的工作原理

机床加工的工作原理机床是现代制造业中不可或缺的设备,它在各个领域都有重要的应用。

机床加工的工作原理是机床能够将原材料加工成所需形状和精度的产品。

本文将详细介绍机床加工的工作原理及其相关内容。

一、机床的定义机床是指以金属或其他切削工具为主要切削工具的机器设备,通过对原材料进行加工来制造零部件或成品。

机床通常由主轴、工作台、进给机构等基本部件组成,可以实现切削、打孔、切槽、车削等多种加工操作。

二、1. 切削原理机床加工的核心原理是切削原理。

切削是指通过将刀具与工件相对运动,在刀具和工件之间形成切削面并施加一定压力,使刀具将工件上的材料切削掉,从而得到所需形状和精度的工件。

切削原理包括正割切削和反割切削两种方式。

2. 主轴运转原理机床的主轴是支撑刀具和实施切削工作的关键部件。

主轴通过电机、皮带传动等方式驱动,旋转起到带动刀具与工件相对运动的作用。

主轴的旋转速度可以根据加工要求进行调节,不同速度可以实现不同的切削效果。

3. 进给运动原理机床的进给运动是指工件或刀具在切削过程中相对移动的运动方式。

进给运动一般分为三种方式:直线进给、旋转进给和复合进给。

通过调整进给速度和进给量,可以实现不同加工要求下的进给运动。

4. 工艺参数控制原理机床加工过程中,需要根据加工要求和工件特性来控制各项工艺参数。

例如,切削速度、进给速度、主轴转速等都需要合理设定,以确保加工质量和效率。

5. 控制系统原理现代机床通常配备了数字化控制系统,利用该系统可以对切削过程进行自动化控制。

控制系统通过接收指令信号,实时监测加工过程中的各项参数,并根据设定值来调整主轴转速、进给速度等工艺参数,确保加工过程的稳定性和精度。

三、机床加工的应用领域1. 汽车制造机床在汽车制造行业扮演着重要角色。

通过机床的加工,可以生产汽车零部件如发动机缸体、曲轴、减震器等,确保汽车的性能和质量。

2. 航空航天航空航天行业对机床的需求也非常大。

机床加工可以制造出高精度、复杂形状的航空航天零部件,如飞机发动机叶片、航天器外壳等。

金属切削原理的基本原理与应用探析

金属切削原理的基本原理与应用探析

金属切削原理的基本原理与应用探析金属切削是指在机械加工过程中,通过刀具对金属材料进行切削加工的一种方法。

切削加工是现代工业生产中非常重要的一环,广泛应用于制造业的各个领域,如汽车制造、航空航天、机械制造等。

本文将探析金属切削原理的基本原理和应用。

一、金属切削原理的基本原理1. 切削力与材料性质的关系切削力是刀具和工件之间产生的力,它直接影响到切削加工的效率和质量。

切削力与金属材料的性质有密切关系,例如硬度、韧性和塑性等特性。

一般来说,材料硬度越高,切削力越大。

2. 切削热的生成与影响在切削过程中,由于刃口与工件接触产生摩擦,会产生大量的切削热。

切削热的大小和分布对切削加工有着重要影响。

过高的切削热可能导致刀具磨损加剧、工件变形,甚至热裂纹的产生。

因此,有效控制切削热对于提高切削加工质量至关重要。

3. 切削液的作用切削液在切削过程中起到冷却、润滑和防腐的作用。

通过降低切削热,它可以有效地控制切削加工过程中的温度,减少工件表面的热变形,提高切削加工质量和效率。

4. 切削刃部分的结构与刀具磨损切削刃是切削工具的重要部分,其结构设计直接影响到切削加工的效果。

一般来说,切削刃的设计要使切削力分布均匀,降低切削热和切削力,延长切削工具的寿命。

此外,选择合适的材料和硬度对切削刃的寿命也有很大影响。

二、金属切削的应用探析1. 汽车制造汽车制造是金属切削应用的重要领域之一。

在汽车制造中,金属切削广泛应用于发动机、底盘、车身等零部件的加工。

通过金属切削,可以精确加工出复杂形状的零部件,提高汽车的质量和性能。

2. 航空航天工业航空航天工业对金属切削的要求更为严格。

在航空航天工业中,金属切削应用于航空发动机、机翼、航天器等部件的加工。

金属切削技术的发展和应用,推动了航空航天工业的进步和发展。

3. 机械制造金属切削在机械制造领域中扮演着重要角色。

在机械制造中,金属切削应用于制造各种机床、工具以及零部件等。

通过金属切削技术,可以提高机械制造的精度和效率,满足不同行业和领域的生产需求。

车床的原理

车床的原理

车床的原理
车床是一种常见的金属加工机床,它主要用于对金属材料进行切削加工。

车床的原理包括以下几个方面:
1. 车刀切削原理:车床通过夹持工件并以旋转的方式进行加工。

当车床主轴旋转时,车刀也会随之旋转。

车刀在工件上切削金属材料,形成所需的加工形状。

2. 进给原理:车床的进给系统用于控制车刀在切削过程中的相对移动。

进给系统可通过手动或自动方式进行操作。

手动进给时,操作工人通过手轮控制车刀的移动。

自动进给时,车床根据预先设定的参数和程序进行自动移动。

3. 切削速度原理:切削速度是指车刀在切削过程中相对于工件表面的线速度。

切削速度的选择与所加工材料的硬度和切削类型相关。

通常,切削速度越高,加工效率越高,但过高的切削速度可能会导致车刀磨损加剧。

4. 车床主轴原理:车床的主轴是其关键部件之一,用于支撑和驱动工件和车刀的旋转。

主轴通常由电机驱动,并通过加工需求进行调速。

主轴的旋转精度和稳定性对于保证加工质量至关重要。

车床的原理是工件通过主轴旋转,切削刀具由进给系统控制移动,与工件接触进行切削。

这种切削方式能够快速、精确地加工金属材料,广泛应用于制造业中的零部件生产和修整加工。

金属切削原理【详解】

金属切削原理【详解】

金属切削原理解析本文档由深圳机械展SIMM整理,详细介绍金属切削原理。

金属切削原理并不是一两句话可以精炼概括的,是一个复杂的知识体系,这个知识体系也是机械制造工艺及设备专业的专业基础课,庞丽君写的《金属切削原理》可作为高等院校机械类及有关专业本科、专科的教材,也可供机械类和相近专业的其他类型学校的师生和工程技术人员参考透彻理解金属切削原理需要了解切削运动、加工表面和切削用量三要素,刀具几何角度及其选择,刀具工作角度,切削层参数,切削方式,还包括金属切削过程,切削力,切削热与切削温度,刀具磨损和使用寿命,工件材料的切削加工性,已加工表面质量,刀具合理几何角度和切削用量的选择,磨削,以及刀具材料的分析及选择、车刀的结构分析与应用、孔加工过程分析、刀具的结构分析与应用、拉刀的结构特点与使用、铣削过程分析与铣刀的选择和其他刀具的结构与应用。

以下为一些重要知识的整理:基面:切削刃上任意一点的基面是通过这一点并与这一点的切削速度相垂直的平面。

切削原理:金属切削必须具备两种运动,车削时的切削运动是工件的旋转运动;进给运动,使新的金属不断的投入切削的运动。

也就是使切削过程在所需要的方向继续下去的运动,进给运动可能有一个以上,车削时的进给运动是刀具的连续移动。

1、切削用量的选择原则粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。

具体数值应根据机床说明书、切削用量手册,并结合经验而定。

从刀具的耐用度出发,切削用量的选择顺序是:先确定背吃刀量,其次确定进给量,最后确定切削速度。

2、背吃刀量的确定背吃刀量由机床、工件和刀具的刚度来决定,在刚度允许的条件下,应尽可能使背吃刀量等于工件的加工余量,这样可以减少走刀次数,提高生产效率。

确定背吃刀量的原则:(1)在工件表面粗糙度值要求为Ra12.5μm~25μm时,如果数控加工的加工余量小于5mm~6mm,粗加工一次进给就可以达到要求。

金属切削基本原理

金属切削基本原理

北汽福田汽车股份有限公司发动机事业部
时间:2014.9.22
变形程度表示式:
北汽福田汽车股份有限公司发动机事业部
时间:2014.9.22
1.4 刀具前面上的摩擦特点
切屑在流经刀具 的前面时,由于 强烈的挤压和剧 烈的摩擦,会产 生高温和高压, 使切屑底面与前 面的接触面之间 形成粘结,亦称 冷焊。内摩擦区 内剪切应力 如图 a。
北汽福田汽车股份有限公司发动机事业部
时间:2014.9.22
1.5 积屑瘤
用中、低切削速度切削塑性金属材料时,往往 会因冷焊现象而在刀具前面靠近切削刃处由切屑 堆积而粘附一个楔形硬块,称为积屑瘤。 在切削速度不高 而又能形成连续性切 屑的情况下,加工一 般钢料或其他塑性材 料时,常常在刀具前 面处粘着一块剖面常 呈三角状的硬块。它 的硬度很高,通常是 工件材料的2~3倍, 在处于比较稳定状态 时,能够代替刀刃进 行切削。
北汽福田汽车股份有限公司发动机事业部 时间:2014.9.22
主要内容
一、切削变形与切屑的形成
二、切削力
三、切削热与切削温度
四、刀具磨损与刀具寿命 五、磨削
北汽福田汽车股份有限公司发动机事业部
时间:2014.9.22
1.1 金属切削层的切削变形
1.1.1 切削变形的力学本质
切削金属形成切屑的过 程是一个类似于金属材料受挤 压作用,产生塑性变形进而产 生剪切滑移的变形过程 (如 图3.1 )
北汽福田汽车股份有限公司发动机事业部
时间:2014.9.22
北汽福田汽车股份有限公司发动机事业部
时间:2014.9.22
切削变形过程示意图




北汽福田汽车股份有限公司发动机事业部

「金属切削机床复习要点总结」

「金属切削机床复习要点总结」

「金属切削机床复习要点总结」金属切削机床是一种用于加工金属材料的机床,广泛应用于制造业中。

它通过切削工具对金属材料进行切削、铣削、钻孔等加工操作,能够实现高精度、高效率的工件加工。

下面是金属切削机床复习要点的总结。

一、机床结构和工作原理1.金属切削机床的基本结构:床身、主轴、滑架、传动系统、操作系统等。

2.金属切削机床的工作原理:根据加工要求选择合适的切削工具,通过主轴驱动工具进给,完成对工件的切削、铣削、钻孔等操作。

二、切削工具的选择和应用1.切削工具的分类:刀具、刀片、钻头、铣刀等。

2.切削工具的选择原则:根据加工材料、工件形状、加工要求等选择合适的切削工具。

3.切削工具的应用技巧:根据切削工具的特点和加工要求确定切削参数,如切削速度、进给量、切削深度等。

三、切削力和切削热的控制1.切削力的产生和分析:切削力的大小与切削速度、切削深度、切削宽度等因素有关,需要通过力学计算和实验测试进行分析。

2.切削热的控制:切削过程中会产生大量热量,需要通过冷却液、切削液等措施进行冷却,以避免工件变形和刀具磨损。

四、数控机床的操作和编程1.数控机床的操作:包括开机、关机、切换模式、工件装夹、刀具更换等操作步骤。

2.数控机床的编程:根据工件的形状、尺寸和加工要求,编写数控加工程序,使机床按照预定的路径和加工参数进行操作。

五、工艺规程和工艺设计1.工艺规程的编制:根据产品加工要求,制定详细的加工工艺流程和操作规范,保证生产过程的可控性和稳定性。

2.工艺设计的优化:通过对加工过程的分析和改进,提高工艺效率和质量,减少加工成本和生产周期。

六、刀具磨损和刃磨技术1.刀具的磨损形式和原因分析:刀具磨损包括刃磨、破损、黏着、烧蚀等,需要通过刀具检测和分析找出磨损原因。

2.刃磨技术和刃磨设备的使用:刀具刃磨技术是延长刀具寿命和提高加工质量的重要手段,需要掌握合理的刃磨方法和刃磨设备的使用。

七、安全操作和维护1.安全操作规范:使用金属切削机床时,需掌握安全操作规程,如佩戴防护装置、规范操作、定期检查设备等。

金属切削原理与刀具

金属切削原理与刀具

第四章 切削条件的合理选择
第一节 工件材料的切削加工性 第二节 切削液 第三节 刀具几何参数的合理选择 第四节 切削用量的合理选择
第一节 工件材料的切削加工性
“指对某种材料进行加工的难易程度”
相对加工性:Kr
Kr

V60 (V60 ) j
改善材料切削加工性的主要途径
1、热处理,改变材料的组织和机械性能 2、合理选用刀具材料 3、调整材料的化学成分

f
0.14

a0.04 p
三、影响切削温度的因素
3. 刀具几何参数对切削温度的影响 控制切削温度的措施
γO ↗
1、正确使用切削液
θ ℃↙
2、合κ理选r 择↗切削用量
在满足工艺要求的前提下,取小的
θ ℃↗
vc较大的
ap、f
3、γ改O↗r善ε刀↗具几θ何℃条↙件:
θ ℃↙
第四节 刀具磨损
一、刀具的磨损形式:
二、刀具磨损的原因
4. 氧化磨损: 刀具上的表面膜被切屑或工件表面划擦掉后,在高温 下(700~800℃)与空气中的氧作用产生松脆氧化物, 造成刀具磨损。
综上所述:
三、刀具磨损过程与磨损标准
11、、刀具磨损过程
2、刀具磨损标准(磨损限度)
“指后刀面磨损带中间部分平均磨损量允许达到的 最大磨损尺寸”。以VB表示
2、产生条件: ①中等速度切削塑性材料。
②切削区的温度、压力和界 面状况符合在刀面上发生 冷焊的条件。
2、特点: ①硬度是工件材料的2~3.5倍,
可以代替刀具切削。
②周而复始的生长、脱落。
3. 对切削过程的影响:
4、精加工控制积屑瘤的措施

积屑瘤代替刀刃进行切削,保护 了刀刃,增大了前角。

金属切削机床基本知识

金属切削机床基本知识

传动系统
01
02
03
04
传动系统是金属切削机床的重 要组成部分,它负责将主轴的
旋转运动传递到刀具上。
传动系统通常包括主轴、齿轮 、皮带和导轨等部件,以确保 稳定的切削速度和进给速度。
传动系统的精度直接影响加工 零件的表面质量和尺寸精度, 因此需要定期维护和调整。
现代金属切削机床的传动系统 趋向于高速、高精度和大功率 ,以满足加工复杂零件的需求
06
金属切削机床的发展趋 势与未来展望
高精度化发展趋势
总结词
随着制造业对产品精度要求的不断提高,金属切削机床的高精度化发展趋势日益明显。
详细描述
现代金属切削机床采用了先进的技术和工艺,如高精度数控系统、误差补偿技术、超精密加工刀具等,以提高加 工精度和减小加工误差。这使得金属切削机床能够满足各种高精度、高效率的加工需求,提高产品质量和竞争力。
航空航天业
航空发动机制造
航空发动机的制造需要高 精度和高可靠性的金属切 削机床,用于生产涡轮叶 片、涡轮盘等关键部件。
机身结构制造
在飞机机身的制造过程中, 金属切削机床用于生产各 种精密的零部件和结构件。
航空航天材料加工
金属切削机床能够加工各 种高强度、高耐热的航空 航天材料,满足特殊需求。
模具制造业
高效率化发展趋势
总结词
为了适应制造业对高效生产的追求,金属切削机床的高效率化发展趋势日益显著。
详细描述
金属切削机床的高效率化发展主要体现在提高加工速度、减少加工时间和降低能耗等方面。通过采用 新型材料、优化结构设计、引入新型切削技术和工艺等手段,金属切削机床的加工效率得到了显著提 升,大幅缩短了生产周期,降低了生产成本。
安全操作规程

金属切削机床 原理

金属切削机床 原理

金属切削机床原理全文共四篇示例,供读者参考第一篇示例:金属切削机床是一种用于加工金属材料的机械设备,它主要通过切削原理来加工工件,包括车削、铣削、钻削、镗削等多种加工方式。

在金属加工领域中,金属切削机床是起着至关重要的作用,它能够高效、精确地加工各种不同形状和尺寸的金属工件,广泛应用于航空、航天、汽车、机械制造等行业。

金属切削机床的工作原理主要包括以下几个方面:1. 切削原理:金属切削是指利用刀具对金属材料进行加工,通过不断切削,将工件表面金属层逐渐去除,从而形成所需的形状和尺寸。

在金属切削过程中,刀具与工件之间产生相对运动,刀具沿着工件表面移动,将金属层切削下来,形成所需的加工表面。

2. 机床结构:金属切削机床通常由机床主体、传动系统、控制系统、润滑系统和冷却系统等部分组成。

机床主体包括床身、立柱、横梁、工作台和主轴等部分,通过传动系统控制刀具在三维空间内的移动,实现加工操作。

控制系统则负责对机床进行控制和监控,确保加工的精度和质量。

润滑系统和冷却系统则起着保护机床零部件和刀具的作用。

3. 切削参数:金属切削的质量和效率与切削参数密切相关。

切削参数包括切削速度、进给量、切削深度和切削角度等。

切削速度是指刀具在单位时间内相对于工件表面的线速度;进给量是刀具在切削方向的移动距离;切削深度是刀具切入工件的深度;切削角度是刀具相对于工件表面的角度。

通过合理调整这些参数,可以实现不同加工需求的加工效果。

4. 切削工艺:金属切削工艺是一项复杂的加工过程,需要运用切削原理来实现。

在实际加工中,需要选择合适的切削工艺,根据工件材料、形状和尺寸来确定刀具的选择、切削速度、进给量和切削深度等参数,以获得高质量的加工效果。

还需要考虑切削过程中产生的热量和切屑的处理,保证加工过程的稳定性和安全性。

金属切削机床是一种重要的加工设备,它通过切削原理来实现对金属材料的加工。

了解金属切削机床的工作原理,可以帮助我们更好地理解其加工过程和性能特点,进而提高加工效率和加工质量。

金属切削加工的工作原理

金属切削加工的工作原理

金属切削加工的工作原理金属切削加工是指通过对金属材料施加一定的力和转动工具,从工件上去除材料以达到所需形状和尺寸的加工方法。

这是一种广泛应用于制造业的重要工艺,用于制作各种金属制品,如零件、工具和零部件。

金属切削加工的工作原理包括以下几个方面:1. 切削力的产生和传递金属切削加工过程中,切削刀具通过在工件表面施加力来切削金属材料。

切削力是金属切削加工中最主要的力。

切削力的产生和传递从切削刀具到工件时,经过以下几个部分的相互作用:刀具的刃口,刀具周边的切削区域,刀具的后角和刃口的前角。

切削力的大小和方向受到切削速度、切削深度、进给量、切削刃口形状、工件材料和切削液等因素的影响。

2. 切削刃口的工作机制切削刃口是切削刀具上起切削作用的部分。

切削刃口的工作机制主要是依靠切削力的作用,将金属材料切削下来。

切削刃口通常有直刃、斜刃和弯刃等不同形状,不同形状的刃口适用于不同的切削工艺和工件材料。

3. 金属切削加工过程中的热力学效应金属切削加工过程中,刀具和工件之间的相互作用会产生热量。

这是由于切削过程中发生的金属材料的塑性变形、摩擦和切削刃口与工件表面接触的原因。

通过切削过程中产生的热传导、热对流和热辐射,会让切削区域的温度升高。

为了避免过高的温度对刀具和工件的影响,通常会使用切削液进行冷却和润滑。

4. 金属切削加工的切削方式金属切削加工可以通过不同的方式实现,常见的切削方式有手动切削、机械切削和数控切削等。

手动切削是在操作者的手动控制下进行的,适用于小批量加工和简单形状的工件。

机械切削是通过机床实现的,具有高效率和精度高的优点,适用于大批量生产。

数控切削是在计算机的控制下进行的,通过预先编程的方式控制切削过程,可以实现高度精确的加工。

5. 切削液的作用和选择切削液在金属切削加工中具有重要的作用。

切削液可以冷却切削区域,降低温度,减少刀具磨损和工件变形的可能性。

同时,切削液也可以提供润滑,减少切削刃口与工件表面之间的摩擦,有助于提高加工表面的质量。

金属切削机床基础知识

金属切削机床基础知识

应用领域与发展趋势
应用领域
金属切削机床广泛应用于汽车、航空、机械制造、电子等工 业领域。
发展趋势
随着科技的不断进步,金属切削机床正朝着高精度、高效率 、智能化的方向发展,同时也面临着环保和节能的挑战。
02 金属切削机床组成
机床主体部分
01
02
03
床身
机床的基础部件,用于支 撑和固定其他部件,要求 有足够的刚性和稳定性。
THANKS FOR WATCHING
感谢您的观看
分类
金属切削机床按加工方式可分为 车床、铣床、钻床、磨床等;按 自动化程度可分为手动、半自动 和全自动机床。
工作原理与特点
工作原理
金属切削机床通过主轴的旋转运动和 刀具的进给运动,使刀具与工件产生 相对运动,从而实现切削加工。
特点
金属切削机床具有加工精度高、加工 范围广、适应性强等优点,但也存在 能耗高、噪音大等缺点。
防护措施
为防止操作过程中发生意外伤害,应采取相 应的防护措施,如设置安全罩、防护栏、防 护门等,确保操作区域的安全。
废弃物处理与环保要求
废弃物分类
根据金属切削废料的性质和数量,进行分类 处理,避免混杂和污染。
环保要求
金属切削机床应符合国家及地方环保要求, 减少噪音、粉尘、废水的排放,采用环保材
料和工艺,提高资源利用效率。
要点一
总结词
随着科技的不断进步,金属切削机床正在向高精度化和智 能化方向发展,以提高加工质量和效率。
要点二
详细描述
高精度化方面,新型的金属切削机床采用了先进的控制系 统和加工技术,使得加工精度得到了显著提升,能够满足 高端制造业的严格要求。智能化方面,金属切削机床正逐 步实现自动化和智能化,通过引入人工智能、机器学习等 技术,能够实现自适应加工、智能故障诊断等功能,提高 生产效率和加工过程的可靠性。

金属切削原理与刀具(王靖东编著)

金属切削原理与刀具(王靖东编著)
第一章 金属切削设备的基本知识
图1.1 常见机械加工方法的切削运动 第一章 金属切削设备的基本知识
3.合成切削运动
是由主运动和进给运动合成的运动。 1.1.2 工件上的加工表面 1.待加工表面
工件上有待切除的表面。
2.已加工表面 工件上经刀具切削后形成的表面。
3.过渡表面
工件上被切削刃正在切削着的表面,它总是处在待 加工表面与已加工表面之间,也称切削表面或加工表面。
高速钢安按切削性能可以分为普通高速钢和高性能高速钢。
第一章 金属切削设备的基本知识
(1)普通高速钢常用的种类如下。 ① 钨系高速钢。典型牌号是W18Cr4V,简称W18。具有
较好的综合性能。适合制作螺纹车刀、成形车刀、拉刀和齿轮
刀具等形状复杂的刀具。但强度和韧性低,不适合制作大截面 的刀具;热塑性较差,不适合制造热成形刀具。
到了促进作用。
目前金属切削加工中应用的刀具材料,碳素工具钢已基本被淘汰,合 金工具钢也很少使用,所使用的刀具材料主要分为高速钢、硬质合金、陶 瓷、立方氮化硼和聚晶金刚石5类。 第一章 金属切削设备的基本知识
(一)高速钢
高速钢是高速合金工具钢的简称,也称白钢或锋钢是在钢中加入较多的
钨、钼、铬、钒等合金元素的高合金工具钢。 高速钢特点: 工艺性好,具有较高的硬度和耐磨性、良好的耐热性、高的强度和韧性, 切削速度高。 与硬质合金及陶瓷相比,一是具有较好的强度韧性;二是具有较好的制 造工艺性。主要用来制造钻头、丝锥、板牙、拉刀、齿轮刀具和成形刀具等 形状复杂的刀具。可加工碳钢、合金钢、有色金属、铸铁等多种材料。
(一) 切削用量要素(工艺要素,包括切削速度、进给量、背吃刀量三要素) 1.切削速度vc 切削速度是指主运动的线速度。(刀具切削刃上某一点相对于待加工 表面在主运动方向上的瞬时线速度)

金属切削原理及刀具

金属切削原理及刀具


削 运
(1)切削速度
动 与
大多数切削加工的主运动采用回转运动。回转体(刀具或
切 削
工件)上外圆或内孔某一点的切削速度计算公式如下:


vcdnm/s或 m/min
1000
式中 d——工件或刀具上某一点的回转直径(mm); n——工件或刀具的转速(r/s或r/min)。
在生产中,磨削速度单位用米/秒( m/s),其它加工的切削
法剖面是通过切削刃选定点,垂直于切削刃的平面。
Pr-Ps-Pn组成法剖面参考系。
右图表示由Po-Pr-Ps 组成的一个正交的主剖
面参考系,这是目前生
产中最常用的刀具标注
角度参考系。图中同时
刀 具
也表示了一个由Pn-Pr-
标 注
Ps 组成的法剖面参考系。
角 度
在实际使用时一般是分
的 参
别使用某一个参考系。


素 (2)进给速度、进给量和每齿进给量
进给速度是单位时间的进给量,单位是mm/s(mm/min)。
进给量是工件或刀具每回转一周时两者沿进给运动方向的相
对位移 (对于车削、钻削、铰削),单位是mm/r。
对于刨削、插削等主运动为往复直线运动的加工,虽然
可以不规定进给速度,却需要规定间歇进给的进给量,其单
称为标注角度。
刀 具
刀具标注角度的参
标 注
考系的形成如右图动
角 度
画所示,由基面、切
的 参
削平面、主剖面等平
考 系
面构成了主剖面参考
系。
(1)基面Pr 通过切削刃选定点,垂直于假定主运动方向的平面。
通常,基面应平行或垂直于刀具上便于制造、刃磨和测量的

机械制造技术课件第二章金属切削基本原理

机械制造技术课件第二章金属切削基本原理

机械制造技术课件第二章金属切削基本原理一、教学内容二、教学目标1. 理解金属切削的基本概念,掌握金属切削过程的基本原理。

2. 了解金属切削刀具的材料、结构及其对切削加工的影响。

3. 掌握切削力、切削热及切削温度的计算方法,分析其对加工质量的影响。

三、教学难点与重点教学难点:金属切削过程中的物理现象及其对加工质量的影响。

教学重点:金属切削基本概念、刀具结构及其对切削加工的影响、切削力的计算。

四、教具与学具准备1. 教具:金属切削刀具实物、切削加工视频、PPT课件。

2. 学具:笔记本、教材、计算器。

五、教学过程1. 导入:通过展示金属切削加工视频,让学生了解金属切削的实际应用,激发学习兴趣。

时间:5分钟2. 知识讲解:(1)讲解金属切削的基本概念,如切削、切削速度、进给量等。

(2)介绍金属切削刀具的材料、结构及其对切削加工的影响。

(3)分析金属切削过程中的物理现象,如切削力、切削热等。

(4)讲解切削力、切削热及切削温度的计算方法。

时间:30分钟3. 例题讲解:选择一道具有代表性的例题,详细讲解切削力的计算过程。

时间:15分钟4. 随堂练习:出一道与例题相似的练习题,让学生独立完成,巩固所学知识。

时间:10分钟5. 课堂小结:时间:5分钟六、板书设计1. 金属切削基本概念2. 金属切削刀具的材料及结构3. 金属切削过程中的物理现象4. 切削力、切削热及切削温度的计算5. 课堂练习题及答案七、作业设计1. 作业题目:(1)简述金属切削的基本概念。

(2)列举金属切削刀具的常见材料,并说明其特点。

2. 答案:(1)金属切削是指利用切削工具将工件上的材料去除,使其达到一定尺寸和表面质量的过程。

(3)切削力的计算公式:F = ap f cos(λ) K其中,ap为切削深度,f为进给量,λ为刀具前角,K为工件材料系数。

带入数据计算得:F ≈ 300N八、课后反思及拓展延伸1. 课后反思:本节课通过实践情景引入、例题讲解、随堂练习等方式,使学生掌握了金属切削基本原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
硬质合金因其切削性能优良被广泛用来制作各种刀具。 在我国,绝大多数车刀、面铣刀和深孔钻都采用硬质合金 制造,目前,在一些较复杂的刀具上,如立铣刀、孔加工 刀具等也开始应用硬质合金制造。
刀具材料
表2-10 各种硬质合金的应用范围
牌 号 YG3X YG3 YG6X 硬度 、耐 磨性 、切 削速 度 抗弯 强度 、韧 性、 进给 量 应 用 范 围 铸铁、有色金属及其合金精加工、半精加工,不能承受冲击载荷 铸铁、有色金属及其合金精加工、半精加工,不能承受冲击载荷 普通铸铁、冷硬铸铁、高温合金的精加工、半精加工
螺纹运动传动链; 纵向、横向进给传动链
刀架快速运动传动链
M1
主轴箱
溜板箱
M2
M3
M4
M5
M6
M7
M8
进给箱
230
Ⅰ5651源自34M150
80 39 50 63 20 51
Ⅱ Ⅲ
38
22
30

26 50
43
41
50
44

20 50
80 50 58
58 58

M2
130
1450 r / m
铣削加工 Milling Cutting
Y X
图 2-13 六点定位原理
完全定位与不完全定位
工件的6个自由度均被限制,称为完全定位。工件6个自由 度中有1个或几个自由度未被限制,称为不完全定位。
欠定位
工件加工时必须限制的自由度未被完全限制,称为欠定 位。欠定位不能保证工件的正确安装,因而是不允许的。
过定位
过定位 —— 工件某一个自由度(或某几个自由度) 被两个(或两个以上)约束点约束,称为过定位。
定位误差:指一批工件在夹具中的位置不一致而引起的误差。 用△DW表示。 误差产生原因: 1.工序基准与定位基准不重合:基准不重合误差△不重合 2.工件定位表面或定位副制造不准确误差:基准位置误差△不准确 定位误差的计算:△DW= △不重合± △不准确 当工件以平面定位时: △DW= △不重合,( △不准确=0)
机械制造工艺过程
机械制造过程中,凡是直接改变零件形状、尺 寸、相对位置和性能等,使其成为成品或半成 品的过程,称为机械制造工艺过程。 机械加工工艺过程由按照一定的顺序排列的 若干个工序组成,而每一个工序又可细分为 安装、工位、工步、及走刀等
零件表面形成方法
①轨迹法; ②成形法; ③相切法; ④展成法
工序基准:在工序图上确定本工序加工表面位置 的基准
E面
D面,为E面 的工序基准
F面
E面,为F面的 工序基准
图2-9a 支座零件第1工序(车削)
O—O轴心线 E面
图2-9b 支座零件第2工序(钻孔)
工件装夹
装夹的含义
装夹又称安装,包括定位和夹紧两项内容。 定位 —— 使工件在机床或夹具上占有正确位置
定位误差
定位误差的概念
定位误差是由于工件在夹具上(或机床上)定位不准确 而引起的加工误差。
定位误差的来源
1)由于工件定位表面或夹具定位元件制作不准确引起的 定位误差,称为基准位置误差△不准确。 2)由于工件的工序基准与定位基准不重合而引起的定位 误差,称为基准不重合误差△不重合。
定位误差分析与计算
71 4 38 3

47
26
28 36
Ⅲ Ⅱ
33 18
19 4 39 82 3
54

19
22
16
1440 r / min 26
71 4 38 3
47 26
Ⅴ Ⅴ
37
Ⅳ Ⅲ Ⅱ

36
28
33 18
19 4 39 82 3

54

1440 r / min


19
22
16
26
16 18 39 47 19 19 28 71 26 电动机 —Ⅰ — — Ⅱ — — Ⅲ — — Ⅳ — —Ⅴ(主轴) 82 54 36 37 22 39 38 33 26
车床刀具
切削加工过程是一个动态过程, 在切削过程中,工件上通 常存在着三个不断变化的切削表面。即:
待加工表面 过渡表面
待加工表面: 工件上即将被切除的表面。 已加工表面: 工件上已切去切削层而形成的新表面。
已加工表面表面
过渡表面(加工表面): 工件上正被刀具切削着的表面,介于已加工表面和待加工表 面之间。
抗弯 强度 、韧 性、 进给 量
抗弯强 度、韧 性、进 给量
碳素钢、合金钢的精加工 碳素钢、合金钢在连续切削时的粗加工、半精加工,亦可用于断 续切削时的精加工
同YT15 碳素钢、合金钢的粗加工,也可以用于断续切削 高温合金、高锰钢、不锈钢等难加工材料及普通钢料、铸铁、有 色金属及其合金的半精加工和精加工 高温合金、高锰钢、不锈钢等难加工材料及普通钢料、铸铁、有 色金属及其合金的粗加工和半精加工
YG6
YG8 YG6A
铸铁、有色金属及其合金的半精加工和粗加工
铸铁、有色金属及合金、非金属材料粗加工,也可用于断续切削 冷硬铸铁、有色金属及其合金的半精加工,亦可用于高锰钢、淬 硬钢的半精加工和精加工
YT30
YT15 YT14 YT5 YW1 YW2
硬度 、耐 磨性 、切 削速 度
硬度、 耐磨性 、切削 速度
夹紧 —— 对工件施加一定的外力,使其已确定的位置 在加工过程中保持不变
定位原理
六点定位原理
任何一个物体在空间直角坐标系中都有 6 个自由度—— 用 X , Y , Z , a, b , c 表示 要确定其空间位置,就需要限制其 6 个自由度 Z 将 6 个支承抽象 为6个“点”,6个 点限制了工件的 6 个自由度,这就是 六点定位原理。
• 逆铣——铣刀切入工件时 的切削速度方向和工件的 进给方向相反
顺逆铣的特点:
1、逆铣时,切削厚度由零逐渐增大,由于刃口钝圆半径的影响,开始 切削时前角为负值,刀齿在工件表面上挤压、滑行,造成工件表面加 工硬化严重,并加剧了刀齿的磨损。 顺铣时,切削厚度由最大开始,刀具磨损小,耐用度高。
2、顺铣时,铣削力在进给方向的分力与工件的进给方向相同,由于工
刀具几何角度
刀具标注角度坐标系(主剖面坐标系)
1)基面 Pr :通过切 削刃选定点与主运动 方向垂直的平面。基 面与刀具底面平行。 2 )切削平面 Ps :通 过切削刃选定点与主 切削刃相切且垂直于 基面Pr的平面。 3)主剖面 Po:通过 切削刃选定点垂直于 基面Pr和切削平面 Ps 的平面。
主剖面 Po 前刀面 A 基面 Pr 切削平面 Ps 主切削刃 副切削刃 主后刀面
传动路线表达式:
16 18 39 47 19 19 28 71 26 电动机 —Ⅰ — — Ⅱ — — Ⅲ — — Ⅳ — —Ⅴ(主轴) 82 54 36 37 22 39 38 33 26
例:用α=90°的V形块定位铣轴上键槽,计算定位误差;若 不考虑其它误差,判断其加工精度能否满足加工要求?
解:
D 0.207D 0.207 0.12 0.025 mm
D为0.025 mm
远小于工件尺寸公差0.25 ㎜, 所以能够满足加工要求
600 0.12
工件的夹紧
方向
普通车床
卧式车床的工艺范围 卧式车床通用性强,结构复杂,自动化程度低,适 合单件、小批量生产 适合加工各种轴类、套类、盘类零件上的回转表面: 内、外圆柱面; 圆锥面; 环槽; 成形回转面; 端面; 螺纹; 钻孔、扩孔、铰孔; 滚花
普通车床
卧式车床的传动系统 以CA6140型车床为例: 主运动传动链; 进给运动传动链:
切削速度vc
1000 vc vc n 1000 D
Dn
(2-2)
式中 n —— 主运动转速(r/s); D—— 刀具或工件的最大直径(mm)。
若主运动为往复运动时,其平均速度为:
2 l nr vc 1000
(2-3)
式中 nr —— 主运动每秒钟往复次数(str/s); l —— 往复运动行程长度(mm)。
定位误差分析与计算
当工件以内孔定位时:△不准确=1/2(D+d)
d D
定位误差计算
D 不准确
2 sin 2
D
2
а
不重合
H
不准确 - 不重合
D
D 1 1 2 sin 2
当工件以外圆柱面定位时: △D=0.207D (90°V型块定位)
机床的分类
1.
金属切削机床 (Metal cutting machine tools) 用切削的方法将金属毛坯加工成机器零件 的机器。占机器总制造工作量的40%—60%。 木工机床 锻压机械
2. 3.
按加工性质分类:
拉床(L); 车床(C); 齿轮加工机床(Y); 铣床(X); 刨床(插床)(B); 螺纹加工机床(S); (组合机床); 磨床(M); 特种加工机床(D); 钻床(Z); 锯床(G); 镗床(T); 其它机床(Q)
变速级数 Z=3×3×2=18
nmax
26 22 39 62 1440 r / min 54 33 26 28
nmin
26 16 18 19 1440 r / min 30r / min 54 39 47 71
Z1

Z3
Z5
M1

Z2
Z4
M2
相关文档
最新文档