2020-2021湖北省黄冈中学初三数学下期末试卷(带答案)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021 湖北省黄冈中学初三数学下期末试卷(带答案)
一、选择题
1.如图,在平面直角坐标中,正方形 ABCD 与正方形 BEFG 是以原点 O 为位似中心的位
似图形,且相似比为 1 ,点 A,B,E 在 x 轴上,若正方形 BEFG 的边长为 12,则 C 点坐 3
标为( )
A.(6,4)
B. (6,2)
解析:D 【解析】 分析:A.原式不能合并,错误;
B.原式利用完全平方公式展开得到结果,即可做出判断; C.原式利用积的乘方运算法则计算得到结果,即可做出判断; D.原式利用同底数幂的除法法则计算得到结果,即可做出判断. 详解:A.不是同类项,不能合并,故 A 错误; B.(a﹣b)2=a2﹣2ab+b2,故 B 错误; C.( 2x 2 )3=8x 6,故 C 错误; D.x8÷x3=x5,故 D 正确. 故选 D. 点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除 法,熟练掌握公式及法则是解答本题的关键.
(62 52 ) (52 x2 ) 102 , x 14cm (负值已舍),故选 A 5.C
解析:C 【解析】
试题分析:对于直线 y1 2x 2 ,令 x=0,得到 y=2;令 y=0,得到 x=1,∴A(1,0),B
(0,﹣2),即 OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠
15.已知 x 6 2 ,那么 x2 2 2x 的值是_____.
16.在函数 y 3 的图象上有三个点(﹣2,y1),(﹣1,y2),( 1 ,y3),则 y1,
x
2
y2,y3 的大小关系为_____.
17.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M
25.
小明家所在居民楼的对面有一座大厦 AB,AB= 80 米.为测量这座居民楼与大厦之间的距
离,小明从自己家的窗户 C 处测得大厦顶部 A 的仰角为 37°,大厦底部 B 的俯角为 48°.求 小明家所在居民楼与大厦的距离 CD 的长度.(结果保留整数)
(参考数据: sin 37o 3,tan37o 3,sin48o 7 ,tan48o 11 )
22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部 分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过 1 千克 的,按每千克 22 元收费;超过 1 千克,超过的部分按每千克 15 元收费.乙公司表示:按 每千克 16 元收费,另加包装费 3 元.设小明快递物品 x 千克.
考点:有理数大小比较.
8.C
解析:C 【解析】 【详解】
①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线 x= =﹣1,∴b=2a<0,∵抛
物线与 y 轴的交点在 x 轴上方,∴c>0,∴abc>0,所以①正确; ②∵抛物线与 x 轴有 2 个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确; ③∵b=2a,∴2a﹣b=0,所以③错误; ④∵x=﹣1 时,y>0,∴a﹣b+c>2,所以④正确. 故选 C.
处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所
示,则矩形 MNPQ 的面积是________.
18.在一个不透明的口袋中,装有 A,B,C,D4 个完全相同的小球,随机摸取一个小球 然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___. 19.在一次班级数学测试中,65 分为及格分数线,全班的总平均分为 66 分,而所有成绩 及格的学生的平均分为 72 分,所有成绩不及格的学生的平均分为 58 分,为了减少不及格 的学生人数,老师给每位学生的成绩加上了 5 分,加分之后,所有成绩及格的学生的平均 分变为 75 分,所有成绩不及格的学生的平均分变为 59 分,已知该班学生人数大于 15 人少 于 30 人,该班共有_____位学生. 20.若关于 x 的一元二次方程 kx2+2(k+1)x+k-1=0 有两个实数根,则 k 的取值范围是
9.C
解析:C 【解析】
分析:延长 GH 交 AD 于点 P,先证△APH≌△FGH 得 AP=GF=1,GH=PH= 1 PG,再利用 2
勾股定理求得 PG= 2 ,从而得出答案.
详解:如图,延长 GH 交 AD 于点 P,
∵四边形 ABCD 和四边形 CEFG 都是矩形, ∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1, ∴AD∥GF, ∴∠GFH=∠PAH, 又∵H 是 AF 的中点, ∴AH=FH, 在△APH 和△FGH 中,
处,BC1 交 AD 于点 E,则线段 DE 的长为( )
A.3
二、填空题
B. 15 4
C.5
D. 15 2
13.如图,在四边形 ABCD 中,∠B=∠D=90°,AB=3, BC=2,tanA= 4 ,则 CD= 3
_____.
14.已知关于 x 的方程 3x n 2 的解是负数,则 n 的取值范围为 . 2x 1
A. 14 cm
B.4cm
C. 15 cm
D.3cm
5.如图,在直角坐标系中,直线
y1
2x
2
与坐标轴交于
A、B
两点,与双曲线
y2
k x
( x 0 )交于点 C,过点 C 作 CD⊥x 轴,垂足为 D,且 OA=AD,则以下结论:
① SΔADB SΔADC ;
②当 0<x<3 时, y1 y2 ;
一、选择题
1.A 解析:A 【解析】 【分析】 直接利用位似图形的性质结合相似比得出 AD 的长,进而得出△OAD∽△OBG,进而得出 AO 的长,即可得出答案. 【详解】
∵正方形 ABCD 与正 方形 BEFG 是以原点 O 为位似中心的位似图形,且相似比为 1 , 3
∴ AD 1 , BG 3
③如图,当 x=3 时,EF= 8 ; 3
④当 x>0 时, y1 随 x 的增大而增大, y2 随 x 的增大而减小.
其中正确结论的个数是( )
A.1
B.2
C.3
D.4
6.方程 (m 2)x2 3 mx 1 0 有两个实数根,则 m 的取值范围( ) 4
A. m 5 2
B. m 5 且 m 2 C. m 3 2
三、解答题
21.某大学生利用业余时间参与了一家网店经营,销售一种成本为 30 元/件的文化衫,根据 以往的销售经验,他整理出这种文化衫的售价 y1(元/件),销量 y2(件)与第 x(1≤x<90)天的 函数图象如图所示(销售利润=(售价-成本)×销量). (1)求 y1 与 y2 的函数解析式. (2)求每天的销售利润 W 与 x 的函数解析式. (3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?
D. m 3 且 m 2
7.如图,四个有理数在数轴上的对应点 M,P,N,Q,若点 M,N 表示的有理数互为相反
数,则图中表示绝对值最小的数的点是( )
A.点 M
B.点 N
C.点 P
D.点 Q
8.二次函数 y=ax2+bx+c 的图象如图所示,对称轴是 x=-1.有以下结论:①abc>0,
②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是( )
A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 11.今年我市工业试验区投资 50760 万元开发了多个项目,今后还将投资 106960 万元开 发多个新项目,每个新项目平均投资比今年每个项目平均投资多 500 万元,并且新增项目 数量比今年多 20 个.假设今年每个项目平均投资是 x 万元,那么下列方程符合题意的是
(1)请分别写出甲、乙两家快递公司快递该物品的费用 y(元)与 x(千克)之间的函数关系 式; (2)小明选择哪家快递公司更省钱? 23.如图,Rt△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于 E,若 AC=6,BC=8, CD=3.
(1)求 DE 的长; (2)求△ADB 的面积. 24.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼 (俗称黑鱼)共 75 千克,且乌鱼的进货量大于 40 千克.已知草鱼的批发单价为 8 元/千 克,乌鱼的批发单价与进货量的函数关系如图所示. (1)请直接写出批发购进乌鱼所需总金额 y(元)与进货量 x(千克)之间的函数关系 式; (2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出 89%、95%,要使总零售 量不低于进货量的 93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是 多少?
5
4
10
10
26.已知 n 边形的内角和 θ=(n-2)×180°.
(1)甲同学说,θ 能取 360°;而乙同学说,θ 也能取 630°.甲、乙的说法对吗?若对,求
出边数 n.若不对,说明理由;
(2)若 n 边形变为(n+x)边形,发现内角和增加了 360°,用列方程的方法确定 x.
【参考答案】***试卷处理标记,请不要删除
()
A. 106960 50760 20 x 500 x
B. 50760 106960 20 x x 500
C. 106960 50760 500 x 20 x
D. 50760 106960 500 x x 20
12.如图,在矩形 ABCD 中,BC=6,CD=3,将△BCD 沿对角线 BD 翻折,点 C 落在点 C1
∵BG=12, ∴AD=BC=4, ∵AD∥BG, ∴△OAD∽△OBG,
∴ OA 1 OB 3
∴ 0A 1 4 OA 3
解得:OA=2, ∴OB=6, ∴C 点坐标为:( 6,4), 故选 A. 【点睛】 此题主要考查了位似变换以及相似三角形的判定与性质,正确得出 AO 的长是解题关键.
2.D
A.1
B.2
C.3
D.4
9.矩形 ABCD 与 CEFG,如图放置,点 B,C,E 共线,点 C,D,G 共线,连接 AF,取
AF 的中点 H,连接 GH.若 BC=EF=2,CD=CE=1,则 GH=( )
A.1
B. 2 3
C. 2 2
10.下列长度的三根小木棒能构成三角形的是( )
D. 5 2
3.A
解析:A 【解析】 【分析】
作线段 BC 的垂直平分线可得线段 BC 的中点.
【详解】
作线段 BC 的垂直平分线可得线段 BC 的中点.
由此可知:选项 A 符合条件, 故选 A. 【点睛】 本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.
4.A
解析:A Hale Waihona Puke Baidu解析】
运用直角三角形的勾股定理,设正方形 D 的边长为 x ,则
4
,
y2
4 3
,即
EF=
4
4 3
=
8 3
,选项③正确;
当 x>0 时, y1 随 x 的增大而增大, y2 随 x 的增大而减小,选项④正确,故选 C.
考点:反比例函数与一次函数的交点问题.
6.B
解析:B 【解析】 【分析】
根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到 m 2 0 ,
3 m≥0 , 3 m 2 4m 2 1 0 ,然后解不等式组即可. 4
【详解】
解:根据题意得
m2 0, 3m≥0 ,
3 m 2 4m 2 1 0 , 4
解得 m≤ 5 且 m≠2. 2
故选 B.
7.C
解析:C 【解析】
试题分析:∵点 M,N 表示的有理数互为相反数,∴原点的位置大约在 O 点,∴绝对值最 小的数的点是 P 点,故选 C.
C.(4,4)
2.下列计算正确的是( )
A.2a+3b=5ab
B.( a-b )2=a 2-b 2 C.( 2x 2 )3=6x 6
3.通过如下尺规作图,能确定点 D 是 BC 边中点的是( )
D.(8,4) D.x8÷x3=x5
A.
B.
C.
D.
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的 边长为 10cm,正方形 A 的边长为 6cm、B 的边长为 5cm、C 的边长为 5cm,则正方形 D 的 边长为( )
DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴ SΔADB SΔADC (同
底等高三角形面积相等),选项①正确;
∴C(2,2),把
C
坐标代入反比例解析式得:k=4,即
y2
4 x
,由函数图象得:当
0<x
<2 时, y1 y2 ,选项②错误;
当
x=3
时,
y1
一、选择题
1.如图,在平面直角坐标中,正方形 ABCD 与正方形 BEFG 是以原点 O 为位似中心的位
似图形,且相似比为 1 ,点 A,B,E 在 x 轴上,若正方形 BEFG 的边长为 12,则 C 点坐 3
标为( )
A.(6,4)
B. (6,2)
解析:D 【解析】 分析:A.原式不能合并,错误;
B.原式利用完全平方公式展开得到结果,即可做出判断; C.原式利用积的乘方运算法则计算得到结果,即可做出判断; D.原式利用同底数幂的除法法则计算得到结果,即可做出判断. 详解:A.不是同类项,不能合并,故 A 错误; B.(a﹣b)2=a2﹣2ab+b2,故 B 错误; C.( 2x 2 )3=8x 6,故 C 错误; D.x8÷x3=x5,故 D 正确. 故选 D. 点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除 法,熟练掌握公式及法则是解答本题的关键.
(62 52 ) (52 x2 ) 102 , x 14cm (负值已舍),故选 A 5.C
解析:C 【解析】
试题分析:对于直线 y1 2x 2 ,令 x=0,得到 y=2;令 y=0,得到 x=1,∴A(1,0),B
(0,﹣2),即 OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠
15.已知 x 6 2 ,那么 x2 2 2x 的值是_____.
16.在函数 y 3 的图象上有三个点(﹣2,y1),(﹣1,y2),( 1 ,y3),则 y1,
x
2
y2,y3 的大小关系为_____.
17.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M
25.
小明家所在居民楼的对面有一座大厦 AB,AB= 80 米.为测量这座居民楼与大厦之间的距
离,小明从自己家的窗户 C 处测得大厦顶部 A 的仰角为 37°,大厦底部 B 的俯角为 48°.求 小明家所在居民楼与大厦的距离 CD 的长度.(结果保留整数)
(参考数据: sin 37o 3,tan37o 3,sin48o 7 ,tan48o 11 )
22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部 分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过 1 千克 的,按每千克 22 元收费;超过 1 千克,超过的部分按每千克 15 元收费.乙公司表示:按 每千克 16 元收费,另加包装费 3 元.设小明快递物品 x 千克.
考点:有理数大小比较.
8.C
解析:C 【解析】 【详解】
①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线 x= =﹣1,∴b=2a<0,∵抛
物线与 y 轴的交点在 x 轴上方,∴c>0,∴abc>0,所以①正确; ②∵抛物线与 x 轴有 2 个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确; ③∵b=2a,∴2a﹣b=0,所以③错误; ④∵x=﹣1 时,y>0,∴a﹣b+c>2,所以④正确. 故选 C.
处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所
示,则矩形 MNPQ 的面积是________.
18.在一个不透明的口袋中,装有 A,B,C,D4 个完全相同的小球,随机摸取一个小球 然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___. 19.在一次班级数学测试中,65 分为及格分数线,全班的总平均分为 66 分,而所有成绩 及格的学生的平均分为 72 分,所有成绩不及格的学生的平均分为 58 分,为了减少不及格 的学生人数,老师给每位学生的成绩加上了 5 分,加分之后,所有成绩及格的学生的平均 分变为 75 分,所有成绩不及格的学生的平均分变为 59 分,已知该班学生人数大于 15 人少 于 30 人,该班共有_____位学生. 20.若关于 x 的一元二次方程 kx2+2(k+1)x+k-1=0 有两个实数根,则 k 的取值范围是
9.C
解析:C 【解析】
分析:延长 GH 交 AD 于点 P,先证△APH≌△FGH 得 AP=GF=1,GH=PH= 1 PG,再利用 2
勾股定理求得 PG= 2 ,从而得出答案.
详解:如图,延长 GH 交 AD 于点 P,
∵四边形 ABCD 和四边形 CEFG 都是矩形, ∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1, ∴AD∥GF, ∴∠GFH=∠PAH, 又∵H 是 AF 的中点, ∴AH=FH, 在△APH 和△FGH 中,
处,BC1 交 AD 于点 E,则线段 DE 的长为( )
A.3
二、填空题
B. 15 4
C.5
D. 15 2
13.如图,在四边形 ABCD 中,∠B=∠D=90°,AB=3, BC=2,tanA= 4 ,则 CD= 3
_____.
14.已知关于 x 的方程 3x n 2 的解是负数,则 n 的取值范围为 . 2x 1
A. 14 cm
B.4cm
C. 15 cm
D.3cm
5.如图,在直角坐标系中,直线
y1
2x
2
与坐标轴交于
A、B
两点,与双曲线
y2
k x
( x 0 )交于点 C,过点 C 作 CD⊥x 轴,垂足为 D,且 OA=AD,则以下结论:
① SΔADB SΔADC ;
②当 0<x<3 时, y1 y2 ;
一、选择题
1.A 解析:A 【解析】 【分析】 直接利用位似图形的性质结合相似比得出 AD 的长,进而得出△OAD∽△OBG,进而得出 AO 的长,即可得出答案. 【详解】
∵正方形 ABCD 与正 方形 BEFG 是以原点 O 为位似中心的位似图形,且相似比为 1 , 3
∴ AD 1 , BG 3
③如图,当 x=3 时,EF= 8 ; 3
④当 x>0 时, y1 随 x 的增大而增大, y2 随 x 的增大而减小.
其中正确结论的个数是( )
A.1
B.2
C.3
D.4
6.方程 (m 2)x2 3 mx 1 0 有两个实数根,则 m 的取值范围( ) 4
A. m 5 2
B. m 5 且 m 2 C. m 3 2
三、解答题
21.某大学生利用业余时间参与了一家网店经营,销售一种成本为 30 元/件的文化衫,根据 以往的销售经验,他整理出这种文化衫的售价 y1(元/件),销量 y2(件)与第 x(1≤x<90)天的 函数图象如图所示(销售利润=(售价-成本)×销量). (1)求 y1 与 y2 的函数解析式. (2)求每天的销售利润 W 与 x 的函数解析式. (3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?
D. m 3 且 m 2
7.如图,四个有理数在数轴上的对应点 M,P,N,Q,若点 M,N 表示的有理数互为相反
数,则图中表示绝对值最小的数的点是( )
A.点 M
B.点 N
C.点 P
D.点 Q
8.二次函数 y=ax2+bx+c 的图象如图所示,对称轴是 x=-1.有以下结论:①abc>0,
②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是( )
A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 11.今年我市工业试验区投资 50760 万元开发了多个项目,今后还将投资 106960 万元开 发多个新项目,每个新项目平均投资比今年每个项目平均投资多 500 万元,并且新增项目 数量比今年多 20 个.假设今年每个项目平均投资是 x 万元,那么下列方程符合题意的是
(1)请分别写出甲、乙两家快递公司快递该物品的费用 y(元)与 x(千克)之间的函数关系 式; (2)小明选择哪家快递公司更省钱? 23.如图,Rt△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于 E,若 AC=6,BC=8, CD=3.
(1)求 DE 的长; (2)求△ADB 的面积. 24.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼 (俗称黑鱼)共 75 千克,且乌鱼的进货量大于 40 千克.已知草鱼的批发单价为 8 元/千 克,乌鱼的批发单价与进货量的函数关系如图所示. (1)请直接写出批发购进乌鱼所需总金额 y(元)与进货量 x(千克)之间的函数关系 式; (2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出 89%、95%,要使总零售 量不低于进货量的 93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是 多少?
5
4
10
10
26.已知 n 边形的内角和 θ=(n-2)×180°.
(1)甲同学说,θ 能取 360°;而乙同学说,θ 也能取 630°.甲、乙的说法对吗?若对,求
出边数 n.若不对,说明理由;
(2)若 n 边形变为(n+x)边形,发现内角和增加了 360°,用列方程的方法确定 x.
【参考答案】***试卷处理标记,请不要删除
()
A. 106960 50760 20 x 500 x
B. 50760 106960 20 x x 500
C. 106960 50760 500 x 20 x
D. 50760 106960 500 x x 20
12.如图,在矩形 ABCD 中,BC=6,CD=3,将△BCD 沿对角线 BD 翻折,点 C 落在点 C1
∵BG=12, ∴AD=BC=4, ∵AD∥BG, ∴△OAD∽△OBG,
∴ OA 1 OB 3
∴ 0A 1 4 OA 3
解得:OA=2, ∴OB=6, ∴C 点坐标为:( 6,4), 故选 A. 【点睛】 此题主要考查了位似变换以及相似三角形的判定与性质,正确得出 AO 的长是解题关键.
2.D
A.1
B.2
C.3
D.4
9.矩形 ABCD 与 CEFG,如图放置,点 B,C,E 共线,点 C,D,G 共线,连接 AF,取
AF 的中点 H,连接 GH.若 BC=EF=2,CD=CE=1,则 GH=( )
A.1
B. 2 3
C. 2 2
10.下列长度的三根小木棒能构成三角形的是( )
D. 5 2
3.A
解析:A 【解析】 【分析】
作线段 BC 的垂直平分线可得线段 BC 的中点.
【详解】
作线段 BC 的垂直平分线可得线段 BC 的中点.
由此可知:选项 A 符合条件, 故选 A. 【点睛】 本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.
4.A
解析:A Hale Waihona Puke Baidu解析】
运用直角三角形的勾股定理,设正方形 D 的边长为 x ,则
4
,
y2
4 3
,即
EF=
4
4 3
=
8 3
,选项③正确;
当 x>0 时, y1 随 x 的增大而增大, y2 随 x 的增大而减小,选项④正确,故选 C.
考点:反比例函数与一次函数的交点问题.
6.B
解析:B 【解析】 【分析】
根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到 m 2 0 ,
3 m≥0 , 3 m 2 4m 2 1 0 ,然后解不等式组即可. 4
【详解】
解:根据题意得
m2 0, 3m≥0 ,
3 m 2 4m 2 1 0 , 4
解得 m≤ 5 且 m≠2. 2
故选 B.
7.C
解析:C 【解析】
试题分析:∵点 M,N 表示的有理数互为相反数,∴原点的位置大约在 O 点,∴绝对值最 小的数的点是 P 点,故选 C.
C.(4,4)
2.下列计算正确的是( )
A.2a+3b=5ab
B.( a-b )2=a 2-b 2 C.( 2x 2 )3=6x 6
3.通过如下尺规作图,能确定点 D 是 BC 边中点的是( )
D.(8,4) D.x8÷x3=x5
A.
B.
C.
D.
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的 边长为 10cm,正方形 A 的边长为 6cm、B 的边长为 5cm、C 的边长为 5cm,则正方形 D 的 边长为( )
DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴ SΔADB SΔADC (同
底等高三角形面积相等),选项①正确;
∴C(2,2),把
C
坐标代入反比例解析式得:k=4,即
y2
4 x
,由函数图象得:当
0<x
<2 时, y1 y2 ,选项②错误;
当
x=3
时,
y1