圆柱和圆锥整理与练习1

合集下载

人教版数学6年级下册 第3单元(圆柱和圆锥)课后作业练习题(含答案)

人教版数学6年级下册 第3单元(圆柱和圆锥)课后作业练习题(含答案)

人教版六年级下册第三单元圆柱和圆锥课后作业练习题一.选择题1.把一个棱长是4分米的立方体钢坯切削成一个最大的圆柱,它的体积是()立方分米。

A.50.24B.56.52C.16.75D.200.962.36个铁圆柱,可以熔铸成等底等高的圆锥体的个数是()A.12个B.18个C.36个D.108个3.两个圆柱的底面积相等,高之比是3:2,它们的体积之比是()A.3:2B.2:3C.9:44.一个圆柱与一个圆锥等底等高,已知圆柱的体积比圆锥的体积多9立方米,圆锥的体积是()立方米.A.4.5B.3C.95.用两张同样的长方形硬纸板围成两个不同的圆柱形纸筒,再分别装上两个底面,那么这两个圆柱形纸筒的()一定相等。

A.底面积B.侧面积C.表面积D.体积6.一个圆柱与一个圆锥体积相等,底面直径也相等,则圆锥的高是圆柱的高的()A.13B.23C.3倍D.6倍7.一个圆柱和一个圆锥的底面直径相等,圆柱的高是圆锥的3倍,圆锥的体积是5立方分米,圆柱的体积是()立方分米.A.5B.15C.458.一个圆柱的体积比与它等底等高的圆锥的体积大()A.3倍B.2倍C.1 3二.填空题9.底面积是212cm、高是9cm的圆锥的体积是3cm,和它等底等高的圆柱的体积是3cm.10.把6个形状完全相同的圆柱体铁块熔化后,可浇铸成与这种圆柱体等底等高的圆锥体铁块件。

11.一个圆柱的体积是3188.4cm,高是15cm,它的底面积是2cm.12.一个圆柱的底面周长是9.42分米,高3分米,它个圆柱的侧面积是平方分米,体积是立方分米。

13.把一根3米长的圆柱体木材截成三段圆柱体,表面积增加了12平方分米,这根木料的体积是立方分米。

14.一个圆柱和一个圆锥等底等高,它们的体积差是94.2立方厘米,这个圆柱的体积是立方厘米.又知圆锥的底面半径是3厘米,这个圆柱的侧面面积是平方厘米.15.做一节底面直径是10厘米,长为1米的圆柱形烟囱,至少需要一张平方厘米的铁皮。

2023-2024学年人教版六年级数学下册圆柱与圆锥常考易错应用题训练(附参考答案)

2023-2024学年人教版六年级数学下册圆柱与圆锥常考易错应用题训练(附参考答案)

2023-2024学年六年级下册数学圆柱与圆锥常考易错应用题训练1.一个圆柱体,如果把它的高截短4dm,它的表面积减少125.6dm²。

这个圆柱体积减少多少立方分米?2.一个正方体包装箱,从里面量棱长是4.1dm。

用它装一件底面周长是12.56dm,体积是62.8dm3的圆柱形玻璃器皿,能否装得下?3.乐乐将一个铁皮油桶在地上滚动一圈,量得其痕迹长12.56分米、宽6分米。

制作这个油桶至少需要铁皮多少平方分米?(桶口和盖忽略不计)4.把一块长10厘米、宽8厘米、高3.14厘米的长方体铁块完全浸没在一个盛有水的圆柱形玻璃容器内,容器的底面直径为20厘米,容器内的水面会上升多少?(已知水不会溢出)5.工地有一堆圆锥形沙土,底面周长是31.4m,高1.5m,把这堆沙土用渣土车运出工地,每辆渣土车每次运8m3,用一辆渣土车运出这些沙土,大约需运多少次?6.一个圆柱形水池,水池内壁和底面都要镶上瓷砖,水池底面直径6米7.节约用水是我们每个人的义务,学校的自来水管内直径为0.2分米,自来水的流速是每秒5分米,若忘记关上水龙头,一分钟将浪费多少升水?8.下图中,以红色线为轴,快速旋转后会形成一个立体图形,请求出这个立体图形的体积。

9.下面是一个圆柱的展开图,制作这样的一个圆柱至少需要铁皮多少平方分米?10.一个无盖的圆柱形铁皮水桶,底面直径是30厘米,高是50厘米。

(得数保留整数) (1)做这样一个水桶,至少需用铁皮多少平方厘米?(2)这个水桶最多能盛水多少升?11.一个圆锥形沙堆,底面周长是12.56米,高是1.8米,把这些沙铺在6米宽的公路上,如果沙后2厘米,可以铺多长?12.一个圆锥形沙堆,底面周长是37.68m,高是5m,用这堆沙在10m宽的公路上铺5cm 厚的路面,能铺多长?,做这个水桶至少13.一个无盖的圆柱形铁皮水桶,高为10分米,底面直径是高的25用铁皮多少平方分米?(得数保留整数)14.把一个高是64厘米的圆柱按照5:3的比截成了两个圆柱,截后的表面积比原来增加了484平方厘米。

冀教版数学六年级下册第四单元《圆柱和圆锥》课时练

冀教版数学六年级下册第四单元《圆柱和圆锥》课时练

4.1 认识圆柱1.下面哪些物体是圆柱?在下面的括号里画“√”。

2.填空题。

(1)把一个棱长6厘米的正方体削成一个最大的圆柱,圆柱的底面直径是( )厘米,高是( )厘米。

(2)一个圆柱的底面直径是3厘米,高也是3厘米,侧面展开的长方形的长是( )厘米,宽是( )厘米。

(3)一个圆柱的底面周长是16分米,高是8分米,侧面积是( )平方分米。

(4)一个圆柱的底面直径是10厘米,高是8厘米,侧面积是( )平方厘米。

(5)一个圆柱的底面半径是0.3米,高是0.5米,侧面积是( )平方米。

3.判断题。

(对的画“√”,错的画“✕”)(1)圆柱的高只有一条。

( )(2)圆柱两个底面的直径相等。

( )(3)圆柱的底面周长和高相等时,展开后的侧面一定是个正方形。

( )(4)圆柱的侧面是一个曲面。

( )(5)圆柱的侧面展开图可能是正方形。

( )4.解决问题。

(1)用一张长15厘米、宽8厘米的长方形纸围一个圆柱,这个圆柱的侧面积是多少平方厘米?(2)一个圆柱,它的底面周长是12.56厘米,高是10厘米,它的侧面积是多少平方厘米?(3)广告公司制作了一个底面直径是1.5米、高是2.5米的圆柱形灯箱。

它的侧面最多可以张贴多大面积的海报?(4)大厅的柱子高3米,底面周长是3.14米。

给5根这样的柱子刷油漆,每平方米用油漆0.5千克,一共要用油漆多少千克?附答案:1. 第2、4个是圆柱。

2. (1)6 6 (2)9.42 3 (3)128 (4)251.2 (5)0.9423. (1)✕(2)√(3)✕(4) √(5) √4. (1)15×8=120(平方厘米)(2)12.56×10=125.6(平方厘米)(3)3.14×1.5×2.5=11.775(平方米)(4)3.14×3×5×0.5=23.55(千克)4.2 圆柱的表面积1.求出下面圆柱的侧面积和表面积。

《第1章_圆柱与圆锥》小学数学-有答案-北师大版六年级(下)数学同步练习(40)

《第1章_圆柱与圆锥》小学数学-有答案-北师大版六年级(下)数学同步练习(40)

《第1章圆柱与圆锥》小学数学-有答案-北师大版六年级(下)数学同步练习(40)一、填空题.1. 一个圆柱和一个圆锥的体积和底面积相等,如果圆柱的高是1.8分米,那么圆锥的高是________ 分米。

如果圆锥的高是1.8分米,那么圆柱的高是________分米。

2. 把一个圆柱削成一个最大的圆锥体,圆锥的体积是圆柱体积的(),削去的体积是圆()锥体积的________倍。

3. ________个同样的圆锥形的铅块可熔铸成3个与这些圆锥等底等高的圆柱形零件。

4. 等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的________;圆锥的体积是圆柱体积的________,圆柱的体积比圆锥的体积多________%;圆锥的体积比圆柱体积少________%.(百分号前保留一位小数)5. 等底等高的圆柱和圆锥的体积相差24立方分米,这个圆柱的体积是________立方分米。

6. 一个圆锥,底面直径1.6分米,高0.4分米,把它一刀切开,成为形状相同的两半,表面积增加________平方厘米。

二、选择题.一个圆柱和一个圆锥体积相等,圆柱底面积是圆锥底面积的3,圆柱高与圆锥高的比2是()A.2:3B.1:3C.2:9D.9:2将一个容积是24升的圆锥形容器盛满水,倒入一个底面积是10平方分米的圆柱体容器中,水面的高度是()厘米。

A.2.4B.7.2C.24D.240三、判断题.圆柱有无数条高,圆锥只有一条高。

________.(判断对错)因为圆锥的体积是圆柱体积的1,所以圆柱的体积都比圆锥体积大。

________.(判3断对错)圆柱的底面半径扩大3倍,高缩小到原来的1,它的体积不变。

________.(判断对错)3等底等高的圆柱和圆锥的体积之和是60立方厘米,则圆锥的体积是15立方厘米。

________.(判断对错)长方体、圆柱体、圆锥体的底面积和体积都相等,如果圆柱体的高和长方体的高相等,.________.(判断对错)则圆锥体的高是长方体高的13四、解决问题部分.如图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,则剩下的体积是原正方体的百分之________(保留一位小数).一个圆锥的高和底面半径都等于一个正方体的棱长。

六年级圆柱圆锥难题练习题

六年级圆柱圆锥难题练习题

六年级圆柱圆锥难题练习题无论是在学校还是在社会中,我们很多时候都会有考试,接触到试题,试题是命题者根据测试目标和测试事项编写出来的。

一份什么样的试题才能称之为好试题呢?下面是小编为大家整理的六年级圆柱圆锥难题练习题,仅供参考,希望能够帮助到大家。

六年级圆柱圆锥难题练习题篇1一、填空:1、5.4平方分米=()平方厘米; 1.05立方米=()升;240立方厘米=()立方分米; 10.01升=()毫升。

2、圆柱的上、下两面都是()形,而且大小();圆柱的高有()条,圆锥的高有()条。

3、一个圆柱体,如果把它的高截短了3厘米,表面积就减少了94.2平方厘米,体积就减少()立方厘米。

X k B 1 . c o m4、一个圆锥的底面积是40平方厘米,高12分米,体积是()立方厘米。

5、一个圆柱的底面半径是3分米,高2分米,它的侧面积是()),体积是()。

6、一个圆柱的底面周长6.28厘米,高是3厘米,它的体积是(7、一个圆柱和一个圆锥等底等高,如果圆柱的体积是18)立方分米;如果圆锥的体积是18立方分米,那么圆柱的体积是(18立方分米,那么圆锥的体积是()立方分米。

8、把棱长为2)立方分米。

(结果保留两位小数)9、在一个高24厘米的圆锥形量杯里装满了水,如果将这些水倒入与它底面积相等的圆柱形量杯中,水面高(105段,表面积比原来增加()1 )ABC23倍,圆锥的体积是15立方分米,圆柱A3、圆柱的底面半径和高都乘3,它的体积应乘()。

A、3B、6C、9D、274、用一根小棒粘住直角三角形的一条直角边,旋转一周,这个三角形转动后产生的图形是()。

A、三角形B、圆形C、圆锥D、圆柱5、一个圆柱体杯中盛满15升水,把一个与它等底等高的铁圆锥倒放入水中,杯中还有()水。

A、5升B、7.5升C、10升D、9升6、把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体。

下面哪句话是正确的?()A、表面积和体积都没变B、表面积和体积都发生了变化C、表面积变了,体积没变D、表面积没变,体积变了三、应用题1、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了12.56平方分米,那么这根木头原来的体积是多少?2、将一块长方形铁皮,利用图中阴影的部分,刚好制成一个油桶,求这个油桶的体积。

圆柱和圆锥的整理和练习1教案

圆柱和圆锥的整理和练习1教案

“整理与练习”1教学内容:九年义务教育六年制小学数学第十二册P33、34教学目标:1、复习圆柱和圆锥的有关知识,掌握其特点,能借助图形说出公式推导过程,式形结合,构建体积计算公式系统,形成牢固的知识网络。

2、熟练地运用公式进行计算,让学生感受数学与生活的联系。

3、能综合运用所学知识,灵活地解决一些实际问题,培养学生运用知识解决实际问题的能力。

教学重点:系统掌握体积公式的转化与推导过程,形成牢固的知识网络。

教学难点:灵活地运用相关知识解决实际问题。

设计理念:本节课让学生在梳理和交流中有所收获,并形成一定的知识网络。

通过自我整理、自我提高,有效地培养学生根据不同的问题情景解决问题的能力,并正确进行自我评价和反思。

教学步骤教师活动学生活动一、整理知识、形成网络。

1、谈话导入,今天我们一起来复习圆柱和圆锥的有关知识,请各位同学把自己整理好的知识向大家展示一下。

2、圆柱和圆锥有什么特征?请同学们完整地表述一下。

3、强化公式的推导过程。

圆柱体体积公式是什么?请说一说它的转化和推导过程。

圆锥体体积公式是什么?说一说它的转化和推导过程?4、根据学生的复习整理,让学生把下表填写完整。

图形特征计算公式圆柱1、上下粗细一样2、底面是两个相等的圆3、侧面是一个曲面,沿高展开是一个长方形或正方形S底=πrS侧=ch=πdh=2πrhS底=2s底+s侧V柱=sh=πr h圆锥1、有一个顶点2、底面是一个圆3、侧面是一个曲面,沿母线展开是一个扇形S底=πrV锥=1/3sh=1/3πr h5、根据学生填写的表格教师质疑:根据圆柱和圆锥的特征能解决什么问题?运用圆柱和圆锥的体积公式能解决哪些问题?根据学生的讨论得出:(1)根据圆柱和圆锥的特征判断圆柱和圆锥。

(2)针对有关条件计算圆柱和圆锥的体积,并进行有关的逆运算。

(3)能运用所学的知识解决现实生活中的许多有关体积和容积的实际问题。

学生先互相交流一下自己整理的结果。

学生填写表格,并互相提问表格中的有关内容学生分组讨论。

人教版数学六年级下册第三单元 圆柱与圆锥练习及答案

人教版数学六年级下册第三单元 圆柱与圆锥练习及答案

1.下图中是圆柱的请在括号内画“√”,不是的画“×”。

( ) ( ) ( ) ( )2.指出下列圆柱的底面、侧面、高。

33.转动长方形ABCD ,可以生成( )个圆柱。

说说它们分别是以长方形的哪条边为轴旋转而成的,底面半径和高分别是多少。

A 2cm B1cmC D4.将下面的纸板以一边为轴快速旋转一周,能形成底面直径4厘米,高4厘米的圆柱的是( )A B答案:4cm 4cm 2cm4cm1.×、√、√、×;2.略3.2;以AC为轴旋转,底面半径是2cm,高是1cm;以AB旋转,底面半径是1cm,高是2cm4.B3.2圆柱的表面积1.选一选,并填空。

做一个水桶需要多少铁皮()求圆柱形蓄水池的占地面积()压路机滚筒一周压路的面积()油漆大厅柱子的面积是多少()做一节通风管需多少铁皮()A、求圆柱的2个底面积与侧面积的和B、求圆柱的1个底面积与侧面积的和C、求圆柱的侧面积D、求圆柱的底面积2.一个圆柱的底面直径是8分米,高是3分米,它的侧面积是多少平方分米?2.一个圆柱的底面周长是12.56厘米,高是4厘米,求它的表面积。

3.一个圆柱形蓄水池,底面周长是25.12米,高是4米,将这个蓄水池四周及底部抹上水泥。

如果每平方米要用水泥20千克,一共要用多少千克水泥?答案:1.B D C C C2.3.14×8×3=75.36(dm2)3.12.56÷3.14÷2=2(cm)3.14×22×2+12.56×4=75.36(cm2)4.25.12÷3.14÷2=4(m2)3.14×42 +25.12×4=150.72(m2)150.72×20=3014.4(kg)3.3圆柱的体积1.一个酸奶瓶,它的瓶身呈圆柱形(不包括瓶颈),底面半径4厘米,当瓶子正放时,瓶内酸奶高为8厘米,瓶子倒放时,空余部分高为2厘米.请你算一算,瓶内酸奶体积是多少立方厘米?2..一瓶装满的矿泉水,小明喝了一些,把瓶盖拧紧后倒置放平,无水部分高10厘米,内直径是6厘米。

六年级下册数学圆柱圆锥典型例题(3)[1]

六年级下册数学圆柱圆锥典型例题(3)[1]

六年级下册数学圆柱圆锥典型例题(3)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(六年级下册数学圆柱圆锥典型例题(3)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为六年级下册数学圆柱圆锥典型例题(3)(word版可编辑修改)的全部内容。

圆柱和圆锥分类练习(1)题型一:展开圆柱的情况1、展开侧面(1)圆柱的底面周长和高相等时,展开后的侧面一定是个( )。

(2)一个圆柱体,两底面之间的距离是10厘米,底面周长是31.4厘米,把这个圆柱体的侧面展开得到一个长方形,长方形的周长是( )。

(3)把一个圆柱的侧面展开,是一个边长9.42dm的正方形,这个圆柱的底面直径是( ).(4)一个圆柱形的纸筒,它的高是3。

14分米,底面直径是1分米,这个圆柱形纸筒的侧面展开图是().A、长方形B、正方形C、圆形(5)把一张长6分米、宽3分米的长方形纸片卷成一个圆柱,并把圆柱直立在桌子上,它的最大容积是().(6)一个圆柱的侧面展开后恰好是一个正方形,这个圆柱的底面直径和高的比是( ).2、将圆柱体切开后分析增加的表面积(1)圆柱两个底面的直径()。

把一个底面积为6。

28立方厘米的圆柱,切成两个圆柱,表面积增加()平方厘米。

(2)把一根圆柱形木料据成四段,增加的底面有()个.(3)一根圆柱形有机玻璃棒,体积是54立方厘米,底面积是4立方厘米,把它平均截成5段,每段长( )cm.(4)一个高为9分米的圆柱体,沿底面直径切成相等的两部分,表面积增加72平方分米,这个圆柱体的体积是多少立方分米?3、将两圆柱体合并把两个底面直径都是4厘米,长都是4分米圆柱形钢材焊接成一个长的圆柱形钢材,焊接成的圆柱形钢材的表面积比原来两个小圆柱形钢材的表面积之和减少了多少?题型二:求表面积、体积、侧面积和底面积(主要是应用题)1、表面积(1)一个圆柱的侧面积是25.12平方厘米,底面半径是2厘米,它的表面积是多少?2、体积(1)一个底面直径是40里面的圆柱形玻璃杯装有一些水,一个底面直径是20厘米、高为15厘米的圆锥形铅锥完全没入水中,当取出铅锤后,杯里的水面下降几厘米?(2)有一个圆柱形储粮桶,容量是3。

部编版六年级数学下册第三单元《圆锥》(复习课件)

部编版六年级数学下册第三单元《圆锥》(复习课件)

得到的是圆锥。 (1)以6 cm长的边所在直线为轴旋转一周时, d=16 cm,h=6 cm。 (2)以8 cm长的边所在直线为轴旋转一周时, d=12 cm,h=8 cm。
8.用如图所示的扇形纸片和圆形纸片能否制作成一个圆 锥?请通过计算说明理由。
扇形圆弧的长:3.14×2×2×34=9.42(cm) 圆的周长:3.14×3=9.42(cm) 扇形圆弧的长和圆的周长相等,所以能制作成一个圆锥。
3 圆柱与圆锥
圆锥 整理复习
圆柱和圆锥的关系
当圆柱的上底面的面积等于0时,就变成了圆锥。
圆锥体积的推导
圆锥的体积等于与它等底 等高圆柱体积的三分之一。
圆锥的体积= 13× 底面积×高
Ⅴ 圆锥 =
13Ⅴ
圆柱=
1 Sh 3
填一填。
(1)一个圆柱的体积是75.36m³,与它等底等高的圆锥的体积 是(25.12)m³。
一定时间内,降落在水平地面上的水,在未经蒸发、渗漏、流失情况下, 所及的深度称为降水量(通常以毫米为单位)。测定降水量常用雨量器 和量筒。我国气象上规定按24小时的降水量为标准,降水级别如下表:
级别 降水量/mm
小雨 10以下
中雨
大雨
暴雨
大暴雨
10-24.9 25-49.9 50-99.9 100-199.9
知识点 2 运用圆锥的体积公式计算
2.计算下面各圆锥的体积。
(1) 13×36×5=60(cm3)
(2)
3.14×42×12×31=200.96(cm3)
(3)
3.14×(4÷2)2×5.4×13=22.608(cm3)
易错辨析
3.判断。(对的画“√”,错的画“×”) (1)圆柱的体积是圆锥体积的3倍。

六年级下册数学苏教版第二单元圆柱与圆锥整理与练习课件(共28张PPT)

六年级下册数学苏教版第二单元圆柱与圆锥整理与练习课件(共28张PPT)
答:这根水管1 分钟可以流出15.072升水。
10.一个圆锥形沙堆,底面积是24平方米,高是1.2米。用 这堆沙子去填一个长7.5米、宽4米的长方体沙坑,沙坑里 沙子的厚度是多少厘米?
9.6÷7.5÷4=0.32(米) 0.32米=32厘米 答:沙坑里沙子的厚度是32厘米。
11.一种圆柱形饮料罐,底面直径是7厘米,高是 12厘米。将24罐这种饮料放入一个长方体纸箱 (如图)。 (1)纸箱的长、宽、高至少各是多少厘米?
答:做这个水桶至少要用模板113.825平方分米。
3.一个圆Leabharlann 形水桶,高6分米。水桶外 围的一圈铁箍大约长15.7分米。
(2)这个水桶能盛120升水吗?
19.625×6=117.75(立方分米) 117.75立方分米=117.75升 117.75<120
答:这个水桶不能盛120升水。
4.有一个近似于圆锥形的稻谷堆,底面直径是4米, 高是1.5米。如果每立方米稻谷大约重0.55吨,这堆 稻谷大约重多少吨?(得数保留整数)
6.一个圆柱和一个圆锥,底面直径都是6厘米,高都是12 厘米。它们的体积一共是多少立方厘米?
方法一: 3.14×(6÷2)2×12=339.12(立方厘米)
你能用不同的 方法计算吗?
113.04+339.12=452.16(立方厘米) 方法二: 3.14×(6÷2)2×12=339.12(立方厘米)
哪个装饰瓶里的 五彩石多一些?
圆柱体:3.14×(10÷2)2×10=785(立方厘米) 长方体:11×11×9=1089(立方厘米)
785<1089 答:长方体装饰瓶里的五彩石多一些。
9.一根自来水管的内直径是20 毫米。如果水流的速 度是0.8米/秒,这根水管1 分钟可以流出多少升水?

人教版数学6年级下册 第3单元(圆柱和圆锥)圆柱表面积计算与应用大全(含答案)

人教版数学6年级下册 第3单元(圆柱和圆锥)圆柱表面积计算与应用大全(含答案)

六年级下册-圆柱表面积计算与应用大全学校:___________姓名:___________班级:___________考号:___________一、求侧面积1.压路机滚筒滚动一周能压多少路面是求滚筒的()。

A.表面积B.侧面积C.体积2.一种压路机的前轮直径1.5米,宽2米。

如果每分钟滚动6圈,它每分钟前进多少米?每分钟压路面多少平方米?3.一个圆柱形的木棒,底面直径是4厘米,高是10厘米,在地面上滚动一周后前进了多少厘米?压过的面积是多少平方厘米?4.用铁皮制10节同样大小的通风管,每节长5分米,底面直径1.2分米,至少需要多少平方分米铁皮?5.会议大厅里有10根底面直径0.6米,高6米的圆柱形柱子,现在要刷上油漆,每平方米用油漆0.5千克,刷这些柱子要用油漆多少千克?6.一种圆柱形的铁皮通风管长4米,横截面的直径是3分米,要做20节这样的通风管,至少需要多少平方分米的铁皮?二、求侧面积底面积7.小区砌一个无盖的圆柱形蓄水池,底面直径是4米,深2米。

在池的周围与底面抹上水泥。

抹水泥部分的面积是多少平方米?8.要制作一个无盖圆柱形水桶,有下图几种型号的外皮可供搭配选择。

(1)我选择的材料是()和()。

(填序号)(2)用你选择的材料制作的水桶,需要用多少铁皮?9.小华想给笔筒外表涂上美丽的颜色,涂色部分的面积是多少?10.如图的“博士帽”是用卡纸做成的(帽穗除外),上面是边长为30厘米的正方形,下面是底面直径是18厘米、高是8厘米的无盖无底的圆柱。

制作100个这样的“博士帽”,至少需要卡纸多少平方分米?11.公园新挖一个直径是6米,深12分米的圆形水池。

(1)这个水池的占地面积是多少?(2)如果这个水池修好后,需要用水泥把池底和侧壁粉刷,粉刷的面积有多大?三、旋转成圆柱12.一个长为8cm,宽为5cm的长方形,以长为轴旋转一周,将会得到一个底面直径是( )cm,高是( )cm的圆柱体,它的表面积是( )平方厘米.13.一张长6厘米,宽3厘米的硬纸片,旋转起来(如图),形成圆柱体,它的底面半径是( ),高是( )。

六年级数学下册圆柱和圆锥典型实际问题与练习(2021年整理)

六年级数学下册圆柱和圆锥典型实际问题与练习(2021年整理)

(完整)六年级数学下册圆柱和圆锥典型实际问题与练习(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)六年级数学下册圆柱和圆锥典型实际问题与练习(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)六年级数学下册圆柱和圆锥典型实际问题与练习(word版可编辑修改)的全部内容。

圆柱与圆锥练习(一)关于圆锥与圆柱相互之间的关系:1.若圆锥与圆柱等底等高,则它们的体积不等(圆锥的体积是圆柱的三分之一); 2。

若圆锥与圆柱等底等体积,则它们的高不等(圆锥的高是圆柱的3倍);3。

若圆锥与圆柱等高等体积,则它们的底不等(圆锥的底面积是圆柱的3倍).练习:1、一个圆柱和一个圆锥等底等高,它们的体积和是24立方分米,那么圆柱的体积是_________ 立方分米.2、一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米。

A 12B 36C 4D 8(二)、关于圆柱、圆锥的典型实际问题:1。

求圆柱形通风管(如圆柱形烟囱)所需的材料面积或求圆柱体商品的侧面标签的面积就是要求圆柱的侧面积;1、做一根长1米,底面周长是2分米的圆柱形通风管,需要铁皮多少平方分米?(管壁厚度忽略不计)2.求压路机的滚轮转动一周所压过的路面面积就是求圆柱(滚轮)的侧面积;(所压过的路面面积 = 圆柱(滚轮)的侧面积×转动速度×时间 )1、压路机的滚筒是个圆柱,它的宽是3米,滚筒横截面半径是1米,那么滚筒转一周可压路面多少平方米?如果压路机的滚筒每分钟转10周,那么5分钟可以行驶多少米?3。

2 人教版六年级下册第二单元《圆柱和圆锥》整理与复习

2 人教版六年级下册第二单元《圆柱和圆锥》整理与复习

1.一铁制圆锥底面直径是12cm,高 为6cm,它的体积是多少?将其熔铸 成一个与它等底的圆柱体,这个圆 柱 的高是多少?
四、综合运用,拓展延伸
2、修建一个圆柱形的沼气 池,底面直径是3m,深2m。 在池的四壁与下底面抹上水 泥,抹水泥部分的面积是多 少?
四、综合运用,拓展延伸
3.一个圆锥形沙堆,底面圆的周长 是31.4米,高3米.这个沙堆的体积 是多少?如果用一辆一次能装8立 方米的卡车运送,一共需要卡车多 少辆?
四、综合运用,拓展延伸
4、求下列钢材的体 积。(单位:厘米)
20
15
五、课堂总结 这节课你有什么收获?
(3)圆锥的高是圆柱高的3倍,并且来自们 的底面积相等,则它们的体积相等(√) (4)如果两个圆柱的体积相等,它们的 ×) 表面积也一定相等。 (
3、选择 (1)、圆锥的侧面展开图是一个 ( D)
A . 长方形 B.正方形
C. 圆 D.扇形 (2)、圆柱和圆锥的侧面都是(C )
A . 直面 B.平面
C. 曲面
D.无法确定
(3)、“压路机的一个滚轮转动一 B 周能压多少路面”是指( )
A . 滚轮的两个底面积
C. 滚轮的表面积
B. 滚轮的侧面积
D. 以上说法都不对
(4)、求一段圆柱形钢材所占空间 的大小,是求它的(B )
A .容积 B .体积 C . 底面积 D. 侧面积
四、综合运用,拓展延伸
整理与复习
回顾整理,构建网络
这个单元我们学习了哪些 知识?
圆柱的认识
圆柱 圆柱和圆锥 圆柱的表面积 圆柱的体积 圆锥的认识
圆锥 圆锥的体积
类化练习、当堂巩固
1、看到这个图,你能想到了这个

圆柱和圆锥整理与练习

圆柱和圆锥整理与练习
它 的体积?( 单位:厘米)
4 2
6
2号 一个酒瓶里面深30厘米,底面直径是8 题 厘米,瓶里有酒深10厘米,把酒瓶塞紧后
倒置(瓶口向下),这时酒深20厘米,你能 算出酒瓶的容积是多少毫升来吗?
30 10
8
20
3号题 李小明准备用一张长方形铁皮做一
只圆柱形油桶,他设计了如下图所 示的裁剪方案。(分米)
奋进中的六(2)班
基 圆柱侧面积=底面周长高 本 S表= S侧+ 2S底 公 式 圆柱表面积=侧面积+底面积2
V=sh
• S侧=ch
圆 柱 体积=底面积高
1 sh V = 3
圆 锥 体积=底面积高÷3
42
7×4 28 ③S表=(28×42+28×12+ ②V=abh 42×12)×2 =28×42×12 =(1176+336+504)×2 =1176×12 =4032(cm² ) =14112立方厘 4032+2000=6032(cm² )
①V柱=sh =3.14×3×3×12 =339.12 1 sh V锥= 3 =339.12× 1 3 =113.04 339.12+113.04=452.16(立
4 ②3.14×3×3×12× 3 =3.14×144 = 452.16 1 ×3.14×3×3×12×4 ③ 3 =3.14×144 = 452.16
底面
侧面
底面
10
4
你觉得他这种设计方案合理吗?为什么?
3.14×(15÷3.14÷2)² ×20 ≈3.14×2² ×20 =251.2(cm³ )
4.一根圆柱形木材长20分米,把截成4个相等 的圆柱体. 表面积增加了18.84平方分米.截 后每段圆柱体积是( 15.7dm3)

第一单元圆柱和圆锥(1)

第一单元圆柱和圆锥(1)

第一单元 圆柱和圆锥基本学习目标:经历由面旋转成体的过程,认识圆柱和圆锥,了解圆柱和圆锥的基本特征。

探索并掌握圆柱表面积的计算方法,并能解决生活中一些简单的问题。

探索并掌握圆柱和圆锥体积的计算方法,能解决一些简单的实际问题。

经历“类比猜想——验证说明”的探索圆柱、圆锥体积计算方法的过程。

拓展学习目标:发展空间观念;初步形成类比、转化等数学思想;运用所学知识解决生活的实际问题。

第一部分 整理与归纳知识链一、巧妙方法: 1、牢记公式及其变形 S 侧=Ch S 表= S 侧+S 底×2 V 柱=Sh V 锥=31Sh 2、熟记常见的积,保证计算的准确率2∏=6.28 3∏=9.42 4∏=12.56 5∏=15.76∏=18.84 7∏=21.98 8∏=25.12 9∏=28.2622∏=12.56 32∏=28.26 42∏= 50.24 52∏=78.562∏=113.04 72∏=153.86 82∏=200.96 92∏=254.343、多画示意图,准确地理解题意。

4、巧用运算定律二、典型问题1.表面积问题。

①一节铁皮烟囱管长1.2米,直径20厘米,做150节这样的烟囱,至少要用铁皮多少平方米? ②某工厂生产一种圆柱形茶叶筒。

这种茶叶筒底面半径为4厘米,高为1分米,外表面涂防锈漆。

按每平方米用防锈漆0.2千克计算,制作100个这样的茶叶筒,一共要用防锈漆多少千克?2.浸没问题。

在底面半径是10厘米的圆柱形杯中装有5厘米高的水,把一个小铁块浸没在杯中,时水面上升到6厘米,这块铁的体积是多少立方厘米?3.切削问题。

把一个棱长为4厘米的正方体削成一个最大的圆柱体,圆柱的体积是多少?4.熔铸问题。

一块长3.14米,宽2米,高5米的钢材,锻造成底面半径是0.1米的圆柱形钢材,这根钢材长多少米?5.套管问题。

一根圆柱形钢管,长30厘米,外直径6厘米,管壁厚1厘米,已知每立方厘米的钢重7.8克,这根钢管重多少克?6.斜切问题。

冀教版数学六年级下学期第四单元《圆柱和圆锥》单元知识点归纳与教案

冀教版数学六年级下学期第四单元《圆柱和圆锥》单元知识点归纳与教案

四圆柱和圆锥一、认识圆柱、圆柱的组成部分1.圆柱的形成:圆柱是以长方形的一条边为轴旋转得到的;也可以由长方形卷起来得到。

2.生活中常见的圆柱:3.圆柱各部分的名称及其特征:(1)圆柱的上、下两个面都是圆形的,大小相同,叫做底面。

(2)圆柱周围的面是曲面,我们叫它侧面。

(3)圆柱两底之间的距离叫做高,一个圆柱有无数条高,它们都相等。

二、圆柱的侧面以及侧面积的求法1.圆柱的侧面展开图及其形状:(1)沿着高展开,展开图是长方形,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高;当底面周长和高相等时(h=2πr),侧面展开图为正方形。

(2)如果不沿着高展开,展开图形是平行四边形或不规则图形。

(3)无论如何展开都得不到梯形。

2.圆柱的侧面展开后各个部分与圆柱的关系:展开后长方形的长等于圆柱的底面周长,宽等于圆柱的高。

3.圆柱的侧面积=底面的周长×高,即S侧=Ch=πd×h=2πr×h。

三、圆柱的表面积的计算1.圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

巧记小圆柱直挺挺,上、下底面都相同,可以看作是由长方形旋转而成的,还可以看作是由平面卷曲而成的。

易错点:1.圆柱的侧面是曲面,高有无数条,不是1条。

2.高指圆柱两底面之间的距离。

易错点:1.如果底面周长和高相等,展开图为正方形。

2.底面直径和高相等,侧面展开图不是正方形。

巧记规律沿高剪,圆柱侧面展开是长方形,侧面积是底面周长和高的积。

2.圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2πr2。

3.圆柱的切割引起表面积的变化:(1)横切:切面是圆,表面积增加2个底面积,即S增=2πr2。

(2)竖切(过直径):切面是长方形(如果h=2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh。

四、圆柱表面积的计算在实际生活中的应用在实际生活中,有时需要计算圆柱的表面积,如制作水桶时,不要上底面;制作圆柱形通风管时,不需要两个底面,这时需要计算圆柱的侧面积。

(完整版)六年级圆柱圆锥拔高题4(最新整理)

(完整版)六年级圆柱圆锥拔高题4(最新整理)

圆柱、圆锥的认识,圆柱的表面积练习一例题:一个圆柱体木块,底面半径是6cm,高是10cm,截成两个圆柱体之后,表面积增加多少cm²?练习1、一个圆柱体木头,底面半径是8cm,高是230cm,现截成两个圆柱体木头,表面积增加多少?2.把一个直径20cm的圆柱形木头锯成3段,表面积要增加多少?练习二例题:一个圆柱,高减少2cm,表面积就减少18.84cm²,求这个圆柱的底面积是多少?练习1、一个圆柱体,高减少4cm,表面积就减少75.36cm²,求这个圆柱体的底面积。

2、一个圆柱体,高增加5cm,表面积就增加125.6cm²,求这个圆柱体的底面积。

3、一根长2m的圆柱形木头,截去2分米的一段小圆柱后,表面积减少了12.56平方分米,那么这根木头原来的体积是多少?练习三例题:如下图,高都是10厘米,底面半径分别是3厘米、6厘米的两个圆柱组成了一个几何体。

求这个物体的表面积。

练习1、高都是2分米,底面半径分别是2分米和5分米的两个圆柱组成的几何体。

求这个物体的表面积。

2、某零件如图,两圆柱的高分别是4cm、2cm,地面半径分别是1厘米和3厘米。

求这个零件的表面积。

例4、圆柱的高都是1米,底面半径分别是0.5米、1米和1.5米。

求这个物体的表面积和体积。

练习四例题:在一个边长4厘米的正方形的六个面各中心挖去一个地面半径为1厘米,深1.5厘米的圆柱,求它的表面积。

练习1、在一个边长为4厘米的正方体各面中心都挖去一个棱长1厘米的小正方体,求挖去后这个物体的表面积。

1、把一张长9.42分米,宽3.14分米的长方形铁皮圈成一个圆柱形无盖容器,要配上底面半径多少分米的圆形铁皮。

2、一个圆柱体底面周长和高相等,如果高缩短了2厘米,表面积就减少12.56平方厘米。

求这个圆柱体的表面积。

3、取出直角三角尺(30度、60度、90度),进行操作观察:将三角尺的一条直角边平放在桌面上,以另一条直角边为轴作快速的旋转,看到了什么?试画出示意图。

小学六年级数学复习题(人教版十二册第三单元圆柱与圆锥例题及练习答案)

小学六年级数学复习题(人教版十二册第三单元圆柱与圆锥例题及练习答案)

小学第十二册第三单元《圆柱与圆锥》例题及练习答案人教版教科书第20页练习三1、下面的图形哪些是圆柱?在下面()里画“√”(√)()()()()2、折一折,想一想,能得到什么图形?这在()里。

(长方体)(正方体)(圆柱体)3、下面哪个图形是圆柱的展开图(单位:cm)。

答:第一个是圆柱的展开图4、如图。

切完后的截面或剪完后展开的侧面分别是什么形状?连一连。

5、把一个长方形的纸横着或竖着卷起来,可以卷成什么形状?答:可以卷成圆柱。

人教版教科书第21页“做一做”一个圆柱形茶叶筒的侧面贴着商标纸,圆柱底面半径是5cm,高是20cm,这张商标纸的面积是多少?2×3.14×5×20=628(cm²)人教版教科书第22页例4:一顶圆柱形厨师帽,高30cm,帽顶直径20cm。

做这样一顶帽子至少要用多少平方厘米的布料?(得数保留整十数)。

(1)帽子的侧面积:3.14×20×30=1884(cm²)(2)帽顶的面积:3.14×(20÷2)²=314(cm²)(3)需要用的面料:1884+314=2198≈2200(cm²)21页“做一做”1、求下面各圆柱的侧面积。

(1)底面周长是1.6m,高是0.7m。

(2)底面半径是3.2dm,高5dm。

1.6×0.7=1.12(m²) 2×3.14×3.2×5=100.48(dm²)2、小亚做了一个笔筒,她想给笔筒的侧面和底面贴上彩纸,至少需要有多少彩纸?第23页练习四1、求下面各圆柱的表面积。

(单位:cm)(1)表面积:3.14×(6÷2)²×2+3.14×6×12=56.52+226.08(cm²)体积:3.14×(6÷2)²×12=28.26×12=339.12(cm³)(2)表面积:3.14×(40÷2)²×2+3.14×40×3=2512+376.8=2888.8(cm²)体积:3.14×(40÷2)²×3=1256×3=3768(cm³)(3)表面积:3.14×(18÷2)²×2+3.14×18×15=508.68+847.8=1356.48(cm²)体积:3.14×(18÷2)²×15=254.34×15=3815.1(cm³)2、一台压路机的前轮是圆柱形,轮宽2m,直径1.2m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方形 这个 圆柱的侧面展开后是 , 长方形的长 等于圆柱底面的周长, 等于圆柱底面的周长, 长方形的宽 等于圆柱的高。 等于圆柱的高。
圆柱侧面积= 圆柱侧面积 底面周长 × 高 。 S侧=ch S =2πrh

底面积× 圆柱的表面积=侧面积 + 底面积×2 。 圆柱的表面积 r h
下面哪个图是圆柱的展开图, 下面哪个图是圆柱的展开图,并说 明理由。 明理由。
Hale Waihona Puke 底面周长 侧面积+ 底面积 侧面积+1底面积 容积 ①S侧=ch ②S底=πr² =15.7×6 =3.14×(15.7÷3.14÷2)² × × ÷ ÷ =94.2 =19.625 ③ 94.2+19.625 V=sh + =19.625×6 × =113.825(dm²) =117.75
V柱=sh V长方体=abh =3.14×(10÷2)²×10 =11×11×9 × ÷ × × × =3.14×250 =121×9 × × =785 =1089
圆锥的体积是与它等底等高 1 的圆柱体积的 3
1 V= 3 sh 1 2h V= 3πr
h r
①S侧=ch ②S底=πr² =3.14×4×5 =3.14×2² × × × =62.8 =12.56 4 87.92 62.8
③S表= S侧+ 2S底 =62.8+12.56×2 + × =62.8+25.12 + =87.92
V=sh =12.56×5 × =62.8
①S侧=ch ②S底=πr² =3.14×10×8 =3.14×5² × × × =251.2 =78.5 5 ③S表= S侧+ 2S底 =251.2+78.5×2 + × =251.2+157 + =408.2 408.2 628
V=sh =78.5×8 × =628
2
3
6.28
2
3
3
3
2
如何计算圆柱的体积? 如何计算圆柱的体积
圆柱的体积=底面积× 圆柱的体积=底面积×高
r h
V=sh
2h V=πr
1、圆锥的底面是个 圆面 ,侧面 、 是一个 曲 面,从圆锥的顶点到 底面圆心的距离是圆锥的 高 。 2、圆柱和圆锥有什么共同点和不同点? 、圆柱和圆锥有什么共同点和不同点?
1 sh V= 3 = 3.14×6.25 ×
= 19.625
1 ×3.14×2.5²×3 × × 3
2.5 1.2
19.625 0.67824
= 3.14×0.216 × = 0.67824
1 ×3.14×0.6²×1.8 × × 3
S侧=ch =3.14×0.8×1.6 × × =3.14×1.28 × =4.0192
奋进中的六( ) 奋进中的六(3)班
圆柱的认识 圆柱 圆柱和圆锥 圆柱的表面积 圆柱的体积 圆锥的认识 圆锥 圆锥的体积
底面;周围 1、圆柱的两个圆面叫做 、 的面叫做 侧面;两个底面之间的距离 叫做 高 。一个圆柱的高有 无数条。 圆面,并且大 2、 2、圆柱的底面都是 小相等 ;圆柱的侧面是曲 面。
表面积 ①S侧=ch =3.14×15×2×20 × × × ③S表= S侧+ 2S底 =1884 =1884+706.5×2 + × ②S底=πr² =1884+1413 + =3.14×15² × =3297 =706.5
彩带长=4条直径+ 条高 打结处15厘米 条高+ 彩带长 条直径+4条高+打结处 厘米 条直径 15×4+20×4+15 × + × + =60+80+15 + + =155(厘米) (厘米)
相关文档
最新文档