求函数的定义域与值域的常用方法
求函数的定义域与值域的常用方法
求函数的定义域与值域的常用方法在数学中,函数的定义域和值域是非常重要的概念。
定义域是指函数可以接受的输入值的集合,而值域则是函数能够取得的输出值的集合。
正确确定函数的定义域和值域是解决函数相关问题的关键,下面我们将详细介绍求函数定义域和值域的常用方法。
一、函数的定义域的常用方法:1. 显式定义法:对于一些常见的函数,我们可以直接根据其表达式来确定其定义域。
例如,对于一元多项式函数f(x)=ax^n+bx^m+...+c,其定义域可以是实数集或者区间。
2.隐式定义法:对于一些函数可能没有明确的表达式,或者函数的定义域和表达式没有直接的关系,我们可以根据函数的特性和性质来确定其定义域。
例如,对于分式函数f(x)=1/(x-1),我们可以得知分母不能为0,所以其定义域是实数集减去1的那部分实数。
3.已知条件法:有时候我们可以根据函数在一些点的取值情况来确定其定义域。
例如,对于一个连续函数f(x),如果我们知道在一些区间上f(x)恒大于0,那么可以确定该区间为函数的定义域。
4.集合运算法:当函数的定义域可以表示为多个区间或集合的并、交、差等运算时,我们可以利用这些运算来求解函数的定义域。
例如,对于函数f(x)=√(x+1)-√(x-1),我们可以先求出√(x+1)和√(x-1)的定义域,然后求出它们的交集。
二、函数的值域的常用方法:1.考察函数表达式法:对于一些常见的函数,我们可以观察其表达式,根据其中的字母、常数等特性来确定其值域的范围。
例如,对于平方函数f(x)=x^2,我们可以观察到平方函数的输出恒为非负数,所以其值域是[0,+∞)。
2.定义域与函数性质法:当我们已经确定了函数的定义域后,可以根据函数的性质来确定其值域。
例如,对于连续函数f(x)在一些区间上单调增加或者单调减少,我们可以确定函数在该区间上取值范围。
3.极限与极大极小值法:利用函数的极限性质、导数等衍生性质来确定函数的值域。
例如,对于函数f(x)=x^3-3x+2,我们可以求出其导数为f'(x)=3x^2-3,然后根据导数的符号确定函数的单调性和极值点,从而确定其值域。
求函数的定义域与值域的常用方法
求函数的定义域与值域的常用方法在数学中,函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
函数的定义域是指所有输入值的集合,也就是函数可以接受的所有输入。
值域是函数所有可能的输出值的集合,也就是函数可以得到的所有输出。
在求函数的定义域和值域时,一般需要注意以下一些常用的方法和技巧:1.分析函数的显式定义式:如果函数的显式定义式直接给出了函数的定义域和值域,那么问题就迎刃而解了。
例如,定义域是实数集合,值域是区间(0,∞)的函数,可以通过观察定义式得出。
2.求解方程或不等式:通过求解方程或不等式,可以确定函数的定义域。
例如,对于函数f(x)=√(x-2),需要解方程x-2≥0,得到x≥2,即定义域为[2,∞)。
对于函数g(x)=1/x,需要解方程x≠0,得到定义域为(-∞,0)∪(0,∞)。
对于值域,可以通过类似的方式求解不等式或方程得到。
3.观察函数的图像:通过观察函数的图像,可以大致判断函数的定义域和值域。
函数在图像上的取值范围和横坐标的取值范围可以提供一些线索。
例如,对于函数f(x)=x^2,通过观察图像可以看出它的定义域为实数集合,值域为[0,∞)。
4.分解复合函数:当函数是由两个或多个函数复合而成时,可以通过分解复合函数的方式求解定义域和值域。
例如,对于函数f(x)=√(3-x^2),可以将其分解为两个函数f(x)=√(3-y)和g(y)=y^2,然后分别求解其定义域和值域。
5. 推导函数的性质和特点:有时候可以根据函数的性质和特点来推导其定义域和值域。
例如,对于比例函数 f(x) = kx,由于比例函数在定义域上的取值范围是全体实数,所以比例函数的值域也是全体实数。
需要注意的是,函数的定义域和值域是相互依存的。
函数的定义域决定了可以输入什么值,而函数的值域决定了可以输出什么值。
因此,在求解函数的定义域和值域时,需要综合考虑函数定义式、方程和不等式的求解、函数图像的观察、复合函数的分解以及函数的性质和特点等多个方面的信息。
常见函数解析式定义域值域的求法总结
常见函数解析式定义域值域的求法总结函数的定义域和值域是函数解析式中的两个重要概念。
定义域指的是函数的自变量可能取值的范围,值域则是函数的因变量可能取值的范围。
在解析式中,定义域和值域可以通过不同的方法进行求解。
下面是常见的函数解析式定义域和值域求解方法总结。
一、定义域的求法:1.开方函数的定义域:对于形如y = √(ax + b)的开方函数,考虑开方中的被除数,即ax + b的取值范围,对ax + b >= 0进行求解,得到定义域。
2.分式函数的定义域:对于形如y=f(x)/g(x)的分式函数,需要满足分母不等于0的条件,因此需要解g(x)≠0,将g(x)=0进行求解,得到定义域。
3.对数函数的定义域:对于形如y = logₐ(x)的对数函数,需要满足x > 0的条件,因此定义域为x > 0。
4.指数函数的定义域:对于形如y=aˣ的指数函数,没有特殊定义域的限制,因此定义域为全体实数。
5.三角函数的定义域:对于常见的正弦函数、余弦函数、正切函数等三角函数,它们的定义域为全体实数。
6.反三角函数的定义域:对于反正弦、反余弦、反正切等反三角函数,它们的定义域要满足对应的正弦、余弦、正切函数取值范围的要求。
7.复合函数的定义域:当函数为两个函数的复合函数时,需要满足两个函数的定义域的交集作为复合函数的定义域。
二、值域的求法:1.函数的图像法:通过绘制函数的图像,观察函数在定义域内的取值范围,得到值域的估计。
2.函数的导数法:对函数求导,并观察导数的符号及极限情况,来推断函数的值域。
例如,当导数恒大于0时,函数为增函数,值域为整个实数轴。
3.函数的区间法:对于已知闭区间上连续的函数,可以通过求出函数的最大值和最小值,及极限情况,来确定值域的范围。
4.反函数的值域:如果函数存在反函数,那么反函数的值域即为原函数的定义域。
5.一次函数的值域:对于一次函数y = kx + b,k为斜率,通过观察斜率的正负和直线与坐标轴的交点可以得到值域的范围。
函数定义域值域求法(全十一种)
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x
故
22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。
高中数学必修一专题:求函数的定义域与值域的常用方法
函数的定义域与值域的常用方法(一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y = f (x),不能把它写成f (x, y) = 0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:( 1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
( 2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数 f [g (x)的表达式,求f (x)的表达式时可以令t = g (x),以换元法解之;(4)构造方程组法:若给出f (x)和f (—x),或f (x)和f (1/x)的一个方程,则可以x代换一x (或1/x),构造出另一个方程,解此方程组,消去 f (—x)(或f (1/x))即可求出f (x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负4、对复合函数y = f [ g (x)]的定义域的求解,应先由y = f (u)求出u的范围,即g ( x)的范围,再从中解出x的范围1仁再由g (x)求出y= g (x)的定义域a, l i和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f: A^B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C =B,那么该函数作为映射我们称为"满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结;(四) 求函数的最值1设函数y = f (x )定义域为 A ,则当x € A 时总有f ( x ) Wf( x o )=M ,则称当x = x 。
高一数学函数的定义域与值域的常用方法
高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
例1. 已知2211()x x x f x x +++=,试求()f x 。
解:设1x t x +=,则11x t =-,代入条件式可得:2()1f t t t =-+,t ≠1。
故得:2()1,1f x x x x =-+≠。
说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。
例2. (1)已知21()2()345f x f x x x +=++,试求()f x ;(2)已知2()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1x 代x ,则得2111()2()345f f x x x x +=++,与条件式联立,消去1f x ⎛⎫ ⎪⎝⎭,则得:()222845333x f x x x x =+--+。
(2)由条件式,以-x 代x 则得:2()2()345f x f x x x -+=-+,与条件式联立,消去()f x -,则得:()2543f x x x =-+。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。
例4. 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f ;(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f ;(3)已知x xx x x f 11)1(22++=+,求)(x f ; (4)已知3)(2)(3+=-+x x f x f ,求)(x f 。
【题意分析】(1)由已知)(x f 是二次函数,所以可设)0()(2≠++=a c bx ax x f ,设法求出c b a ,,即可。
求函数的定义域与值域的常用方法
求函数的定义域与值域的常用方法函数的定义域和值域是数学中的重要概念,它们描述了函数的输入和输出的范围。
在不同的数学领域和实际应用中,求解函数的定义域和值域有不同的方法和技巧。
函数的定义域是指函数中自变量的取值范围。
换句话说,定义域是使函数有意义的输入值的集合。
下面介绍一些常用方法来求解函数的定义域:1.分式函数:分式函数的定义域通常要求分母不等于零,因此我们需要找到分母为零的点,并将其排除。
求解分母为零的方程,得到函数的定义域。
2.平方根函数:平方根函数的定义域要求根号内的值大于等于零。
因此,需要将根号内的表达式>=0,并求解方程,得到函数的定义域。
3.指数函数和对数函数:指数函数的定义域通常为全体实数,而对数函数的定义域要求基数和真数都大于零。
因此,对于指数函数,不存在特定的求解方法;而对于对数函数,需要使基数和真数大于零,并求解相应的方程。
4.复合函数:复合函数的定义域由内层函数和外层函数的定义域共同确定。
首先求解内层函数的定义域,将其结果作为外层函数的自变量的定义域。
注意需要将两个函数的定义域进行交集运算,得到复合函数的定义域。
5.根式函数:根式函数的定义域需要满足根号内的表达式大于等于零。
求解根号内的方程,得到函数的定义域。
函数的值域是函数在定义域内所有可能的输出值的集合。
下面介绍一些常用方法来求解函数的值域:1.分析法:通过分析函数的特点、性质和图像,推断出函数的值域。
例如,通过观察函数的单调性、奇偶性、对称性、极值等特点,可以确定函数的值域的范围。
2.等式法:通过解方程求函数的值域。
将函数的表达式等于一个未知数,解方程得到未知数的取值范围,即为函数的值域。
3.代数运算法:通过对函数进行代数运算,得到函数的值域。
例如,对于一次函数,通过对其进行线性变换和平移,可以推导出函数的值域的范围。
4.图像法:通过绘制函数的图像,观察函数的上下界,以及是否存在水平渐近线和垂直渐近线,可以推断出函数的值域。
值域和定义域的例题讲解
高中函数值域和定义域的大小,是高中数学常考的一个知识点,本文介绍了函数求值域最常用的九种方法和例题讲解.一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x)的值域。
点拨:根据算术平方根的性质,先求出√(2-3x)的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
函数定义域、值域,解析式求法总结
函数定义域、值域,解析式求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。
三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒⎩⎨⎧≠-≥21x x 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
函数定义域值域求法总结精彩
函数定义域值域求法总结精彩GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
这些解题思想与方法贯穿了高中数学的始终。
常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x ∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax 第一页∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
函数定义域及值域的求法
对应练习2
1 y 2 x 5, x 1,3 2 y 3 x 1, x [2,5)
1 3 y , x (0,4) x 1 4 y , x ,1 1, x
小结:其他函数在给定区间求值域,都可以通过数形结 合的方式解决。
叫做这个函数的值域(用区间或集合表示)
区间表示:
开区间:(a,b) 闭区间:[ a,b ] 半开半闭区间:(a,b] 实数集R用区间表示:
,
一、求函数定义域:
例1.根据解析式求定义域
① 解:要使函数有意义, 则必须满足
x 2 0 x 4 0 解得:x 2且x 4
总结:
(1)求函数定义域: 对于具体函数求定义域,要保证式子有意义
(2)求函数值域:
求基本函数在R上或某一区间上的值域,通常数形结合
对应练习1:
1 f ( x) x 5 x 6, x R 2 2 f x 2 x 4 x 5, x 2,5 2 3 f x 2 x 3x 1, x 1,2 2 4 f x x 3x 4, x (0,3]
x 2 x 4且x 4
x2 1y x 4
x x 2且x 4 定义域为
小结:对于二次根号下的式子必须保证大于等于零 对于分式要保证分母不等于零
对应练习:
1y
x 1
1 x2
x2 2y x 3 8
3 f ) x 1 x 2
二、求函数值域:
例2.
函数f x x 3 x 4,
2
1x R, 求函数值域 2x 1,5, 求函数值域 3x 3,5, 求函数值域
小结:对于二次函数 在R上求值域,需要考虑顶点的纵坐标和开口方向; 对于在某一区间求值域,要考虑对称轴在区间内还 是在区间外,数形结合。
函数定义域值域求法(全十一种)
实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。
2x2x 15例 1 求函数 y的定义域。
| x 3| 8解:要使函数有意义,则必须满足2x 2x 15 0① | x 3 | 8 0②由①解得 x 3或 x 5。
③由②解得x5或 x 11 ④ ③和④求交集得 x 3且 x 11或 x>5。
故所求函数的定义域为 {x | x 3且x 11} {x | x 5} 。
例 2 求函数1ysin x的定义域。
216 x解:要使函数有意义,则必须满足sin x0 ① 216 x② 由①解得 2kx2k ,kZ③ 由②解得 4 x 4 ④由③和④求公共部分,得4 x 或0 x 故函数的定义域为 ( 4, ] (0, ]评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。
(1)已知 f (x) 的定义域,求 f[g(x )] 的定义域。
(2)其解法是:已知 f (x) 的定义域是[a ,b ]求 f [g(x)] 的定义域是解 a g(x) b ,即为所求的定义域。
2 例3 已知 f (x) 的定义域为[-2,2],求 f ( x 1)的定义域。
2 解:令 2 x 1 2 2 ,得 1 x 32,即 0x3,因此 0 | x |3 ,从而3 x 3 ,故函数的定义域是 { x | 3 x 3} 。
(2)已知 f [g( x)] 的定义域,求 f(x) 的定义域。
其解法是:已知 f [g(x )] 的定义域是[a , b ],求 f(x) 定义域的方法是:由 a x b ,求g(x)的值域,即所求 f(x) 的定义域。
例 4 已知 f (2x 1) 的定义域为[1,2],求 f(x) 的定义域。
函数定义域值域求法(全十一种)
实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例 1求函数 y x 22x15| x 3 |8的定义域。
解:要使函数有意义,则必须满足x 22x150①| x 3 |8 0②由①解得x3或 x 5 。
③由②解得x5或 x11④③和④求交集得x3且 x11或x>5。
故所求函数的定义域为{ x | x 3且x11}{ x | x5} 。
例 2求函数 y sin x1的定义域。
16x 2解:要使函数有意义,则必须满足sin x0①16x 20②由①解得2k x2k,k Z③由②解得 4 x4④由③和④求公共部分,得4x或 0x故函数的定义域为(4, ](0, ]评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。
( 1)已知f (x )的定义域,求f [ g(x )]的定义域。
( 2)其解法是:已知 f (x) 的定义域是[a,b]求 f [g(x)] 的定义域是解a g(x) b ,即为所求的定义域。
例 3已知 f (x) 的定义域为[-2, 2],求f ( x 21) 的定义域。
解:令 2 x21 2 ,得 1 x2 3 ,即0 x 23,因此0| x | 3 ,从而3 x 3 ,故函数的定义域是{ x | 3 x3} 。
( 2)已知f [g( x)]的定义域,求f(x) 的定义域。
其解法是:已知 f [g(x )] 的定义域是[a,b],求f(x)定义域的方法是:由a x b,求g(x) 的值域,即所求f(x) 的定义域。
例 4已知 f (2x1) 的定义域为[1,2],求f(x)的定义域。
解:因为 1 x2,22x4,32x 1 5 。
即函数 f(x) 的定义域是{ x | 3x5} 。
函数定义域值域求法(全十一种)
函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。
解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。
例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。
解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。
将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。
二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。
一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。
解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。
例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。
令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。
因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。
2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。
解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。
例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。
因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。
1.2求函数的定义域与值域的常用方法
8函数的定义域与值域的常用方法2、待定系数法1、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
2、求一个一次函数f(x),使得f{f[f(x)]}=8x+73、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。
(1)11)11(2-=+xx f (2)x x x x f 221)1(+=+(配凑法) 考点三:求函数的值域与最值求函数的值域和最值的方法十分丰富,下面通过例题来探究一些常用的方法;随着高中学习的深入,我们将学习到更多的求函数值域与最值的方法。
1、分离变量法例11. 求函数231x y x +=+的值域。
解:()2112312111x x y x x x +++===++++,因为101x ≠+,故y≠2,所以值域为{y|y≠2}。
说明:x ,可通过等价变形,让变量只出现在分母中,再行求解。
2、配方法 例12. 求函数y =2x 2+4x 的值域。
解:y =2x 2+4x =2(x 2+2x +1)-2=2(x +1)2-2≥-2,故值域为{y|y≥-2}。
说明:数的值域也可采用此方法求解,如y =af 2(x )+bf (x )+c 。
3、判别式法例13. 求函数2223456x x y x x ++=++的值域。
解:2223456x x y x x ++=++可变形为:(4y -1)x 2+(5y -2)x +6y -3=0y ∈⎣⎦。
说明:定义域一般仅由函数式确定,题中条件不再另外给出;如果题中条件另外给出了定义域,那么一般情况下就数变形为一个关于x 的一元二次方程后,该方程的解集就是原函数的定义域,故Δ≥0。
4、单调性法例14. 求函数23y x-=+,x ∈[4,5]的值域。
在此区域画图解:由于函数23yx-=+为增函数,故当x=4时,y min=25;当x=5时,y max=513,所以函数的值域为513,25⎡⎤⎢⎥⎣⎦。
定义域与值域的求法
1、 定义域R 上函数y=f(x)值域为[a,b],则y=f(2x+5)值域为( ) 解:由于y=f(x)的定义域为R ,所以y=f(2x+5)的定义域也为R ,且2x+5能取到任意值,即y=f(2x+5)值域也为[a,b]。
2、 函数y=f(x),定义域为R,值域为【-2,2】,则y=f(x+1)-1的值域 ( ) 解:因为y=f(x),定义域为R ,值域为[-2,2],所以不论x 取何值,函数的值域都是[-2,2],所以将x 换成(x+1)后,(x+1)的取值范围依然是R ,所以函数f(x+1)的值域依然时[-2,2], 即,-2≤f(x+1)≤2,所以,-2-1≤f(x+1)-1≤2-1,即,-3≤f(x+1)-1≤1,综上所述,y=f(x+1)-1的值域是:[-3,1]. 3、 已知函数y=1/2(x-1)^2+1的定义域和值域都是区间[1,b](b >1)求b 的值已知函数y=1/2(x-1)^2+1为开口向上得抛物线,对称轴x=1 区间[1,b]在对称轴右边,单增所以f(x)最小=f(1)=1f(x)最大=f(b)=(1/2)(b-1)²+1由题意f(b)=b于是(1/2)(b-1)²+1=b即b ²-4b+3=0 (b-1)(b-3)=0因b>1所以b=3函数解析式,复合函数的定义域,值域定 义 域:例1、 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 例2、设f(x)的定义域为[0,2],求函数f(x+a)+f(x-a)(a >0)的定义域.练习:若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 1、函数x x x f -=13)(2的定义域是( )A.),1(+∞B. )1,0(C. )1,(-∞D. ]1,(--∞2、函数x x x x f -+=0)1()(的定义域是( )A.{}0|<x xB. {}0|>x xC. {}10|-≠<x x x 且D. {}10|-≠≠x x x 且3、xx x f -++=211)(的定义域是( )A.),1[+∞-B. ),2[+∞C. )2,1(-D. {}21|≠-≥x x x 且4、2384)(3-+=x x x f 的定义域是( ) A.),32[+∞ B. ⎭⎬⎫⎩⎨⎧≠32|x x C. ),2[+∞ D. ]1,(--∞ 5、若函数()f x 的定义域[0,2],则函数1)2()(-=x x f x g 的定义域是( ) A [0,1] B [)1,0 C [)(]4,11,0⋃ D ()1,0 6、已知函数)(x f 的定义域为[a ,b],其中b a b a ><<,0,则函数()()x f x f x g -+=)(的定义域是( )A ],(b b -B ],(b a -C ],[b b -D ],[a a -7、已知函数)1(+=x f y 的定义域为[-2,3],则()12-=x f y 的定义域是_________8.已知(1)f x +的定义域为[2,3]-,则(21)f x -定义域是: A.5[0,]2 B.[1,4]- C.[5,5]- D.[3,7]-9.已知函数()f x 的定义域为[0,1],函数2()f x 的定义域为:___________函数的值域1. 直接观察法:对于一些比较简单的函数,其值域可通过观察得到。
求定义域及值域方法汇总
①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈. ⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.①观察法:通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()=可以化成一个系数含有y的关于x的y f x二次方程2++=,则在()0()()()0a y xb y xc ya y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.。
函数定义域值域求法总结
函数定义域、值域求法总结一、定义域是函数()y f x =中的自变量x 的范围; 求函数的定义域需要从这几个方面入手: 1分母不为零2偶次根式的被开方数非负; 3对数中的真数部分大于0;4指数、对数的底数大于0,且不等于15y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等; 6 0x 中x 0≠二、值域是函数()y f x =中y 的取值范围;常用的求值域的方法: 1直接法 2图象法数形结合 3函数单调性法4配方法 5换元法 包括三角换元 6反函数法逆求法 7分离常数法 8判别式法 9复合函数法 10不等式法 11平方法等等这些解题思想与方法贯穿了高中数学的始终;三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x ∴函数14)(2--=x x f 的定义域为: 3,3-②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 ∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x Rx即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于例4 若函数)(x f y =的定义域为1,1,求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知fx 的定义域为-1,1,求f2x -1的定义域;分析:法则f 要求自变量在-1,1内取值,则法则作用在2x -1上必也要求2x -1在 -1,1内取值,即-1≤2x -1≤1,解出x 的取值范围就是复合函数的定义域;或者从位置上思考f2x -1中2x -1与fx 中的x 位置相同,范围也应一样,∴-1≤2x -1≤1,解出x 的取值范围就是复合函数的定义域;注意:fx 中的x 与f2x -1中的x 不是同一个x,即它们意义不同; 解:∵fx 的定义域为-1,1, ∴-1≤2x -1≤1,解之0≤x ≤1, ∴f2x -1的定义域为0,1;例6已知已知fx 的定义域为-1,1,求fx 2的定义域;答案:-1≤x 2≤1⇒ x 2≤1⇒-1≤x ≤1练习:设)(x f 的定义域是3,2,求函数)2(-x f 的定义域解:要使函数有意义,必须:223≤-≤-x 得: 221+≤≤-x ∵ x ≥0 ∴ 220+≤≤x 2460+≤≤x ∴ 函数)2(-x f 的定域义为:{}2460|+≤≤x x例7已知f2x -1的定义域为0,1,求fx 的定义域因为2x -1是R 上的单调递增函数,因此由2x -1, x ∈0,1求得的值域-1,1是fx 的定义域;已知f3x -1的定义域为-1,2,求f2x+1的定义域;[2,25-提示:定义域是自变量x 的取值范围 练习:已知fx 2的定义域为-1,1,求fx 的定义域若()y f x =的定义域是[]0,2,则函数()()121f x f x ++-的定义域是A.[]1,1- B⎥⎦⎤⎢⎣⎡-21,21C.⎥⎦⎤⎢⎣⎡1,21D.10,2⎡⎤⎢⎥⎣⎦已知函数()11xf x x+=-的定义域为A,函数()y f f x =⎡⎤⎣⎦的定义域为B,则A.A B B = B.B A ∈ C.A B B = D. A B =2、求值域问题利用常见函数的值域来求直接法一次函数y=ax+ba ≠0的定义域为R,值域为R ;反比例函数)0(≠=k xk y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R, 当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}. 例1 求下列函数的值域① y=3x+2-1≤x ≤1 ②)(3x 1x32)(≤≤-=x f③ xx y 1+=记住图像 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是-1,5 ②略③ 当x>0,∴xx y 1+==2)1(2+-xx 2≥,当x<0时,)1(xx y -+--==-2)1(2----xx -≤∴值域是 ]2,(--∞2,+∞.此法也称为配方法 函数xx y 1+=的图像为: 二次函数在区间上的值域最值:例2 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;解:∵3)2(1422--=+-=x x x y ,∴顶点为2,-3,顶点横坐标为2. ①∵抛物线的开口向上,函数的定义域R,∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y ≥-3 }.②∵顶点横坐标2∉3,4,当x=3时,y= -2;x=4时,y=1;∴在3,4上,min y =-2,m ax y =1;值域为-2,1.③∵顶点横坐标2∉ 0,1,当x=0时,y=1;x=1时,y=-2, ∴在0,1上,min y =-2,m ax y =1;值域为-2,1.④∵顶点横坐标2∈ 0,5,当x=0时,y=1;x=2时,y=-3, x=5时,y=6,∴在0,1上,min y =-3,m ax y =6;值域为-3,6.注:对于二次函数)0()(2≠++=a c bx ax x f ,⑴若定义域为R 时,①当a>0时,则当a b x 2-=时,其最小值ab ac y 4)4(2min -=;②当a<0时,则当a b x 2-=时,其最大值ab ac y 4)4(2max -=. ⑵若定义域为x ∈ a,b,则应首先判定其顶点横坐标x0是否属于区间a,b. ①若0x ∈a,b,则)(0x f 是函数的最小值a>0时或最大值a<0时, 再比较)(),(b f a f 的大小决定函数的最大小值.②若0x ∉a,b,则a,b 是在)(x f 的单调区间内,只需比较)(),(b f a f 的大小即可决定函数的最大小值.注:①若给定区间不是闭区间,则可能得不到最大小值;②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.练习:1、求函数y =3+√2-3x 的值域解:由算术平方根的性质,知√2-3x ≥0,故3+√2-3x ≥3;∴函数的值域为 [)+∞,3 .2、求函数[]5,0,522∈+-=x x x y 的值域解: 对称轴 []5,01∈=x例3 求函数y=4x -√1-3xx ≤1/3的值域;解:法一:单调性法设fx=4x,gx= -√1-3x ,x ≤1/3,易知它们在定义域内为增函数,从而y=fx+gx= 4x -√1-3x在定义域为x ≤1/3上也为增函数,而且y ≤f1/3+g1/3=4/3,因此,所求的函数值域为{y|y ≤4/3};小结:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域;练习:求函数y=3+√4-x 的值域;答案:{y|y ≥3} 法二:换元法下题讲例4 求函数x x y -+=12 的值域解:换元法设t x =-1,则)0(122≥++-=t t t y点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域;这种解题的方法体现换元、化归的思想方法;它的应用十分广泛;练习:求函数y=√x-1 –x 的值域;答案:{y|y ≤-3/4} 例5 选求函数x x y -+-=53 的值域 解:平方法函数定义域为:[]5,3∈x 例6 选不要求求函数21x x y -+=的值域解:三角换元法 11≤≤-x ∴设[]πθθ,0cos ∈=x 小结:1若题目中含有1≤a ,则可设2若题目中含有122=+b a 则可设θθsin ,cos ==b a ,其中πθ20<≤3若题目中含有21x -,则可设θcos =x ,其中πθ≤≤0 4若题目中含有21x +,则可设θtan =x ,其中22πθπ<<-5若题目中含有)0,0,0(>>>=+r y x r y x ,则可设θθ22sin ,cos r y r x ==其中⎪⎭⎫⎝⎛∈2,0πθ 例7 求13+--=x x y 的值域解法一:图象法可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图,观察得值域{}44≤≤-y y可得;解法三:选不等式法414114)1(134)1()3(13-=+--+≥+--+=+--=+--≤+--x x x x x x x x x x 同样可得值域练习:1y x x =++的值域呢 )[∞+,1三种方法均可例8 求函数[])1,0(239∈+-=x y x x 的值域解:换元法设t x =3 ,则 31≤≤t 原函数可化为[][]8,28,3;2,13,121,2max min2值域为时时对称轴∴====∴∉=+-=y t y t t t t y例9求函数xx y 2231+-⎪⎭⎫ ⎝⎛= 的值域解:换元法令1)1(222+--=+-=x x x t ,则)1(31≤⎪⎭⎫⎝⎛=t y t由指数函数的单调性知,原函数的值域为⎪⎭⎫⎢⎣⎡+∞,31 例10 求函数 )0(2≤=x y x 的值域 解:图象法如图,值域为(]1,0 例11 求函数21+-=x x y 的值域 -1 0 3解法一:逆求法{}1121,≠-+=y y yyx x 原函数值域为观察得解出 解法二:分离常数法由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y 小结:已知分式函数)0(≠++=c dcx bax y ,如果在其自然定义域代数式自身对变量的要求内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ;如果是条件定义域对自变量有附加条件,采用部分分式法将原函数化为)(bc ad dcx c adb c a y ≠+-+=,用复合函数法来求值域;例12 求函数133+=x xy 的值域解法一:逆求法10013<<∴>-=y yyx ()1,0原函数的值域为∴小结:如果自变量或含有自变量的整体有确定的范围,可采用逆求法; 解法二:换元法设t x =+13 ,则()111131113113>-=+-=+-+=t t y x xx 练习:y =1212+-x x ;y ∈-1,1.例13 函数1122+-=x x y 的值域解法一:逆求法110112<≤-∴≥-+=y yyx解法二:换元法设t x =+12 ,则解法三:判别式法原函数可化为 010)1(2=++⋅+-y x x y 1) 1=y 时 不成立2) 1≠y 时,110)1)(1(400≤≤-⇒≥+--⇒≥∆y y y0 11 0 1综合1、2值域}11|{<≤-y y 解法四:三角换元法∴∈Rx 设⎪⎭⎫⎝⎛-∈=2,2tan ππθθx ,则∴原函数的值域为}11|{<≤-y y 例14 求函数34252+-=x x y 的值域 解法一:判别式法化为0)53(422=-+-y yx yx10=y 时,不成立 20≠y 时,0≥∆得综合1、2值域}50|{≤<y y解法二:复合函数法令t x x =+-3422,则ty 5=50≤<∴y 所以,值域}50|{≤<y y例15 函数11++=xx y 的值域解法一:判别式法原式可化为 01)1(2=+-+x y x 解法二:不等式法1当0>x 时,321≥∴≥+y xx 2) 0<x 时综合12知,原函数值域为(][)∞+-∞-,31,例16 选 求函数)1(1222->+++=x x x x y 的值域 解法一:判别式法原式可化为 02)2(2=-+-+y x y x解法二:不等式法原函数可化为当且仅当0=x 时取等号,故值域为[)∞+,2例17 选 求函数)22(1222≤≤-+++=x x x x y 的值域解:换元法令t x =+1 ,小结:已知分式函数)0(2222≠+++++=d a fex dx c bx ax y ,如果在其自然定义域内可采用判别式法求值域;如果是条件定义域,用判别式法求出的值域要注意取舍,或者可以化为 选)(二次式一次式或一次式二次式==y y 的形式,采用部分分式法,进而用基本不等式法求出函数的最大最小值;如果不满足用基本不等式的条件,转化为利用函数)0(≠+=x xa x y 的单调性去解; 练习:1 、)0(9122≠++=x x x y ; 解:∵x ≠0,11)1(91222+-=++=x x x x y ,∴y ≥11. 另外,此题利用基本不等式解更简捷:11929122=+≥++=x x y 或利用对勾函数图像法2 、34252+-=x x y 0<y ≤5.3 、求函数的值域 ①x x y -+=2; ②242x x y --= 解:①令x u -=2≥0,则22u x -=, 原式可化为49)21(222+--=+-=u u u y ,②解:令 t=4x 2x ≥0 得 0≤x ≤4在此区间内 4x 2x m ax =4 ,4x 2x m in =0 ∴函数242x x y --=的值域是{ y| 0≤y ≤2}4、求函数y=|x+1|+|x-2|的值域.解法1:将函数化为分段函数形式:⎪⎩⎪⎨⎧≥-<≤--<+-=)2(12)21(3)1(12x x x x x y ,画出它的图象下图,由图象可知,函数的值域是{y|y ≥3}.解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x 到两定点-1,2的距离之和,∴易见y 的最小值是3,∴函数的值域是3,+∞. 如图5、求函数x x y -+=142的值域解:设 x t -=1 则 t ≥0 x=12t代入得 t t t f y 4)1(2)(2+-⋅==4)1(224222+--=++-=t t t∵t ≥0 ∴y ≤46、选求函数66522-++-=x x x x y 的值域 方法一:去分母得 y12x +y+5x6y6=0 ①当 y1时 ∵xR ∴△=y+52+4y1×6y+1≥0由此得 5y+12≥0检验 51-=y 有一个根时需验证时 2)56(2551=-⋅+--=x 代入①求根 ∵2 定义域 { x| x2且 x3} ∴51-≠y再检验 y=1 代入①求得 x=2 ∴y1综上所述,函数66522-++-=x x x x y 的值域为 { y| y1且 y 51-} 方法二:把已知函数化为函数36133)3)(2()3)(2(--=+-=+---=x x x x x x x y x2 由此可得 y1,∵ x=2时51-=y 即 51-≠y ∴函数66522-++-=x x x x y 的值域为 { y| y1且 y 51-}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的定义域与值域的常用方法(一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结;(四)求函数的最值1、设函数y=f(x)定义域为A,则当x∈A时总有f(x)≤f(x o)=M,则称当x=x o时f(x)取最大值M;当x∈A时总有f(x)≥f(x1)=N,则称当x=x1时f(x)取最小值N;2、求函数的最值问题可以化归为求函数的值域问题;3、闭区间的连续函数必有最值。
【典型例题】考点一:求函数解析式1、直接法:由题给条件可以直接寻找或构造变量之间的联系。
例1. 已知函数y=f(x)满足xy<0,4x2-9y2=36,求该函数解析式。
解:由4x2-9y2=36可解得:333xyx⎧->⎪⎪==⎨⎪<-⎪⎩。
说明:这是一个分段函数,必须分区间写解析式,不可以写成3y=±的形式。
2、待定系数法:由题给条件可以明确函数的类型,从而可以设出该类型的函数的一般式,然后再求出各个参变量的值。
例2. 已知在一定条件下,某段河流的水流量y与该段河流的平均深度x成反比,又测得该段河流某段平均水深为2m时,水流量为340m3/s,试求该段河流水流量与平均深度的函数关系式。
解:设kyx=,代入x,y的值可求得反比例系数k=780m3/s,故所求函数关系式为780,0y xx=>。
3、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。
例3. 已知2211()x x xfx x+++=,试求()f x。
解:设1xtx+=,则11xt=-,代入条件式可得:2()1f t t t=-+,t≠1。
故得:2()1,1f x x x x=-+≠。
说明:要注意转换后变量范围的变化,必须确保等价变形。
4、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。
例4. (1)已知21()2()345f x f x xx+=++,试求()f x;(2)已知2()2()345f x f x x x+-=++,试求()f x;解:(1)由条件式,以1x代x,则得2111()2()345f f xx x x+=++,与条件式联立,消去1fx⎛⎫⎪⎝⎭,则得:()222845333xf x xx x=+--+。
(2)由条件式,以-x代x则得:2()2()345f x f x x x-+=-+,与条件式联立,消去()f x-,则得:()2543f x x x=-+。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。
5、实际问题中的函数解析式:这是高考的一个热点题型,一般难度不大,所涉及知识点也不多,关键是合理设置变量,建立等量关系。
例5. 动点P 从边长为1的正方形ABCD 的顶点B 出发,顺次经过C 、D 再到A 停止。
设x 表示P 行驶的路程,y 表示PA 的长,求y 关于x 的函数。
解:由题意知:当x ∈[0,1]时:y =x ;当x ∈(1,2)时:y当x ∈(2,3)时:y =;故综上所述,有[],0,1(1,2](2,3]x x y x x ⎧∈=∈∈考点二:求函数定义域1、由函数解析式求函数定义域:由于解析式中不同的位置决定了变量不同的范围,所以解题时要认真分析变量所在的位置;最后往往是通过解不等式组确定自变量的取值集合。
例6. 求34x y x +=-的定义域。
解:由题意知:204x x +>⎧⎪⎨≠⎪⎩,从而解得:x>-2且x ≠±4.故所求定义域为:{x|x>-2且x ≠±4}。
2、求分段函数的定义域:对各个区间求并集。
例7. 已知函数由下表给出,求其定义域3、求与复合函数有关的定义域:由外函数f (u )的定义域可以确定内函数g (x )的范围,从而解得x ∈I 1,又由g (x )定义域可以解得x ∈I 2.则I 1∩I 2即为该复合函数的定义域。
也可先求出复合函数的表达式后再行求解。
()()(())f x g x y f g x ===例8 已知求的定义域.解:()3()33f x x g x ≥⇒≥⇒≥*由又由于x 2-4x +3>0 ** 联立*、**两式可解得:991344|13x x x x x -+≤<<≤⎧⎪≤<<≤⎨⎪⎪⎩⎭或故所求定义域为或例9. 若函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域。
解:由f (2x )的定义域是[-1,1]可知:2-1≤2x ≤2,所以f (x )的定义域为[2-1,2],故log 2x ∈[2-1,2],4x ≤,故定义域为⎤⎦。
4、求解含参数的函数的定义域:一般地,须对参数进行分类讨论,所求定义域随参数取值的不同而不同。
例10.求函数()f x解:若0a =,则x ∈R ;若0a>,则1x a ≥-; 若0a<,则1x a≤-; 故所求函数的定义域: 当0a=时为R ,当0a >时为1|x x a ⎧⎫≥-⎨⎬⎩⎭,当0a <时为1|x x a ⎧⎫≤-⎨⎬⎩⎭。
说明:此处求定义域是对参变量a 进行分类讨论,最后叙述结论时不可将分类讨论的结果写成并集的形式,必须根据a 的不同取值范围分别论述。
考点三:求函数的值域与最值求函数的值域和最值的方法十分丰富,下面通过例题来探究一些常用的方法;随着高中学习的深入,我们将学习到更多的求函数值域与最值的方法。
1、分离变量法例11. 求函数231x y x +=+的值域。
解:()2112312111x x y x x x +++===++++,因为101x ≠+,故y≠2,所以值域为{y|y≠2}。
说明:这是一个分式函数,分子、分母均含有自变量x ,可通过等价变形,让变量只出现在分母中,再行求解。
2、配方法例12. 求函数y =2x 2+4x 的值域。
解:y =2x 2+4x =2(x 2+2x +1)-2=2(x +1)2-2≥-2,故值域为{y|y≥-2}。
说明:这是一个二次函数,可通过配方的方法来求得函数的值域。
类似的,对于可以化为二次函数的函数的值域也可采用此方法求解,如y =af 2(x )+bf (x )+c 。
3、判别式法例13. 求函数2223456x x y x x ++=++的值域。
解:2223456x x y x x ++=++可变形为:(4y -1)x 2+(5y -2)x +6y -3=0,由Δ≥0可解得:26267171y ⎡-+∈⎢⎣⎦。
说明:对分子分母最高次数为二次的分式函数的值域求解,可以考虑采用此法。
要注意两点:第一,其定义域一般仅由函数式确定,题中条件不再另外给出;如果题中条件另外给出了定义域,那么一般情况下就不能用此法求解值域;第二,用判别式法求解函数值域的理论依据是函数的定义域为非空数集,所以将原函数变形为一个关于x 的一元二次方程后,该方程的解集就是原函数的定义域,故Δ≥0。
4、单调性法 例14. 求函数23y x-=+,x ∈[4,5]的值域。
解:由于函数23y x -=+为增函数,故当x =4时,y min =25;当x =5时,y max =513,所以函数的值域为513,25⎡⎤⎢⎥⎣⎦。
5、换元法 例15.求函数2y x =+解:令0t =≥,则y =-2t 2+4t +2=-(t -1)2+4,t≥0,故所求值域为{y|y ≤4}。
6、分段函数的值域:应为各区间段上值域的并集。
例16. 求函数2,[1,2],(2,3]21,(3,4]x x y x x x x ∈⎧⎪=∈⎨⎪-∈⎩的值域。
解:当x ∈[1,2]时,y ∈[1,2];当x ∈(2,3]时,y ∈(4,9];当x ∈(3,4]时,y ∈(5,7]。
综上所述,y ∈[1,2]∪(3,9]。
7、图像法:例17设f (x )=2,2,,<1,x x x x ⎧⎪⎨⎪⎩≥若f (g (x ))的值域是[0,+∞),则函数y =g (x )的值域是 ()A.(-∞,-1]∪[1,+∞)B.(-∞,-1]∪[0,+∞)C.[0,+∞)D.[1,+∞)解析:如图为f (x )的图象,由图象知f (x )的值域为(-1,+∞),若f (g (x ))的值域是[0,+∞),只需g (x )∈(-∞,-1]∪[0,+∞).故选B.8、反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。