七年级数学上追及问题与相遇问题
追击相遇问题
例2、车从静止开始以1m/s2的加速度前进, 车后相距x0为25m处,某人同时开始以 6m/s的速度匀速追车,能否追上?如追不 上,求人、车间的最小距离。
解析:依题意,人与车运动的时间相等,设为t,
当人追上车时,两者之间的位移关系为:
x人-x0=x车
即:
v人t-x0=at2/2
由此方程求解t,若有解,则可追上;若无解,则
不能追上。
代入数据并整理得:
t2-12t+50=0
Δ=b2-4ac=122-4×50=-56<0
所以,人追不上车。
在刚开始追车时,由于人的速度大于车的速度, 因此人车间的距离逐渐减小;当车速大于人的 速度时,人车间的距离逐渐增大。因此,当人 车速度相等时,两者间距离最小。
at'=6 t'=6s 在这段时间里,人、车的位移分别为:
⑶若追上时,追者速度仍大于被追者的速 度,(若不出现碰撞)则先前的被追者还 有一次追上先前的追者的机会,其间速度 相等时,两者相距最远。
例2、甲车在后以15 m/s的速度匀速行驶,乙 车在前以9 m/s的速度匀速行驶。为了避免碰撞, 甲车开始刹车,加速度大小为1m/s2。问为了避 免碰撞甲刹车时距离乙最近为多少?
(2)常用方法 1、解析法 2、临界状态分析法 3、图像法 4、相对运动法
甲乙两车同时同向从同一地点出发,甲车以v1= 16m/s的初速度,a1=-2m/s2的加速度作匀减速直 线运动,乙车以v2=4m/s的速度,a2=1m/s2的加速 度作匀加速直线运动,求两车相遇前两车相距最大
距离和相遇时两车运动的时间。
Δx=12×4-3×42/2=24m
当两车相遇时,Δx=0,即12t-3t2/2=0
∴
t=8s 或 t=0(舍去)
七年级必考点之一元一次方程:追及和相遇问题公式大全
解答这类应用题,除了根据速度、时间、路程三量之间的关系进行计算外,还必须注意到车 长,即通过的路程等于桥长或隧道长加车长。 基本公式有: 桥长+车长=路程 平均速度×过桥时间=路程 过桥时和相遇问题公式大全
七年级数学追及和相遇问题公式大全 01 行程问题 在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关 系,求第三种量的问题,叫做“行程问题”。此类问题一般分为四类:一、相遇问题;二、追及问 题;三、流水行船问题; 四、过桥问题 。 行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇 (相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相 反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
04 流水行船问题
04 流水行船问题 顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、 路程三者之间的关系进行解答。解答时要注意各种速度的涵义及它们之间的关系。 已知船的顺水速度和逆水速度,求船的静水速度及水流速度。解答这类问题,一般要掌握下面 几个数量关系: 船速:在静水中的速度 水速:河流中水流动的速度 顺水船速:船在顺水航行时的速度 逆水速度:船在逆水航行时的速度 船速+水速=顺水船速 船速-水速=逆水船速 (顺水船速+逆水船速)÷2=船速 (顺水船速-逆水船速)÷2=水速 顺水船速=船速+水速=逆水船速+水速×2
02 追及问题 两个运动着的物体从不同的地点出发,同向运动。慢的在前,快的在后,经过若干时间,快的 追上慢的。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路 程,我们也把它看作追及问题。解答这类问题要找出两个运动物体之间的距离和速度之差,从 而求出追及时间。解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之 中,找出两者,然后运用公式求出第三者来达到解题目的。 基本公式有: 追及(或领先)的路程÷速度差=追及时间 速度差×追及时间=追及(或领先)的路程 追及(或领先)的路程÷追及时间=速度差 要正确解答有关“行程问题”,必须弄清物体运动的具体情况。如:运动的方向(相向、相背、同 向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不 封闭),运动的结果(相遇、相距多少、追及)。
初一数学行程问题公式
初一数学行程问题公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间= 速度和1、相遇问题:1)直线:甲的路程+乙的路程=总路程2)环形:甲的路程 +乙的路程=环形周长2、追及问题追及时间=路程差÷速度差速度差=路程差÷追及时间追及时间×速度差=路程差1)直线:距离差=追者路程-被追者路程=速度差X追及时间2)环形:快的路程-慢的路程=曲线的周长3、流水问题顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速:(顺水速度-逆水速度)÷21、甲乙齐自行车同时从相距80千米的两地相向而行,2小时相遇,甲比乙每小时多骑2.5千米,求乙的速度。
18.752、A、B两地相距230千米,甲队从A地出发,两小时后,乙队从B地出发与甲相向而行,乙队出发20小时后相遇,已知乙的速度比甲的速度每小时快1千米,求甲、乙的速度各是多少?5,63、甲、乙两车自西向东行驶,甲车速度是每小时48千米,乙车速度是每小时72千米,甲车开25分钟后乙车开出,吻几小时后乙车追上甲车。
5/64、甲乙两位同学练习赛跑,甲每秒跑7米,乙每秒跑6.5米(1)如果甲让乙先跑5米,几秒后可追上乙?10(2)如果加让一先跑1秒钟后,几秒钟后甲可以追上乙?13三辆汽车A、B、C各以不变的速度从甲地开往乙地.已知:B比C迟5分钟出发,出发后20分钟追上C;A比B迟10分钟,出发后50分钟追上C。
那么A出发多长时间追上B?解:设A,B,C三车速度分别为x,y,z由条件:(5+20)*z=20*y(10+5+50)*z=50*x设追上时间为t,则:(t+10)*y=t*x解之得:t=250有一项工程,甲单独做45天完成,乙单独做30天完成,乙先做25天,在合作完成。
初一数学追及问题和相遇问题列方程的技巧教学内容
初一数学追及问题和相遇问题列方程的技巧初一数学追及问题和相遇问题列方程的技巧行程问题在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。
此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。
行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。
相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。
这类问题即为相遇问题。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。
相遇问题的核心是“速度和”问题。
利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。
相离问题两个运动着的动体,从同一地点相背而行。
若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。
它与相遇问题类似,只是运动的方向有所改变。
解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间相遇(相离)问题的基本数量关系:速度和×相遇(相离)时间=相遇(相离)路程在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。
(完整版)相遇问题与追及问题
相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。
初一数学相遇与追及问题公式
初一数学相遇与追及问题公式(一)相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
(二)追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
扩展资料:
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。
相遇问题是研究速度,时间和路程三者数量之间的关系。
两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。
相遇问题是研究速度,时间和路
程三者数量之间关系的问题。
它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。
相遇问题的关系式是:速度和×相遇时间=路程;路程÷速度和=
相遇时间;路程÷相遇时间=速度和。
【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
七年级数学上追及问题与相遇问题
七年级数学上追及问题与相遇问题【1】追及问题:(相向而行):追及路程/追及速度和=追及时间(同向而行):追及路程/追及速度差=追及时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
初中七年级数学上追及问题与相遇问题
七年级数学上追及问题与相遇问题追及问题:(相向而行):追及路程/追及速度和=追及时间(同向而行):追及路程/追及速度差=追及时间基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
【和差问题公式】(和+差)÷2=较大数;(和-差)÷2=较小数。
【和倍问题公式】和÷(倍数+1)=一倍数;一倍数×倍数=另一数,或和-一倍数=另一数。
【差倍问题公式】差÷(倍数-1)=较小数;较小数×倍数=较大数,或较小数+差=较大数。
【平均数问题公式】总数量÷总份数=平均数。
【一般行程问题公式】平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。
【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。
这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。
【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。
七年级数轴相遇追及问题应用题
七年级数轴相遇追及问题应用题一、数轴相遇问题。
1. 甲、乙两人在数轴上运动,甲位于数轴上表示 -5的点,乙位于数轴上表示3的点。
甲以每秒2个单位长度的速度向右运动,乙以每秒1个单位长度的速度向左运动,设运动时间为t秒。
- t秒后甲表示的数为多少?乙表示的数为多少?- 解析:甲位于 - 5点,向右运动,速度为每秒2个单位长度,t秒后甲表示的数为-5 + 2t;乙位于3点,向左运动,速度为每秒1个单位长度,t秒后乙表示的数为3 - t。
- 经过多少秒两人相遇?- 解析:两人相遇时,他们在数轴上表示的数相同,即-5+2t = 3 - t,移项可得2t+t=3 + 5,3t = 8,解得t=(8)/(3)秒。
2. A、B两点在数轴上,A点表示的数为 - 2,B点表示的数为4。
A点以每秒1.5个单位长度的速度向右运动,B点以每秒0.5个单位长度的速度向左运动。
- t秒后A点表示的数是多少?B点表示的数是多少?- 解析:A点原来表示 - 2,向右运动,速度为每秒1.5个单位长度,t秒后A点表示的数为-2+1.5t;B点原来表示4,向左运动,速度为每秒0.5个单位长度,t秒后B点表示的数为4 - 0.5t。
- 经过多少秒两点相遇?- 解析:相遇时-2 + 1.5t=4-0.5t,移项得1.5t+0.5t = 4 + 2,2t=6,解得t = 3秒。
3. 数轴上有两点M、N,M点表示 - 3,N点表示5。
M点以每秒3个单位长度的速度向右运动,N点以每秒2个单位长度的速度向左运动。
- t秒后M点表示的数为多少?N点表示的数为多少?- 解析:M点原来表示 - 3,向右运动,速度为每秒3个单位长度,t秒后M点表示的数为-3+3t;N点原来表示5,向左运动,速度为每秒2个单位长度,t秒后N点表示的数为5-2t。
- 经过多少秒M、N两点相遇?- 解析:相遇时-3+3t = 5-2t,移项得3t+2t = 5 + 3,5t = 8,解得t=(8)/(5)=1.6秒。
追及与相遇问题(20张PPT)
• 追及与相遇问题概述 • 追及问题的解决方法 • 相遇问题的解决方法 • 追及与相遇问题的实际应用 • 练习题与解析
目录
Part
01
追及与相遇问题概述
定义与特点
定义
追及与相遇问题是一种常见的数学问题,主要研究两个或多个运动物体在同一直线上或 在不同路径上运动,其中一个物体追赶另一个物体或两者相遇的问题。
01
02
03
确定追及条件
当两物体速度相等时,是 追及的临界条件。
建立数学模型
根据题意,列出两物体的 位移方程,并找出时间关 系。
求解方程
解方程求出两物体的位移 和时间,判断是否追上。
Part
03
相遇问题的解决方法
直线上的相遇问题
确定参考系
选择一个合适的参考系,以便简 化问题。
检验解的合理性
根据实际情况检验解的合理性, 确保答案符合实际情况。
特点
这类问题通常涉及到速度、时间、距离等基本概念,需要运用数学模型和公式进行求解。
问题背景与重要性
问题背景
追及与相遇问题在日常生活和实际工程中有着广泛的应用,如交通、物流、航 天等领域。这类问题的解决有助于提高对物体运动规律的认识,为实际问题的 解决提供理论支持。
重要性
追及与相遇问题在数学教育和科学教育中也占有重要地位,是培养学生逻辑思 维和数学应用能力的重要素材。
行星运动中的追及与相遇
卫星轨道
天体碰撞
人造卫星在地球轨道上运行时,需要 考虑其他卫星或物体的影响,避免追 及和碰撞。
在宇宙中,天体之间的碰撞是相对罕 见的,但仍然需要关注小行星、彗星 等对地球的潜在威胁。
行星探测器
探测器在飞往行星的过程中,需要进 行精确的轨道设计和计算,确保能够 成功追及目标行星。
七年级上册数学应用题公式
七年级上册数学应用题公式以下是七年级上册数学应用题中常用的公式:1. 相遇问题:相遇路程 = 甲走的路程 + 乙走的路程甲走的路程 = 相遇路程 - 乙走的路程2. 追及问题:追及时间 = 追及路程 / (快速 - 慢速)追及路程 = (快速 - 慢速) × 追及时间3. 流水问题:顺水速度 = 船速 + 水速逆水速度 = 船速 - 水速顺水路程 = 顺水速度× 顺水时间逆水路程 = 逆水速度× 逆水时间4. 利润与折扣问题:利润 = 售价 - 进价利润率 = (售价 - 进价) / 进价× 100%折扣 = 实际售价 / 原价× 100%5. 行程问题:路程 = 速度× 时间时间 = 路程 / 速度速度 = 路程 / 时间6. 工程问题:工作量 = 工作效率× 工作时间工作效率 = 工作量 / 工作时间工作时间 = 工作量 / 工作效率7. 余数定理:a^p - b^p = (a - b) × (a^(p-1) + a^(p-2)×b + ... + b^(p-1))(p为大于2的整数)8. 同底数幂的乘法法则:a^m a^n = a^(m+n)(m、n都是正数)9. 幂的乘方与积的乘方法则:(a^m)^n = a^(mn) (m, n都是正数)10. 二项式定理:(a+b)^n的展开式为:T0 + T1 + T2 + ... + Tn,其中Tk 为C(n, k) a^(n-k) b^k(k=0,1,2,...,n)这些公式都是解决七年级上册数学应用题的重要工具,希望对你有所帮助。
如果需要更深入的解释或更多应用题示例,建议查阅相关教材或寻求专业教师的帮助。
七年级数学上追及问题与相遇问题
七年级数学上追及问题与相遇问题
在七年级数学中,追及问题是一个重要的话题。
其中,相向而行的追及问题可以用追及路程除以追及速度和来计算追及时间;同向而行的追及问题可以用追及路程除以追及速度差来计算追及时间。
这些问题研究的是物体速度、时间和行程之间的关系,其中路程等于速度乘以时间,速度等于路程除以时间,时间等于路程除以速度。
除了追及问题外,相遇问题也是一个常见的数学问题。
其中,速度和乘以相遇时间等于相遇路程是一个基本公式。
对于追击问题,追击时间等于路程差除以速度差。
在流水问题中,顺水速度等于船速加上水速,逆水速度等于船速减去水速,静水速度等于顺水速度和逆水速度的平均值,水速等于顺水速度减去逆水速度的一半。
对于过桥问题,关键在于确定物体所运动的路程,可以参照以上公式。
而和差问题、和倍问题、差倍问题和平均数问题都有相应的公式可以使用。
一般行程问题可以用平均速度乘以时间等于路程,路程除以时间等于平均速度,路程除以平均速
度等于时间来计算。
反向行程问题可以分为相遇问题和相离问题,可以用速度和乘以相遇(离)时间等于相遇(离)路程,相遇(离)路程除以速度和等于相遇(离)时间,相遇(离)路程除以相遇(离)时间等于速度和来解答。
同向行程问题也有相应的公式可用。
初一数学相遇和追及问题解析
初一数学相遇和追及问题解析一、相遇问题的基本概念相遇问题是指在两个或多个物体或人在同一直线上运动,并在某个时间点相遇的问题。
在数学中,我们通常用速度、时间、距离等变量来描述相遇问题。
二、追及问题的基本概念追及问题是指两个或多个物体或人在同一直线上运动,其中一人或物体追赶另一个物体或人,并最终追上的问题。
在数学中,我们通常用速度、时间、距离等变量来描述追及问题。
三、相遇问题的解决方法解决相遇问题的关键是找到相遇时各个物体或人行驶的距离总和等于两物体或人的初始距离。
具体解决方法如下:1. 找到两物体或人的初始距离。
2. 计算两物体或人相遇时各自行驶的距离。
3. 计算两物体或人相遇时的总距离。
4. 根据总距离和初始距离的关系,确定相遇时各个物体或人的速度、时间等变量。
四、追及问题的解决方法解决追及问题的关键是找到追及时各个物体或人行驶的距离差等于两物体或人的初始距离。
具体解决方法如下:1. 找到两物体或人的初始距离。
2. 计算追及时各个物体或人行驶的距离差。
3. 根据初始距离和行驶的距离差的关系,确定追及时各个物体或人的速度、时间等变量。
五、相遇和追及问题的应用实例相遇和追及问题在现实生活中很常见,比如两个人同时从两地出发相向而行,或者一个人从后面追赶另一个人等。
这些问题的解决方法都可以从初一数学的角度来解析。
六、相遇和追及问题的常见陷阱在解决相遇和追及问题时,学生容易犯的错误主要有以下几个方面:1. 没有考虑到相遇或追及的时刻是否已经过去,导致计算错误。
2. 没有考虑到物体的速度是否相同或相等,导致计算错误。
3. 没有考虑到物体的初始位置是否相同,导致计算错误。
4. 没有考虑到物体的行驶方向是否相同或相反,导致计算错误。
七、如何提高解决相遇和追及问题的能力为了提高解决相遇和追及问题的能力,学生可以采取以下措施:1. 熟悉相遇和追及问题的基本概念和解决方法,掌握相关的数学知识和技能。
2. 多做练习题,通过反复练习加深对知识的理解和掌握程度。
初一追及问题六大公式
初一追及问题六大公式导言初中数学中的追及问题是一类常见的物理运动问题,也是数学中的经典题型。
通过学习追及问题,我们不仅可以提高对物理运动的理解,还可以培养解决问题的能力和思维逻辑。
本文将介绍初一阶段常见的追及问题,并总结出六大解题公式,帮助同学们更好地掌握和应用这类题型。
一、两物相向而行问题某一时刻,两物体相隔一定距离,同时朝着对方方向开始运动,速度分别为v1和v2。
求它们相遇需要多少时间。
解题方法:1.建立关系式:时间t乘以v1,等于时间t乘以v2;2.解方程:根据关系式得到方程t*v1=t*v2,化简并解方程求得t。
公式一:两物相向而行问题公式dt=--------v1-v2二、两物先后出发问题某一时刻,物体A以速度v1出发,过了一段时间后,物体B以速度v2出发。
求物体B追上物体A需要多少时间。
解题方法:1.建立关系式:时间t加上A先行的时间,等于B行程的时间;2.解方程:根据关系式得到方程t+(t*v1)=t*v2,化简并解方程求得t。
公式二:两物先后出发问题公式dt=---------v2-v1三、正向相遇问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,在距离x处相遇。
求A出发后多长时间会与B相遇。
解题方法:1.建立关系式:时间t加上x除以速度v1,等于时间t乘以速度v2;2.解方程:根据关系式得到方程t+(x/v1)=t*v2,化简并解方程求得t。
公式三:正向相遇问题公式xt=---------v2-v1四、追上问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,求A多长时间能追上B。
解题方法:1.建立关系式:时间t乘以速度v1,等于时间t加上t乘以速度v2;2.解方程:根据关系式得到方程t*v1=t+(t*v2),化简并解方程求得t。
公式四:追上问题公式tv1=-----1-v2五、反向相遇问题某一时刻,物体A以速度v1出发,物体B以速度v2出发,它们相遇后,A往回走,B继续向前,求B追上A需要多长时间。
追及和相遇问题的研究和讨论
1、在一条公路上并排停着A、B两车,A车先启 动,加速度a1=20m/s2,B车晚3s启动,加速度 a2=30m/s2,以A启动为计时起点,问:在A、 B相遇前经过多长时间两车相距最远?这个距 离是多少?
解二、 Δx=a1t2/2-a2(t-3)2/2 =- 5t2+90t-135 =-5(t2-18t+27)
at'=6 t'=6s 在这段时间里,人、车的位移分别为:
x人=v人t=6×6=36m x车=at'2/2=1×62/2=18m Δx=x0+x车-x人=25+18-36=7m
题型三:速度大的匀减速直线运动追速度 小的匀速运动:
⑴当两者速度相等时,若追者仍未追上 被追者,则永远追不上,此时两者有最 小距离。
(两者相距一定距离,开始时匀速运动的速度大) 开始两者距离减小,直到两者速度相等,然后 两者距离开始增加。所以: 到达同一位置前,速度相等, 则追不上。
到达同一位置时,速度相等,则只能相遇一次。 到达同一位置时, v加﹤ v匀, 则相遇两次。
例2、车从静止开始以1m/s2的加速度前进, 车后相距x0为25m处,某人同时开始以 6m/s的速度匀速追车,能否追上?如追不 上,求人、车间的最小距离。
问题三:解决追及问题的突破口在哪? 突破口:研究两者速度相等时的情况
在追及过程中两物体速度相等时, 是能否追上或两者间距离有极值 的临界条件。
常见题型一:
匀加速(速度小)直线运动追及匀速(速度大)直线运动
开始两者距离增加,直到两者速度相等, 然后两者距离开始减小,直到相遇,最后 距离一直增加。
即能追及上且只能相遇一次,两者之间在 追上前的最大距离出现在两者速度相等时。
追及和相遇问题
△x
x
v自t
1 2
at 2
6t
3 2
t2
x自
当t
6 2 (
3)
2s时
xm
62 4( 3)
6m
2
2
那么,汽车经过多少时间能追上自行车?此时汽车的速度是多
大?汽车运动的位移又是多大?
x
6T
3 2
T
2
0 x汽
T 4s
1 aT 2=24m 2
v汽
aT
12m /
s
方法四:相对运动法
选自行车为参照物,则从开始运动到两车相距最远这段过程中,
v自T
1 2
aT 2
T 2v自 4s a
v汽 aT 12m / s
x汽
1 2
aT 2=24m
方法二:图象法
解:画出自行车和汽车的速度-时间图线,自行车的位移x自等于 其图线与时间轴围成的矩形的面积,而汽车的位移x汽则等于其 图线与时间轴围成的三角形的面积。两车之间的距离则等于图
中矩形的面积与三角形面积的差,不难看出,当t=t0时矩形与三 角形的面积之差最大。
x汽
△x
x自
方法一:公式法
当汽车的速度与自行车的速度
x汽
相等时,两车之间的距离最大。设
经时间t两车之间的距离最大。则
△x
v汽 at v自
t v自 6 s 2s
x自
xm
x自
a
x汽
3
v自t
1 2
at 2
6 2m
1 2
3 22 m
6m
那么,汽车经过多少时间能追上自行车?此时汽车的速度是
多大?汽车运动的位移又是多大?
追和和相遇问题
长时间两车相距最远?此时距离是多少?
解法二 用数学求极值措施来求解
设汽车在追上自行车之前经过t时间两车相距最远
∵△x=x1-x2=v自t - at2/2 (位移关系) ∴ △x=6t -3t2/2 由二次函数求极值条件知
t= -b/2a = 6/3s = 2s时, △x最大
成旳三角形面积与标有斜线旳三角形面积相等时,两车
旳位移相等(即相遇)。所以由图得相遇时,ቤተ መጻሕፍቲ ባይዱ
t′=2t=4 s v′ = 2v自=12 m/s
②匀速运动旳物体追赶同向匀加速直线运动旳物体,追赶 时两者距离最小(涉及追及)旳条件为:追赶者旳速度等 于被追赶者旳速度.
情境设置
例2、一车从静止开始以1m/s2旳加速度迈进,车后相 距x0为25m处,某人同步开始以6m/s旳速度匀速追车, 能否追上?如追不上,求人、车间旳最小距离。
t v=6
m/s
t v v0 6 20 s 28s a 0.5
在这段时间内,s A=v0t′+
1at′2=364 m
2
sB= vt′=168 m
sA- sB=196 m>180 m,所以两车相撞.
另外,本题也能够用不等式求解:设在t 时刻两物体相遇,则
有:v0t+
1 2
at2=180+
x人=v人t=6×6=36m
x车=at′2/2=1×62/2=18m
△x=x0+x车-x人=25+18-36=7m
结论:速度大者减速追赶速度小者,追上前在两 个物体速度相等时,有最小距离.即必须在此之前 追上,不然就不能追上.
解析:作汽车与人旳运动草图如下图甲和v-t图象如下图乙所 示.因v-t图象不能看出物体运动旳初位置,故在图乙中标上两 物体旳前、后.由图乙可知:在0~6 s时间内背面旳人速度大, 运动得快;前面旳汽车运动得慢.即0~6 s内两者间距越来越 近.因而速度相等时两者旳位置关系,是判断人能否追上汽车 旳条件.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上追及问题与相遇问题
追及问题:
(相向而行):追及路程/追及速度与=追及时间
(同向而行):追及路程/追及速度差=追及时间
基本概念:行程问题就是研究物体运动的,它研究的就是物体速度、时间、行程三
者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度与×相遇时间=相遇路程(请写出其她公式)
追击问题:追击时间=路程差÷速度差(写出其她公式)
流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
流水问题:关键就是确定物体所运动的速度,参照以上公式。
过桥问题:关键就是确定物体所运动的路程,参照以上公式。
【与差问题公式】
(与+差)÷2=较大数;
(与-差)÷2=较小数。
【与倍问题公式】
与÷(倍数+1)=一倍数;
一倍数×倍数=另一数,
或与-一倍数=另一数。
【差倍问题公式】
差÷(倍数-1)=较小数;
较小数×倍数=较大数,
或较小数+差=较大数。
【平均数问题公式】
总数量÷总份数=平均数。
【一般行程问题公式】
平均速度×时间=路程;
路程÷时间=平均速度;
路程÷平均速度=时间。
【反向行程问题公式】
二人从两地出发,相向而行)与“相离问反向行程问题可以分为“相遇问题”(
题”(
两人背向而行)两种。
这两种题,都可用下面的公式解答:
(速度与)×相遇(离)时间=相遇(离)路程;
相遇(离)路程÷(速度与)=相遇(离)时间;
相遇(离)路程÷相遇(离)时间=速度与。
【同向行程问题公式】
追及(拉开)路程÷(速度差)=追及(拉开)时间;
追及(拉开)路程÷追及(拉开)时间=速度差;
(速度差)×追及(拉开)时间=追及(拉开)路程。
【列车过桥问题公式】
(桥长+列车长)÷速度=过桥时间;
(桥长+列车长)÷过桥时间=速度;
速度×过桥时间=桥、车长度之与。
【行船问题公式】
(1)一般公式:
静水速度(船速)+水流速度(水速)=顺水速度;
船速-水速=逆水速度;
(顺水速度+逆水速度)÷2=船速;
(顺水速度-逆水速度)÷2=水速。
(2)两船相向航行的公式:
甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度
(3)两船同向航行的公式:
后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。
相遇问题
A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度与×相遇时间。