中央空调水管同程和异程区别

合集下载

采暖管道几种连接方式(最新整理)

采暖管道几种连接方式(最新整理)

采暖管道的同程并联和异程并联有何区别?按照供暖方式的不同可分为集中供暖、独产供暖;按照暖气管线排列方式,可分为单管串联、异程双管并联、同程双管并联;关于串联和并联有很多还容易搞错(事实中是有许多);通俗一点讲:两根水管一根是进水管,一根是回水管,可以独立控制;而串联则是,一根进水管进入散热器进水口以后,从回水口出来以后再进入下一组散热器的进水口,最后进入回水管道,就跟电路里的串联和并联很相似;一、单管串联的特点是材料使用量低、劳动相对较弱、改造时间也短一些;整个系统的水先经过系统的第一组暖气片,而后是第二组、第三组.........,因此水温是按照串联的顺序逐渐降低;在同等的条件下,首尾2组暖气给房间带起的温度能相差2度以上,为了能调节单组暖气的水温,在散热器前端的进出水口处必须增加旁通阀,有的是用三通调节阀,也有的用三个闸阀;单管串联系统没有用旁通的话,关闭前面一组暖气就会造成整个系统供暖中断,其它的暖气也都将不热了,面且,单管串联需要配置的暖气片数更多,为了满足循环的需要,这种暖气系统主管也需要比较粗二、双管异程并联的特点是管道行程较短,每一组散热器均可以单独控制(前提散热器供回水处要加控制阀门),温度比较均匀,系统的水流平衡较单管串联会有大幅度的提高,然面这种系统还是有一定的局限性;每组散热器的水流量不同,前端散热器的回水因为离主管道比较近,回的比较快,而后端回水就较慢,可能造成开端暖气不热或不够热的现象,不过没有关系,可以通过阀门的调节来解决问题,在系统工作状态下把前端暖气回水阀门依次关小一些,以确保系统水压的平衡,末端的暖气就会慢慢的热起来了;三、双管同程并联也是叫做双管同程;特点是和双管异程并联基本上一样的,但是在运行原理有差别,简单的说,叫做先供后回,就是前端第一组散热器的回水暂不向主管道循环,而是往下继续走连接下一组散热器的回水管,依次类推,从最末端散热器拉出一根回水管路,回到主管道路的回水管上,系统每组散热器的水流量基本上是相同的,系统非常平衡,一般不会出现末端不热的现象,可以说是一种水利系统平衡最佳的方式;实际生活中关于串联、关联方式供暖的优劣有很多的争议,但是我个人感觉现实生活的一些老小区和较早采暖集中供暖的小区,通常都是串联的管线,而这种串联的管线改为并联的难度会很大(如对楼体有破坏等等);基本上没有改为并联的可能,除非重新做系统;并联管线一般用在地暖系统中较多,便于准确控制各居室温度,节约供暖的费用。

中央空调水系统的同程设计有哪些?

中央空调水系统的同程设计有哪些?

中央空调水系统的同程设计有哪些?先了解中央空调水系统:水系统的组成冷冻水系统原理图冷却水系统原理图按制冷方式的不同,中央空调又分为直接制冷系统和间接制冷系统。

直接制冷系统:只包括制冷剂回路,制冷系统中的蒸发器直接和被冷却介质或空间相接触进行热交换,直接利用蒸发器去冷却环境空气或冻结物。

间接制冷系统:至少包括制冷剂和载冷剂两个回路,制冷剂首先冷却载冷剂,再通过载冷剂去实现冷却目的。

冷水机组就属于间接制冷系统。

中央空调系统的工作原理间接式制冷中央空调的基本原理:建筑物内的热量通过五个介质循环、四次热交换排放到室外去,从而实现建筑物内部的制冷。

中央空调制冷,就是将空调的冷负荷(热量)从室内转移到室外去,这是一个按照热力学第二定律进行的“热量逆向传递”的过程。

中央空调系统制冷过程中,热量转移与冷量转移是同时进行的,但冷量转移与热量转移的方向正好相反。

空调冷水的输送中央空调冷冻水和冷却水的分配、输送与循环,是通过管路系统和液体输送设备来实现的。

管路系统是输送空调水的载体;液体输送设备——水泵为输送空调水提供动力,用以克服水的压力和流动时的阻力。

1、空调水系统的管路空调水系统管路按其特征有5种形式11种类型:按循环水是否与空气接触分,分为开式系统和闭式系统;按循环水流动途径分,分为同程式系统和异程式系统;按供、回水管数量分,分为二管制、三管制和四管制系统;按水流量是否变化分,分为定流量系统和变流量系统;按水泵设置方式来分,分为单式泵系统和复式泵系统。

(1)闭式系统与开式系统闭式系统:管路中的水不与大气接触,仅在系统最高点设置膨胀水箱。

闭式循环的优点:· 管路不与大气接触,管道和设备不易腐蚀。

· 水泵所需扬程仅由管路阻力大小决定,不需克服静水压力,水泵扬程和功率较低。

· 系统简单。

闭式循环的缺点:· 蓄冷能力小,低负荷时,冷水机组也需要经常启动。

· 膨胀水箱的补水,有时需要另设加压水泵。

浅析同程式和异程式水系统的区别

浅析同程式和异程式水系统的区别

浅析同程式和异程式水系统的区别2020年第1期【工程设计】浅析同程式和异程式水系统的区别王鸥阳浙江伟星新型建材股份有限公司浙江台州317000【摘要】通过管路系统中水头损失、流量的计算,文章分析、比较了同程式和异程式水系统在工程使用效果上的差异,最后指出实践中可行的结论:在商用热水系统、空调水系统以及循环冷却水系统设计中,怎样结合实际情况选择最佳的管路布置方式。

【关键词】暖通同程式异程式管路系统设计优化中图分类号:TU832.2+2文献标识码:A1同程式系统与异程式系统磁商用热水系统、空调水系统以及循环冷却水系统按管路布置方式分为同程式系统与异程式系统,同程式系统是流经各终端设备的水流程相等,而异程式系统则不具备这个特点。

同程式系统的优点是可以平衡各种用水点的水量,可以减少系统初调试的工作量。

但由于采用回程管,管道的总长度将增加,因此增加了初投资,而且由于增加的管路将使整个系统每次运行的总水头增加了这一部分,使得水泵的平均能耗增加。

在异程式系统中,对于远离水泵的末端,环路阻力越大,将使这部分水流通过较其它用水点困难,通过的水流量减少。

异程式系统主要优点是节省管道及其占用空间,和同程式系统相比可节省一条回水总管,对初投资较为有利。

2同程式和异程式水系统水头损失的计算2.1异程式水系统32m22m O10mHi aF642m52m10mF-F料我乐討:Z图一为异程式热水系统,设管内水流方向由O点经过三个并联管路用水点之后到达Z点,通过三个用水点abc的总长度分别是40m,44m,48m,管道直径都为DN20(De25,内径18mm)。

由图可知道,三条管路采用并联连接,根据伯努利方程,水流经过三条管路从O点到达Z点水压降相同,即通过三条管路的总水头损失△!!相等,都是O点断面的总水头减去Z点断面的总水头,等于Ho-Hz o通过三条管路的阻抗不相等,分别设为SI,S2,S3,由公式△H=SQ2可知,通过三条管路的水流量Q的平方与管路阻抗S成反比,而管路阻抗S=8(X l/d+C总)/(tt a2d A4g),由阿里特苏里公式:—0.]1匡+型)口d a t塑料管道绝对当量粗糙度K取0.015,一由雷诺数计算公式Re=P vd/u,管道流速推荐取值0.4-0.6,取20度水温时动力粘度为O.OOlOlPa s,管径d为0.018mm,计算得雷诺数Re约为7200,水流处于水力光滑区。

同程和异程的比较

同程和异程的比较

管路系统类别
管路系统类别
异程式系统理解经过每一并联环路的管长基
本相等,如果通过每米长管
路的阻力损失接近相等,则
管网的阻力不需调节即可保
持平衡。

经过每一并联环路的管长均不相等。

(措施:常在每一个并联支路上安装流量调节装置。

优点水力稳定性较好
流量分配较均衡
初调节更为方便管路简单无回程管节省管材
施工简单
缺点长度增加阻力增大 能耗增加 初投资大管路总长度不等
管路阻力不平衡
水力稳定性较差
调试较为不方便
应用
对于内网,例如采用风机盘管时,用水点很多,利用调节管径的大小进行平衡,往往是不可能的,因此,类似水管路宜采用同程式。

对于外网,各大环路 之间、
用水点少的系统,可以采用
异程式,水量调节可采用在
每一个并联支路上安装 流量
调节装置。

同程式与异程式管路系统的对比。

水系统“管制”和同程异程式的优缺点

水系统“管制”和同程异程式的优缺点

水系统“管制”和同程异程式的优缺点
水系统管制
两管制:冷水系统和热水系统采用相同的供水管和回水管,只有一供一回两根水管的系统。

优点:两管制系统简单,施工方便;缺点:不能用于同时需要供冷和供热的场所。

三管制:分别设置供冷管路、供热管路、换热设备管路三根水管;其冷水与热水的回水关共用。

优点:三管制系统能够同时满足供冷和供热的要求,管路系统较四管制简单;缺点:比两管制复杂,投资也比较高,且存在冷、热回水的混合损失。

四管制:冷水和热水的系统完全单独设置供水管和回水管,可以满足高质量空调环境的要求。

优点:四管制系统能够同时满足供冷和供热的要求,并且配合末端设备能够实现室内温度和湿度精确控制的要求;由于冷水和热水在管路和末端设备中完全分离,有助于系统的稳定运行和减小设备的腐蚀;缺点:初投资高,管路布置复杂。

水系统同程异程式
同程式系统:经过每一并联环路的管长基本相等,如果通过每米长管路的阻力损失接近相等,则管网的阻力不需调节即可保持平衡。

优点:同程式系统中系统的水力稳定性好,各设备间的水量分配均衡,调节方便。

缺点:同程式系统由于采用回程管,管道的长度增加,水阻力增大,使水泵的能耗增加,并且增加了初投资。

异程式系统:经过每一并联环路的管长均不相等。

优点:异程式系统简单,耗用管材少,施工难度小。

缺点:采用异程式的系统,各并联环路管长不等,常在每一个并联支路上安装流量调节装置。

图解空调同程式和异程式

图解空调同程式和异程式

图解)中央空调水系统同程式与异程式的区别所谓的同程和异程指的是供、回水干管的水流方向,当二者方向相同时称之为同程,反之则为异程,实际工程中以异程较为多见。

在热水采暖系统中,不论你采用哪种分类方式,均可根据供水和回水的水流方向而布置成同程和异程系统(详见附图)。

我们设热媒自A点经a立管至B点为第1环路;自A点经b立管至B点为第2环路;自A点经c立管至B点为第3路;自A点经d立管点为第4环路;自A点经e立管至B点为第5环路;自A点经f立管至B点为第6环路.那么根据附图所示的干管布置形式,我们可以得出如下结论:1、从上图的同程系统可以看出,供水和回水干管中热媒的流动方向是一致。

起始端a立管及末端 f立管其供、回水干管所路经的距离基本相等,即消耗的沿程阻力基本相同,因此各环路的阻力基本平衡,系统的起始端及末端立管所带的散热器热效果比较接近,不会出现过热或不热的现象,是较为理想的布置方式。

但是同程系统的这种布置方式相对异程而言,增加了回水干管的长度,在施工时,不能使回水干管共架敷设(因供回水管的坡坡向不一致),因此较为费工费料,会增加部分初投资费用。

2、而在下图的异程系统中,供水与回水干管中热媒的流动方面则是一致的。

供水由A点起经a立管至B点的距离远大于由A点经f点立管至B点的距离,将产生各环路阻力不平衡的现象,设计人员通常会采用选择管径和设调节阀门等措施来降低这种不平衡的弊端,如果不采用这些措施,必然会造成从a立管向f立管散热量逐次降低的问题。

尽管从理论上看,异程系统不如同程系统来得合理, 但由于异程系统回水干管简短,在一定程度上节约了初投资,而且在施工时可以采用共架敷设(因供回水干管坡向一致),易于施工,所以实际采用都较多。

因此,在一般的工程中异程系统较为常见,但如果建筑物对供热要求标准较高的话,还是应该采用同程采暖系统.。

异程系统

异程系统

异程系统从离热源最近的支路到最远的支路,稳定性依次变差,即最近支路稳定性最好,最远支路稳定性最差。

同程系统的稳定性具有对称性,网路中部的支路稳定性最差,越往两端,支路的稳定性越好。

从总体上看,同程系统的稳定性差于异程系统,并且母管愈长,稳定性愈差。

^ 结合一些我个人的经验,谈一下暖气的改动的几个问题。

首先,说说暖气的循环系统目前青岛的暖气系统大致可分为三种1.单管串联单管串联的特点是材料使用量低、劳动强度相对较弱、改造时间也短些。

整个系统的水先经过系统的第一组暖气片,而后是第二组,第三组……,因此水温是按照串联的顺序逐渐降低10%左右。

如果是在同等的条件下,首尾2组同样的暖气给房间带起的温度能相差2度以上,为了能调节单组暖气的水温,在散热器前端的进出水口处之间必须增加旁通设备,有的用三通调节阀,有的用3个闸阀,当然有部分小区仅在进水口处设置阀门,或是直接将进回水管连接,都是不科学也没有实用价值的。

单管串联系统没有用旁通的话,关闭一组暖气就会造成整个系统立即中断,其他的暖气也都将不热了。

而且,单管串联末端需要配置的暖气片数更多,为了满足系统循环的需要,这种暖气系统主管也需要比较粗的口径。

2.双管异程并联双管异程并联的特点是管道行程较短、每一组散热器均可以单独控制(散热器前端进回水处加控制阀门)、温度比较均匀、系统的水流平衡较单管串联会有大幅度的提高,然而这种系统还是有一定的局限性。

每组散热器的水流量不同,前端散热器的回水因为离主管道比较近,回的比较快,而后端回水就较慢,可能造成末端暖气不热或不够热的现象。

不过没有关系,可以通过阀门调节来解决问题,在系统工作状态下把前端暖气的回水阀门依次稍关掉一些,以确保系统平衡,让末端暖气慢慢热起来。

系统设计的合理,这种系统都会正常的工作。

3.双管同程并联双管同程并联,也叫做双管同程。

特点和双管异程并联基本上是一样的。

但是在运行原理有差别,简单的说,叫做先供后回,就是前端第一组散热器的回水暂不向主管道循环,而是往下继续走,连接下一组散热器的回水管,依次类推…从最末端散热器拉出一根回水管路,回到主管道的回水管上。

空调同程水系统水力平衡问题探讨

空调同程水系统水力平衡问题探讨

位于起始端的大流量设备参与同程循环。
(2)大流量的空调箱或新风箱位于水管循
环的中间,对于同程系统的水力平衡影响不大。
雷诺数
空调水系统根据管道布置形式可分为同程 和异程两种类型。其中,同程系统中空调水流
Re =
(5)
经各并联环路的管道总长度相等,各设备水量
式中,R —单位长度直管段的摩擦阻力(习
分配比较均匀,便于水力平衡,初投资较高。 称比摩阻),Pa/m ;λ—摩擦阻力系数,m ;ρ— 异程系统中空调水流经各并联环路的管道总长 水的密度,kg/m3 ;v —水的流速,m/s ;v—运动 度不相等,各设备水量分配容易产生失调,特 黏度,m2/s;k—管内表面的当量绝对粗糙度,m;
别是系统比较大时,失调现象比较突出,初投 闭式循环水系统 ;k=0.2mm ;d —管道直径,m。
资相对较低。所以,通常的做法是末端数量较
(3)局部阻力计算 :
多时将空调冷热水系统设计为同程系统,以减 少水系统中水力失调,便于调节以及达到使用 要求。
但是,在实际工程设计中,经常遇到风机 盘管和新风空调箱或空调箱使用同一水平环路 的情况,大流量的设备和小流量设备布置在同
(1)
(2)沿程阻力计算见式(2):
DPm
=
m
$
1 d
(2)
当直管段长度 l =1 时,
R
=
m d
$
t $ v2 2
Hale Waihona Puke (3)对于紊流过渡区的摩擦阻力系数λ,可按
热水管道
i
R=0.0089·d
G · -4.87
N
1.85
(9)
式中,i L—冷水管道单位长度摩擦压力损 失,kPa/m ;i R—热水管道单位长度摩擦压力损 失,kPa/m ;d N—管道的计算内径,m ;G —设计 流量,m3/s[1]。

空调系统基本知识

空调系统基本知识

SEE “暖施-9” (128RT) SEE “暖施-9” (128RT)
SEE “暖施-8” SEE “暖施-8”
SEE “暖施-8” SEE “暖施-8”
TO 1F厂区+1F~3F办公楼一般空调设备 DN200 353RT FROM 1F厂区+1F~3F办公楼一般空调设备 DN200 353RT
2011年设计部教育训练教材
空调系统基本知识
2011年设计部教育训练教材
※空調水系統 ※空調風系統
2011年设计部教育训练教材
空调水系统
空调水系统包含冰水(冷冻水)、冷却水和热水三个部分。
冰水系统:来自空调设备的冰水回水经循环水泵进入冰水机 组蒸发器内,蒸发器制冷剂蒸发吸热,促使冰水温度降低(具 体冰机工作原理后续课程讲解),出水再送入各个空调用水设 备,与被处理介质进行热交换后再回到冰水机组进行循环再冷 却。
冷凝水排放系统:排放空调盘管表面因结露而形成的冷凝 水系统。
2011年设计部教育训练教材
一、水系統的分類
1.闭式循环和开式循环 闭式循环系统:管路不与大气接触,在系统最高点设膨胀 水 箱并有排气和泄水装置的系统。 闭式循环的优点: 1.由于管路不与大气相接触,管道与设备不易腐蚀。 2.计算水泵扬程时不需考虑高程,故循环压力低,功率 相对较小。 3.由于没有回水箱,不需重力回水,故回水不需另设水 泵,因而投资省,系统简单。 闭式循环的缺点: 1.蓄冷能力小,低负荷时冷冻机也需经常开动。 2.膨胀水箱的补水有时需要另设加压水泵。
TO FAB 1F+3F LOAD (867RT,5462LPM) 415+452=867RT
φ65 BHR
M1
φ65 BHR

中央空调安装常识-水系统同程异程式

中央空调安装常识-水系统同程异程式

中央空调安装常识水系统同程异程式作为中央空调安装外行,您可能认为中央空调水系统同程、异程式艰深晦涩,下面,暖通国际专家将就该知识点为您作一个简要介绍。

同程式系统:经过每一并联环路的管长基本相等,如果通过每米长管路的阻力损失接近相等,则管网的阻力不需调节即可保持平衡。

优点:同程式系统中系统的水力稳定性好,各设备间的水量分配均衡,调节方便.缺点:同程式系统由于采用回程管,管道的长度增加,水阻力增大,使水泵的能耗增加,并且增加了初投资。

异程式系统:经过每一并联环路的管长均不相等。

优点:异程式系统简单,耗用管材少,施工难度小。

缺点:采用异程式的系统,各并联环路管长不等,常在每一个并联支路上安装流量调节装置.中央空调冷凝水系统的设计风机盘管机组、整体式空调器、组合式空调机组等运行过程中产生的冷凝水,必须及时予以排走.1、冷凝水管的布置①若邻近有下水管或地沟时,可用冷凝水管将空调器接水盘所接的凝结水排放至邻近的下水管中或地沟内。

②若相邻近的多台空调器距下水管或地沟较远,可用冷凝水干管将各台空调器的冷凝水支管和下水管或地沟连接起来。

2、冷凝水管管径的确定①直接和空调器接水盘连接的冷凝水支管的管径应与接水盘接管管径一致(可从产品样本中查得)。

②需设冷凝水干管时,某段干管的管径可依据与该管段连接的空调器总冷量 (KW)按下表查得。

3、冷凝水管保温所有冷凝水管都应保温,以防冷凝水管温度低于局部空气露点温度时,其表面结露滴水。

采用带有网络线铝箔贴面的玻璃棉保温时,保温层厚度可取25mm。

冷凝水干管管径选择干管承担冷量 (KW)干管公称直径DN(mm)干管承担冷量 (KW)干管公称直径DN(mm)≤77.1~17.617。

7~100101~17620253240177~598599~10551056~15121513~12462>12462kW5080100125150说明:DN=15mm的管道不推荐使用.立管的公称直径,应与同等负荷的水平干管的公称直径相同.4、冷凝水管设计注意事项①沿水流方向,水平管道应保持不小于千分之一的坡度;且不允许有积水部位。

中央空调_第5章水系统设计说明

中央空调_第5章水系统设计说明

水系统的组成
水流开关:当水流开关感应到通过热交换器的水流量 过低时,该装置会使机器停止运行。安装时尽量安装 在水泵的出口管段。
水系统的组成
冷冻水系统原理图:
膨胀水箱
接自来水管 接排水管
膨胀管
F
冷冻水泵
一用一备
△P
L1 L2
冷水机组
冷凝器 蒸发器
图例
F
名称 碟阀 水流开关 过滤器 浮球阀 压力表 温度表
(2) 空调水系统竖向分区的可能方案
1)将冷水机组 设在塔楼以外的群房顶 层 设两个系统分别向塔 楼和群房供水,另一台 向低区供水。冷却塔设 在群房的屋顶上。
图例
L1 L2
名称 避震接头 水泵 止回阀 排气阀 冷冻水供水管 冷冻水回水管
空调末端 空调末端
水系统阀门:
水系统的组成
闸阀
截止阀
蝶阀
蝶阀
水系统中设置的阀一般有两个作用:一是起调节用,调节 管网中的水量,另外是起关断作用,如变换季节时的冷、 热源转换,或设备检修时,用阀门关断。
水系统的组成
接自来水管 接排水管
空调末端 空调末端
压差控制阀
当系统阻力增大,水泵扬 程增高,a,b两点的压差增 大,水流量减少。为保持 系统内压力稳定,在供、 回水总管之间设置带压差 控制阀的旁通管,当a,b两 点间压差超过压差控制阀 的整定值时,阀门开启, 部分水量返回至冷水机组 循环流动,冷水机组定流 量运行。另外,对于间断 使用的空调系统,循环水 量也可通过压差旁通阀回 流。
第五章 中央空调水系统设计
张海涛
中央空调水系统的作用就是将冷热媒水,按空 调房间冷热负荷的要求,准确送至空气处理设 备,处理房间内的空气.水系统投资比较多,水 泵能耗较大,而且水系统对整個空调系统的使 用效果影响大,是空调设计中的一个重要组成 部分。

中央空调水管同程和异程区别

中央空调水管同程和异程区别

对于高层建筑来说,垂直方向空调水系统采用同程式,但是对于水平方向,同一层上的水系统来说,又怎样确定是采用同程还是异程合适呢。

同程和异程应该如何选择?1.系统形式[img]2.定义系统特点和主要区别——以水流经的管道的物理长度来区分。

需要注意的是:物理长度与实际管道的布置有关,不能以系统原理图来评价。

3.手段与目标的关系目标:实现水力平衡采用同程与异程都只是手段,而不是最终的目标。

水力平衡的目标是:各环路(和末端)的设计水阻力相同,而不是水流经的物理长度相同。

同程与异程系统的适应性(1)如果一个系统中,各个末端的水阻力均相同,管道的布置也对称(每个末端所连接的管道阻力相等,每段同流量管道的水阻力相等),则采用同程系统,能够实现较好的水力平衡。

这种情况对于标准层客房采用竖向系统时,特点比较明显。

(2)如果末端阻力不等,即使管道长度相等,也不可能实现水力平衡。

(3)即使末端阻力相等,但如果实际平面中的管道长度不等(例如末端分布的距离不同,两个末端之间的距离差距悬殊等),或者管道由于管径分级的原因无法使得阻力相同,也无法满足系统各环路的水力平衡。

结论:(1)同程与异程不是绝对的,同程也不一定就比异程更具有“先天”的平衡优势。

关键是要针对实际的管道布置和末端阻力的情况,通过详细计算各环路,来求得水力平衡。

(2)在某些情况下,异程也有可能比同程更容易实现水力平衡。

例如:当距离冷冻机房最近处的空调机组的水阻力远大于其他空调机组的水阻力时,如果还要强行的设计“同城系统”,那么最不利环路有可能就是最近的空调机组环路,这样反而造成不平衡。

【买空调选格力,买格力到南虹,南虹制冷,格力空调西南最大代理商!咨询热线:壹捌陆壹叁贰壹叁肆柒陆黎经理】Welcome To Download !!!欢迎您的下载,资料仅供参考!。

同程与异程系统的设置

同程与异程系统的设置

同城与异程系统的设置
在实际的空调工程系统设计中,经常会遇到末端水系统管路过长,
对于空调水系统而言,同程式和异程式系统的选用是有一定条件界定的。

计算选择的标准是:各并联环路的压力损失相对差额不大于15%。

当选定的单位比摩阻为200PA/m时:
1、立管距离远端设备的水平距离小于53米时,水平干管可以设
计为异程式;
2、立管距离远端设备的水平距离大于53米时,水平干管可以设
计为同程式。

当选定的单位比摩阻为300PA/m时:
1、立管距离远端设备的水平距离小于35米时,水平干管可以设
计为异程式;
2、立管距离远端设备的水平距离大于35米时,水平干管可以设
计为同程式。

值得注意的是:并非所有的设计都需要按照上述标准去做,水系统流量的水力平衡调节,有很多的措施,比如:合理划分和均匀布置环路;增大末端设备、减少公共段阻力所占比例;合理确定管段管径及比摩阻等,所以,针对不同的设计思路,有不同的做法,不可生搬硬套。

马志广2014-8-25。

水路系统设计

水路系统设计

8 4
5 6 1 2 3
7
图6-20 二级泵系统示意图 1-一次泵;2-冷水机组;3-二次泵;4-空调末端;5-旁通管; 6-旁通调节阀;7-二通调节阀;8-膨胀水箱
(四)同程式和异程式
1.
同程式系统 经过每一并联环路的管长基本相等,如 果通过每米长管路的阻力损失接近相等, 则管网的阻力不需调节即可保持平衡。
2.如果按承压需分三个区,下面两个区可按
上述分法,上面一个区在南方地区可设风 冷热泵机组,放在顶层或靠近顶层的技术 层内;在冬季室外温度很低不适用热泵的 地方,夏季可用风冷机组,冬季最上一个 区可用热交换器供热。
空调水管系统实例图
三、水管系统的设计及设备选型
水冷冷水机空调系统
主要设备有
(1)制冷机组 (2)冷冻水泵 (3)末端装置(空气处理机组、风机盘管等) (4)膨胀水箱 (5)水过滤器 (6)补水泵 (7)电子水处理仪或全自动软化水处理装置 (8)冷却水泵 (9)冷却塔
闭式冷(热)水系统


当空调系统采用风机盘管、诱导器和水冷 式表冷器做冷却作用时,冷水系统宜采用 闭式系统。高层建筑也宜采用闭式系统。 热水系统,一般均为闭式系统。在设计时 应考虑锅炉房或热网在低负荷时供热的可 能性。如低负荷时,不可能供热,则应考 虑其它措施(如电加热等)。
闭式循环的优点 ① 由于管路不与大气相接触,管道与设备不 易腐蚀。 ② 不需为高处设备提供静水压力,循环水泵 的压力低,从而水泵的功率相对较小。 ③ 由于没有回水箱、不需重力回水、回水不 需另设水泵等,因而投资省、系统简单。
GBJ13-86的推荐流速(m/s) 管道公称直径(mm)
管道种类 水泵吸水管 水泵出水管 <250 1.0~1.2 1.5~2.0 250~1600 1.2~1.6 2.0~2.5 >1600 1.5~2.0 2.0~3.0

格力中央空调系统设计讲解

格力中央空调系统设计讲解

5、水泵并联运行情况
水泵 台数
1 2 3 4 5
流量
100 190 251 284 300
流量的 增加值
/ 90 61 33 16
与单台泵运行比较 流量的减少
5% 16% 29% 40%
由上表可见:水泵并联运行时,流量有所衰减;当 并联台数超过3台时,衰减尤为厉害。故强烈建议:1.选 用多台水泵时,要考虑流量的衰减,留有余量。2.空调 系统中水泵并联不宜超过3台,即进行制冷主机选择时也 不宜超过三台。 一般,冷冻水泵和冷却水水泵的台数应和制冷主机一一
注:
1、风机盘管连接风管时必须考虑设备的静压值。 设备机外静压为0Pa时,设备不能连接风管, 连接风管时必须选择带静压的设备。
2、房间面积较大时应考虑使用多个风机盘管, 房间单位面积负荷较大,对噪音要求不高时可 考虑使用风量和制冷量较大的风机盘管。
几种典型的气流组织
高大空间分层空调气流组织
◆建筑物内负荷特性相差较大的内区与周边区,以及在同一时段内分 别进行加热和冷却的房间,一般宜分区设置空气调节系统。
◆分空调系统时要了解清楚各空调房间的用途,规模,工作时间, 负荷变化等情况。负荷特性相差较大的房间应分别设系统。
◆大中型建筑物选制冷机的容量及台数时,应大小搭配;按过渡 季的最小负荷选一台小制冷机,这样既能满足部分小负荷运 行的需 要,又可节约能耗。
湖南天马制冷工程设备有限公司格力中央空调系统设计2014年2月产品设计优质空调系统维护安装施工优质空调的四要素设计和选型问题的来源用户的要求是否清楚设计和选型现场的条件调查是否明确选用的设备是否合适负荷计算是否准确设计要素建筑情况建筑物的类型和规模是新建筑还是现有建筑可提供何种能源形式是否有合适的空间如管道井吊顶空间机房等建筑物的围护结构的情况如材料结构类型等设计要素环境因素在建筑中有何种环境要求

双管同程和双管异程的区别

双管同程和双管异程的区别

双管同程和双管异程的区别1.引言1.1 概述双管同程和双管异程是在项目管理中常用的两种进度管理方法。

双管同程和双管异程都是为了提高项目的执行效率和规划精度,但它们在具体的执行过程和目标达成方式上存在一定的区别。

双管同程是指项目中的设计与施工两个阶段以同样的时间进行,即设计和施工同时进行,相互协调。

这种方法的优势在于可以减少项目的总工期,提高项目的执行效率。

在双管同程中,设计和施工的沟通和协调十分重要,因为设计阶段的变更可能会对施工产生影响,而施工过程中的问题也需要及时反馈给设计师进行调整。

总的来说,双管同程适用于设计和施工之间时间紧迫,需要快速完成的项目。

相比之下,双管异程则是指设计和施工两个阶段在时间上存在一定的错位,即设计和施工可以分别进行,不需要同时进行。

这种方法的优势在于能够更好地预防和解决可能出现的问题,提高项目的质量和可控性。

在双管异程中,设计阶段和施工阶段可以相对独立地进行,设计师有足够的时间进行充分的设计和优化,而施工方可以根据设计方案进行施工准备。

双管异程适用于项目需要经过较长时间的设计和策划阶段,注重项目的质量和可持续发展。

总的来说,双管同程和双管异程在项目管理中都有各自的优势和适用场景,根据具体的项目需求和条件进行选择和运用。

在实际应用中,项目管理者需要综合考虑项目的时间、成本、质量等多个因素,合理选择双管同程或双管异程方法,以期达到项目的最佳效果。

1.2文章结构文章结构部分的内容应该包含一些关于整篇文章框架和各个章节内容的介绍。

具体内容可以按照以下方式编写:在这篇文章中,我将探讨双管同程和双管异程的区别。

为了更好地组织这篇文章,我将按照以下结构来呈现我的观点和分析。

在引言部分,我将首先概述双管同程和双管异程的基本概念,并简要介绍本文的结构和目的。

在正文部分,我将详细阐述双管同程和双管异程的定义和特点。

通过对两者的对比,我们可以更清楚地理解它们之间的差异和优劣势。

在结论部分,我将比较双管同程和双管异程的区别,并总结本文的主要观点和结论。

水管同程式和异程式管路的区别

水管同程式和异程式管路的区别

水管同程式和异程式管路的区别水管同程式和异程式管路的区别水管同程式和异程式管路的区别所谓同程就是同样的路程, 异程则相反.这里的路程基本上可理解为管道长度.对于每个支路来说, 阻力无非由各种设备阀门和其它管件产生的局部水头损失和管道带来的沿程水头损失组成的. 对于同程系统来说, 只要末端设备本身的水压降差不多, 则其总压降也就差不多, 这样也就不会有水利失调了. 空调系统是这样的, 当然供热系统有不同.从平衡阻力来看当然是同程式好,但从造价来看,异程式在绝大数场合都来得便宜,在什么场合用同程或者异程呢?我觉得是这样,当总长度低于60米时用异程,当为迂回建筑结构时,无论其长度如何,使用同程,在这种场合下,同程比异程安装材料造价更低。

1. 同程式系统中系统的水力稳定性好,各设备间的水量分配均衡,调节方便。

室内管网,尤其是有吊顶的高层的室内管网,当采用风机盘管时,用水点很多,利用调节管径的大小进行平衡,往往是不可能的;采用平衡阀或普通阀门进行水量调节则调节工作量很大。

因此,水管路宜采用同程式。

同程式由于采用同程管,管道的长度增加,水阻力增大,使水泵的能耗增加,并且增加了初投资。

2. 异程式系统经过每一并联环路的管长均不等。

系统简单,耗用管材少,施工难度小。

对于外网,各大环路之间、用水点少的系统,可以采用异程式,水量调节可采用在每一个并联支路上安装流量调节装同程式系统中水流经过每个末端后回到主机的总的循环路程是相等的,而异程式系统水流经过每个末端后回到主机的循环路程不相等,同程式系统水阻力容易平衡或能达到天然平衡,几乎不用平衡阀调节,而异程式系统阻力不容易平衡,尤其是大系统,要加平衡阀调节至平衡,另外同程式系统要多一根回水管,系统初投资比异程式高一般空调水系统供回水方式有异程式和同程式,对于同程式系统却有多种。

1. 同程式各并联环路管路相等,阻力大致相同,流量分配较均衡,可减少初次调整的困难,但初投资相对较大。

热水系统同程及异程管道布置比较分析

热水系统同程及异程管道布置比较分析

热水系统同程及异程管道布置比较分析摘要:在集中供热热水系统设计过程中,管道布置方式采用管道同程布置的设计方式可有效防止热水系统中的热水短路循环,且对于节水、节能有着重要的作用;而采用管道异程布置的设计方式,其供水管、回水管中的水流方向相反,每一环路的管长不相等,因此管路简单,同一系统中异程管道布置水力稳定性较同程布置好[1],且管道较短,节省管材,减少项目初期投资,对项目投资控制有利。

关键词:集中供热;同程布置;异程布置;水力稳定;投资控制。

1 导言在目前热水系统管网设计中,管道布置方式采用同程布置还是异程布置需根据项目的实际情况进行比较分析后确定。

但在现实设计过程中,绝大多数设计人员仅为了满足规范要求,或者走经验主义道路,不管项目的规模、形式及甲方的资金状况等实际情况,均采用同程布置,因此存在一定的弊端。

本篇论文主要就热水系统中管道同程布置及异程布置各自优缺点比较分析,确定采用何种布置形式。

分析方法采用对比法,分析内容主要为两种布置形式的热水循环效果分析、两种布置形式的水力稳定性分析、两种布置形式的经济性分析三个方面,通过分析来确定两种布置形式的优劣。

2 热水循环效果分析热水循环流量的分配是热水循环系统的重要环节,循环系统的效果主要由热水循环系统的方向和分配流量的大小决定,对热水循环效果分析的前提是同一工况下任一管段的循环水流方向均由供水端流向回水端,且是在管段水流方向唯一的情况下进行的。

但在实际工程中,由于系统工况的不唯一,循环流量并不完全按设计线路补偿配水管道的热力损失,常有回水管道向用户供水的情况,造成部分配水管道使用效果不理想,而达不到预期的设计循环目的。

接下来就对双立管均配水工况进行同程布置和异程布置的热水循环效果进行分析,其他多立管配水工况可参考此分析。

2.1同程布置热水循环效果分析如下图1所示,工况为双立管配水同程布置,首先假定H1-2-b≥H1-a(反之亦然),由于双向配水的水头损失小于单向配水水头损失,因此仅当(P1-P2')>H1-a时,才可实现两根立管均配水的工况,据此判断,可得:由图1可知,两根立管配水时循环方向有3种,①两根配水立管均有流量通过;②配水阻力较大的立管(2-2’)仅有配水流量通过;③配水阻力较大的立管(2-2’)由供回水干管双向供水。

020同程与异程室内供暖系统的比较

020同程与异程室内供暖系统的比较

图 1.3
异程系统水压图
图 1.4
同程系统水压图
作者简介: (1990-) ,男,本科,在读硕士研究生,250101,临港南区凤鸣路 1000 号山东建筑大学 , 1870641735可得各支路在设计工况下的阻力数如表 1.1 和 1.2 所 示。
同程与异程室内供暖系统的比较
王晓 于涛 楚广明 高清民
(山东建筑大学热能工程学院 山东 济南)
摘要: 从水力稳定性和调节难易程度两个方面比较同程和异程两种室内供暖系统。 分别计算 某个支路关闭后系统的流量分配情况, 比较它们的稳定性, 并通过绘制支路关闭后的水压图 比较其可调性。研究表明,异程系统的稳定性优于同程系统,且异程系统失调后更易达到平 衡,室内供暖系统宜采用异程式布置。 关键词:室内供暖系统;同程;异程;稳定性;平衡
3 水力平衡
为了更全面更直观的比较同程系统和异程系统, 绘制系统失调后的水压图, 并分别选取 1、5、10 用户关闭时的水压图来比较两个系统达到平衡的难易程度。水压图中供水水压 0 与回水水压 0 分别代表额定工况下的供回水水压线,供水水压 I 与回水水压 I 分别代表关闭 I 支路后的供回水水压线。
1 管网水力计算
1.1 计算公式 各管段的压力损失由下式计算:
h SG 2 (1) 2 5 式中,h 为各管段的压降,m;S 为各管段的阻力数,h /m ;G 为各管段流量,m3/h。 1.2 管网物理模型
图 1.1
异程系统
图 1.2 同程系统
如图 1.1 和 1.2 所示,该系统为有 10 个支路的室内供热系统,各个支路的额定流量均 为 0.02m3/h。图中,S 为各支路阻力数,Sg 为供水干管阻力数,Sh 为回水干管阻力数。本 系统中供回水干管阻力数均为 1h2/m5,各管段压降由式(1)计算。通过最不利环路水力计 算确定资用压力,做出水压图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对于高层建筑来说,垂直方向空调水系统采用同程式,但是对于水平方向,同一层上的水系统来说,又怎样确定是采用同程还是异程合适呢。

同程和异程应该如何选择?
1.系统形式
[img]
2.定义系统特点和主要区别——以水流经的管道的物理长度来区分。

需要注意的是:物理长度与实际管道的布置有关,不能以系统原理图来评价。

3.手段与目标的关系目标:实现水力平衡采用同程与异程都只是手段,而不是最终的目标。

水力平衡的目标是:各环路(和末端)的设计水阻力相同,而不是水流经的物理长度相同。

同程与异程系统的适应性(1)如果一个系统中,各个末端的水阻力均相同,管道的布置也对称(每个末端所连接的管道阻力相等,每段同流量管道的水阻力相等),则采用同程系统,能够实现较好的水力平衡。

这种情况对于标准层客房采用竖向系统时,特点比较明显。

(2)如果末端阻力不等,即使管道长度相等,也不可能实现水力平衡。

(3)即使末端阻力相等,但如果实际平面中的管道长度不等(例如末端分布的距离不同,两个末端之间的距离差距悬殊等),或者管道由于管径分级的原因无法使得阻力相同,也无法满足系统各环路的水力平衡。

结论:(1)同程与异程不是绝对的,同程也不一定就比异程更具有“先天”的平衡优势。

关键是要针对实际的管道布置和末端阻力的情况,通过详细计算各环路,来求得水力平衡。

(2)在某些情况下,异程也有可能比同程更容易实现水力平衡。

例如:当距离冷冻机房最近处的空调机组的水阻力远大于其他空调机组的水阻力时,如果还要强行的设计“同城系统”,那么最不利环路有可能就是最近的空调机组环路,这样反而造成不平衡。

【买空调选格力,买格力到南虹,南虹制冷,格力空调西南最大代理商!咨询热线:壹捌陆壹叁贰壹叁肆柒陆黎经理】。

相关文档
最新文档