2016年海南省中考数学真题
2016年海南省中考数学试卷(含答案)
2016年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分)1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣2.若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣33.如图是由四个相同的小正方体组成的几何体,则它的主视图为()A.B.C.D.4.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.405.下列计算中,正确的是()A.(a3)4=a12B.a3•a5=a15C.a2+a2=a4D.a6÷a2=a36.省政府提出2016年要实现180 000农村贫困人口脱贫,数据180 000用科学记数法表示为()A.1.8×103B.1.8×104C.1.8×105D.1.8×1067.解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解8.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间9.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷10.在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)11.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.12.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°13.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°14.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3二、填空题(本大题满分16分,每小题4分)15.因式分解:ax﹣ay=.16.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.17.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=.18.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)三、解答题(本大题满分62分)19.计算:(1)6÷(﹣3)+﹣8×2﹣2;(2)解不等式组:.20.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.21.在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表挂果数量x(个)频数(株)频率25≤x<35 6 0.135≤x<45 12 0.245≤x<55 a 0.2555≤x<65 18 b65≤x<75 9 0.15请结合图表中的信息解答下列问题:(1)统计表中,a=,b=;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为°;(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有株.22.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)23.如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4﹣.①求KD的长度;②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG 交DG于点N,设PD=m,当S△PMN=时,求m的值.24.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.2016年海南省中考数学试卷参考答案一、选择题1.B2.B3.A4.C5.A6.C7.A8.B9.D10.D11.A12.B13.C14.D二、填空题15.a(x﹣y).16.(1+10%)a.17.5.5.18.①②③④.三、解答题19.解:(1)原式=﹣2+2﹣8×=﹣2;(2)解不等式x﹣1<2,得:x<3,解不等式≥1,得:x≥1,∴不等式组的解集为:1≤x<3.20.解:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,依题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.21.解:(1)a=60×0.25=15,b==0.3.故答案是:15,0.3;(2)补全的频数分布直方图如右图所示,(3)由题意可得,挂果数量在“35≤x<45”所对应扇形的圆心角度数为:360°×0.2=72°,故答案为:72;(4)由题意可得,挂果数量在“55≤x<65”范围的番茄有:1000×0.3=300(株),故答案为:300.22.解:(1)在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,∴DE=DC=2米;(2)过D作DF⊥AB,交AB于点F,∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30°,∴BC====米,BD=BF=x米,DC=4米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,根据勾股定理得:2x2=+16,解得:x=4+或x=4﹣,则AB=(6+)米或(6﹣)米.23.解:(1)①∵在矩形ABCD中,AD∥BC∴∠KDO=∠GBO,∠DKO=∠BGO∵点O是BD的中点∴DO=BO∴△DOK≌△BOG(AAS)②∵四边形ABCD是矩形∴∠BAD=∠ABC=90°,AD∥BC又∵AF平分∠BAD∴∠BAF=∠BFA=45°∴AB=BF∵OK∥AF,AK∥FG∴四边形AFGK是平行四边形∴AK=FG∵BG=BF+FG∴BG=AB+AK(2)①由(1)得,四边形AFGK是平行四边形∴AK=FG,AF=KG又∵△DOK≌△BOG,且KD=KG∴AF=KG=KD=BG设AB=a,则AF=KG=KD=BG= a∴AK=4﹣﹣a,FG=BG﹣BF=a﹣a∴4﹣﹣a=a﹣a解得a=∴KD=a=2②过点G作GI⊥KD于点I由(2)①可知KD=AF=2∴GI=AB=∴S△DKG=×2×=∵PD=m∴PK=2﹣m∵PM∥DG,PN∥KG∴四边形PMGN是平行四边形,△DKG∽△PKM∽△DPN∴,即S△DPN=()2同理S△PKM=()2∵S△PMN=∴S平行四边形PMGN=2S△PMN=2×又∵S平行四边形PMGN=S△DKG﹣S△DPN﹣S△PKM∴2×=﹣()2﹣()2,即m2﹣2m+1=0 解得m1=m2=1∴当S△PMN=时,m的值为124.(1)解:设抛物线解析式为y=a(x+5)(x+1),把C(0,﹣5)代入得a•5•1=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x+5)(x+1),即y=﹣x2﹣6x﹣5;(2)解:设直线AC的解析式为y=mx+n,把A(﹣5,0),C(0,﹣5)代入得,解得,∴直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,则Q(﹣2,﹣3),∴PQ=3﹣(﹣3)=6,∴S△APC=S△APQ+S△CPQ=•PQ•5=×6×5=15;(3)①证明:∵∠APE=∠CPE,而PH⊥AD,∴△PAD为等腰三角形,∴AH=DH,设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,∵PH∥OC,∴△PHD∽△COD,∴PH:OC=DH:OD,即(﹣x2﹣6x﹣5):5=DH:(﹣x﹣DH),∴DH=﹣x﹣,而AH+OH=5,∴﹣x﹣x﹣=5,整理得2x2+17x+35=0,解得x1=﹣,x2=﹣5(舍去),∴OH=,∴AH=5﹣=,∵HE∥OC,∴===;②能.设P(x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),当PA=PE,因为∠PEA=45°,所以∠PAE=45°,则点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,则PH=HE,即|﹣x2﹣6x﹣5|=|﹣x﹣5|,解﹣x2﹣6x﹣5=﹣x﹣5得x1=﹣5(舍去),x2=0(舍去);解﹣x2﹣6x﹣5=x+5得x1=﹣5(舍去),x2=﹣2,此时P点坐标为(﹣2,3);当E′A=E′P,如图2,AE′=E′H′=(x+5),P′E′=﹣x﹣5﹣(﹣x2﹣6x﹣5)=x2+5x,则x2+5x=(x+5),解得x1=﹣5(舍去),x2=,此时P点坐标为(,﹣7﹣6),综上所述,满足条件的P点坐标为(﹣1,0),(﹣2,3),(,﹣7﹣6).。
海南省重点中学2016中考模拟考试数学试题及答案
海南省XX 中学2016中考模拟考试(一)数学科试题(全卷满分120分,考试时间100分钟) 特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效. 2. 答题前请认真阅读试题及有关说明. 一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1. -5的绝对值是A. 5B. 51C. -5D. 51-2. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约 为260000平方米,将260000用科学记数法表示为2.6×10n ,则n 的值是 A .3 B .4 C .5 D .6 3.计算()3232a a ⋅-的结果,正确的是A .-6a 5B .6a 5C .-2a 6D . 2a 6 4.函数4-=x y 中,自变量x 的取值范围是A .x >4B .x ≥4C .x >0D .x ≠45.已知-1是关于x 的方程02=+a x 的解,则a 的值为A .2B .-2C .21D . 21-6.如图1,在一个长方体上放着一个小正方体,这个组合体的左视图...是7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同. 小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是A .6 B. 16 C. 18 D. 24 8. 若A (x 1,-3)、B (x 2,-2)、C (x 3,1)三点都在函数xy 6=的图象上,则x 1、x 2、x 3的大小关系是 A .x 2<x 1<x 3 B .x 1<x 2<x 3 C .x 2>x 1>x 3 D .x 1>x 2>x 39. 如图2,AD 是在Rt △ABC 斜边BC 上的高,将△ADC 沿AD 所在直线折叠,点C 恰好A .B .C .D .图1正面落在BC 的中点E 处,则∠B 等于A .25°B .30°C .45°D .60°10. 如图3,在⊙O 中,OC ∥AB ,∠A =20°,则∠1等于A. 40°B. 45° B. 50° D. 60°11.不等式组⎩⎨⎧>->-04203x x 的解集是A .3>xB .2<xC .32<<xD .2>x 或3-<x 12.将一元二次方程0222=--x x 配方后所得的方程是A. 3)1(2=+xB. 3)1(2=-xC. 2)1(2=-xD. 3)2(2=+x 13.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距A 地18千米的B 地,他们离开A 地的距离s (千米)和行驶时间 t (小时)之间的函数关系图象如图4所示. 根据题目和图象提供的信息,下列说法正确的是A .乙比甲早出发半小时B .乙在行驶过程中没有追上甲C .乙比甲先到达B 地D .甲的行驶速度比乙的行驶速度快14. 如图5, CD 是一平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6, CD=12,则CE 的值为A.3B. 4 C .5 D .6 二、填空题(本大题满分16分,每小题4分) 15.分解因式:92-a = .16.如果正多边形的一个外角为72°,那么它的边数是 .17. 如图6,在菱形ABCD 中, E 、F 分别是DB 、DC 的中点,若AB =10,则EF = .图2 ECBADDEF图6 AB OC图31 O图7B30°0.5 1 2 2.5 (小时) 18 甲 乙 s (千米) 图4 A图5 αC D E18.如图7,半径为2的⊙O 与含有30°角的直角三角板ABC 的AC 边切于点A ,将直角三角板沿CA 边所在的直线向左平移,当平移到AB 与⊙O 相切时,该直角三角板平移的距离为 . 三、解答题(本大题满分62分) 19.(本题满分10分,每小题5分)(1)计算:2)2(311516--⎪⎭⎫ ⎝⎛-⨯+. (2)化简:()()211a a a +--. 20.(本题满分8分)明铭同学利用寒假期间到某品牌的服装专卖店做社会调查,了解到该商场为了激励营业员的工作积极性,扩大销售量,实行“月总收入=月基本工资+计件奖金”的方法. (计件奖金=月销售量×每件所得奖金)同时获得如下信息:营业员 小萍 小华 月销售量(件) 150 200 月总收入(元)10501200假设销售每件服装奖励a 元,营业员月基本工资为b 元. 求a 、b 的值; 21. (8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A .1.5小时以上B .1~1.5小时C .0.5~1小时D .0.5小时以下图8.1、8.2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:图8.1 图8.2(1)本次一共调查了 名学生;学生参加体育活动时间的中位数落在 时间段(填写上面所给“A ”、“B ”、“C ”、“D ”中的一个选项); (2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.22.(8分)如图9,要测量一幢楼CD 的高度,在地面上A 点测得楼CD 的顶部C 的仰角为30°,向楼前进50m 到达B 点,又测得点C 的仰角为60°. 求这幢楼CD 的高度(结果保留根号).23. (本题满分13分)如图10,正方形ABCD 中,E 是BD 上一点,AE 的延长线交CD 于F ,交BC 的延长线于G ,M 是FG 的中点. (1)求证:① ∠1=∠2;② EC ⊥MC.(2)试问当∠1等于多少度时,△ECG 为等腰三角形? 请说明理由.24.(本题满分14分)如图11,已知抛物线经过原点O 和点A ,点B (2,3)是该抛物线对称轴上一点,过点B 作BC ∥x 轴交抛物线于点C行四边形. (1)① 直接写出A 、C 两点的坐标;② 求这条抛物线的函数关系式;(2)设该抛物线的顶点为M ,试在线段AC 上找出这样的点P ,使得△PBM 是以BM 为底边的等 腰三角形,并求出此时点P 的坐标;(3)经过点M 的直线把□ OACB 的面积分为1:3两部分,求这条直线的函数关系式.图11A C DEGF M 1 2 图10图9海南省XX 中学2016中考模拟考试(一)数学科试题数学科参考答案及评分标准一、ACABC DBABD CBCB二、 15.(a+3)(a-3) 16.5 17. 5 18. 32三、19.(1)原式=4-5-4 ………………………………(3分) =-5 ………………………………(5分) (2)原式=-++122a a a a +2………………………………(3分)= 13+a ………………………………(5分)20.(1) 根据题意,得 ⎩⎨⎧=+=+12002001050150b a b a ………………………………(4分)解这个方程组,得 ⎩⎨⎧==6003b a ………………………………(7分)答: ………(8分)21. (1)200,B . ………………………………(4分)⑵略. ………………………………(6分) (3)3000×5%=150(人). ……………………(8分 ) 22.依题意,有∠A =30°,∠CBD =60°,AB =50m .∵ ∠CBD =∠A +∠ACB ,∴ ∠ACB =∠CBD -∠A =60°-30°=30°=∠A .∴ BC =AB =50m . ……………………(5分) 在Rt △CDB 中,CD =CB ·sin60°=50×23=253 (m ),∴ 该幢楼CD 的高度为253m . ……………………(8分) (注:用其它方法求解参照以上标准给分.)23.(1)①∵四边形ABCD 是正方形,∴DA=DC ,∠ADE=∠CDE=45°,DE=DE, …………………………(2分)∴△DAE ≌△DCE. …………………………………(3分) ∴∠1=∠2. …………………………………(4分)②∵四边形ABCD 是正方形,∴AD ∥BG,∴∠1=∠G=∠2. …………………………………(5分)又∵CM 是Rt △FCG 斜边上的中线,∴MC=MG=MF ,∴∠MCG=∠G. ∴∠2=∠MCG …………………………………(7分) ∴∠2+∠FCM=∠MCG+∠FCM=90°.即EC ⊥MC . …………………………………(8分) (2)当∠1=30°时,△ECG 为等腰三角形. 理由如下: ………………(9分) ∵∠ECG >90°,要使△ECG 为等腰三角形,必有CE=CG ,∴∠G=∠CEG. …………………………………(10分) ∵∠G=∠2,∴∠CEG=∠2∴∠DFA=2∠2=2∠1. ……………………………(12分)∴∠1=30°. ……………………………(13分) 24.(1)① A (4,0),C (6,3) …………………………(2分)② 设所求的抛物线为y =ax 2+bx +c ,则依题意,得⎪⎩⎪⎨⎧=++=++=363604160c b a c b a c …………………………(3分) 解得a =41,b =-1,c =0, ∴ 所求的抛物线函数关系式为x x y -=241.(4分) (2)设线段AC 所在的直线的函数关系式为y =k 1x +b 1 ,根据题意,得⎩⎨⎧=+=+36041111b k b k …………………………(5分)解得 k 1=23,b 1=-6 .∴ 直线AC 的函数关系式为623-=x y . ……(6分)∵ 抛物线x x y -=241的顶点坐标M 为(2,-1),……………………(7分)∴ 符合条件的等腰三角形PBM 顶角的顶点P 在线段BM 的垂直平分线与线段AC 的交点上. …………………………(8分)而BM =4,所以P 点的纵坐标为1,把y =1代入623-=x y 中,得314=x .∴ 点P 的坐标为(314,1). …………………………(9分)(3)由条件可知经过点M 且把□ OACB 的面积分为1:3两部分的直线有两条.(ⅰ)∵ □ OACB =OA •BD =4•3=12,△OBD 的面积=21OD •BD =21•2•3=3, ∴ 直线x =2为所求. …………………………(11分)(ⅱ)设符合条件的另一直线分别与x 轴、BC 交于点E (x 1,0)、F (x 2,3), 则AE =4-x 1 ,CF =6-x 2∴ 四边形ACFE 的面积=21(4-x 1+6-x 2)•3=41•12.即x 1+x 2=8分) ∵ BC ∥x 轴,∴ △MDE ∽△MBF , ∴ MB MD FB ED =, ∴ 412221=--x x ,即4x 1-x 2=6.∴ x 1=514, x 2=526 ∴ E (514,0)、F (526,3) …………………………(13分)设直线ME 的函数关系式为y =k 2x +b 2 ,则⎪⎩⎪⎨⎧=+-=+0514122222b k b k 解得k 2=45, b 2=27-. ∴ 直线ME 的函数关系式为y =45x 27-. 综合(ⅰ)(ⅱ)得,所求直线为:x =2或y =45x 27-.………(14分) (注:用其它方法求解参照以上标准给分.)图11。
海南2016中考试题数学卷(解析版)
一、选择题(本大题满分42分,每小题3分)1.2016的相反数是()A.2016 B.﹣2016 C.12016D.﹣12016【答案】B.【解析】试题分析:根据相反数的定义可以得出2016的相反数是-2016,故选B.考点:相反数.2.若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣3【答案】B.【解析】试题分析:由题意可知x+2=1,解得x=-1,故选B.考点:一元一次方程.3.如图是由四个相同的小正方体组成的几何体,则它的主视图为()A.B.C.D.【答案】A.【解析】试题分析:主视图是从正面看到的图形,因此从左往右第一列有两个正方形,第二列有一个正方形,故选A.考点:三视图.4.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.40【答案】C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.5.下列计算中,正确的是()A.(a3)4=a12 B.a3•a5=a15 C.a2+a2=a4 D.a6÷a2=a3【答案】A.考点:1幂的运算;2合并同类项.6.省政府提出2016年要实现180 000农村贫困人口脱贫,数据180 000用科学记数法表示为()A.1.8×103 B.1.8×104 C.1.8×105 D.1.8×106【答案】C.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.因此180000=1.8×105,故选C.考点:科学计数法.7.解分式方程1x-1+1=0,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解【答案】A.【解析】试题分析:1x-1+1=0,1+x-1=0,x=0,经检验:x=0是原方程的根,故选A.考点:解分式方程.8.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【答案】B.【解析】试题分析:面积为2的正方形的边长为2,∵12<2<22,∴1<2<2,故选B. 考点:无理数的估算.9.某村耕地总面积为50公顷,且该村人均耕地面积y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( ) A .该村人均耕地面积随总人口的增多而增多 B .该村人均耕地面积y 与总人口x 成正比例 C .若该村人均耕地面积为2公顷,则总人口有100人 D .当该村总人口为50人时,人均耕地面积为1公顷【答案】D.考点:反比例函数的应用.10.在平面直角坐标系中,将△AOB 绕原点O 顺时针旋转180°后得到△A 1OB 1,若点B 的坐标为(2,1),则点B 的对应点B 1的坐标为( )A .(1,2)B .(2,﹣1)C .(﹣2,1)D .(﹣2,﹣1) 【答案】D. 【解析】试题分析:根据题意可知B 1与B 关于原点中心对称,而关于原点中心对称点的横纵坐标互为相反数,因此B 1的坐标为(-2,-1),故选D. 考点:坐标与图形变化.11.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( ) A .13 B .23 C .16 D .19【答案】A. 【解析】试题分析:一次抽出两张,一共有3种可能:(1,2),(1,3),(2,3),其中两张卡片上的数字恰好都小于3的只有1种:(1,2).因此两张卡片上的数字恰好都小于3的概率为13,故选A.考点:列举法求概率.12.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°【答案】B.考点:1切线的性质;2圆周角定理;3直角三角形.13.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【答案】C.【解析】试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.考点:1矩形;2平行线的性质.14.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E 的位置.如果BC=6,那么线段BE的长度为()A.6 B.6 2 C.2 3 D.3 2【答案】D.考点:1折叠;2等腰直角三角形.二、填空题(本大题满分16分,每小题4分) 15.因式分解:ax ﹣ay= . 【答案】a (x-y ). 【解析】试题分析: 直接提公因式分解因式即可.ax-ay= a (x-y ). 考点:分解因式.16.某工厂去年的产值是a 万元,今年比去年增加10%,今年的产值是 万元.【答案】(1+10%)a. 【解析】试题分析:今年产值=(1+10%)a 万元, 考点:列代数式.17.如图,AB 是⊙O 的直径,AC 、BC 是⊙O 的弦,直径DE ⊥AC 于点P .若点D 在优弧ABC 上,AB=8,BC=3,则DP= .【答案】5.5. 【解析】试题分析:∵AB 和DE 是⊙O 的直径,∴OA=OB=OD=4,∠C=90°,又∵DE ⊥AC ,∴∠DPA=90°,∴∠DPA=∠C ,又∵∠A=∠A ,∴△AOP ∽△ABC ,∴OP BC =AO AB ,∴OP 3=48,∴OP=1.5.∴DP=OP+OD=5.5.考点:1圆;2相似三角形的性质和判定.18.如图,四边形ABCD 是轴对称图形,且直线AC 是对称轴,AB ∥CD ,则下列结论:①AC ⊥BD ;②AD ∥BC ;③四边形ABCD 是菱形;④△ABD ≌△CDB .其中正确的是 (只填写序号)【答案】①②③④.考点:1菱形的性质和判定;2轴对称;3平行线的性质. 三、解答题(本大题满分62分) 19.计算:(1)6÷(﹣3)+4﹣8×2﹣2;(2)解不等式组:⎪⎩⎪⎨⎧≥+<-12121x x .【答案】(1)-2;(2)1≤x <3.考点:1有理数的混合运算;2解不等式组.20.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元. 【答案】《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元. 【解析】试题分析:此题等量关系为:购书价格=《汉语成语大词典》的标价×50%+《中华上下五千年》的标价×60%,据此可列一元一次方程解决.试题解析:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,由题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.考点:一元一次方程应用.21.在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表挂果数量x(个)频数(株)频率25≤x<35 6 0.135≤x<45 12 0.245≤x<55 a 0.2555≤x<65 18 b65≤x<75 9 0.15请结合图表中的信息解答下列问题:(1)统计表中,a=,b=;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为°;(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有株.【答案】(1)15,0.3;(2)图形见解析;(3)72;(4)300.试题解析:(1)a=15,b=0.3;(2)(3)72;(4)300.考点:1统计图;2频数与频率;3样本估计总体.22.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)【答案】(1)2米;(2)(6+3)或(6-3)米.【解析】试题分析:(1)在在Rt△DCE中,利用30°所对直角边等于斜边的一半,可求出DE=2米;(2)过点D作DF⊥AB于点F,则AF=2,根据三角函数可用BF表示BC、BD,然后可判断△BCD是Rt△,进而利用勾股定理可求得BF的长,AB的高度也可求.米或(6﹣3)米.考点:1特殊直角三角形;2三角函数;3勾股定理.23..如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4﹣2.①求KD的长度;②如图2,点P 是线段KD 上的动点(不与点D 、K 重合),PM ∥DG 交KG 于点M ,PN ∥KG 交DG 于点N ,设PD=m ,当S △PMN =42时,求m 的值.【答案】(1)证明见解析;(2)①2,②1. 【解析】试题分析:(1)①根据AAS 可判定△DOK ≌△BOG ,②易证四边形AFGK 为平行四边形,从而得到AK=FG ,而AB=BF ,所以AB+AK=BG ;(2)①由(1)可知AB=BF ,∴AF=KG=DK=BG=2AB ,AK=FG=2AB-AB ,再利用AK+DK=AD=BC△BOG ,且KD=KG.∴AF=KG=KD=BG.设AB=a ,则AF=KG=KD=BG=2a.∴AK=FG=BG-BF=2a-a ,∵AK+DK=AD=BC ,∴2a-a+2a=4-2,解得a=2.∴KD=2a=2.②过点G 作GI ⊥KD 于点I.由(2)①可知KD=AF=2,∴GI=AB=2∴S △DKG=12×2×2=2.∵PD=m ,∴PK=2﹣m.∵PM ∥DG ,PN ∥KG ,∴四边形PMGN 是平行四边形,△DKG ∽△PKM ∽△DPN.∴22⎪⎪⎭⎫ ⎝⎛=∆∆m S S DKG DPN ,即S △DPN =(m 2)2⋅2.同理S △PKM =(2-m 2)2⋅2.∵S △PMN =42.∴S 平行四边形考点:1矩形;2平行四边形;3相似三角形的性质;4一元一次方程;5一元二次方程.24.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C (0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:A EE C=37;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.【答案】(1)y=﹣x2﹣6x﹣5;(2)15;(3)证明见解析;(4)能,P(﹣1,0)或(﹣2,3)或(2,﹣7﹣62).【解析】试题分析:(1)把B、C坐标代入解析式中可求得a,c的值,解析式即可求出;(2)过P 作PQ⊥x轴交AC于点Q.由条件易求AC解析式.把P点横坐标到直线AC解析式中求出Q点坐标.则△CPQ与△APQ面积可求出,从而△APC面积可求;(3)①易证AP=PD,AH=DH,△PHD∽△COD ,设OH=p.则PH=-p 2+6p-5,DH=AH=5-p ,OD=2p-5,利用PH OC =DH OD ,求出p 值,求的AH ,OH 的长,再根据平行线分线段成比例,得出A E E C =AH OH,可证明结论;②设P (x ,﹣x 2﹣6x ﹣5),则E (x ,﹣x ﹣5),分类讨论:当PA=PE ,易得点P 与B 点重合,此时P 点坐标为(﹣1,0);当AP=AE ,如图2,利用PH=HE 得到|﹣x2﹣6x ﹣5|=|﹣x ﹣5|,当E ′A=E ′P ,如图2,AE ′= E ′H ′= (x+5),P ′E ′=x 2+5x ,则x 2+5x= (x+5),然后分别解方程求出x 可得到对应P 点坐标.试题解析:(1)把B (-1,0)、C (0,-5)坐标代入y=ax 2﹣6x+c 中,得⎩⎨⎧-=++=560c ca ,解得⎩⎨⎧-=-=51c a ,∴抛物线解析式为y=﹣x 2﹣6x ﹣5;(2)设直线AC 的解析式为y=mx+n ,把A (﹣5,0),C (0,﹣5)代入得⎩⎨⎧-==+-505n n m ,解得⎩⎨⎧-=-=51n m ,∴直线AC 的解析式为y=﹣x ﹣5,作PQ ∥y 轴交AC 于Q ,如图1,则Q (﹣2,﹣3),∴PQ=3﹣(﹣3)=6,∴S △APC =S △APQ +S △CPQ =12•PQ •5=12×6×5=15;(3)①∵∠APE=∠CPE ,PH ⊥AD ,∴AP=PD ,∴AH=DH.设OH=p ,则PH=-p 2+6p-5,DH=AH=5-p ,OD=2p-5. ∵∠PHD=∠DOC=90°,∠PDH=∠ODC ,∴△PHD ∽△COD ,∴PH OC =DH OD,∴5255562--=-+-p p p p ,解得p 1=72,p 2=5(舍去).∴OH=72,考点:1二次函数综合题;2平行线分线段成比例;3相似三角形;4一元二次方程.。
2016年海南各科中考试题及答案汇总
2016年海南各科中考试题及答案汇总
海南中考频道的小编会及时为广大考生提供2016年海南各科中考试题及答案汇总,希望对大家有所帮助。
2016年海南各科中考试题及答案汇总
历史
2016海南中考历史试题及答案已公布
英语
2016年海南中考英语试题及答案已公布
化学
2016海南中考化学试题及答案
物理
2016海南中考物理试题及答案已公布
数学2016海南中考数学试Fra bibliotek及答案语文
2016海南中考语文试题及答案
政治
2016海南中考政治试题及答案
生物
海南2016中考生物试题及答案
地理
2016年海南中考地理试题及答案
中考频道整理
2016年海南省临高县中考数学一模试卷(解析版)
2016年海南省临高县中考数学一模试卷一、选择题(本大题满分42分,每小题3分)1.|﹣5+3|=()A.﹣8 B.8 C.﹣2 D.22.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x6÷x3=x3D.(x3)2=x93.已知a﹣2b+3=0,则代数式5+2b﹣a的值是()A.2 B.4 C.6 D.84.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间5.已知一组数据5、2、3、x、4的众数为4,则这组数据的中位数为()A.2 B.3 C.4 D.4.56.如图所示的工件的主视图是()A.B.C.D.7.从﹣1、﹣2、3、4这四个数中,随机抽取两个数相乘,积为负数的概率是()A.B.C.D.8.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.199.如图,将矩形ABCD纸片沿EF折叠,若∠BGE=130°,则∠GEF等于()A.60°B.65°C.70°D.75°10.如图,在△ABC中,DE∥BC,AD=DB,BC=10,则DE的长为()A .3B .4C .5D .611.如图,在▱ABCD 中,AB=4,AD=7,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF 的长是( )A .2B .3C .4D .512.如图,直线y=x 与双曲线y=相交于A (﹣2,n )、B 两点,则k 的值为( )A .2B .﹣2C .1D .﹣113.如图,AB 是⊙O 的直径,PA 切⊙O 于点A ,PO 交⊙O 于点C ,连结AC 、BC .若∠BAC=2∠BCO ,AC=3,则PA 的长为( )A .3B .4C .5D .614.如图,已知A (﹣3,0),B (0,﹣4),P 为反比例函数y=(x >0)图象上的动点,PC ⊥x 轴于C ,PD ⊥y 轴于D ,则四边形ABCD 面积的最小值为( )A.12 B.13 C.24 D.26二、填空题(本大题满分16分,每小题4分)15.已知a﹣b=2,a=3,则a2﹣ab=.16.方程=1﹣的解是.17.如图,OD是⊙O的半径,弦AB⊥OD于E,若∠O=70°,则∠A+∠C=度.18.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是.三、解答题(本大题满分62分)19.(1)计算:(﹣1)3+()﹣2﹣×;(2)化简:(+1)•.20.有一批机器零件共400个,若甲先做1天,然后甲、乙两人再共做2天,则还有60个未完成;若两人合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?21.某社区要调查社区居民双休日的学习状况,采用下列调查方式:①选取社区内200名在校学生;②从一幢高层住宅楼中选取200名居民;③从不同住宅楼中随机选取200名居民.(1)上述调查方式最合理的是(填写序号);(2)将最合理的调查方式得到的数据绘制成扇形统计图(如图1)和频数分布直方图(如图2).在图1中,“在图书馆等场所学习”部分所占的圆心角是度;在这个调查中,200名居民双休日在家学习的有人;(3)请估计该社区1800名居民双休日学习时间不少于4小时的人数.22.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图,在一次巡航过程中,巡航飞机飞行高度为2362米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1464米到达B点后测得F点俯角为45°,请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)23.如图,在边长为2的正方形ABCD中,点P、Q分别是边AB、BC上的两个动点(与点A、B、C不重合)且始终保持BP=BQ,AQ⊥QE,QE交正方形外角平分线CE于点E,AE交CD于点F,连结PQ.(1)求证:△APQ≌△QCE;(2)求∠QAE的度数;(3)设BQ=x,当x为何值时,QF∥CE,并求出此时△AQF的面积.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.2016年海南省临高县中考数学一模试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)1.|﹣5+3|=()A.﹣8 B.8 C.﹣2 D.2【考点】有理数的加法;绝对值.【分析】原式先利用异号两数相加的法则计算,再利用绝对值的代数意义化简即可得到结果.【解答】解:原式=|﹣2|=2.故选D.2.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x6÷x3=x3D.(x3)2=x9【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加;同底数幂的除法底数不变指数相减;幂的乘方底数不变指数相乘;可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.3.已知a﹣2b+3=0,则代数式5+2b﹣a的值是()A.2 B.4 C.6 D.8【考点】代数式求值.【分析】根据题意得出a﹣2b=﹣3,再代入代数式进行计算即可.【解答】解:∵a﹣2b+3=0,∴a﹣2b=﹣3,∴原式=5﹣(a﹣2b)=5+3=8.故选D.4.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【考点】估算无理数的大小;算术平方根.【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.5.已知一组数据5、2、3、x、4的众数为4,则这组数据的中位数为()A.2 B.3 C.4 D.4.5【考点】众数;中位数.【分析】先根据众数定义求出x,再把这组数据从小到大排列,找出正中间的那个数就是中位数.【解答】解:∵数据5、2、3、x、4的众数为4,∴4出现的次数是2次,∴x=4,数据重新排列是:2、3、4、4、5,由于5个数中4在正中间,所以中位数是4.故选C.6.如图所示的工件的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形,本题找到从正面看所得到的图形即可.【解答】解:从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选B.7.从﹣1、﹣2、3、4这四个数中,随机抽取两个数相乘,积为负数的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据题意可以计算出任意两个数的乘积,从而可以得到随机抽取两个数相乘,积为负数的概率.【解答】解:∵﹣1×3,﹣1×4,﹣2×3,﹣2×4,这四组数的乘积都是负数,﹣1×(﹣2),3×4这两组数的乘积是正数,∴从﹣1、﹣2、3、4这四个数中,随机抽取两个数相乘,积为负数的概率是:.故选A.8.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16 B.17 C.18 D.19【考点】勾股定理.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选B.9.如图,将矩形ABCD纸片沿EF折叠,若∠BGE=130°,则∠GEF等于()A.60°B.65°C.70°D.75°【考点】平行线的性质.【分析】由四边形ABCD是矩形,得到AD∥BC,根据平行线的性质得到∠DEG=∠BGE=130°,由折叠的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEG=∠BGE=130°,由折叠的性质得∠DEF=∠GEF,∴∠GEF=,故选B.10.如图,在△ABC中,DE∥BC,AD=DB,BC=10,则DE的长为()A.3 B.4 C.5 D.6【考点】三角形中位线定理.【分析】根据三角形中位线定理进行计算即可.【解答】解:∵在△ABC中,DE∥BC,AD=DB,∴DE是△ABC的中位线,∴DE=BC,又BC=10,∴DE=5.故选:C.11.如图,在▱ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF的长是()A.2 B.3 C.4 D.5【考点】平行四边形的性质.【分析】根据平行四边形的对边相等且平行和利用平行四边形的性质以及平行线的基本性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠CFE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠CBF=∠CFB,∴CF=CB=7,∴DF=CF﹣CD=7﹣4=3,故选B.12.如图,直线y=x与双曲线y=相交于A(﹣2,n)、B两点,则k的值为()A.2 B.﹣2 C.1 D.﹣1【考点】反比例函数与一次函数的交点问题.【分析】由点A在直线y=x的图象上,可求出n的值,再结合反比例函数图象上点坐标的特征可求出k值.【解答】解:∵点A在直线y=x的图象上,∴n=×(﹣2)=﹣1.∵点A在反比例函数y=的图象上,∴k=﹣2×(﹣1)=2.故选A.13.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连结AC、BC.若∠BAC=2∠BCO,AC=3,则PA的长为()A.3B.4 C.5 D.6【考点】切线的性质.【分析】先证明△OAC为等边三角形得到∠AOC=60°,再根据切线的性质得到∠OAP=90°,然后根据正切的定义计算PA的长.【解答】解:∵OB=OC,∴∠B=∠BCO,∴∠AOC=∠B+∠BCO,∴∠AOC=2∠BCO,而∠BAC=2∠BCO,∴∠BAC=∠AOC,∴CA=CO,而OA=OC,∴OA=OC=AC=3,∴△OAC为等边三角形,∴∠AOC=60°,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵tan∠AOB=,∴PA=3tan60°=3.故选A.14.如图,已知A(﹣3,0),B(0,﹣4),P为反比例函数y=(x>0)图象上的动点,PC⊥x轴于C,PD⊥y轴于D,则四边形ABCD面积的最小值为()A.12 B.13 C.24 D.26【考点】反比例函数系数k的几何意义.【分析】设P点坐标为(x,),将四边形分割为四个三角形,四边形ABCD面积的最小,即S△AOB+S△AOD+S△DOC+S△BOC最小.【解答】解:设P点坐标为(x,),x>0,则S△AOD=×|﹣3|×||=,S△DOC==6,S△BOC=×|﹣4|×|x|=2x,S△AOB=×3×4=6.∴S△AOB+S△AOD+S△DOC+S△BOC=12+2x+=12+2(x+)≥12+2×2×=24.故选C.二、填空题(本大题满分16分,每小题4分)15.已知a﹣b=2,a=3,则a2﹣ab=6.【考点】因式分解-提公因式法.【分析】首先提取公因式a,进而分解因式,将已知代入求出即可.【解答】解:∵a﹣b=2,a=3,∴a2﹣ab=a(a﹣b)=3×2=6.故答案为:6.16.方程=1﹣的解是x=2.【考点】分式方程的解.【分析】先把分式方程去分母转化为整式方程,求出整式方程x的解,经检验即可得到分式方程的解.【解答】解:=1﹣,=1+,2﹣x=x﹣3+1,﹣2x=﹣4,x=2,经检验x=2是原方程的解.故答案为:x=2.17.如图,OD是⊙O的半径,弦AB⊥OD于E,若∠O=70°,则∠A+∠C=55度.【考点】垂径定理.【分析】如图,连接OB,利用等腰△OAB的性质可以求得∠ABO的度数;结合垂径定理、圆周角定理来求∠C的度数,易得∠A+∠C的值.【解答】解:如图,连接OB,∵OA=OB,∴∠A=∠ABO.又∵OD是⊙O的半径,弦AB⊥OD于E,∠O=70°,∴=,∠AOB=140°,∴∠C=∠AOD=35°,∠A=∠ABO=20°,∴∠A+∠C=55°.故答案是:55.18.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是1(在﹣2<b<2范围内的任何一个数).【考点】抛物线与x轴的交点.【分析】把(0,﹣3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.【解答】解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,∴﹣2<b<2,即在﹣2<b<2范围内的任何一个数都符合,故答案为:1(在﹣2<b<2范围内的任何一个数).三、解答题(本大题满分62分)19.(1)计算:(﹣1)3+()﹣2﹣×;(2)化简:(+1)•.【考点】实数的运算;分式的混合运算;负整数指数幂.【分析】(1)原式利用乘方的意义,负整数指数幂法则,以及二次根式乘法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:(1)原式=﹣1+4﹣6=﹣7+4=﹣3;(2)原式=•=•=.20.有一批机器零件共400个,若甲先做1天,然后甲、乙两人再共做2天,则还有60个未完成;若两人合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?【考点】二元一次方程组的应用.【分析】设甲每天做x个零件,乙每天做y个零件,根据题意可得:甲做3天+乙做2天=400﹣60,甲乙合作3天=400+20,据此列方程组求解.【解答】解:设甲每天做x个零件,乙每天做y个零件,由题意得,,解得:,答:甲每天做60个零件,乙每天做80个零件.21.某社区要调查社区居民双休日的学习状况,采用下列调查方式:①选取社区内200名在校学生;②从一幢高层住宅楼中选取200名居民;③从不同住宅楼中随机选取200名居民.(1)上述调查方式最合理的是③(填写序号);(2)将最合理的调查方式得到的数据绘制成扇形统计图(如图1)和频数分布直方图(如图2).在图1中,“在图书馆等场所学习”部分所占的圆心角是108°度;在这个调查中,200名居民双休日在家学习的有120人;(3)请估计该社区1800名居民双休日学习时间不少于4小时的人数.【考点】扇形统计图;全面调查与抽样调查;用样本估计总体;频数(率)分布直方图.【分析】(1)调查方式最合理的就是调查时抽取方式最具有随机性,样本能代表社区所有情况的调查方式;(2)根据“在图书馆等场所学习“占样本百分比为30%,乘以360°可得圆心角度数;利用200名居民中,在家学习的占60%即可求出答案;(3)用样本中学习时间不少于4小时人数占被调查人数比例乘以总人数1800即可.【解答】解:(1)③;(2)“在图书馆等场所学习”部分所占的圆心角是360°×30%=108°,200名居民双休日在家学习的有:200×60%=120(人);(3)×1800=1278(人).答:估计该社区1800名居民双休日学习时间不少于4小时的1278人.故答案为:(1)③;(2)108°,1278.22.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图,在一次巡航过程中,巡航飞机飞行高度为2362米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1464米到达B点后测得F点俯角为45°,请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)【考点】解直角三角形的应用-仰角俯角问题.【分析】设CF=x,在Rt△ACF和Rt△BCF中,分别用CF表示AC、BC的长度,然后根据AC﹣BC=1200,求得x的值,用h﹣x即可求得最高海拔.【解答】解:设CF=x,在Rt△ACF和Rt△BCF中,∵∠BAF=30°,∠CBF=45°,∴BC=CF=x,=tan30°,即AC=x,∵AC﹣BC=1464米,∴x﹣x=1464,解得:x=732(+1),则DF=h﹣x=2362﹣732(+1)≈362(米).答:钓鱼岛的最高海拔高度约362米.23.如图,在边长为2的正方形ABCD中,点P、Q分别是边AB、BC上的两个动点(与点A、B、C不重合)且始终保持BP=BQ,AQ⊥QE,QE交正方形外角平分线CE于点E,AE交CD于点F,连结PQ.(1)求证:△APQ≌△QCE;(2)求∠QAE的度数;(3)设BQ=x,当x为何值时,QF∥CE,并求出此时△AQF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)判断出△PBQ是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE,再求出AP=CQ,然后利用“角边角”证明即可;(2)根据全等三角形对应边相等可得AQ=EQ,判断出△AQE是等腰直角三角形,再根据等腰直角三角形的性质解答;(3)把△ABQ绕点A逆时针旋转90°得到△ADG,求出∠GAF=45°,从而得到∠GAF=∠QAF,再利用“边角边”证明△AQF和△AGF全等,根据全等三角形对应边相等可得QF=GF,再根据两直线平行,同位角相等求出∠CQF=45°,然求出CQ=CF,分别用x表示出CQ、CF、QF,利用勾股定理列式表示出QF,然后列出方程求出x,再求出△AGF的面积,即为△AQF的面积.【解答】(1)证明:在正方形ABCD中,∠B=90°,AB=BC,∵BP=BQ,∴△PBQ是等腰直角三角形,AP=CQ,∴∠BPQ=45°,∵CE为正方形外角的平分线,∴∠APQ=∠QCE=135°,∵AQ⊥QE,∴∠CQE+∠AQB=90°,又∵∠PAQ+∠AQB=90°,∴∠PAQ=∠CQE,在△APQ和△QCE中,,∴△APQ≌△QCE(ASA);(2)解:∵△APQ≌△QCE,∴AQ=EQ,∵AQ⊥QE,∴△AQE是等腰直角三角形,∴∠QAE=45°;(3)解:如图,把△ABQ绕点A逆时针旋转90°得到△ADG,则AQ=AG,BQ=DG,∠BAQ=∠DAG,∵∠QAE=45°,∴∠GAF=45°,∴∠GAF=∠QAF,在△AQF和△AGF中,,∴△AQF≌△AGF(SAS),∴QF=GF,∵QF∥CE,∴∠CQF=45°,∴△CQF是等腰直角三角形,∴CQ=CF,∵BQ=x,∴CQ=CF=2﹣x,∴DF=2﹣(2﹣x)=x,∴QF=GF=2x,在Rt△CQF中,CQ2+CF2=QF2,即(2﹣x)2+(2﹣x)2=(2x)2,解得x=2﹣2,∴△AGF的面积=×2(2﹣2)×2=4﹣4,即△AQF的面积为4﹣4.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据A点的坐标,用待定系数法即可求出直线OA的解析式.(2)①由于M点在直线OA上,可根据直线OA的解析式来表示出M点的坐标,因为M 点是平移后抛物线的顶点,因此可用顶点式二次函数通式来设出这个二次函数的解析式,P 的横坐标为2,将其代入抛物线的解析式中即可得出P点的坐标.②PB的长,实际就是P点的纵坐标,因此可根据其纵坐标的表达式来求出PB最短时,对应的m的值.(3)根据(2)中确定的m值可知:M、P点的坐标都已确定,因此AM的长为定值,若要使△QMA的面积与△PMA的面积相等,那么Q点到AM的距离和P到AM的距离应该相等,因此可分两种情况进行讨论:①当Q在直线OA下方时,可过P作直线OA的平行线交y轴于C,那么平行线上的点到OA的距离可相等,因此Q点必落在直线PC上,可先求出直线PC的解析式,然后利用抛物线的解析式,看得出的方程是否有解,如果没有则说明不存在这样的Q点,如果有解,得出的x的值就是Q点的横坐标,可将其代入抛物线的解析式中得出Q点的坐标.②当Q在直线OA上方时,同①类似,可先找出P关于A点的对称点D,过D作直线OA 的平行线交y轴于E,那么直线DE上的点到AM的距离都等于点P到AM上的距离,然后按①的方法进行求解即可.(本题也可通过以AP为底,找出和点M到AP的距离相等的两条直线,然后联立抛物线的解析式进行求解即可).【解答】解:(1)设OA所在直线的函数解析式为y=kx,∵A(2,4),∴2k=4,∴k=2,∴OA所在直线的函数解析式为y=2x.(2)①∵顶点M的横坐标为m,且在线段OA上移动,∴y=2m(0≤m≤2).∴顶点M的坐标为(m,2m).∴抛物线函数解析式为y=(x﹣m)2+2m.∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2).∴点P的坐标是(2,m2﹣2m+4).②∵PB=m2﹣2m+4=(m﹣1)2+3,又∵0≤m≤2,∴当m=1时,PB最短.(3)当线段PB最短时,此时抛物线的解析式为y=(x﹣1)2+2即y=x2﹣2x+3.假设在抛物线上存在点Q,使S△QMA=S△PMA.设点Q的坐标为(x,x2﹣2x+3).①点Q落在直线OA的下方时,过P作直线PC∥AO,交y轴于点C,∵PB=3,AB=4,∴AP=1,∴OC=1,∴C点的坐标是(0,﹣1).∵点P的坐标是(2,3),∴直线PC的函数解析式为y=2x﹣1.∵S△QMA=S△PMA,∴点Q落在直线y=2x﹣1上.∴x2﹣2x+3=2x﹣1.解得x1=2,x2=2,即点Q(2,3).∴点Q与点P重合.∴此时抛物线上不存在点Q(2,3),使△QMA与△APM的面积相等.②当点Q落在直线OA的上方时,作点P关于点A的对称称点D,过D作直线DE∥AO,交y轴于点E,∵AP=1,∴EO=DA=1,∴E、D的坐标分别是(0,1),(2,5),∴直线DE函数解析式为y=2x+1.∵S△QMA=S△PMA,∴点Q落在直线y=2x+1上.∴x2﹣2x+3=2x+1.解得:x1=2+,x2=2﹣.代入y=2x+1得:y1=5+2,y2=5﹣2.∴此时抛物线上存在点Q1(2+,5+2),Q2(2﹣,5﹣2)使△QMA与△PMA的面积相等.综上所述,抛物线上存在点,Q1(2+,5+2),Q2(2﹣,5﹣2)使△QMA与△PMA的面积相等.2016年9月6日。
海南省重点中学2016中考模拟考试数学试题及答案
海南省XX 中学2016中考模拟考试(一)数学科试题(全卷满分120分,考试时间100分钟) 特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效. 2. 答题前请认真阅读试题及有关说明. 一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1. -5的绝对值是A. 5B. 51C. -5D. 51-2. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约 为260000平方米,将260000用科学记数法表示为2.6×10n ,则n 的值是 A .3 B .4 C .5 D .6 3.计算()3232a a ⋅-的结果,正确的是A .-6a 5B .6a 5C .-2a 6D . 2a 6 4.函数4-=x y 中,自变量x 的取值范围是A .x >4B .x ≥4C .x >0D .x ≠45.已知-1是关于x 的方程02=+a x 的解,则a 的值为A .2B .-2C .21D . 21-6.如图1,在一个长方体上放着一个小正方体,这个组合体的左视图...是7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同. 小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是A .6 B. 16 C. 18 D. 24 8. 若A (x 1,-3)、B (x 2,-2)、C (x 3,1)三点都在函数xy 6=的图象上,则x 1、x 2、x 3的大小关系是 A .x 2<x 1<x 3 B .x 1<x 2<x 3 C .x 2>x 1>x 3 D .x 1>x 2>x 39. 如图2,AD 是在Rt △ABC 斜边BC 上的高,将△ADC 沿AD 所在直线折叠,点C 恰好A .B .C .D .图1正面落在BC 的中点E 处,则∠B 等于A .25°B .30°C .45°D .60°10. 如图3,在⊙O 中,OC ∥AB ,∠A =20°,则∠1等于A. 40°B. 45° B. 50° D. 60°11.不等式组⎩⎨⎧>->-04203x x 的解集是A .3>xB .2<xC .32<<xD .2>x 或3-<x 12.将一元二次方程0222=--x x 配方后所得的方程是A. 3)1(2=+xB. 3)1(2=-xC. 2)1(2=-xD. 3)2(2=+x 13.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距A 地18千米的B 地,他们离开A 地的距离s (千米)和行驶时间 t (小时)之间的函数关系图象如图4所示. 根据题目和图象提供的信息,下列说法正确的是A .乙比甲早出发半小时B .乙在行驶过程中没有追上甲C .乙比甲先到达B 地D .甲的行驶速度比乙的行驶速度快14. 如图5, CD 是一平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6, CD=12,则CE 的值为A.3B. 4 C .5 D .6 二、填空题(本大题满分16分,每小题4分) 15.分解因式:92-a = .16.如果正多边形的一个外角为72°,那么它的边数是 .17. 如图6,在菱形ABCD 中, E 、F 分别是DB 、DC 的中点,若AB =10,则EF = .图2 ECBADDEF图6 AB OC图31 O图7B30°0.5 1 2 2.5 (小时) 18 甲 乙 s (千米) 图4 A图5 αC D E18.如图7,半径为2的⊙O 与含有30°角的直角三角板ABC 的AC 边切于点A ,将直角三角板沿CA 边所在的直线向左平移,当平移到AB 与⊙O 相切时,该直角三角板平移的距离为 . 三、解答题(本大题满分62分) 19.(本题满分10分,每小题5分)(1)计算:2)2(311516--⎪⎭⎫ ⎝⎛-⨯+. (2)化简:()()211a a a +--. 20.(本题满分8分)明铭同学利用寒假期间到某品牌的服装专卖店做社会调查,了解到该商场为了激励营业员的工作积极性,扩大销售量,实行“月总收入=月基本工资+计件奖金”的方法. (计件奖金=月销售量×每件所得奖金)同时获得如下信息:营业员 小萍 小华 月销售量(件) 150 200 月总收入(元)10501200假设销售每件服装奖励a 元,营业员月基本工资为b 元. 求a 、b 的值; 21. (8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A .1.5小时以上B .1~1.5小时C .0.5~1小时D .0.5小时以下图8.1、8.2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:图8.1 图8.2(1)本次一共调查了 名学生;学生参加体育活动时间的中位数落在 时间段(填写上面所给“A ”、“B ”、“C ”、“D ”中的一个选项); (2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.22.(8分)如图9,要测量一幢楼CD 的高度,在地面上A 点测得楼CD 的顶部C 的仰角为30°,向楼前进50m 到达B 点,又测得点C 的仰角为60°. 求这幢楼CD 的高度(结果保留根号).23. (本题满分13分)如图10,正方形ABCD 中,E 是BD 上一点,AE 的延长线交CD 于F ,交BC 的延长线于G ,M 是FG 的中点. (1)求证:① ∠1=∠2;② EC ⊥MC.(2)试问当∠1等于多少度时,△ECG 为等腰三角形? 请说明理由.24.(本题满分14分)如图11,已知抛物线经过原点O 和点A ,点B (2,3)是该抛物线对称轴上一点,过点B 作BC ∥x 轴交抛物线于点C行四边形. (1)① 直接写出A 、C 两点的坐标;② 求这条抛物线的函数关系式;(2)设该抛物线的顶点为M ,试在线段AC 上找出这样的点P ,使得△PBM 是以BM 为底边的等 腰三角形,并求出此时点P 的坐标;(3)经过点M 的直线把□ OACB 的面积分为1:3两部分,求这条直线的函数关系式.图11A C DEGF M 1 2 图10图9海南省XX 中学2016中考模拟考试(一)数学科试题数学科参考答案及评分标准一、ACABC DBABD CBCB二、 15.(a+3)(a-3) 16.5 17. 5 18. 32三、19.(1)原式=4-5-4 ………………………………(3分) =-5 ………………………………(5分) (2)原式=-++122a a a a +2………………………………(3分)= 13+a ………………………………(5分)20.(1) 根据题意,得 ⎩⎨⎧=+=+12002001050150b a b a ………………………………(4分)解这个方程组,得 ⎩⎨⎧==6003b a ………………………………(7分)答: ………(8分)21. (1)200,B . ………………………………(4分)⑵略. ………………………………(6分) (3)3000×5%=150(人). ……………………(8分 ) 22.依题意,有∠A =30°,∠CBD =60°,AB =50m .∵ ∠CBD =∠A +∠ACB ,∴ ∠ACB =∠CBD -∠A =60°-30°=30°=∠A .∴ BC =AB =50m . ……………………(5分) 在Rt △CDB 中,CD =CB ·sin60°=50×23=253 (m ),∴ 该幢楼CD 的高度为253m . ……………………(8分) (注:用其它方法求解参照以上标准给分.)23.(1)①∵四边形ABCD 是正方形,∴DA=DC ,∠ADE=∠CDE=45°,DE=DE, …………………………(2分)∴△DAE ≌△DCE. …………………………………(3分) ∴∠1=∠2. …………………………………(4分)②∵四边形ABCD 是正方形,∴AD ∥BG,∴∠1=∠G=∠2. …………………………………(5分)又∵CM 是Rt △FCG 斜边上的中线,∴MC=MG=MF ,∴∠MCG=∠G. ∴∠2=∠MCG …………………………………(7分) ∴∠2+∠FCM=∠MCG+∠FCM=90°.即EC ⊥MC . …………………………………(8分) (2)当∠1=30°时,△ECG 为等腰三角形. 理由如下: ………………(9分) ∵∠ECG >90°,要使△ECG 为等腰三角形,必有CE=CG ,∴∠G=∠CEG. …………………………………(10分) ∵∠G=∠2,∴∠CEG=∠2∴∠DFA=2∠2=2∠1. ……………………………(12分)∴∠1=30°. ……………………………(13分) 24.(1)① A (4,0),C (6,3) …………………………(2分)② 设所求的抛物线为y =ax 2+bx +c ,则依题意,得⎪⎩⎪⎨⎧=++=++=363604160c b a c b a c …………………………(3分) 解得a =41,b =-1,c =0, ∴ 所求的抛物线函数关系式为x x y -=241.(4分) (2)设线段AC 所在的直线的函数关系式为y =k 1x +b 1 ,根据题意,得⎩⎨⎧=+=+36041111b k b k …………………………(5分)解得 k 1=23,b 1=-6 .∴ 直线AC 的函数关系式为623-=x y . ……(6分)∵ 抛物线x x y -=241的顶点坐标M 为(2,-1),……………………(7分)∴ 符合条件的等腰三角形PBM 顶角的顶点P 在线段BM 的垂直平分线与线段AC 的交点上. …………………………(8分)而BM =4,所以P 点的纵坐标为1,把y =1代入623-=x y 中,得314=x .∴ 点P 的坐标为(314,1). …………………………(9分)(3)由条件可知经过点M 且把□ OACB 的面积分为1:3两部分的直线有两条.(ⅰ)∵ □ OACB =OA •BD =4•3=12,△OBD 的面积=21OD •BD =21•2•3=3, ∴ 直线x =2为所求. …………………………(11分)(ⅱ)设符合条件的另一直线分别与x 轴、BC 交于点E (x 1,0)、F (x 2,3), 则AE =4-x 1 ,CF =6-x 2∴ 四边形ACFE 的面积=21(4-x 1+6-x 2)•3=41•12.即x 1+x 2=8分) ∵ BC ∥x 轴,∴ △MDE ∽△MBF , ∴ MB MD FB ED =, ∴ 412221=--x x ,即4x 1-x 2=6.∴ x 1=514, x 2=526 ∴ E (514,0)、F (526,3) …………………………(13分)设直线ME 的函数关系式为y =k 2x +b 2 ,则⎪⎩⎪⎨⎧=+-=+0514122222b k b k 解得k 2=45, b 2=27-. ∴ 直线ME 的函数关系式为y =45x 27-. 综合(ⅰ)(ⅱ)得,所求直线为:x =2或y =45x 27-.………(14分) (注:用其它方法求解参照以上标准给分.)图11。
2016海南中考数学试题
2015年海南省中考数学试卷一、选择题(每小题3分,共42分)1.(3.00分)(2015•海南)﹣2015的倒数是()A.﹣ B.C.﹣2015 D.20152.(3.00分)(2015•海南)下列运算中,正确的是()A.a2+a4=a6 B.a6÷a3=a2 C.(﹣a4)2=a6D.a2•a4=a63.(3.00分)(2015•海南)已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣34.(3.00分)(2015•海南)有一组数据:1,4,﹣3,3,4,这组数据的中位数为()A.﹣3 B.1 C.3 D.45.(3.00分)(2015•海南)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.6.(3.00分)(2015•海南)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A.4 B.5 C.6 D.77.(3.00分)(2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB8.(3.00分)(2015•海南)方程=的解为()A.x=2 B.x=6 C.x=﹣6 D.无解9.(3.00分)(2015•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元10.(3.00分)(2015•海南)点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.111.(3.00分)(2015•海南)某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.12.(3.00分)(2015•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点13.(3.00分)(2015•海南)如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对14.(3.00分)(2015•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45° B.30° C.75° D.60°二、填空题(每小题4分,共16分)15.(4.00分)(2018•衢州)分解因式:x2﹣9= .16.(4.00分)(2015•海南)点(﹣1,y1)、(2,y2〕是直线y=2x+1上的两点,则y1y2(填“>”或“=”或“<”)17.(4.00分)(2015•海南)如图,在平面直角坐标系中,将点P(﹣4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为.18.(4.00分)(2015•海南)如图,矩形ABCD中,AB=3,BC=4,则图中五个小矩形的周长之和为.三、解答题(本题共6小题,共62分)19.(10.00分)(2015•海南)(1)计算:(﹣1)3﹣﹣12×2﹣2;(2)解不等式组:.20.(8.00分)(2015•海南)小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?21.(8.00分)(2015•海南)为了治理大气污染,我国中部某市抽取了该市2014年中120天的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a= ,m= ;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是度;(4)估计该市2014年(365天)中空气质量指数大于100的天数约有天.22.(9.00分)(2015•海南)如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)23.(13.00分)(2015•海南)如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n•PK,试求出n的值;(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.24.(14.00分)(2015•海南)如图,二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D.(1)求该二次函数的表达式;(2)求证:四边形ACHD是正方形;(3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M的直线y=kx交二次函数的图象于另一点N.①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;②若△CMN的面积等于,请求出此时①中S的值.2015年海南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共42分)1.(3.00分)(2015•海南)﹣2015的倒数是()A.﹣ B.C.﹣2015 D.2015【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:∵﹣2015×(﹣)=1,∴﹣2015的倒数是﹣,故选:A.【点评】本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.(3.00分)(2015•海南)下列运算中,正确的是()A.a2+a4=a6 B.a6÷a3=a2 C.(﹣a4)2=a6D.a2•a4=a6【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、a2+a6不能合并,故错误;B、a6÷a3=a3,故错误;C、(﹣a4)2=a8,故错误;D、a2•a4=a6,正确;故选:D.【点评】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.3.(3.00分)(2015•海南)已知x=1,y=2,则代数式x﹣y的值为()A.1 B.﹣1 C.2 D.﹣3【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.4.(3.00分)(2015•海南)有一组数据:1,4,﹣3,3,4,这组数据的中位数为()A.﹣3 B.1 C.3 D.4【分析】根据中位数的定义,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数求解即可.【解答】解:将这组数据从小到大排列为:﹣3,1,3,4,4,中间一个数为3,则中位数为3.故选:C.【点评】本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(3.00分)(2015•海南)如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.6.(3.00分)(2015•海南)据报道,2015年全国普通高考报考人数约为9 420 000人,数据9 420 000用科学记数法表示为9.42×10n,则n的值是()A.4 B.5 C.6 D.7【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于9420000有7位,所以可以确定n=7﹣1=6.【解答】解:∵9420000=9.42×106,∴n=6.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3.00分)(2015•海南)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB【分析】本题要判定△ABC≌△DCB,已知BC是公共边,具备了一组边对应相等.所以由全等三角形的判定定理作出正确的判断即可.【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(3.00分)(2015•海南)方程=的解为()A.x=2 B.x=6 C.x=﹣6 D.无解【分析】本题考查解分式方程的能力,观察可得最简公分母是x(x﹣2),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【解答】解:方程两边同乘以x(x﹣2),得3(x﹣2)=2x,解得x=6,将x=6代入x(x﹣2)=24≠0,所以原方程的解为:x=6,故选B.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.(3.00分)(2015•海南)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元【分析】根据3月份、1月份与2月份的产值的百分比的关系列式计算即可得解.【解答】解:3月份的产值为:(1﹣10%)(1+15%)x万元.故选:A.【点评】本题考查了列代数式,理解各月之间的百分比的关系是解题的关键.10.(3.00分)(2015•海南)点A(﹣1,1)是反比例函数y=的图象上一点,则m的值为()A.﹣1 B.﹣2 C.0 D.1【分析】把点A(﹣1,1)代入函数解析式,即可求得m的值.【解答】解:把点A(﹣1,1)代入函数解析式得:1=,解得:m+1=﹣1,解得m=﹣2.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.11.(3.00分)(2015•海南)某校幵展“文明小卫士”活动,从学生会“督查部”的3名学生(2男1女)中随机选两名进行督导,恰好选中两名男学生的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中两名男学生的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,恰好选中两名男学生的有2种情况,∴恰好选中两名男学生的概率是:=.故选:A.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.12.(3.00分)(2015•海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,A说法正确;甲先慢后快,乙先快后慢,B说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,C说法不正确;甲先到达终点,D说法正确,故选:C.【点评】本题考查的是函数的图象,从函数图象获取正确的信息是解题的关键.13.(3.00分)(2015•海南)如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.14.(3.00分)(2015•海南)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45° B.30° C.75° D.60°【分析】作半径OC⊥AB于D,连结OA、OB,如图,根据折叠的性质得OD=CD,则OD=OA,根据含30度的直角三角形三边的关系得到∠OAD=30°,接着根据三角形内角和定理可计算出∠AOB=120°,然后根据圆周角定理计算∠APB的度数.【解答】解:作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°,又OA=OB,∴∠OBA=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了含30度的直角三角形三边的关系和折叠的性质.二、填空题(每小题4分,共16分)15.(4.00分)(2018•衢州)分解因式:x2﹣9= (x+3)(x﹣3).【分析】本题中两个平方项的符号相反,直接运用平方差公式分解因式.【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).【点评】主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.16.(4.00分)(2015•海南)点(﹣1,y1)、(2,y2〕是直线y=2x+1上的两点,则y1<y2(填“>”或“=”或“<”)【分析】根据k=2>0,y将随x的增大而增大,得出y1与y2的大小关系.【解答】解:∵k=2>0,y将随x的增大而增大,2>﹣1,∴y1<y2.故y1与y2的大小关系是:y1<y2.故答案为:<【点评】本题考查一次函数的图象性质,关键是根据当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.17.(4.00分)(2015•海南)如图,在平面直角坐标系中,将点P(﹣4,2)绕原点顺时针旋转90°,则其对应点Q的坐标为(2,4).【分析】首先求出∠MPO=∠QON,利用AAS证明△PMO≌△ONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标.【解答】解:作图如右,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO≌△ONQ,∴PM=ON,OM=QN,∵P点坐标为(4,2),∴Q点坐标为(2,4),故答案为(2,4).【点评】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等.18.(4.00分)(2015•海南)如图,矩形ABCD中,AB=3,BC=4,则图中五个小矩形的周长之和为14 .【分析】运用平移的观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于DC,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,则五个小矩形的周长之和=2(AB+BC)=2×(3+4)=14.故答案为:14.【点评】本题考查了平移的性质,矩形性质的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.三、解答题(本题共6小题,共62分)19.(10.00分)(2015•海南)(1)计算:(﹣1)3﹣﹣12×2﹣2;(2)解不等式组:.【分析】(1)原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用负整数指数幂法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=﹣1﹣3﹣12×=﹣1﹣3﹣3=﹣7;(2),由①得:x≤2,由②得:x>﹣1,则不等式组的解集为﹣1<x≤2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8.00分)(2015•海南)小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?【分析】设A号计算器的单价为x元,则B型号计算器的单价是(x﹣10)元,依据“5台A型号的计算器与7台B型号的计算器的价钱相同”列出方程并解答.【解答】解:设A号计算器的单价为x元,则B型号计算器的单价是(x﹣10)元,依题意得:5x=7(x﹣10),解得x=35.所以35﹣10=25(元).答:A号计算器的单价为35元,则B型号计算器的单价是25元.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(8.00分)(2015•海南)为了治理大气污染,我国中部某市抽取了该市2014年中120天的空气质量指数,绘制了如下不完整的统计图表:空气质量指数统计表请根据图表中提供的信息,解答下面的问题:(1)空气质量指数统计表中的a= 48 ,m= 20% ;(2)请把空气质量指数条形统计图补充完整:(3)若绘制“空气质量指数扇形统计图”,级别为“优”所对应扇形的圆心角是72 度;(4)估计该市2014年(365天)中空气质量指数大于100的天数约有146 天.【分析】(1)用24÷120,即可得到m;120×40%即可得到a;(2)根据a的值,即可补全条形统计图;(3)用级别为“优”的百分比×360°,即可得到所对应的圆心角的度数;(4)根据样本估计总体,即可解答.【解答】解:(1)a=120×40%=48,m=24÷120=20%.故答案为:48,20%;(2)如图所示:(3)360°×20%=72°.故答案为:72;(4)365×=146(天).故答案为:146.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(9.00分)(2015•海南)如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考數据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)【分析】(1)作OC⊥AB于C,根据方向角的定义得到∠AOC=45°,∠BOC=75°,由直角三角形两锐角互余得出∠BAO=90°﹣∠AOC=45°,∠ABO=90°﹣∠BOC=15°;(2)先解Rt△OAC,得出AC=OC=OA≈5.64海里,解Rt△OBC,求出BC=OC•tan ∠BOC≈21.0372海里,那么AB=AC+BC≈26.6772海里,再根据时间=路程÷速度求出中国渔政船赶往B处救援所需的时间,与1小时比较即可求解.【解答】解:(1)如图,作OC⊥AB于C,由题意得,∠AOC=45°,∠BOC=75°,∵∠ACO=∠BCO=90°,∴∠BAO=90°﹣∠AOC=90°﹣45°=45°,∠ABO=90°﹣∠BOC=90°﹣75°=15°;(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能在1小时内赶到.理由如下:∵在Rt△OAC中,∠ACO=90°,∠AOC=45°,OA=8海里,∴AC=OC=OA≈4×1.41=5.64海里.∵在Rt△OBC中,∠BCO=90°,∠BOC=75°,OC=4海里,∴BC=OC•tan∠BOC≈5.64×3.73=21.0372海里,∴AB=AC+BC≈5.64+21.0372=26.6772海里,∵中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,∴中国渔政船所需时间:26.6772÷28≈0.953小时<1小时,故若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能在1小时内赶到.【点评】本题考查了解直角三角形的应用﹣方向角问题,直角三角形的性质,锐角三角函数定义,准确作出辅助线构造直角三角形是解题的关键.23.(13.00分)(2015•海南)如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n•PK,试求出n的值;(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON是等腰三角形,并直接写出∠MON的度数.【分析】(1)根据菱形的性质得到AD∥BC,根据平行线的性质得到对应角相等,根据全等三角形的判定定理证明结论;(2)作PI∥CE交DE于I,根据点P是CD的中点证明CE=2PI,BE=4PI,根据相似三角形的性质证明结论;(3)作OG⊥AE于G,根据平行线等分线段定理得到MG=NG,又OG⊥MN,证明△MON是等腰三角形,根据直角三角形的性质和锐角三角函数求出∠MON的度数.【解答】(1)证明:∵四边形ABCD为菱形,∴AD∥BC,∴∠DAP=∠CEP,∠ADP=∠ECP,在△ADP和△ECP中,,∴△ADP≌△ECP;(2)如图1,作PI∥CE交DE于I,则=,又点P是CD的中点,∴=,∵△ADP≌△ECP,∴AD=CE,∴==,∴BP=3PK,∴n=3;(3)如图2,作OG⊥AE于G,∵BM丄AE于M,KN丄AE于N,∴BM∥OG∥KN,∵点O是线段BK的中点,∴MG=NG,又OG⊥MN,∴OM=ON,即△MON是等腰三角形,由题意得,△BPC,△AMB,△ABP为直角三角形,设BC=2,则CP=1,由勾股定理得,BP=,则AP=,根据三角形面积公式,BM=,由(2)得,PB=3PO,∴OG=BM=,MG=MP=,tan∠MOG==,∴∠MOG=60°,∴∠MON的度数为120°.【点评】本题考查的是菱形的性质和相似三角形的判定和性质、全等三角形的判定和性质,灵活运用判定定理和性质定理是解题的关键,注意锐角三角函数在解题中的运用.24.(14.00分)(2015•海南)如图,二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D.(1)求该二次函数的表达式;(2)求证:四边形ACHD是正方形;(3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M的直线y=kx交二次函数的图象于另一点N.①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;②若△CMN的面积等于,请求出此时①中S的值.【分析】(1)根据二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B (1,0),应用待定系数法,求出a、b的值,即可求出二次函数的表达式.(2)首先分别求出点C、G、H、D的坐标;然后判断出AO=CO=DO=HO=3,AH⊥CD,判断出四边形ACHD是正方形即可.(3)①作ME⊥x轴于点E,作MF⊥y轴于点F,根据四边形ADCM的面积为S,可得S=S四边形AOCM+S△AOD,再分别求出S四边形AOCM、S△AOD即可.②首先设点N的坐标是(t1,p1),则NI=|t1|,所以S△CMN=S△COM+S△CON=(|t|+|t1|),再根据t<0,t1>0,可得S△CMN=(|t|+|t1|)==,据此求出t1﹣t=;然后求出k1、k2的值是多少,进而求出t1、t2的值是多少,再把它们代入S关于t的函数表达式,求出S的值是多少即可.【解答】解:(1)∵二次函数y=ax2+bx+3的图象与x轴相交于点A(﹣3,0)、B (1,0),∴解得∴二次函数的表达式为y=﹣x2﹣2x+3.(2)如图1,,∵二次函数的表达式为y=﹣x2﹣2x+3,∴点C的坐标为(0,3),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴点G的坐标是(﹣1,4),∵点C的坐标为(0,3),∴设CG所在的直线的解析式是y=mx+3,则﹣m+3=4,∴m=﹣1,∴CG所在的直线的解析式是y=﹣x+3,∴点H的坐标是(3,0),设点D的坐标是(0,p),则,∴p=﹣3,∵AO=CO=DO=HO=3,AH⊥CD,∴四边形ACHD是正方形.(3)①如图2,作ME⊥x轴于点E,作MF⊥y轴于点F,,∵四边形ADCM的面积为S,∴S=S四边形AOCM+S△AOD,∵AO=OD=3,∴S△AOD=3×3÷2=4.5,∵点M(t,p)是y=kx与y=﹣x2﹣2x+3在第二象限内的交点,∴点M的坐标是(t,﹣t2﹣2t+3),∵ME=﹣t2﹣2t+3,MF=﹣t,∴S四边形AOCM=×3×(﹣t2﹣2t+3)=﹣t2﹣t+,∴S=﹣t2﹣t++4.5=﹣t2﹣t+9,﹣3<t<0.②如图3,作NI⊥x轴于点I,,设点N的坐标是(t1,p1),则NI=|t1|,∴S△CMN=S△COM+S△CON=(|t|+|t1|),∵t<0,t1>0,∴S△CMN=(|t|+|t1|)==,,联立可得x2+(k+2)x﹣3=0,∵t1、t是方程的两个根,∴∴=﹣4t1t=(k+2)2﹣4×(﹣3)==,解得,,a、k=﹣时,由x2+(2﹣)x﹣3=0,解得x1=﹣2,或(舍去).b、k=﹣时,由x2+(2﹣)x﹣3=0,解得x3=﹣,或x4=2(舍去),∴t=﹣2,或t=﹣,t=﹣2时,S=﹣t2﹣t+9=﹣×4﹣×(﹣2)+9=12t=﹣时,S=﹣×﹣×+9=,∴S的值是12或.【点评】(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合方法的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了待定系数法求函数解析式的方法,以及方程的根与系数的关系,要熟练掌握.(3)此题还考查了三角形的面积的求法,以及正方形的判定和性质的应用,要熟练掌握.。
2016年海南省海口市海南中学中考数学试卷及答案
2016年海南省海口市海南中学中考数学模拟试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)一元二次方程x2=x的解为()A.x=0 B.x=1 C.x=0且x=1 D.x=0或x=12.(3分)已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是()A.r>6 B.r≥6 C.0<r<6 D.0<r≤63.(3分)如果一组数据x1,x2,…,x n的方差是2,则另一组数据x1+5,x2+5,…,x n+5的方差是()A.2 B.5 C.7 D.104.(3分)下列命题中,错误的个数是()(1)三点确定一个圆;(2)平分弦的直径垂直于弦;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.A.1个 B.2个 C.3个 D.4个5.(3分)若关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,那么k 的取值范围是()A.k<1 B.k≠0 C.k>1 D.k<06.(3分)如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD的度数为()A.27°B.54°C.63°D.36°7.(3分)如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c <0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>58.(3分)如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C运动到点D时,点G移动的路径长为()A.1 B.2 C.3 D.6二、填空题(本大题共10小题,每小题3分,共30分)9.(3分)一个角的度数为20°,则它的补角的度数为.10.(3分)如果f(x)=,那么f(3)=.11.(3分)如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是.12.(3分)若=,则的值为.13.(3分)已知一组数据1,a,3,6,7,它的平均数是4,这组数据的中位数是.14.(3分)关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是.15.(3分)在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如。
16年海南中考数学试题解答题分值
16年海南中考数学试题解答题分值【篇一】:中考数学试题答案及评分标准中考试卷——数学卷Ⅰ(选择题,共20分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在平面直角坐标系中,下列各点在第二象限的是()A.(2,1)B.(2,-1)C.(-2,1)D.(-2,-1)2.某种感冒病毒的直径是0.00000012米,用科学记数法表示这个数的结果为()A.12某107B.1.2某106C.1.2某107D.1.2某10----83.如图,是由6个相同的小立方块搭成的几何体,那么这个几何体的俯视图是()ABCD第3题图44.如右图,P是反比例函数y在第一象限分支上的一动点,某PA⊥某轴,随着某逐渐增大,△APO的面积将【】A.增大B.减小C.不变D.无法确定5.如右图,是用杠杆撬石头的示意图,C是支点,当用力压杠杆的端点A时,杠杆绕C点转动,另一端点B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5︰1,则要使这块石头滚动,至少要将杠杆的端点A向下压【】A、100cmB、60cmC、50cmD、10cm6.已知圆锥的侧面展开图的面积是15πcm,母线长是5cm,则圆锥的底面半径长()A.1.5cmB.3cmC.4cmD.6cm7.数学老师布置10道题O2C作为课堂练习,课代表将全班同学的答题情况绘制成条形统计图(如图),根据图表,全班每位同学答对的题数所组成样本的中位数和众数分别为()A.8,8B.8,9C.9,9D.9,88.如图,在△MBN中,BM=6,点A,C,D分别在MB,NB,MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则平行四边形ABCD的周长是()A.24B.18C.16D.129.如图,AB和CD都是⊙O的直径,∠AOC=50°,则∠C的度数是()A.20°B.25°CC.30°D.50°ABD第9题图k10.在同一直角坐标系中,函数yk某k与y(k0)的图某象大致是()ABCD卷II(非选择题,共100分)16年海南中考数学试题解答题分值。
2016学年海南省中考数学年试题答案
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前江苏省宿迁市2016年中考数学试卷数 学(本试卷满分150分 考试时间120分钟)一、选择题(本大题共8小题,每小题3分,共24分.) 1.2-的绝对值是( )A .2-B .12-C .12D .2 2.下列四个几何体中,左视图为圆的几何体是()ABCD3.地球与月球的平均距离为384000k m ,将384000这个数用科学记数法表示为( )A .338410⨯ B .438.410⨯ C .53.8410⨯D .60.38410⨯ 4.下列计算正确的是( )A .235a a a +=B .236a a a =C .235()a a =D .523a a a ÷=5.如图,已知直线a 、b 被直线c 所截.若a b ∥,1120∠=,则2∠的度数为 ( )A .50B .60C .120D .130(第5题)(第7题)6.一组数据5,4,2,5,6的中位数是( )A .5B .4C .2D .67.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ;再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE .若AB 的长为2,则FM 的长为( )A .2BCD .18.若二次函数22y ax ax c =-+的图像经过点(1,0)-,则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =二、填空题(本大题共8小题,每小题3分,共24分.) 9.因式分解:228a -= .10.计算:211x xx x -=-- .11.若两个相似三角形的面积比为14:,则这两个相似三角形的周长比是 . 12.若一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是 . 13那么这种油菜籽发芽的概率是 (结果精确到0.01).14.如图,在ABC △中,已知130ACB ∠=,20BAC ∠=,2BC =,以点C 为圆心,CB 为半径的圆交AB 于点D ,则BD 的长为 .(第14题图)(第15题图)(第16题图)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)15.如图,在平面直角坐标系中,一条直线与反比例函数8(0)y x x=>的图像交于两点A 、B ,与x 轴交于点C ,且点B 是AC 的中点,分别过两点A 、B 作x 轴的平行线,与反比例函数2(0)y x x=>的图像交于两点D 、E ,连接DE ,则四边形ABED 的面积为 .16.如图,在矩形ABCD 中,4AD =,点P 是直线AD 上一动点.若满足PBC △是等腰三角形的点P 有且只有3个,则AB 的长为 . 三、解答题(本大题共10小题,共72分.)17.(本题满分6分)计算:12sin3031)-++18.(本题满分6分)解不等式组:21,32(1).x x x x +⎧⎨+⎩><19.(本题满分6分)某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生人数统计图不合格根据以上信息解决下列问题:(1)在统计表中,a 的值为 ,b 的值为 ; (2)在扇形统计图中,八年级所对应的扇形圆心角为 度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.20.(本题满分6分)在一只不透明的袋子中装有2个白球和2个黑球,这些球除颜色外都相同.(1)若先从袋子中拿走m 个白球,这时从袋子中随机摸出一个球是黑球的事件为“必然事件”,则m 的值为 ;(2)若将袋子中的球搅匀后随机摸出1个球(不放回...),再从袋中余下的3个球中随机摸出1个球,求两次摸到的球颜色相同的概率.21.(本题满分6分)如图,已知BD 是ABC △的角平分线,点E 、F 分别在边AB 、BC 上,ED BC ∥,EF AC ∥.求证:BE CF =.22.(本题满分6分)如图,大海中某灯塔P 周围10海里范围内有暗礁,一艘海轮在点A 处观察灯塔P 在北偏东60方向,该海轮向正东方向航行8海里到达点B 处,这时观察灯塔P 恰好在北偏东45方向.如果海轮继续向正东方向航行,会有触角的危险吗?试说明理由.( 1.73≈)数学试卷 第5页(共6页) 数学试卷 第6页(共6页)23.(本题满分8分)如图①,在ABC △中,点D 在边BC 上,::1:2:3ABC ACB ADB ∠∠∠=,O 是ABD △的外接圆.(1)求证:AC 是O 的切线;(2)当BD 是O 的直径时(如图②),求CAD ∠的度数.图①图②24.(本题满分8分)某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过(30100)m m <≤人时,每增加1人,人均收费降低1元;超过m 人时,人均收费都按照m 人时的标准.设景点接待有x 名游客的某团队,收取总费用为y 元.(1)求y 关于x 的函数表达式;(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.25.(本题满分10分)已知ABC △是等腰直角三角形,2AC BC ==,D 是边AB 上一动点(A 、B 两点除外),将CAD △绕点C 按逆时针方向旋转角α得到CEF △,其中点E 是点A 的对应点,点F 是点D 的对应点.(1)如图①,当90α=时,G 是边AB 上一点,且BG AD =,连接GF .求证:GF AC ∥;(2)如图②,当90180α≤≤时,AE 与DF 相交于点M .①当点M 与点C 、D 不重合时,连接CM ,求CMD ∠的度数;②设D 为边AB 的中点,当α从90变化到180时,求点M 运动的路径长.图①图②-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
2016年海南省中考数学正题参考答案及评分标准
∴DE=4×12 =2 米.
…… 4 分
(2)延长 BD 交 AE 延长线于点 F,
由题意知∠BDG = 45°,
∴∠F=∠BDG=45°.
∵∠DEF=90°,∴∠EDF=∠F=45°.
∴EF = DE = 2 米.
设 AC = x,则 AB = AC·tan∠ACB,
∴AB = x·tan60°= 3x .
PH =-x2-6x-5.
由
PE∥y
轴得DPHH
=
CO DO
,
则-x2-x+65x-5 = -25x-5, ∵x+5≠0
∴x+1= 25x+5.
解得 x1=-27,x2= 0(不符合) .
……7 分 ……8 分
∴OH =
72,AH
=
32.∴EACE
=
AH HO
=
73.
……9 分
②
能,分三种情况讨论
……10 分
或( 2,-6 2-7) .
综上所述可得点 P 的坐标为:
(-2,3)、(-1,0)、(- 2,6 2-7)
或( 2,-6 2-7) .
……14 分
数学科答案 第 3 页 (共 4 页)
P
y
H
B
A
D Ox
E
C
图 10-2 (注明:用其它方法求解参照以上标准给分)
数学科答案 第 4 页 (共 4 页)
…… 3 分
②
∵四边形 ABCD 是矩形,
数学科答案 第 1 页 (共 4 页)
∴∠BAD =∠ABC=90°,AD∥BC. 又∵AF 平分∠BAD, ∴∠BAF =∠DAF =∠BFA=45°. ∴AB = BF. 又 OK∥AF 即 GK∥AF, ∴四边形 AFGK 是平行四边形. ∴AK = FG. ∵BG = BF+FG, ∴AB+AK = BG.
2016年海南省中考数学试卷[海南省中考数学试卷答案解析]
2016年海南省中考数学试卷[海南省中考数学试卷答案解析]海南省中考数学试卷答案解析海南省中考数学试卷答案解析海南省中考数学试卷答案解析选择题(本大题共14小题,每小题3分,共42分) 1.2017的相反数是( ) A.﹣2017 B.2017 C. D. A. 试题分析:根据相反数特性:若a.b互为相反数,则a+b=0即可解题. ∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选A. 考点:相反数. 2.已知a=﹣2,则代数式a+1的值为( ) A.﹣3 B.﹣2 C.﹣1 D.1 C. 试题分析:把a的值代入原式计算即可得到结果.当a=﹣2时,原式=﹣2+1=﹣1,故选C. 考点:代数式求值. 3.下列运算正确的是( ) A.a3+a2=a5 B.a3÷a2=a C.a3a2=a6 D.(a3)2=a9 B. 考点:同底数幂的运算法则. 4.如图是一个几何体的三视图,则这个几何体是( ) A.三棱柱B.圆柱C.圆台D.圆锥D. 试题分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案. 根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选D. 考点:三视图. 5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为( ) A.45° B.60° C.90° D.120° C. 试题分析:根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°. ∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选C. 考点:垂线的定义,平行线的性质.6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x 轴对称的△A2B2C2,则点A的对应点A2的坐标是( )A.(-3,2) B.(2,-3) C.(1,-2) D.(-1,2) B. 试题分析:首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案. 如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B. 考点:平移的性质,轴对称的性质. 7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为***-*****平方公里,数据***-*****用科学记数法表示为2×10n,则n的值为( ) A.5 B.6 C.7 D.8 B. 考点:科学记数法. 8.若分式的值为0,则x的值为( ) A.﹣1 B.0 C.1 D.±1 A. 试题分析:直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案. ∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选A. 考点:分式的意义. 9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁) 12 13 14 15 16 人数1 4 3 5 7 则这20名同学年龄的众数和中位数分别是( ) A.15,14 B.15,15 C.16,14 D.16,15 D. 试题分析:众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数. ∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D. 考点:中位数,众数. 10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( ) A. B. C. D. D. 试题分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案. 列表如下:1 2 3 41 (1,1) (2,1) (3,1) (4,1) 2 (1,2) (2,2) (3,2) (4,2) 3 (1,3) (2,3) (3,3) (4,3) 4 (1,4) (2,4) (3,4) (4,4) ∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D. 考点:用列表法求概率.11.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是( ) A.14B.16C.18D.20 C. 考点:菱形的性质,勾股定理. 12.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( ) A.25° B.50° C.60° D.80° B. 考点:圆周角定理及推论,平行线的性质. 13.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A.3 B.4 C.5 D.6 B. 试题分析:根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可. 如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形. 故选B. 考点:等腰三角形的性质. 14.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数在第一象限内的图象与△ABC有交点,则k的取值范围是( ) A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16 C. 试题分析:由于△ABC是直角三角形,所以当反比例函数经过点A 时k最小,进过点C时k最大,据此可得出结论. ∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C. 考点:反比例函数的性质. 海南省中考数学试卷答案解析填空题(本大题共4小题,每小题4分,共16分) 15.不等式2x+10的解集是x﹣ . . 考点:一元一次不等式的解法. 16.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1”,“”或“=”) . 试题分析:根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1 ∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大. ∵x1 考点:一次函数的性质. 17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC 上,将矩形ABCD 沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是. . 试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可. 由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF= = ,∴cos∠EFC= ,故答案为: .考点:轴对称的性质,矩形的性质,余弦的概念. 18.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 . . 试题分析:根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值. 如图,∵点M,N分别是AB,AC的中点,∴MN= BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°. ∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′= = =5 ,∴MN最大= .故答案为: . 考点:三角形的中位线定理,等腰直角三角形的性质,圆周角定理,解直角三角形. 海南省中考数学试卷答案解析解答题(本大题共62分) 19.计算;(1) ﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1) (1)-1;(2) . 考点:整式的混合运算,实数的混合运算.20.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米. 甲种车辆一次运土8立方米,乙种车辆一次运土12立方米. 试题分析:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案. 试题解析:设甲种车辆一次运土x 立方米,乙种车辆一次运土y立方米,由题意得,,解得: . 答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.. 考点:二元一次方程组的应用. 21.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图. 请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36° ;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动. (1)150;(2)见解析;(3)36°;(4)240. 试题分析:(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可. 试题解析:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°× =36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动. 故答案为:150,36°,240. 考点:条形统计图,扇形统计图,样本估计总体. 22.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2) 水坝原来的高度为12米.. 试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可. 考点:解直角三角形的应用,坡度. 23.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC 于点G.(1)求证:△CDE≌△CBF;(2)当DE= 时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形若能,求出此时DE的长;若不能,说明理由. (1)见解析;(2) ;(3)不能. 试题分析:(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF 是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论. 试题解析:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠ DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴ ,由(1)知,△CDE≌△CBF,∴BF=DE= ,∵正方形的边长为1,∴AF=AB+BF= ,AE=AD﹣DE= ,∴,,∴BG= ,∴CG=BC﹣BG= ;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E 在运动过程中,四边形CEAG不能是平行四边形. 考点:正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定. 24.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0). (1)求该抛物线所对应的函数解析式;(2)该抛物线与直线相交于C、D两点,点P是抛物线上的动点且位于x 轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似若存在,求出满足条件的点P的坐标;若不存在,说明理由. (1) ;(2)① ;②存在,(2,)或( ,). 解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴ ,解得∴该抛物线对应的函数解析式为;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t,)(1 ∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t,),∴PN= . 联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN= PNCE+ PNDF= PN= ,∴当t= 时,△PCD的面积有最大值,最大值为;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t,),∴CQ=t,NQ= ﹣3= ,∴ ,∵P(t,),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣( )= ,当时,则PM= BM,即,解得t=2或t=5(舍去),此时P(2,);当时,则BM= PM,即5﹣t= ( ),解得t= 或t=5(舍去),此时P( ,);综上可知存在满足条件的点P,其坐标为P(2,)或( ,). 考点:二次函数的综合应用,待定系数法,函数图象的交点,二次函数的性质,相似三角形的判定和性质,方程思想,分类讨论思想.。
【初中数学】海南省临高县2016年中考数学一模试卷(解析版) 人教版
海南省临高县2016年中考数学一模试卷一、选择题(本大题满分42分,每小题3分)1.|﹣5+3|=()A.﹣8 B.8 C.﹣2 D.2【考点】有理数的加法;绝对值.【分析】原式先利用异号两数相加的法则计算,再利用绝对值的代数意义化简即可得到结果.【解答】解:原式=|﹣2|=2.故选D.2.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.x6÷x3=x3D.(x3)2=x9【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法底数不变指数相加;同底数幂的除法底数不变指数相减;幂的乘方底数不变指数相乘;可得答案.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、幂的乘方底数不变指数相乘,故D错误;故选:C.3.已知a﹣2b+3=0,则代数式5+2b﹣a的值是()A.2 B.4 C.6 D.8【考点】代数式求值.【分析】根据题意得出a﹣2b=﹣3,再代入代数式进行计算即可.【解答】解:∵a﹣2b+3=0,∴a﹣2b=﹣3,∴原式=5﹣(a﹣2b)=5+3=8.故选D.4.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【考点】估算无理数的大小;算术平方根.【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.5.已知一组数据5、2、3、x、4的众数为4,则这组数据的中位数为()A .2B .3C .4D .4.5【考点】众数;中位数.【分析】先根据众数定义求出x ,再把这组数据从小到大排列,找出正中间的那个数就是中位数.【解答】解:∵数据5、2、3、x 、4的众数为4, ∴4出现的次数是2次, ∴x=4,数据重新排列是:2、3、4、4、5,由于5个数中4在正中间,所以中位数是4. 故选C .6.如图所示的工件的主视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形,本题找到从正面看所得到的图形即可.【解答】解:从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形. 故选B .7.从﹣1、﹣2、3、4这四个数中,随机抽取两个数相乘,积为负数的概率是( )A .B .C .D .【考点】列表法与树状图法.【分析】根据题意可以计算出任意两个数的乘积,从而可以得到随机抽取两个数相乘,积为负数的概率.【解答】解:∵﹣1×3,﹣1×4,﹣2×3,﹣2×4,这四组数的乘积都是负数, ﹣1×(﹣2),3×4这两组数的乘积是正数,∴从﹣1、﹣2、3、4这四个数中,随机抽取两个数相乘,积为负数的概率是:.故选A .8.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A.16 B.17 C.18 D.19【考点】勾股定理.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选B.9.如图,将矩形ABCD纸片沿EF折叠,若∠BGE=130°,则∠GEF等于()A.60°B.65°C.70°D.75°【考点】平行线的性质.【分析】由四边形ABCD是矩形,得到AD∥BC,根据平行线的性质得到∠DEG=∠BGE=130°,由折叠的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEG=∠BGE=130°,由折叠的性质得∠DEF=∠GEF,∴∠GEF=,故选B.10.如图,在△ABC中,DE∥BC,AD=DB,BC=10,则DE的长为()A.3 B.4 C.5 D.6【考点】三角形中位线定理.【分析】根据三角形中位线定理进行计算即可.【解答】解:∵在△ABC中,DE∥BC,AD=DB,∴DE是△ABC的中位线,∴DE=BC,又BC=10,∴DE=5.故选:C.11.如图,在▱ABCD中,AB=4,AD=7,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF的长是()A.2 B.3 C.4 D.5【考点】平行四边形的性质.【分析】根据平行四边形的对边相等且平行和利用平行四边形的性质以及平行线的基本性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠CBF=∠CFB,∴CF=CB=7,∴DF=CF﹣CD=7﹣4=3,故选B.12.如图,直线y=x与双曲线y=相交于A(﹣2,n)、B两点,则k的值为()A.2 B.﹣2 C.1 D.﹣1【考点】反比例函数与一次函数的交点问题.【分析】由点A在直线y=x的图象上,可求出n的值,再结合反比例函数图象上点坐标的特征可求出k值.【解答】解:∵点A在直线y=x的图象上,∴n=×(﹣2)=﹣1.∵点A在反比例函数y=的图象上,∴k=﹣2×(﹣1)=2.故选A.13.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连结AC、BC.若∠BAC=2∠BCO,AC=3,则PA的长为()A.3B.4 C.5 D.6【考点】切线的性质.【分析】先证明△OAC为等边三角形得到∠AOC=60°,再根据切线的性质得到∠OAP=90°,然后根据正切的定义计算PA的长.【解答】解:∵OB=OC,∴∠AOC=∠B+∠BCO,∴∠AOC=2∠BCO,而∠BAC=2∠BCO,∴∠BAC=∠AOC,∴CA=CO,而OA=OC,∴OA=OC=AC=3,∴△OAC为等边三角形,∴∠AOC=60°,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵tan∠AOB=,∴PA=3tan60°=3.故选A.14.如图,已知A(﹣3,0),B(0,﹣4),P为反比例函数y=(x>0)图象上的动点,PC ⊥x轴于C,PD⊥y轴于D,则四边形ABCD面积的最小值为()A.12 B.13 C.24 D.26【考点】反比例函数系数k的几何意义.【分析】设P点坐标为(x,),将四边形分割为四个三角形,四边形ABCD面积的最小,即S△AOB+S△AOD+S△DOC+S△BOC最小.【解答】解:设P点坐标为(x,),x>0,则S△AOD=×|﹣3|×||=,S△DOC==6,S△BOC=×|﹣4|×|x|=2x,S△AOB=×3×4=6.∴S△AOB+S△AOD+S△DOC+S△BOC=12+2x+=12+2(x+)≥12+2×2×=24.故选C.二、填空题(本大题满分16分,每小题4分)15.已知a﹣b=2,a=3,则a2﹣ab=6.【考点】因式分解-提公因式法.【分析】首先提取公因式a,进而分解因式,将已知代入求出即可.【解答】解:∵a﹣b=2,a=3,∴a2﹣ab=a(a﹣b)=3×2=6.故答案为:6.16.方程=1﹣的解是x=2.【考点】分式方程的解.【分析】先把分式方程去分母转化为整式方程,求出整式方程x的解,经检验即可得到分式方程的解.【解答】解:=1﹣,=1+,2﹣x=x﹣3+1,﹣2x=﹣4,x=2,经检验x=2是原方程的解.故答案为:x=2.17.如图,OD是⊙O的半径,弦AB⊥OD于E,若∠O=70°,则∠A+∠C=55度.【考点】垂径定理.【分析】如图,连接OB,利用等腰△OAB的性质可以求得∠ABO的度数;结合垂径定理、圆周角定理来求∠C的度数,易得∠A+∠C的值.【解答】解:如图,连接OB,∵OA=OB,∴∠A=∠ABO.又∵OD是⊙O的半径,弦AB⊥OD于E,∠O=70°,∴=,∠AOB=140°,∴∠C=∠AOD=35°,∠A=∠ABO=20°,∴∠A+∠C=55°.故答案是:55.18.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是1(在﹣2<b<2范围内的任何一个数).【考点】抛物线与x轴的交点.【分析】把(0,﹣3)代入抛物线的解析式求出c的值,在(1,0)和(3,0)之间取一个点,分别把x=1和x=3它的坐标代入解析式即可得出不等式组,求出答案即可.【解答】解:把(0,﹣3)代入抛物线的解析式得:c=﹣3,∴y=x2+bx﹣3,∵使该抛物线与x轴的一个交点在(1,0)和(3,0)之间,∴把x=1代入y=x2+bx﹣3得:y=1+b﹣3<0把x=3代入y=x2+bx﹣3得:y=9+3b﹣3>0,∴﹣2<b<2,即在﹣2<b<2范围内的任何一个数都符合,故答案为:1(在﹣2<b<2范围内的任何一个数).三、解答题(本大题满分62分)19.(1)计算:(﹣1)3+()﹣2﹣×;(2)化简:(+1)•.【考点】实数的运算;分式的混合运算;负整数指数幂.【分析】(1)原式利用乘方的意义,负整数指数幂法则,以及二次根式乘法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:(1)原式=﹣1+4﹣6=﹣7+4=﹣3;(2)原式=•=•=.20.有一批机器零件共400个,若甲先做1天,然后甲、乙两人再共做2天,则还有60个未完成;若两人合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?【考点】二元一次方程组的应用.【分析】设甲每天做x个零件,乙每天做y个零件,根据题意可得:甲做3天+乙做2天=400﹣60,甲乙合作3天=400+20,据此列方程组求解.【解答】解:设甲每天做x个零件,乙每天做y个零件,由题意得,,解得:,答:甲每天做60个零件,乙每天做80个零件.21.某社区要调查社区居民双休日的学习状况,采用下列调查方式:①选取社区内200名在校学生;②从一幢高层住宅楼中选取200名居民;③从不同住宅楼中随机选取200名居民.(1)上述调查方式最合理的是③(填写序号);(2)将最合理的调查方式得到的数据绘制成扇形统计图(如图1)和频数分布直方图(如图2).在图1中,“在图书馆等场所学习”部分所占的圆心角是108°度;在这个调查中,200名居民双休日在家学习的有120人;(3)请估计该社区1800名居民双休日学习时间不少于4小时的人数.【考点】扇形统计图;全面调查与抽样调查;用样本估计总体;频数(率)分布直方图.【分析】(1)调查方式最合理的就是调查时抽取方式最具有随机性,样本能代表社区所有情况的调查方式;(2)根据“在图书馆等场所学习“占样本百分比为30%,乘以360°可得圆心角度数;利用200名居民中,在家学习的占60%即可求出答案;(3)用样本中学习时间不少于4小时人数占被调查人数比例乘以总人数1800即可.【解答】解:(1)③;(2)“在图书馆等场所学习”部分所占的圆心角是360°×30%=108°,200名居民双休日在家学习的有:200×60%=120(人);(3)×1800=1278(人).答:估计该社区1800名居民双休日学习时间不少于4小时的1278人.故答案为:(1)③;(2)108°,1278.22.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图,在一次巡航过程中,巡航飞机飞行高度为2362米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1464米到达B点后测得F点俯角为45°,请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:=1.732,=1.414)【考点】解直角三角形的应用-仰角俯角问题.【分析】设CF=x,在Rt△ACF和Rt△BCF中,分别用CF表示AC、BC的长度,然后根据AC﹣BC=1200,求得x的值,用h﹣x即可求得最高海拔.【解答】解:设CF=x,在Rt△ACF和Rt△BCF中,∵∠BAF=30°,∠CBF=45°,∴BC=CF=x,=tan30°,即AC=x,∵AC﹣BC=1464米,∴x﹣x=1464,解得:x=732(+1),则DF=h﹣x=2362﹣732(+1)≈362(米).答:钓鱼岛的最高海拔高度约362米.23.如图,在边长为2的正方形ABCD中,点P、Q分别是边AB、BC上的两个动点(与点A、B、C不重合)且始终保持BP=BQ,AQ⊥QE,QE交正方形外角平分线CE于点E,AE交CD于点F,连结PQ.(1)求证:△APQ≌△QCE;(2)求∠QAE的度数;(3)设BQ=x,当x为何值时,QF∥CE,并求出此时△AQF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)判断出△PBQ是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE,再求出AP=CQ,然后利用“角边角”证明即可;(2)根据全等三角形对应边相等可得AQ=EQ,判断出△AQE是等腰直角三角形,再根据等腰直角三角形的性质解答;(3)把△ABQ绕点A逆时针旋转90°得到△ADG,求出∠GAF=45°,从而得到∠GAF=∠QAF,再利用“边角边”证明△AQF和△AGF全等,根据全等三角形对应边相等可得QF=GF,再根据两直线平行,同位角相等求出∠CQF=45°,然求出CQ=CF,分别用x表示出CQ、CF、QF,利用勾股定理列式表示出QF,然后列出方程求出x,再求出△AGF的面积,即为△AQF的面积.【解答】(1)证明:在正方形ABCD中,∠B=90°,AB=BC,∵BP=BQ,∴△PBQ是等腰直角三角形,AP=CQ,∴∠BPQ=45°,∵CE为正方形外角的平分线,∴∠APQ=∠QCE=135°,∵AQ⊥QE,∴∠CQE+∠AQB=90°,又∵∠PAQ+∠AQB=90°,∴∠PAQ=∠CQE,在△APQ和△QCE中,,∴△APQ≌△QCE(ASA);(2)解:∵△APQ≌△QCE,∴AQ=EQ,∵AQ⊥QE,∴△AQE是等腰直角三角形,∴∠QAE=45°;(3)解:如图,把△ABQ绕点A逆时针旋转90°得到△ADG,则AQ=AG,BQ=DG,∠BAQ=∠DAG,∵∠QAE=45°,∴∠GAF=45°,∴∠GAF=∠QAF,在△AQF和△AGF中,,∴△AQF≌△AGF(SAS),∴QF=GF,∵QF∥CE,∴∠CQF=45°,∴△CQF是等腰直角三角形,∴CQ=CF,∵BQ=x,∴CQ=CF=2﹣x,∴DF=2﹣(2﹣x)=x,∴QF=GF=2x,在Rt△CQF中,CQ2+CF2=QF2,即(2﹣x)2+(2﹣x)2=(2x)2,解得x=2﹣2,∴△AGF的面积=×2(2﹣2)×2=4﹣4,即△AQF的面积为4﹣4.24.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据A点的坐标,用待定系数法即可求出直线OA的解析式.(2)①由于M点在直线OA上,可根据直线OA的解析式来表示出M点的坐标,因为M点是平移后抛物线的顶点,因此可用顶点式二次函数通式来设出这个二次函数的解析式,P的横坐标为2,将其代入抛物线的解析式中即可得出P点的坐标.②PB的长,实际就是P点的纵坐标,因此可根据其纵坐标的表达式来求出PB最短时,对应的m的值.(3)根据(2)中确定的m值可知:M、P点的坐标都已确定,因此AM的长为定值,若要使△QMA的面积与△PMA的面积相等,那么Q点到AM的距离和P到AM的距离应该相等,因此可分两种情况进行讨论:①当Q在直线OA下方时,可过P作直线OA的平行线交y轴于C,那么平行线上的点到OA 的距离可相等,因此Q点必落在直线PC上,可先求出直线PC的解析式,然后利用抛物线的解析式,看得出的方程是否有解,如果没有则说明不存在这样的Q点,如果有解,得出的x 的值就是Q点的横坐标,可将其代入抛物线的解析式中得出Q点的坐标.②当Q在直线OA上方时,同①类似,可先找出P关于A点的对称点D,过D作直线OA的平行线交y轴于E,那么直线DE上的点到AM的距离都等于点P到AM上的距离,然后按①的方法进行求解即可.(本题也可通过以AP为底,找出和点M到AP的距离相等的两条直线,然后联立抛物线的解析式进行求解即可).【解答】解:(1)设OA所在直线的函数解析式为y=kx,∵A(2,4),∴2k=4,∴k=2,∴OA所在直线的函数解析式为y=2x.(2)①∵顶点M的横坐标为m,且在线段OA上移动,∴y=2m(0≤m≤2).∴顶点M的坐标为(m,2m).∴抛物线函数解析式为y=(x﹣m)2+2m.∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2).∴点P的坐标是(2,m2﹣2m+4).②∵PB=m2﹣2m+4=(m﹣1)2+3,又∵0≤m≤2,∴当m=1时,PB最短.(3)当线段PB最短时,此时抛物线的解析式为y=(x﹣1)2+2即y=x2﹣2x+3.假设在抛物线上存在点Q,使S△QMA=S△PMA.设点Q的坐标为(x,x2﹣2x+3).①点Q落在直线OA的下方时,过P作直线PC∥AO,交y轴于点C,∵PB=3,AB=4,∴AP=1,∴OC=1,∴C点的坐标是(0,﹣1).∵点P的坐标是(2,3),∴直线PC的函数解析式为y=2x﹣1.∵S△QMA=S△PMA,∴点Q落在直线y=2x﹣1上.∴x2﹣2x+3=2x﹣1.解得x1=2,x2=2,即点Q(2,3).∴点Q与点P重合.∴此时抛物线上不存在点Q(2,3),使△QMA与△APM的面积相等.②当点Q落在直线OA的上方时,作点P关于点A的对称称点D,过D作直线DE∥AO,交y轴于点E,∵AP=1,∴EO=DA=1,∴E、D的坐标分别是(0,1),(2,5),∴直线DE函数解析式为y=2x+1.∵S△QMA=S△PMA,∴点Q落在直线y=2x+1上.∴x2﹣2x+3=2x+1.解得:x1=2+,x2=2﹣.代入y=2x+1得:y1=5+2,y2=5﹣2.∴此时抛物线上存在点Q1(2+,5+2),Q2(2﹣,5﹣2)使△QMA与△PMA的面积相等.综上所述,抛物线上存在点,Q1(2+,5+2),Q2(2﹣,5﹣2)使△QMA与△PMA 的面积相等.。
【真卷】2016年海南省中考数学模拟仿真试卷及解析PDF(一)
2016年海南省中考数学模拟仿真试卷(一)一、选择题(本题有14小题,每小题3分,共42分)1.(3分)﹣6的倒数是()A.﹣6 B.6 C.D.2.(3分)当x=﹣3时,代数式2x+1的值为()A.﹣7 B.+7 C.﹣5 D.+53.(3分)一种病毒的长度约为0.000072mm,用科学记数法表示0.000072的结果为()A.7.2×10﹣5B.﹣7.2×105C.7.2×106D.﹣7.2×10﹣64.(3分)数据0,2,1,0,﹣3,2,2的众数是()A.0 B.1 C.2 D.﹣35.(3分)下面由正三角形和正方形拼成的图形中,是轴对称图形但不是中心对称图形的是()A.B. C.D.6.(3分)若等腰三角形的两条边的长分别为5cm和8cm,则它的周长是()A.13cm B.18cm C.21cm D.18cm或21cm7.(3分)点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,2)8.(3分)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是,则黄球的个数为()A.16 B.12 C.8 D.49.(3分)方程x2﹣3x=0的解为()A.x=0 B.x=3 C.x1=0,x2=﹣3 D.x1=0,x2=310.(3分)如图,直线l1∥l2,AB⊥CD,∠1=56°,则∠2等于()A.56°B.54°C.44°D.34°11.(3分)如图,已知点A为反比例函数y=的图象上任意一点,过点A作AB ⊥x轴于B,若△ABO的面积为1,则k的值为()A.﹣2 B.2 C.﹣1 D.112.(3分)如图,在圆内接四边形ABCD中,∠A、∠C的度数之比为1:2,则∠A的度数为()A.30°B.60°C.70°D.90°13.(3分)如图,点P在△ABC的边AB上,要判断△ACP∽△ABC,添加一个条件,错误的是()A.∠ACP=∠B B.∠APC=∠ACB C.=D.=14.(3分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,∠AOD=60°,则四边形CODE的面积为()A.2 B.4 C.4 D.8二、填空题(本大题满分16分,每小题4分)15.(4分)某校为了进一步开展“阳光体育”活动,购买了m个篮球和n个足球.已知篮球单价为90元,足球单价为60元,则共花了元.16.(4分)计算:﹣=.17.(4分)如图,在⊙O中,直径AB=4,CA切⊙O于点A,BC交⊙O于点D,连接AD,若∠C=45°,则图中阴影部分的面积是.18.(4分)如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是AE=4,CF=3,则正方形ABCD的边长为.三、解答题(本大题满分62分)19.(10分)(1)计算:(﹣3)2+2×(﹣5)﹣+(﹣)0(2)解不等式组:.20.(8分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运10趟才能完成,需支付运费共4500元;已知乙车每趟运费比甲车少150元.求甲、乙两车每趟的运费分别是多少元.21.(8分)海口市某中学为了解本校学生对海口市“双创”知识掌握情况,随机抽取该校部分学生进行了测试.根据学生测试结果划分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并绘制了两幅不完整的统计图(如图1,2).请根据统计图中的信息解答下列问题:(1)这次抽查中,一共抽查了名学生;(2)将图1补充完整;在图2中,“等级D”在扇形图中所占的圆心角是度;(3)估计该校2200名学生中达到“良好”、“优秀”的学生共有名.22.(9分)如图,一艘轮船在A处测得北偏东45°方向有一灯塔B,船向正东方向航行到达C处时,又观测到灯塔B在北偏东30°方向上,此时轮船与灯塔相距60海里,求轮船从A处到C处航行了多少海里(结果保留根号).23.(13分)如图1,2,在矩形ABCD中,AB=6,BC=8,连接BD.现将一个足够大的直角三角板的直角顶点O放在射线BD上(点P不与点B、D重合),一条直角边过点C,另一条直角边与AB所在的直线交于点G.(1)如图1,当点P在线段BD上,且PG=BC时,①求证:△GBC≌△CPG;②求BG的长;(2)如图2,当点P在线段BD的延长线上,且PC=BC时,求BG的长.24.(14分)如图,在平面直角坐标系中,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,抛物线y=x2+bx+c经过B(﹣2,0)、D(6,3)两点.(1)求该抛物线所对应的函数关系式;(2)动点P从点A出发,在线段AD上匀速运动,同时动点Q从点C出发,在线段AC上匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△APQ的面积为S.①当P运动到何处时,PQ⊥AC;②求S与t之间的函数关系式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,在x轴下方的抛物线上存在点K,使S=4S,直接写出点K的坐标.△BCK2016年海南省中考数学模拟仿真试卷(一)参考答案与试题解析一、选择题(本题有14小题,每小题3分,共42分)1.(3分)﹣6的倒数是()A.﹣6 B.6 C.D.【解答】解:﹣6的倒数是:﹣.故选C.2.(3分)当x=﹣3时,代数式2x+1的值为()A.﹣7 B.+7 C.﹣5 D.+5【解答】解:∵x=﹣3,∴2x+1=2×(﹣3)+1=﹣6+1=﹣5.故选C.3.(3分)一种病毒的长度约为0.000072mm,用科学记数法表示0.000072的结果为()A.7.2×10﹣5B.﹣7.2×105C.7.2×106D.﹣7.2×10﹣6【解答】解:∵0.000072=7.2×10﹣5,故选A.4.(3分)数据0,2,1,0,﹣3,2,2的众数是()A.0 B.1 C.2 D.﹣3【解答】解:数据0,2,1,0,﹣3,2,2,按照从小到大的顺序排列是:﹣3,0,0,1,2,2,2,故这组数据的众数是2,故选C.5.(3分)下面由正三角形和正方形拼成的图形中,是轴对称图形但不是中心对称图形的是()A.B. C.D.【解答】解:A、B、D都是中心对称也是轴对称图形,C、是轴对称,但不是中心对称.故选C.6.(3分)若等腰三角形的两条边的长分别为5cm和8cm,则它的周长是()A.13cm B.18cm C.21cm D.18cm或21cm【解答】解:①当腰是5cm,底边是8cm时,能构成三角形,则其周长=5+5+8=18cm;②当底边是5cm,腰长是8cm时,能构成三角形,则其周长=5+8+8=21cm.故选D.7.(3分)点A(1,﹣2)关于x轴对称的点的坐标是()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,2)【解答】解:点A(1,﹣2)关于x轴对称的点的坐标是(1,2),故选:D.8.(3分)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是,则黄球的个数为()A.16 B.12 C.8 D.4【解答】解:设黄球的个数为x个,根据题意得:=,解得:x=4.故选:D.9.(3分)方程x2﹣3x=0的解为()A.x=0 B.x=3 C.x1=0,x2=﹣3 D.x1=0,x2=3【解答】解:方程x2﹣3x=0,因式分解得:x(x﹣3)=0,可化为x=0或x﹣3=0,解得:x1=0,x2=3.故选D10.(3分)如图,直线l1∥l2,AB⊥CD,∠1=56°,则∠2等于()A.56°B.54°C.44°D.34°【解答】解:∵直线l1∥l2,∠1=56°,∴∠3=∠1=56°.∵AB⊥CD,∴∠2=90°﹣∠3=90°﹣56°=34°.故选D.11.(3分)如图,已知点A为反比例函数y=的图象上任意一点,过点A作AB ⊥x轴于B,若△ABO的面积为1,则k的值为()A.﹣2 B.2 C.﹣1 D.1==1,【解答】解:∵S△ABO∴k=±2,∵k<0,∴k=﹣2,故选A.12.(3分)如图,在圆内接四边形ABCD中,∠A、∠C的度数之比为1:2,则∠A的度数为()A.30°B.60°C.70°D.90°【解答】解:∵四边形ABCD是圆内接四边形,∴∠C+∠D=180°,∵∠C=2∠D,∴∠C+∠C=180°,∴∠C=120°.∴∠A的度数为60°,故选B.13.(3分)如图,点P在△ABC的边AB上,要判断△ACP∽△ABC,添加一个条件,错误的是()A.∠ACP=∠B B.∠APC=∠ACB C.=D.=【解答】解:A、∵∠ACP=∠B∠A=∠A,∴△ACP∽△ABC,故此选项错误;B、∵∠APC=∠ACB,∠A=∠A,∴△ACP∽△ABC,故此选项错误;C、∵=,∠A=∠A,∴△ACP∽△ABC,故此选项错误;D、两组边对应成比例的两个三角形不一定相似,故此选项正确.故选D.14.(3分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,∠AOD=60°,则四边形CODE的面积为()A.2 B.4 C.4 D.8【解答】解:∵四边形ABCD是矩形,∴BD=AC,DO=BO,AO=CO,∴OD=OA,∵∠AOD=60°,∴△AOD是等边三角形,∴DO=AO=AD=OC=4,∵CE∥BD,DE∥AC,∴四边形CODE是平行四边形,∴四边形CODE是菱形,∴四边形CODE的面积=2△COD的面积=2×2×2×sin120°=4.故选:C.二、填空题(本大题满分16分,每小题4分)15.(4分)某校为了进一步开展“阳光体育”活动,购买了m个篮球和n个足球.已知篮球单价为90元,足球单价为60元,则共花了90m+60n元.【解答】解:∵购买了m个篮球和n个足球.已知篮球单价为90元,足球单价为60元,∴共花了:90m+60n(元).故答案为:(90m+60n).16.(4分)计算:﹣=2.【解答】解:原式===2,故答案为:217.(4分)如图,在⊙O中,直径AB=4,CA切⊙O于点A,BC交⊙O于点D,连接AD,若∠C=45°,则图中阴影部分的面积是2π﹣4.【解答】解:连接OD,∵直径AB=4,CA切⊙O于A,∴OB=OA=2,∠BAC=90°,∠ADB=90°,∵∠C=45°,∴△ABD是等腰直角三角形,∴2BD2=AB2=16,∴BD2=8,∴S阴影=S圆O﹣S△ABD=2π﹣BD2=2π﹣4,故答案为:2π﹣4.18.(4分)如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是AE=4,CF=3,则正方形ABCD的边长为5.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,∴∠BAE=∠CBF,∵AE⊥EF,CF⊥EF,∴∠AEB=∠CFB=90°,在△ABE和△BCF中,,∴△ABE≌△BCF,∴AE=BF=4,EB=CF=3,∴AB2=AE2+EB2=42+32=25,∴AB=5.故答案为5.三、解答题(本大题满分62分)19.(10分)(1)计算:(﹣3)2+2×(﹣5)﹣+(﹣)0(2)解不等式组:.【解答】解:(1)原式=9﹣10﹣4+1=﹣4;(2)解不等式组,解不等式①,得:x>﹣7,解不等式②,得:x<﹣6,∴不等式组的解集为:﹣7<x<﹣6.20.(8分)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运10趟才能完成,需支付运费共4500元;已知乙车每趟运费比甲车少150元.求甲、乙两车每趟的运费分别是多少元.【解答】解:设甲车每趟的运费是x元,乙车每趟的运费是y元,根据题意,得:,解得:,答:甲车每趟的运费是300元,乙车每趟的运费是150元.21.(8分)海口市某中学为了解本校学生对海口市“双创”知识掌握情况,随机抽取该校部分学生进行了测试.根据学生测试结果划分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并绘制了两幅不完整的统计图(如图1,2).请根据统计图中的信息解答下列问题:(1)这次抽查中,一共抽查了200名学生;(2)将图1补充完整;在图2中,“等级D”在扇形图中所占的圆心角是18度;(3)估计该校2200名学生中达到“良好”、“优秀”的学生共有1870名.【解答】解:(1)这次抽查中,一共抽查学生=200(人),故答案为:200;(2)“等级C”的人数为:200×10%=20(人),“等级A”人数为:200﹣10﹣20﹣80=90(人),如图:“等级D”在扇形图中所占的圆心角是360°×=18°,故答案为:18;(3)估计该校2200名学生中达到“良好”、“优秀”的学生共有2200×=1870(人),故答案为:1870.22.(9分)如图,一艘轮船在A处测得北偏东45°方向有一灯塔B,船向正东方向航行到达C处时,又观测到灯塔B在北偏东30°方向上,此时轮船与灯塔相距60海里,求轮船从A处到C处航行了多少海里(结果保留根号).【解答】解:作BD⊥AC交AC的延长线于D,在Rt△BCD中,∠CBD=30°,∴CD=BC=30,BD=BC•cos∠CBD=30,∵∠BAD=45°,∴AD=BD=30,∴AC=30﹣30(海里),答:轮船从A处到C处航行了(30﹣30)海里.23.(13分)如图1,2,在矩形ABCD中,AB=6,BC=8,连接BD.现将一个足够大的直角三角板的直角顶点O放在射线BD上(点P不与点B、D重合),一条直角边过点C,另一条直角边与AB所在的直线交于点G.(1)如图1,当点P在线段BD上,且PG=BC时,①求证:△GBC≌△CPG;②求BG的长;(2)如图2,当点P在线段BD的延长线上,且PC=BC时,求BG的长.【解答】解:(1)①在Rt△GBC和Rt△CPG中,,∴Rt△GBC≌Rt△CPG;②∵Rt△GBC≌Rt△CPG,∴∠BCG=∠PGC,∴EG=EC,又BC=PG,∴EB=EP,∴∠EBP=∠EPB,∴∠EBP=∠GCB,∴BD∥GC,又BG∥CD,∴四边形BGCD是平行四边形,∴BG=CD=6;(2)在Rt△GBC和Rt△GPC中,,∴Rt△GBC≌Rt△GPC,∴PC=BC=8,BG=PG,∵△GPC是一个三角板,∴∠PGC=30°,∴PG==8,∴BG=8.24.(14分)如图,在平面直角坐标系中,点A、C分别是一次函数y=﹣x+3的图象与y轴、x轴的交点,抛物线y=x2+bx+c经过B(﹣2,0)、D(6,3)两点.(1)求该抛物线所对应的函数关系式;(2)动点P从点A出发,在线段AD上匀速运动,同时动点Q从点C出发,在线段AC上匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△APQ的面积为S.①当P运动到何处时,PQ⊥AC;②求S与t之间的函数关系式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,在x轴下方的抛物线上存在点K,使S=4S,直接写出点K的坐标.△BCK【解答】解:(1)∵抛物线y=x2+bx+c经过B(﹣2,0)、D(6,3)两点,∴,解得,∴抛物线解析式为y=x2﹣x﹣.(2)①如图1中,由题意A(0,3),C(4,0),∵PQ⊥AC,∴∠PQA=∠AOC=90°,∵AD∥BC,∴∠PAQ=∠ACO,∴△AQP∽△COA,∴=,∴=,∴t=.②如图2中,作QM⊥AP于M.由△AMQ∽△COA,得到:=,∴=,∴QM=(5﹣t).∴S=•AP•QM=﹣t2+t=﹣(t﹣)2+.∴t=时,S最大值=.(3)设K(m,n),由题意×6×(﹣n)=4×,∴n=﹣,当y=﹣时,﹣=x2﹣x﹣,解得x=2或,。
2016年海南省中考数学试题答案及试题分析
2016年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分)1.2016的相反数就是()A.2016B.﹣2016C.D.﹣2.若代数式x+2的值为1,则x等于()A.1B.﹣1C.3D.﹣3)3.如图就是由四个相同的小正方体组成的几何体,则它的主视图为(A. B. C. D.4.某班7名女生的体重(单位:kg)分别就是35、37、38、40、42、42、74,这组数据的众数就是()A.74B.44C.42D.405.下列计算中,正确的就是()A.(a3)4=a12B.a3•a5=a15C.a2+a2=a4D.a6÷a2=a36.省政府提出2016年要实现180 000农村贫困人口脱贫,数据180 000用科学记数法表示为()A.1、8×103B.1、8×104C.1、8×105D.1、8×1067.解分式方程,正确的结果就是()A.x=0B.x=1C.x=2D.无解8.面积为2的正方形的边长在()A.0与1之间B.1与2之间C.2与3之间D.3与4之间9.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的就是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷10.在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)11.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率就是()A. B. C. D.12.如图,AB就是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°13.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°14.如图,AD就是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6B.6C.2D.3二、填空题(本大题满分16分,每小题4分)15.因式分解:ax﹣ay=.16.某工厂去年的产值就是a万元,今年比去年增加10%,今年的产值就是万元.17.如图,AB就是⊙O的直径,AC、BC就是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=.18.如图,四边形ABCD就是轴对称图形,且直线AC就是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD就是菱形;④△ABD≌△CDB.其中正确的就是(只填写序号)三、解答题(本大题满分62分)19.计算:(1)6÷(﹣3)+﹣8×2﹣2;(2)解不等式组:.20.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》与《中华上下五千年》两本书的标价总与为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.21.在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表挂果数量x(个) 频数(株) 频率25≤x<35 6 0、135≤x<45 12 0、245≤x<55 a 0、2555≤x<65 18 b65≤x<75 9 0、15请结合图表中的信息解答下列问题:(1)统计表中,a=,b=;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为°;(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有株.22.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)23.如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O就是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4﹣.①求KD的长度;②如图2,点P就是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S△PMN=时,求m的值.24.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P就是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.2016年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)1.2016的相反数就是()A.2016B.﹣2016C.D.﹣【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:2016的相反数就是﹣2016,故选:B.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数就是0.2.若代数式x+2的值为1,则x等于()A.1B.﹣1C.3D.﹣3【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故选B【点评】此题考查了解一元一次方程方程,根据题意列出方程就是解本题的关键.3.如图就是由四个相同的小正方体组成的几何体,则它的主视图为()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从正面瞧得到的图形就是主视图,可得答案.【解答】解:从正面瞧第一层就是两个小正方形,第二层左边一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面瞧得到的图形就是主视图.4.某班7名女生的体重(单位:kg)分别就是35、37、38、40、42、42、74,这组数据的众数就是()A.74B.44C.42D.40【考点】众数.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵数据中42出现了2次,出现的次数最多,∴这组数据的众数就是42,故选:C.【点评】本题考查了众数,一组数据中出现次数做多的数叫做众数,它反映了一组数据的多数水平,一组数据的众数可能不就是唯一的.5.下列计算中,正确的就是()A.(a3)4=a12B.a3•a5=a15C.a2+a2=a4D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、(a3)4=a3×4=a12,故A正确;B、a3•a5=a3+5=a8,故B错误;C、a2+a2=2a2,故C错误;D、a6÷a2=a6﹣2=a4,故D错误;故选:A.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质与法则就是解题的关键.6.省政府提出2016年要实现180 000农村贫困人口脱贫,数据180 000用科学记数法表示为()A.1、8×103B.1、8×104C.1、8×105D.1、8×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要瞧把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n就是正数;当原数的绝对值小于1时,n就是负数.【解答】解:180000用科学记数法表示为1、8×105,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.解分式方程,正确的结果就是()A.x=0B.x=1C.x=2D.无解【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解. 【解答】解:去分母得:1+x﹣1=0,解得:x=0,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.8.面积为2的正方形的边长在()A.0与1之间B.1与2之间C.2与3之间D.3与4之间【考点】估算无理数的大小.【分析】面积为3的正方形边长就是2的算术平方根,再利用夹逼法求得的取值范围即可.【解答】解:解:面积为2的正方形边长就是,∵1<2<4,∴故选B.【点评】本题考查了算术平方根的定义与估算无理数的大小,运用“夹逼法”就是解答此题的关键.9.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的就是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷【考点】反比例函数的应用;反比例函数的图象.【分析】解:如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系就是反比例函数,它的图象在第一象限,根据反比例函数的性质可推出A,B错误,再根据函数解析式求出自变量的值与函数值,有可判定C,D.【解答】解:如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系就是反比例函数,它的图象在第一象限,∴y随x的增大而减小,∴A,B错误,设y=(k>0,x>0),把x=50时,y=1代入得:k=50,∴y=,把y=2代入上式得:x=25,∴C错误,把x=1代入上式得:y=,∴D正确,故答案为:D.【点评】本题主要考查了反比例函数的性质,图象,求函数值与自变量的值,根据图象找出正确信息就是解题的关键.10.在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)【考点】坐标与图形变化-旋转.【分析】根据题意可得,点B与点B的对应点B1关于原点对称,据此求出B1的坐标即可.【解答】解:∵△A1OB1就是将△AOB绕原点O顺时针旋转180°后得到图形,∴点B与点B1关于原点对称,∵点B的坐标为(2,1),∴B1的坐标为(﹣2,﹣1).故选D.【点评】本题考查了坐标与图形变化﹣旋转,图形或点旋转之后要结合旋转的角度与图形的特殊性质来求出旋转后的点的坐标.11.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率就是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.【点评】此题考查的就是用列表法或树状图法求概率.解题的关键就是要注意就是放回实验还就是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.12.如图,AB就是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°【考点】切线的性质.【分析】利用切线的性质与直角三角形的两个锐角互余的性质得到圆心角∠PAO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB就是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠P=40°,∴∠∠PAO=50°,∴∠ABC=∠PAO=25°.故选:B.【点评】本题考查了切线的性质,圆周角定理.圆的切线垂直于经过切点的半径.13.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【考点】矩形的性质;平行线的性质.【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD就是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线就是解此题的关键.14.如图,AD就是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB就是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB就是等腰直角三角形,∴BE=BD=×3=3,故选D.【点评】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠就是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状与大小不变,位置变化,对应边与对应角相等;2、等腰直角三角形的性质求解.二、填空题(本大题满分16分,每小题4分)15.因式分解:ax﹣ay=a(x﹣y).【考点】因式分解-提公因式法.【分析】通过提取公因式a进行因式分解即可.【解答】解:原式=a(x﹣y).故答案就是:a(x﹣y).【点评】本题考查了因式分解﹣提公因式法::如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.16.某工厂去年的产值就是a万元,今年比去年增加10%,今年的产值就是(1+10%)a万元.【考点】列代数式.【专题】增长率问题.【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值=(1+10%)a万元,故答案为:(1+10%)a.【点评】本题考查了增长率的知识,增长后的收入=(1+10%)×增长前的收入.17.如图,AB就是⊙O的直径,AC、BC就是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=5、5.【考点】圆周角定理;垂径定理.【分析】解:由AB与DE就是⊙O的直径,可推出OA=OB=OD=4,∠C=90°,又有DE⊥AC,得到OP∥BC,于就是有△AOP∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵AB与DE就是⊙O的直径,∴OA=OB=OD=4,∠C=90°,又∵DE⊥AC,∴OP∥BC,∴△AOP∽△ABC,∴,即,∴OP=1、5.∴DP=OP+OP=5、5,故答案为:5、5.【点评】本题主要考查了圆周角定理,平行线的判定,相似三角形的判定与性质,熟练掌握圆周角定理就是解决问题的关键.18.如图,四边形ABCD就是轴对称图形,且直线AC就是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD就是菱形;④△ABD≌△CDB.其中正确的就是①②③④(只填写序号)【考点】菱形的判定;全等三角形的判定;轴对称图形.【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【解答】解:因为l就是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD就是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD就是菱形,正确;④在△ABD与△CDB中∵∴△ABD≌△CDB(SSS),正确.故答案为:①②③④.【点评】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.三、解答题(本大题满分62分)19.计算:(1)6÷(﹣3)+﹣8×2﹣2;(2)解不等式组:.【考点】解一元一次不等式组;实数的运算;负整数指数幂.【分析】(1)根据实数的运算顺序,先计算除法、开方、乘方,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集.【解答】解:(1)原式=﹣2+2﹣8×=﹣2;(2)解不等式x﹣1<2,得:x<3,解不等式≥1,得:x≥1,∴不等式组的解集为:1≤x<3.【点评】本题考查了实数的混合运算与一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》与《中华上下五千年》两本书的标价总与为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.【考点】一元一次方程的应用.【分析】设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元.根据“购书价格=《汉语成语大词典》的标价×折率+《中华上下五千年》的标价×折率”可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,依题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【点评】本题考查了一元一次方程的应用,解题的关键就是列出50%x+60%(150﹣x)=80.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)就是关键.21.在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表挂果数量x(个) 频数(株) 频率25≤x<35 6 0、135≤x<45 12 0、245≤x<55 a 0、2555≤x<65 18 b65≤x<75 9 0、15请结合图表中的信息解答下列问题:(1)统计表中,a=15,b=0、3;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为72°;(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有300株.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【专题】统计与概率.【分析】(1)根据题意可以求得a的值、b的值;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)根据挂果数量在“35≤x<45”所对应的频率,可以求得挂果数量在“35≤x<45”所对应扇形的圆心角度数;(4)根据频数分布直方图可以估计挂果数量在“55≤x<65”范围的番茄的株数.【解答】解:(1)a=60×0、25=15,b==0、3.故答案就是:15,0、3;(2)补全的频数分布直方图如右图所示,(3)由题意可得,挂果数量在“35≤x<45”所对应扇形的圆心角度数为:360°×0、2=72°,故答案为:72;(4)由题意可得,挂果数量在“55≤x<65”范围的番茄有:1000×0、3=300(株),故答案为:300.【点评】本题考查频数分布直方图、用样本估计总体、扇形圆心角的度数,解题的关键就是明确题意,找出所求问题需要的条件.22.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【专题】应用题;解直角三角形及其应用.【分析】(1)在直角三角形DCE中,利用锐角三角函数定义求出DE的长即可;(2)过D作DF垂直于AB,交AB于点F,可得出三角形B DF为等腰直角三角形,设BF=DF=x,表示出BC,BD,DC,由题意得到三角形BCD为直角三角形,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:(1)在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,∴DE=DC=2米;(2)过D作DF⊥AB,交AB于点F,∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30°,∴BC====米,BD=BF=x米,DC=4米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,根据勾股定理得:2x2=+16,解得:x=4+或x=4﹣,则AB=(6+)米或(6﹣)米.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理就是解本题的关键.23.如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O就是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4﹣.①求KD的长度;②如图2,点P就是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S△PMN=时,求m的值.【考点】四边形综合题;全等三角形的判定;矩形的性质;相似三角形的判定与性质.【分析】(1)①先根据AAS判定△DOK≌△BOG,②再根据等腰三角形ABF与平行四边形AFKG的性质,得出结论BG=AB+AK;(2)①先根据等量代换得出AF=KG=KD=BG,再设AB=a,根据AK=FG列出关于a的方程,求得a的值,进而计算KD的长;②先过点G作GI⊥KD,求得S△DKG的值,再根据四边形PMGN就是平行四边形,以及△DKG∽△PKM∽△DPN,求得S△DPN与S△PKM的表达式,最后根据等量关系S平行四边形PMGN=S△DKG﹣S△DPN ﹣S△PKM,列出关于m的方程,求得m的值即可.【解答】解:(1)①∵在矩形ABCD中,AD∥BC∴∠KDO=∠GBO,∠DKO=∠BGO∵点O就是BD的中点∴DO=BO∴△DOK≌△BOG(AAS)②∵四边形ABCD就是矩形∴∠BAD=∠ABC=90°,AD∥BC又∵AF平分∠BAD∴∠BAF=∠BFA=45°∴AB=BF∵OK∥AF,AK∥FG∴四边形AFGK就是平行四边形∴AK=FG∵BG=BF+FG∴BG=AB+AK(2)①由(1)得,四边形AFGK就是平行四边形∴AK=FG,AF=KG又∵△DOK≌△BOG,且KD=KG∴AF=KG=KD=BG设AB=a,则AF=KG=KD=BG= a∴AK=4﹣﹣a,FG=BG﹣BF=a﹣a∴4﹣﹣a=a﹣a解得a=∴KD=a=2②过点G作GI⊥KD于点I由(2)①可知KD=AF=2∴GI=AB=∴S△DKG=×2×=∵PD=m∴PK=2﹣m∵PM∥DG,PN∥KG∴四边形PMGN就是平行四边形,△DKG∽△PKM∽△DPN ∴,即S△DPN=()2同理S△PKM=()2∵S△PMN=∴S平行四边形PMGN=2S△PMN=2×又∵S平行四边形PMGN=S△DKG﹣S△DPN﹣S△PKM∴2×=﹣()2﹣()2,即m2﹣2m+1=0解得m1=m2=1∴当S△PMN=时,m的值为1【点评】本题主要考查了矩形的性质以及平行四边形的性质,解题时需要运用全等三角形的判定与性质.解答此题的关键就是运用相似三角形的面积之比等于相似比的平方这一性质,并根据图形面积的等量关系列出方程进行求解,难度较大,具有一定的综合性.24.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P就是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.【考点】二次函数综合题.【专题】综合题.【分析】(1)设交点式为y=a(x+5)(x+1),然后把C点坐标代入求出a即可;(2)先利用待定系数法求出直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,由P点坐标得到Q(﹣2,﹣3),则PQ=6,然后根据三角形面积公式,利用S△APC=S△APQ+S△CPQ进行计算;(3)①由∠APE=∠CPE,PH⊥AD可判断△PAD为等腰三角形,则AH=DH,设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,通过证明△PHD∽△COD,利用相似比可表示出DH=﹣x﹣,则﹣x﹣x﹣=5,则解方程求出x可得到OH与AH的长,然后利用平行线分线段成比例定理计算出=;②设P(x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),分类讨论:当PA=PE,易得点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,利用PH=HE得到|﹣x2﹣6x﹣5|=|﹣x﹣5|,当E′A=E′P,如图2,AE′=E′H′=(x+5),P′E′=x2+5x,则x2+5x=(x+5),然后分别解方程求出x可得到对应P点坐标.【解答】(1)解:设抛物线解析式为y=a(x+5)(x+1),把C(0,﹣5)代入得a•5•1=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x+5)(x+1),即y=﹣x2﹣6x﹣5;(2)解:设直线AC的解析式为y=mx+n,把A(﹣5,0),C(0,﹣5)代入得,解得,∴直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,则Q(﹣2,﹣3),∴PQ=3﹣(﹣3)=6,∴S△APC=S△APQ+S△CPQ=•PQ•5=×6×5=15;(3)①证明:∵∠APE=∠CPE,而PH⊥AD,∴△PAD为等腰三角形,∴AH=DH,设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,∵PH∥OC,∴△PHD∽△COD,∴PH:OC=DH:OD,即(﹣x2﹣6x﹣5):5=DH:(﹣x﹣DH),∴DH=﹣x﹣,而AH+OH=5,∴﹣x﹣x﹣=5,整理得2x2+17x+35=0,解得x1=﹣,x2=﹣5(舍去),∴OH=,∴AH=5﹣=,∵HE∥OC,∴===;②能.设P(x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),当PA=PE,因为∠PEA=45°,所以∠PAE=45°,则点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,则PH=HE,即|﹣x2﹣6x﹣5|=|﹣x﹣5|,解﹣x2﹣6x﹣5=﹣x﹣5得x1=﹣5(舍去),x2=0(舍去);解﹣x2﹣6x﹣5=x+5得x1=﹣5(舍去),x2=﹣2,此时P点坐标为(﹣2,3);当E′A=E′P,如图2,AE′=E′H′=(x+5),P′E′=﹣x﹣5﹣(﹣x2﹣6x﹣5)=x2+5x,则x2+5x=(x+5),解得x1=﹣5(舍去),x2=,此时P点坐标为(,﹣7﹣6),综上所述,满足条件的P点坐标为(﹣1,0),(﹣2,3),(,﹣7﹣6).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征与等腰三角形的判定;会运用待定系数法求函数解析式;理解坐标与图形性质,能运用相似比计算线段的长;会运用方程的思想与分类讨论的思想解决问题.。
2016年5月海南省海口市中考数学综合性压轴题含详细解析
2016年海南省海口九年级数学综合性压轴题(第1题图)1.如图,抛物线y =12x 2+bx +c 与y 轴交于点C (0,-4),与x 轴交于点A ,B ,且B 点的坐标为(2,0).(1)求该抛物线的表达式.(2)若点P 是AB 上的一动点,过点P 作PE ∥AC ,交BC 于E ,连结CP ,求△PCE 面积的最大值. (3)若点D 为OA 的中点,点M 是线段AC 上一点,且△OMD 为等腰三角形,求M 点的坐标.解:(1)把点C (0,-4),B (2,0)的坐标分别代入y =12x 2+bx +c 中,得⎩⎪⎨⎪⎧c =-4,12×22+2b +c =0,解得⎩⎪⎨⎪⎧b =1,c =-4.∴该抛物线的表达式为y =12x 2+x -4.(2)令y =0,即12x 2+x -4=0,解得x 1=-4,x 2=2,∴点A (-4,0),S △ABC =12AB ·OC =12.设点P 的坐标为(x ,0),则PB =2-x . ∵PE ∥AC ,∴∠BPE =∠BAC ,∠BEP =∠BCA , ∴△PBE ∽△ABC . ∴S △PBE S △ABC =(PB AB)2,即S △PBE 12=(2-x 6)2,化简,得S △PBE =13(2-x )2.S △PCE =S △PCB -S △PBE =12PB ·OC -S △PBE =12·(2-x )·4-13(2-x )2 =-13x 2-23x +83=-13(x +1)2+3,∴当x =-1时,S △PCE 的最大值为3.(3)△OMD 为等腰三角形,可能有三种情形: (Ⅰ)当DM =DO 时,如解图①所示.DO =DM =DA =2, ∴∠OAC =∠AMD =45°, ∴∠ADM =90°,∴点M 的坐标为(-2,-2).,(第1题图解))(Ⅱ)当MD =MO 时,如解图②所示.过点M 作MN ⊥OD 于点N ,则点N 为OD 的中点, ∴DN =ON =1,AN =AD +DN =3,又∵△AMN 为等腰直角三角形,∴MN =AN =3, ∴点M 的坐标为(-1,-3). (Ⅲ)当OD =OM 时,∵△OAC 为等腰直角三角形,∴点O 到AC 的距离为22×4=22,即AC 上的点与点O 之间的最小距离为2 2.∵22>2,∴OD =OM 的情况不存在.综上所述,点M 的坐标为(-2,-2)或(-1,-3).(第2题图)2.如图,抛物线y =-12x 2+mx +n 与x 轴交于A ,B 两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知点A (-1,0),C (0,2).(1)求抛物线的表达式.(2)在抛物线的对称轴上是否存在点P ,使△PCD 是以CD 为腰的等腰三角形?如果存在,直接写出点P 的坐标;如果不存在,请说明理由.(3)点E 时线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出四边形CDBF 的最大面积及此时点E 的坐标.解:(1)∵抛物线y =-12x 2+mx +n 经过点A (-1,0),C (0,2),∴⎩⎪⎨⎪⎧-12-m +n =0,n =2,解得⎩⎪⎨⎪⎧m =32,n =2.∴抛物线的表达式为y =-12x 2+32x +2.(2)∵y =-12x 2+32x +2,∴y =-12⎝⎛⎭⎫x -322+258,∴抛物线的对称轴是直线x =32.∴OD =32.∵点C (0,2),∴OC =2.在Rt △OCD 中,由勾股定理,得CD =52.∵△CDP 是以CD 为腰的等腰三角形,如解图①,分别以C ,D 为圆心,CD 长为半径画圆交对称轴于点P 1,P 2,P 3,∴CP 1=DP 2=DP 3=CD .作CH ⊥x 轴于H ,∴HP 1=HD =2,∴DP 1=4.∴点P 1⎝⎛⎭⎫32,4,P 2⎝⎛⎭⎫32,52,P 3⎝⎛⎭⎫32,-52.(第2题图解)(3)当y =0时,0=-12x 2+32x +2,解得x 1=-1,x 2=4,∴点B (4,0).设直线BC 的表达式为y =kx +b ,将B ,C 两点的坐标代入,得⎩⎪⎨⎪⎧2=b ,0=4k +b ,解得⎩⎪⎨⎪⎧k =-12,b =2.∴直线BC 的表达式为y =-12x +2.如解图②,过点C 作CM ⊥EF 于点M ,设点E ⎝⎛⎭⎫a ,-12a +2,则F ⎝⎛⎭⎫a ,-12a 2+32a +2, ∴EF =-12a 2+32a +2-⎝⎛⎭⎫-12a +2=-12a 2+2a (0≤x ≤4). ∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =12BD ·OC +12EF ·CM +12EF ·BN=12×52×2+12⎝⎛⎭⎫-12a 2+2a a + 12⎝⎛⎭⎫-12a 2+2a (4-a ).=-a 2+4a +52=-(a -2)2+132(0≤x ≤4).∴a =2时,S 四边形CDBF 的面积最大,S 最大=132,此时点E (2,1).(第3题图)3.如图所示,Rt △ABC 是一张放在平面直角坐标系中的纸片,点C 与原点O 重合,点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,已知OA =3,OB =4.将纸片的直角部分翻折,使点C 落在AB 边上,记为点D ,AE 为折痕,E 在y 轴上.(1)在如图所示的直角坐标系中,求点E 的坐标及AE 的长.(2)线段AD 上有一动点P (不与A ,D 重合)自点A 沿AD 方向以每秒1个单位长度向点D 作匀速运动,设运动时间为t (s)(0<t <3),过点P 作PM ∥DE 交AE 于M 点,过点M 作MN ∥AD 交DE 于N 点,求四边形PMND 的面积S 与时间t 之间的函数表达式.当t 取何值时,S 有最大值?最大值是多少?(3)当t (0<t <3)为何值时,A ,D ,M 三点构成等腰三角形?并求出点M 的坐标. 解:(1)根据题意,得△AOE ≌△ADE , ∴OE =DE ,∠ADE =∠AOE =90°,AD =AO =3,在Rt △AOB 中,AB =32+42=5, 设DE =OE =x ,在Rt △BED 中,根据勾股定理,得 BD 2+DE 2=BE 2,即22+x 2=(4-x )2,解得x =32,∴点E ⎝⎛⎭⎫0,32. 在Rt △AOE 中,AE =32+⎝⎛⎭⎫322=352.(2)∵PM ∥DE ,MN ∥AD ,且∠ADE =90°,∴四边形PMND 是矩形. ∵AP =t ·1=t ,∴PD =3-t .∵△AMP ∽△AED ,∴PM DE =APAD,∴PM =AP AD ·DE =t2,∴S 矩形PMND =PM ·PD =t2·(3-t ),∴S 矩形PMND =-12t 2+32t 或S 矩形PMND =-12(t -32)2+98,当t =-322×⎝⎛⎭⎫-12=32时,S 最大=98. (3)△ADM 为等腰三角形有以下两种情况: (Ⅰ)当MD =MA 时,点P 是AD 中点,∴AP =AD 2=32,∴t =32÷1=32(s).∴当t =32时,A ,D ,M 三点构成等腰三角形,过点M 作MF ⊥OA 于F ,如解图①,∵△APM ≌△AFM ,∴AF =AP =32,MF =MP =t 2=34,∴OF =OA -AF =3-32=32,∴点M ⎝⎛⎭⎫32,34. ,(第3题图解))(Ⅱ)当AD =AM =3时,∵△AMP ∽△AED , ∴AP AD =AM AE , ∴AP 3=3352,∴AP =655,∴t =655÷1=655(s). ∴当t =655s 时,A ,D ,M 三点构成等腰三角形,过点M 作MF ⊥OA 于点F .如解图②.∵△AMF ≌△AMP ,∴AF =AP =655,FM =PM =t 2=355,∴OF =OA -AF =3-655,∴点M ⎝⎛⎭⎫3-655,355. 4.如图①,在矩形ABCD 中,AB =5,AD =203,AE ⊥BD ,垂足是E .点F 是点E 关于AB 的对称点,连结AF ,BF .(第4题图)(1)求AE 和BE 的长.(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB ,AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P ,Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.解:(1)在Rt △ABD 中,AB =5,AD =203,由勾股定理,得BD =AB 2+AD 2=52+⎝⎛⎭⎫2032=253.∵S △ABD =12BD ·AE =12AB ·AD ,∴AE =AB ·ADBD =5×203253=4.在Rt △ABE 中,AB =5,AE =4,由勾股定理,得BE =3.(第4题图解①)(2)设平移中的三角形为△A ′B ′F ′,如解图①所示. 由对称点性质可知,∠1=∠2.由平移性质可知,AB ∥A ′B ′,∠4=∠5=∠1,B ′F ′=BF =3. ①当点F ′落在AB 上时,∵AB ∥A ′B ′, ∴∠3=∠4,∴∠3=∠1=∠2, ∴BB ′=B ′F ′=3,即m =3;②当点F ′落在AD 上时,∵AB ∥A ′B ′, ∴∠6=∠2.∵∠1=∠2,∠5=∠1, ∴∠5=∠6.又易知A ′B ′⊥AD ,∴△B ′F ′D 为等腰三角形, ∴B ′D =B ′F ′=3,∴BB ′=BD -B ′D =253-3=163,即m =163.(3)存在.理由如下:在旋转过程中,等腰△DPQ 依次有以下4种情形:①如解图②所示,点Q 落在BD 延长线上,且PD =DQ ,易知∠2=2∠Q .(第4题图解②)∵∠1=∠3+∠Q ,∠1=∠2, ∴∠3=∠Q ,∴A ′Q =A ′B =5,∴F ′Q =F ′A ′+A ′Q =4+5=9.在Rt △BF ′Q 中,由勾股定理,得BQ =F ′Q 2+F ′B 2=92+32=310.(第4题图解③)∴DQ =BQ -BD =310-253. ②如解图③所示,点Q 落在BD 上,且PQ =DQ ,易知∠2=∠P . ∵∠1=∠2,∴∠1=∠P ,∴BA ′∥PD ,则此时点A ′落在BC 边上. ∵∠3=∠2,∴∠3=∠1,∴BQ =A ′Q , ∴F ′Q =F ′A ′-A ′Q =4-BQ .在Rt △BQF ′中,由勾股定理,得BF ′2+F ′Q 2=BQ 2, 即32+(4-BQ )2=BQ 2,解得BQ =258.∴DQ =BD -BQ =253-258=12524.③如解图④所示,点Q 落在BD 上,且PD =DQ ,易知∠3=∠4.(第4题图解④)∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°-12∠2.∵∠1=∠2,∴∠4=90°-12∠1.∴∠A ′QB =∠4=90°-12∠1,∴∠A ′BQ =180°-∠A ′QB -∠1=90°-12∠1,∴∠A ′QB =∠A ′BQ , ∴A ′Q =A ′B =5,∴F ′Q =A ′Q -A ′F ′=5-4=1.在Rt △BF ′Q 中,由勾股定理,得BQ =F ′Q 2+F ′B 2=12+32=10,∴DQ =BD -BQ =253-10.④如解图⑤所示,点Q 落在BD 上,且PQ =PD ,易知∠2=∠3.(第4题图解⑤)∵∠1=∠2,∠3=∠4,∠2=∠3, ∴∠1=∠4, ∴BQ =BA ′=5,∴DQ =BD -BQ =253-5=103.综上所述,存在4组符合条件的点P ,Q ,使△DPQ 为等腰三角形,其中DQ 的长度分别为310-253,12524,253-10或103. 5.如图所示,在平面直角坐标系xOy 中,抛物线y =14(x -m )2-14m 2+m 的顶点为A ,与y 轴的交点为B ,连结AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使AD =AC ,连结B D. 作AE ∥x 轴,DE ∥y 轴,交于点E .(1)当m =2时,求点B 的坐标. (2)求DE 的长.(3)①设点D 的坐标为(x ,y ),求y 关于x 的函数表达式.②过点D 作AB 的平行线,与第(3)①题确定的函数图象的另一个交点为P .当m 为何值时,以A ,B ,D ,P 为顶点的四边形是平行四边形?,(第5题图))解:(1)当m =2时,y =14(x -2)2+1,把x =0代入y =14(x -2)2+1,得y =2,∴点B 的坐标为(0,2). (2)延长EA ,交y 轴于点F ,∵AD =AC ,∠AFC =∠AED =90°,∠CAF =∠DAE , ∴△AFC ≌△AED , ∴AF =AE .∵点A (m ,-14m 2+m ),点B (0,m ),∴AF =AE =|m |,BF =m -(-14m 2+m )=14m 2,∵∠ABF =90°-∠BAF =∠DAE , ∠AFB =∠DEA =90°, ∴△ABF ∽△DAE ,∴BFAF=AEDE,即14m2|m|=|m |DE,∴DE=4.(3)①∵点A的坐标为(m,-14m2+m),∴点D的坐标为(2m,-14m2+m+4),∴x=2m,y=-14m2+m+4,∴y=-14·⎝⎛⎭⎫x22+12x+4,∴所求函数的表达式为y=-116x2+12x+4.②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如解图①),点P的横坐标为3m,点P的纵坐标为⎝⎛⎭⎫-14m2+m+4-⎝⎛⎭⎫14m2=-12m2+m+4,把点P(3m,-12m2+m+4)的坐标代入y=-116x2+12x+4,得-12m2+m+4=-116·(3m)2+12·3m+4,解得m=0(此时A,B,D,P在同一直线上,舍去)或m=8.,图①),图②),(第5题图解)) (Ⅱ)当四边形ABPD为平行四边形时(如解图②),点P的横坐标为m,点P的纵坐标为⎝⎛⎭⎫-14m2+m+4+⎝⎛⎭⎫14m2=m+4,把点P(m,m+4)的坐标代入y=-116x2+12x+4,得m+4=-116m2+12m+4,解得m=0(此时A,B,D,P在同一直线上,舍去)或m=-8.综上所述,m的值为8或-8.拓展提高(第6题图)6.如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求P A的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求P A∶PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE =∠AEC,PD=2OD,求P A∶PC的值.解:(1)∵点P与点B重合,点B的坐标是(2,1),∴点P的坐标是(2,1).∴P A的长为2.(第6题图解①)(2)过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,如解图①所示.∵点A的纵坐标与点B的横坐标相等,∴OA=AB.∵∠OAB=90°,∴∠AOB=∠ABO=45°.∵∠AOC=90°,∴∠POC=45°.∵PM⊥x轴,PN⊥y轴,∴PM=PN,∠ANP=∠CMP=90°.∴∠NPM=90°.∵∠APC=90°.∴∠APN=90°-∠APM=∠CPM.在△ANP和△CMP中,∵∠APN=∠CPM,PN=PM,∠ANP=∠CMP,∴△ANP≌△CMP.∴P A=PC.∴P A∶PC的值为1∶1.(3)①若点P在线段OB的延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,(第6题图解②)PM与直线AC的交点为F,如解图②所示.∵∠APN=∠CPM,∠ANP=∠CMP,∴△ANP∽△CMP.∴P APC=PNPM.∵∠ACE =∠AEC , ∴AC =AE .∵AP ⊥PC ,∴EP =CP .∵PM ∥y 轴,∴AF =CF ,OM =CM .∴FM =12OA .设OA =x ,∵PF ∥OA ,∴△PDF ∽△ODA .∴PF OA =PDOD.∵PD =2OD ,∴PF =2OA =2x .∵FM =12OA =12x .∴PM =52x .∵∠APC =90°,AF =CF ,∴AC =2PF =4x . ∵∠AOC =90°,∴OC =15x .∵∠PNO =∠NOM =∠OMP =90°, ∴四边形PMON 是矩形.∴PN =OM =152x .∴P A ∶PC =PN ∶PM =152x ∶52x =155.②当点P 在线段OB 上,不合题意. ③若点P 在线段OB 的反向延长线上,过点P 作PM ⊥x 轴,垂足为M ,过点P 作PN ⊥y 轴,垂足为N ,PM 与直线AC 的交点为F ,如解图③所示.(第6题图解③)同理可得:PM =32x ,CA =2PF =4x ,OC =15x .∴PN =OM =12OC =152x .∴P A ∶PC =PN ∶PM =152x ∶32x =153.综上所述,P A ∶PC 的值为155或153.(第7题图)7.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(-4,4).点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连结BP ,过点P 作BP 的垂线,与过点Q 平行于y 轴的直线l 交于点D .连结BD ,BD 与y 轴交于点E ,连结PE .设点P 运动的时间为t (s).(1)∠PBD 的度数为__45°__,点D 的坐标为(t ,t )(用含t 的式子表示).(2)当t 为何值时,△PBE 为等腰三角形?(3)探索△POE 周长是否随时间t 的变化而变化?若变化,说明理由;若不变,试求这个定值. 解:(1)由题意,得AP =OQ =1×t =t ,∴AO =PQ . ∵四边形OABC 是正方形,∴AO =AB =BC =OC ,∠BAO =∠AOC =∠OCB =∠ABC =90°. ∵DP ⊥BP ,∴∠BPD =90°. ∴∠BP A =90°-∠DPQ =∠PDQ . ∵AO =PQ ,AO =AB ,∴AB =QP .在△BAP 和△PQD 中,∵⎩⎪⎨⎪⎧∠BAP =∠PQD =90°,∠BP A =∠PDQ ,BA =PQ ,∴△BAP ≌△PQD .∴AP =QD ,BP =PD .∵∠BPD =90°,BP =PD , ∴∠PBD =∠PDB =45°.∵AP =t ,∴QD =t .∴点D 的坐标为(t ,t ). (2)①若PB =PE ,则∠PBE =∠PEB =45°. ∴∠BPE =90°.∵∠BPD =90°,∴∠BPE =∠BPD . ∴点E 与点D 重合.∴点Q 与点O 重合.与条件“DQ ∥y 轴”矛盾, ∴这种情况应舍去.②若EB =EP ,则∠BPE =∠PBE =45°.∴∠BEP =90°.∴∠PEO =90°-∠BEC =∠EBC .在△POE 和△ECB 中,∵ ⎩⎪⎨⎪⎧∠PEO =∠EBC ,∠POE =∠ECB ,PE =EB ,∴△POE ≌△ECB .∴OE =BC ,OP =EC .∴OE =OC .∴点E 与点C 重合(即EC =0). ∴点P 与点O 重合(即PO =0). ∵点B (-4,4),∴AO =CO =4.此时t =AP ÷1=AO ÷1=4. ③若BP =BE ,在Rt △BAP 和Rt △BCE 中,∵⎩⎪⎨⎪⎧BA =BC ,BP =BE ,∴Rt △BAP ≌Rt △BCE (HL ).∴AP =CE . ∵AP =t ,∴CE =t .∴PO =EO =4-t .∵∠POE =90°,∴PE =PO 2+EO 2=2(4-t ).(第7题图解)延长OA 到点F ,使得AF =CE ,连结BF ,如解图所示. 在△F AB 和△ECB 中, ∵⎩⎪⎨⎪⎧AB =CB ,∠BAF =∠BCE =90°,AF =CE ,∴△F AB ≌△ECB .∴FB =EB ,∠FBA =∠EBC . ∵∠EBP =45°,∠ABC =90°,∴∠ABP +∠EBC =45°.∴∠FBP =∠FBA +∠ABP =∠EBC +∠ABP =45°. ∴∠FBP =∠EBP .在△FBP 和△EBP 中,∵⎩⎪⎨⎪⎧BF =BE ,∠FBP =∠EBP ,BP =BP ,∴△FBP ≌△EBP .∴FP =EP .∴EP =FP =F A +AP =CE +AP . ∴EP =t +t =2t .∴2(4-t )=2t . 解得t =42-4.∴当t 为4或42-4时,△PBE 为等腰三角形. (3)不变.同理于(2)③,易得PE =AP +CE ,∴OP +PE +OE =OP +AP +CE +OE =AO +CO =4+4=8. ∴△POE 的周长是定值,该定值为8.8.如图①,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,顶点A ,C 分别在x 轴,y 轴的正半轴上,且OA =2,OC =1,矩形对角线AC ,OB 相交于E ,过点E 的直线与边OA ,BC 分别交于点G ,H .(1)①直接写出点E 的坐标:⎝⎛⎭⎫1,12; ②求证:AG =CH .(2)如图②,以O 为圆心,OC 为半径的圆弧交OA 于D ,若直线GH 与弧CD 所在的圆相切于矩形内一点F ,求直线GH 的函数表达式.(3)在(2)的结论下,梯形ABHG 的内部有一点P ,当⊙P 与HG ,GA ,AB 都相切时,求⊙P 的半径.,(第8题图))解:(1)①根据矩形的性质和边长即可求出点E 的坐标是⎝⎛⎭⎫1,12. ②证明:∵四边形OABC 是矩形,∴CE =AE ,BC ∥OA ,∴∠HCE =∠EAG . 在△CHE 和△AGE 中, ∵⎩⎪⎨⎪⎧∠HCE =∠EAG ,CE =AE ,∠HEC =∠GEA ,∴△CHE ≌△AGE ,∴AG =CH .(2)连结DE 并延长交CB 于M ,如解图①.∵OD =OC =1=12OA ,∴D 是OA 的中点,在△CME 和△ADE 中,∵⎩⎪⎨⎪⎧∠MCE =∠DAE ,CE =AE ,∠MEC =∠DEA ,∴△CME ≌△ADE ,∴CM =AD =2-1=1.∵BC ∥OA ,∠COD =90°, ∴四边形CMDO 是矩形, ∴MD ⊥OD ,MD ⊥CB , ∴MD 切⊙O 于点D .∵HG 切⊙O 于F ,点E ⎝⎛⎭⎫1,12,∴可设CH =HF =x ,FE =ED =12=ME .在Rt △MHE 中,有MH 2+ME 2=HE 2,即(1-x )2+⎝⎛⎭⎫122=⎝⎛⎭⎫12+x 2,解得x =13, ∴点H ⎝⎛⎭⎫13,1,OG =2-13=53. 又∵点G ⎝⎛⎭⎫53,0,设直线GH 的表达式是y =kx +b , 把点G ,H 的坐标代入,得0=35k +b ,且1=13k +b ,解得k =-34,b =54,∴直线GH 的函数表达式为y =-34x +54.(3)连结BG ,如解图②,在△OCH 和△BAG 中,∵⎩⎪⎨⎪⎧CH =AG ,∠HCO =∠GAB ,OC =AB ,,(第8题图解))∴△OCH ≌△BAG ,∴∠CHO =∠AGB .∵∠HCO =90°,∴HC 切⊙O 于C ,HG 切⊙O 于F , ∴OH 平分∠CHF ,∴∠CHO =∠FHO =∠BGA . ∵△CHE ≌△AGE ,∴HE =GE .在△HOE 和△GBE 中,∵⎩⎪⎨⎪⎧EH =EG ,∠HEO =∠GEB ,OE =BE ,∴△HOE ≌△GBE ,∴∠OHE =∠BGE .∵∠CHO =∠FHO =∠BGA ,∴∠BGA =∠BGE ,即BG 平分∠FGA . ∵⊙P 与HG ,GA ,AB 都相切, ∴圆心P 必在BG 上,过P 作PN ⊥GA ,垂足为N ,则△GPN ∽△GBA , ∴PN BA =GN GA, 设半径为r ,则r 1=13-r 13,解得r =14.∴⊙P 的半径是14.9.如图,在平面直角坐标系中,已知点A 的坐标是(4,0),且OA =OC =4OB ,动点P 在过A ,B ,C 三点的抛物线上.(第9题图)(1)求抛物线的表达式.(2)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,说明理由.(3)过动点P 作PE 垂直y 轴于点E ,交直线AC 于点D ,过点D 作x 轴的垂线.垂足为F ,连结EF ,当线段EF 的长度最短时,求出点P 的坐标.解:(1)由点A (4,0),可知OA =4. ∵OA =OC =4OB ,∴OC =OA =4,OB =1, ∴点C (0,4),B (-1,0).设抛物线的表达式是y =ax 2+bx +x , 则⎩⎪⎨⎪⎧a -b +c =0,16a +4b +c =0,c =4,解得⎩⎪⎨⎪⎧a =-1,b =3,c =4.则抛物线的表达式是y =-x 2+3x +4. (2)存在.如解图①.第一种情况,当以C 为直角顶点时,过点C 作CP 1⊥AC ,交抛物线于点P 1.过点P 1作y 轴的垂线,垂足是M .∵∠ACP 1=90°,∴∠MCP 1+∠ACO =90°. ∵∠ACO +∠OAC =90°, ∴∠MCP 1=∠OAC . ∵OA =OC ,∴∠MCP 1=∠OAC =45°, ∴∠MCP 1=∠MP 1C , ∴MC =MP 1.设点P (m ,-m 2+3m +4),则m =-m 2+3m +4-4, 解得:m 1=0(舍去),m 2=2. ∴-m 2+3m +4=6, 即点P (2,6).第二种情况,当点A 为直角顶点时,过点A 作AP 2⊥AC 交抛物线于点P 2,过点P 2作y 轴的垂线,垂足是N ,AP 2交y 轴于点F .∴P 2N ∥x 轴. ∵∠CAO =45°, ∴∠OAP =45°,∴∠FP 2N =45°,AO =OF . ∴P 2N =NF .设点P 2(n ,-n 2+3n +4),则-n =-(-n 2+3n +4)-4, 解得n 1=-2,n 2=4(舍去), ∴-n 2+3n +4=-6,则点P 2的坐标是(-2,-6).综上所述,点P 的坐标是(2,6)或(-2,-6).(第9题图解)(3)如解图②,连结OD ,由题意可知,四边形OFDE 是矩形,则OD =EF . 根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短. 由(1)可知,在Rt △AOC 中,OC =OA =4, 则AC =OC 2+OA 2=42,根据等腰三角形的性质,D 是AC 的中点. 又∵DF ∥OC ,∴DF =12OC =2,∴点P 的纵坐标是2. 则-x 2+3x +4=2,解得x =3±172,∴当EF 最短时,点P 的坐标是⎝ ⎛⎭⎪⎫3+172,0或⎝ ⎛⎭⎪⎫3-172,0.10.已知在平面直角坐标系xOy 中,O 是坐标原点,以P (1,1)为圆心的⊙P 与x 轴,y 轴分别相切于点M 和点N ,点F 从点M 出发,沿x 轴正方向以每秒1个单位长度的速度运动,连结PF ,过点PE ⊥PF 交y 轴于点E ,设点F 运动的时间是t (s )(t >0)(第10题图)(1)若点E 在y 轴的负半轴上(如图所示),求证:PE =PF .(2)在点F 运动的过程中,设OE =a ,OF =b ,试用含a 的代数式表示b .(3)作点F 关于点M 的对称点F ′,经过M ,E 和F ′三点的抛物线的对称轴交x 轴于点Q ,连结QE .在点F 运动的过程中,是否存在某一时刻,使得以点Q ,O ,E 为顶点的三角形与以点P ,M ,F 为顶点的三角形相似?若存在,请直接写出t 的值;若不存在,请说明理由.(第10题图解①)解:(1)证明:如解图①,连结PM ,PN ,∵⊙P 与x 轴,y 轴分别相切于点M 和点N , ∴PM ⊥MF ,PN ⊥ON ,且PM =PN ,∴∠PMF =∠PNE =90°,且∠NPM =90°. ∵PE ⊥PF ,∴∠NPE =∠MPF =90°-∠MPE . 在△PMF 和△PNE 中, ∵⎩⎪⎨⎪⎧∠NPE =∠MPF ,PN =PM ,∠PNE =∠PMF ,∴△PNE ≌△PMF (ASA ). ∴PE =PF .(2)①当t >1时,点E 在y 轴的负半轴上,如解图①, 由(1)得△PNE ≌△PMF ,∴NE =MF =t ,PM =PN =1, ∴b =OF =OM +MF =1+t ,a =OE =NE -ON =t -1, ∴b -a =1+t -(t -1)=2,∴b =2+a .②0<t ≤1时,如解图②,点E 在y 轴的正半轴或原点上,同理可证△PMF ≌△PNE , ∴b =OF =OM +MF =1+t ,a =ON -NE =1-t , ∴b +a =1+t +1-t =2,∴b =2-a .,(第10题图解))(3)分情况讨论:①当0<t <1时,如解图③.∵点F (1+t ,0),点F 和点F ′关于点M 对称, ∴点F ′(1-t ,0).∵经过M ,E 和F ′三点的抛物线的对称轴交x 轴于点Q ,∴点Q ⎝⎛⎭⎫1-12t ,0,∴OQ =1-12t . 由(1),得△PNE ≌△PMF ,∴NE =MF =t , ∴OE =1-t .当△OEQ ∽△MPF 时,有OE MP =OQMF,∴1-t1=1-12t t,无解.当△OEQ ∽△MFP 时,有OE MF =OQMP,∴1-tt =1-12t 1,解得t 1=2-2,t 2=2+2(舍去).(第10题图解④)②如解图④,当1<t <2时,∵点F (1+t ,0),点F 和点F ′关于点M 对称,∴点F ′(1-t ,0).∵经过M ,E ,F ′三点的抛物线的对称轴交x 轴于点Q ,∴点Q ⎝⎛⎭⎫1-12t ,0, ∴OQ =1-12t .由(1)得△PNE ≌△PMF ,∴NE =MF =t , ∴OE =t -1.当△OEQ ∽△MPF 时,有OE MP =OQMF,∴t -11=1-12t t ,解得t =1+174或t =1-174(舍去);当△OEQ ∽△MFP 时,有OE MF =OQMP,∴t -1t =1-12t 1,解得t =2或t =-2(舍去).(第10题图解⑤)③如解图⑤,当t >2时,∵点F (1+t ,0),点F 和点F ′关于点M 对称, ∴点F ′(1-t ,0)∵经过M ,E ,F ′三点的抛物线的对称轴交x 轴于点Q ,∴点Q ⎝⎛⎭⎫1-12t ,0, ∴OQ =12t -1,由(1)得△PMF ≌△PNE ∴NE =MF =t , ∴OE =t -1.当△OEQ ∽△MPF 时,有OE MP =OQMF,∴t -11=12t -1t,无解;当△OEQ ∽△MFP 时,有OE MP =OQMF,∴t -1t =12t -11,解得t =2±2或t =2-2(舍去),综上所述,当t =2-2,1+174,2,2+2时,使得以点Q ,O ,E 为顶点的三角形与以点P ,M ,F 为顶点的三角形相似.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年海南省中考数学试卷姓名:得分:一、选择题(本大题满分42分,每小题3分)1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣2.若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣33.如图是由四个相同的小正方体组成的几何体,则它的主视图为()A.B.C.D.4.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.405.下列计算中,正确的是()A.(a3)4=a12B.a3•a5=a15C.a2+a2=a4D.a6÷a2=a36.省政府提出2016年要实现180 000农村贫困人口脱贫,数据180 000用科学记数法表示为()A.1.8×103B.1.8×104C.1.8×105D.1.8×1067.解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解8.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间9.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷10.在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B 的对应点B1的坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)11.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.12.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°13.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°14.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3二、填空题(本大题满分16分,每小题4分)15.因式分解:ax﹣ay=.16.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是万元.17.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP=.18.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)三、解答题(本大题满分62分)19.计算:(1)6÷(﹣3)+﹣8×2﹣2;(2)解不等式组:20.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.21.在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:“宇番2号”番茄挂果数量统计表(1)统计表中,a=,b=;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为°;(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有株.22.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)23.如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4﹣.①求KD的长度;②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S△PMN=时,求m的值.24.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.2016年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:2016的相反数是﹣2016,故选:B.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.若代数式x+2的值为1,则x等于()A.1 B.﹣1 C.3 D.﹣3【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x+2=1,解得:x=﹣1,故选B【点评】此题考查了解一元一次方程方程,根据题意列出方程是解本题的关键.3.如图是由四个相同的小正方体组成的几何体,则它的主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.40【考点】众数.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵数据中42出现了2次,出现的次数最多,∴这组数据的众数是42,故选:C.【点评】本题考查了众数,一组数据中出现次数做多的数叫做众数,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.5.下列计算中,正确的是()A.(a3)4=a12B.a3•a5=a15C.a2+a2=a4D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、(a3)4=a3×4=a12,故A正确;B、a3•a5=a3+5=a8,故B错误;C、a2+a2=2a2,故C错误;D、a6÷a2=a6﹣2=a4,故D错误;故选:A.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.6.省政府提出2016年要实现180 000农村贫困人口脱贫,数据180 000用科学记数法表示为()A.1.8×103B.1.8×104C.1.8×105D.1.8×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:180000用科学记数法表示为1.8×105,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1+x﹣1=0,解得:x=0,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.8.面积为2的正方形的边长在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【考点】估算无理数的大小.【分析】面积为3的正方形边长是2的算术平方根,再利用夹逼法求得的取值范围即可.【解答】解:解:面积为2的正方形边长是,∵1<2<4,∴故选B.【点评】本题考查了算术平方根的定义和估算无理数的大小,运用“夹逼法”是解答此题的关键.9.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷【考点】反比例函数的应用;反比例函数的图象.【分析】解:如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,根据反比例函数的性质可推出A,B错误,再根据函数解析式求出自变量的值与函数值,有可判定C,D.【解答】解:如图所示,人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数关系是反比例函数,它的图象在第一象限,∴y随x的增大而减小,∴A,B错误,设y=(k>0,x>0),把x=50时,y=1代入得:k=50,∴y=,把y=2代入上式得:x=25,∴C错误,把x=1代入上式得:y=,∴D正确,故答案为:D.【点评】本题主要考查了反比例函数的性质,图象,求函数值与自变量的值,根据图象找出正确信息是解题的关键.10.在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B 的对应点B1的坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)【考点】坐标与图形变化-旋转.【分析】根据题意可得,点B和点B的对应点B1关于原点对称,据此求出B1的坐标即可.【解答】解:∵△A1OB1是将△AOB绕原点O顺时针旋转180°后得到图形,∴点B和点B1关于原点对称,∵点B的坐标为(2,1),∴B1的坐标为(﹣2,﹣1).故选D.【点评】本题考查了坐标与图形变化﹣旋转,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.11.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.【点评】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.12.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20° B.25° C.40° D.50°【考点】切线的性质.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠PAO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线PA与⊙O相切于点A,∴∠PAO=90°.又∵∠P=40°,∴∠∠PAO=50°,∴∠ABC=∠PAO=25°.故选:B.【点评】本题考查了切线的性质,圆周角定理.圆的切线垂直于经过切点的半径.13.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30° B.45° C.60° D.75°【考点】矩形的性质;平行线的性质.【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.14.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.【点评】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.二、填空题(本大题满分16分,每小题4分)15.因式分解:ax﹣ay=a(x﹣y).【考点】因式分解-提公因式法.【分析】通过提取公因式a进行因式分解即可.【解答】解:原式=a(x﹣y).故答案是:a(x﹣y).【点评】本题考查了因式分解﹣提公因式法::如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.16.某工厂去年的产值是a万元,今年比去年增加10%,今年的产值是(1+10%)a万元.【考点】列代数式.【专题】增长率问题.【分析】今年产值=(1+10%)×去年产值,根据关系列式即可.【解答】解:根据题意可得今年产值=(1+10%)a万元,故答案为:(1+10%)a.【点评】本题考查了增长率的知识,增长后的收入=(1+10%)×增长前的收入.17.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP= 5.5.【考点】圆周角定理;垂径定理.【分析】解:由AB和DE是⊙O的直径,可推出OA=OB=OD=4,∠C=90°,又有DE⊥AC,得到OP∥BC,于是有△AOP∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵AB和DE是⊙O的直径,∴OA=OB=OD=4,∠C=90°,又∵DE⊥AC,∴OP∥BC,∴△AOP∽△ABC,∴,即,∴OP=1.5.∴DP=OP+OP=5.5,故答案为:5.5.【点评】本题主要考查了圆周角定理,平行线的判定,相似三角形的判定和性质,熟练掌握圆周角定理是解决问题的关键.18.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是①②③④(只填写序号)【考点】菱形的判定;全等三角形的判定;轴对称图形.【分析】根据轴对称图形的性质,结合菱形的判定方法以及全等三角形的判定方法分析得出答案.【解答】解:因为l是四边形ABCD的对称轴,AB∥CD,则AD=AB,∠1=∠2,∠1=∠4,则∠2=∠4,∴AD=DC,同理可得:AB=AD=BC=DC,所以四边形ABCD是菱形.根据菱形的性质,可以得出以下结论:所以①AC⊥BD,正确;②AD∥BC,正确;③四边形ABCD是菱形,正确;④在△ABD和△CDB中∵∴△ABD≌△CDB(SSS),正确.故答案为:①②③④.【点评】此题考查了轴对称以及菱形的判断与菱形的性质,注意:对称轴垂直平分对应点的连线,对应角相等,对应边相等.三、解答题(本大题满分62分)19.计算:(1)6÷(﹣3)+﹣8×2﹣2;(2)解不等式组:.【考点】解一元一次不等式组;实数的运算;负整数指数幂.【分析】(1)根据实数的运算顺序,先计算除法、开方、乘方,再计算乘法,最后计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集.【解答】解:(1)原式=﹣2+2﹣8×=﹣2;(2)解不等式x﹣1<2,得:x<3,解不等式≥1,得:x≥1,∴不等式组的解集为:1≤x<3.【点评】本题考查了实数的混合运算和一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.世界读书日,某书店举办“书香”图书展,已知《汉语成语大词典》和《中华上下五千年》两本书的标价总和为150元,《汉语成语大词典》按标价的50%出售,《中华上下五千年》按标价的60%出售,小明花80元买了这两本书,求这两本书的标价各多少元.【考点】一元一次方程的应用.【分析】设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元.根据“购书价格=《汉语成语大词典》的标价×折率+《中华上下五千年》的标价×折率”可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设《汉语成语大词典》的标价为x元,则《中华上下五千年》的标价为(150﹣x)元,依题意得:50%x+60%(150﹣x)=80,解得:x=100,150﹣100=50(元).答:《汉语成语大词典》的标价为100元,《中华上下五千年》的标价为50元.【点评】本题考查了一元一次方程的应用,解题的关键是列出50%x+60%(150﹣x)=80.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.21.在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的统计图表:(1)统计表中,a=15,b=0.3;(2)将频数分布直方图补充完整;(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为72°;(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在“55≤x<65”范围的番茄有300株.【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【专题】统计与概率.【分析】(1)根据题意可以求得a的值、b的值;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)根据挂果数量在“35≤x<45”所对应的频率,可以求得挂果数量在“35≤x<45”所对应扇形的圆心角度数;(4)根据频数分布直方图可以估计挂果数量在“55≤x<65”范围的番茄的株数.【解答】解:(1)a=60×0.25=15,b==0.3.故答案是:15,0.3;(2)补全的频数分布直方图如右图所示,(3)由题意可得,挂果数量在“35≤x<45”所对应扇形的圆心角度数为:360°×0.2=72°,故答案为:72;(4)由题意可得,挂果数量在“55≤x<65”范围的番茄有:1000×0.3=300(株),故答案为:300.【点评】本题考查频数分布直方图、用样本估计总体、扇形圆心角的度数,解题的关键是明确题意,找出所求问题需要的条件.22.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【专题】应用题;解直角三角形及其应用.【分析】(1)在直角三角形DCE中,利用锐角三角函数定义求出DE的长即可;(2)过D作DF垂直于AB,交AB于点F,可得出三角形B DF为等腰直角三角形,设BF=DF=x,表示出BC,BD,DC,由题意得到三角形BCD为直角三角形,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:(1)在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,∴DE=DC=2米;(2)过D作DF⊥AB,交AB于点F,∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30°,∴BC====米,BD=BF=x米,DC=4米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,根据勾股定理得:2x2=+16,解得:x=4+或x=4﹣,则AB=(6+)米或(6﹣)米.【点评】此题考查了解直角三角形﹣仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.23.如图1,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4﹣.①求KD的长度;②如图2,点P是线段KD上的动点(不与点D、K重合),PM∥DG交KG于点M,PN∥KG交DG于点N,设PD=m,当S△PMN=时,求m的值.【考点】四边形综合题;全等三角形的判定;矩形的性质;相似三角形的判定与性质.【分析】(1)①先根据AAS判定△DOK≌△BOG,②再根据等腰三角形ABF和平行四边形AFKG的性质,得出结论BG=AB+AK;(2)①先根据等量代换得出AF=KG=KD=BG,再设AB=a,根据AK=FG列出关于a的方程,求得a的值,进而计算KD的长;②先过点G作GI⊥KD,求得S△DKG的值,再根据四边形PMGN是平行四边形,以及△DKG∽△PKM∽△DPN,求得S△DPN和S△PKM的表达式,最后根据等量关系S平行四边形PMGN=S△DKG﹣S△DPN﹣S△PKM,列出关于m的方程,求得m的值即可.【解答】解:(1)①∵在矩形ABCD中,AD∥BC∴∠KDO=∠GBO,∠DKO=∠BGO∵点O是BD的中点∴DO=BO∴△DOK≌△BOG(AAS)②∵四边形ABCD是矩形∴∠BAD=∠ABC=90°,AD∥BC又∵AF平分∠BAD∴∠BAF=∠BFA=45°∴AB=BF∵OK∥AF,AK∥FG∴四边形AFGK是平行四边形∴AK=FG∵BG=BF+FG∴BG=AB+AK(2)①由(1)得,四边形AFGK是平行四边形∴AK=FG,AF=KG又∵△DOK≌△BOG,且KD=KG∴AF=KG=KD=BG设AB=a,则AF=KG=KD=BG= a∴AK=4﹣﹣a,FG=BG﹣BF=a﹣a∴4﹣﹣a=a﹣a解得a=∴KD=a=2②过点G作GI⊥KD于点I由(2)①可知KD=AF=2∴GI=AB=∴S△DKG=×2×=∵PD=m∴PK=2﹣m∵PM∥DG,PN∥KG∴四边形PMGN是平行四边形,△DKG∽△PKM∽△DPN∴,即S△DPN=()2同理S△PKM=()2∵S△PMN=∴S平行四边形PMGN=2S△PMN=2×又∵S平行四边形PMGN=S△DKG﹣S△DPN﹣S△PKM∴2×=﹣()2﹣()2,即m2﹣2m+1=0 解得m1=m2=1∴当S△PMN=时,m的值为1【点评】本题主要考查了矩形的性质以及平行四边形的性质,解题时需要运用全等三角形的判定与性质.解答此题的关键是运用相似三角形的面积之比等于相似比的平方这一性质,并根据图形面积的等量关系列出方程进行求解,难度较大,具有一定的综合性.24.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.【考点】二次函数综合题.【专题】综合题.【分析】(1)设交点式为y=a(x+5)(x+1),然后把C点坐标代入求出a即可;(2)先利用待定系数法求出直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,由P点坐标得到Q(﹣2,﹣3),则PQ=6,然后根据三角形面积公式,利用S△APC=S△APQ+S△CPQ进行计算;(3)①由∠APE=∠CPE,PH⊥AD可判断△PAD为等腰三角形,则AH=DH,设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,通过证明△PHD∽△COD,利用相似比可表示出DH=﹣x﹣,则﹣x﹣x﹣=5,则解方程求出x可得到OH和AH的长,然后利用平行线分线段成比例定理计算出=;②设P(x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),分类讨论:当PA=PE,易得点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,利用PH=HE得到|﹣x2﹣6x﹣5|=|﹣x﹣5|,当E′A=E′P,如图2,AE′=E′H′=(x+5),P′E′=x2+5x,则x2+5x=(x+5),然后分别解方程求出x可得到对应P点坐标.【解答】(1)解:设抛物线解析式为y=a(x+5)(x+1),把C(0,﹣5)代入得a•5•1=﹣5,解得a=﹣1,所以抛物线解析式为y=﹣(x+5)(x+1),即y=﹣x2﹣6x﹣5;(2)解:设直线AC的解析式为y=mx+n,把A(﹣5,0),C(0,﹣5)代入得,解得,∴直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,则Q(﹣2,﹣3),∴PQ=3﹣(﹣3)=6,∴S△APC=S△APQ+S△CPQ=•PQ•5=×6×5=15;(3)①证明:∵∠APE=∠CPE,而PH⊥AD,∴△PAD为等腰三角形,∴AH=DH,设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,∵PH∥OC,∴△PHD∽△COD,∴PH:OC=DH:OD,即(﹣x2﹣6x﹣5):5=DH:(﹣x﹣DH),∴DH=﹣x﹣,而AH+OH=5,∴﹣x﹣x﹣=5,整理得2x2+17x+35=0,解得x1=﹣,x2=﹣5(舍去),∴OH=,∴AH=5﹣=,∵HE∥OC,∴===;②能.设P(x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),当PA=PE,因为∠PEA=45°,所以∠PAE=45°,则点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,则PH=HE,即|﹣x2﹣6x﹣5|=|﹣x﹣5|,解﹣x2﹣6x﹣5=﹣x﹣5得x1=﹣5(舍去),x2=0(舍去);解﹣x2﹣6x﹣5=x+5得x1=﹣5(舍去),x2=﹣2,此时P点坐标为(﹣2,3);当E′A=E′P,如图2,AE′=E′H′=(x+5),P′E′=﹣x﹣5﹣(﹣x2﹣6x﹣5)=x2+5x,则x2+5x=(x+5),解得x1=﹣5(舍去),x2=,此时P点坐标为(,﹣7﹣6),综上所述,满足条件的P点坐标为(﹣1,0),(﹣2,3),(,﹣7﹣6).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和等腰三角形的判定;会运用待定系数法求函数解析式;理解坐标与图形性质,能运用相似比计算线段的长;会运用方程的思想和分类讨论的思想解决问题.。