浙江省湖州市吴兴区2017-2018学年九年级上学期期末考试数学试题(附答案详解)
每日一学:浙江省湖州市吴兴区2017-2018学年九年级上学期数学期中考试试卷_压轴题解答
每日一学:浙江省湖州市吴兴区2017-2018学年九年级上学期数学期中考试试卷_压轴题解答答案浙江省湖州市吴兴区2017-2018学年九年级上学期数学期中考试试卷_压轴题~~ 第1题 ~~(2018吴兴.九上期中) 如图1,抛物线 y=ax +bx+c 与 x 轴交于A (1,0),B (-3,0),与 y 轴交于C (0,3),顶点是G .(1) 求抛物线的的解析式及顶点坐标G.(2) 如图1,点D (x ,y )是线段BG 上的动点(不与B ,G 重合),DE ⊥x 轴于E ,设四边形OEDC 的面积为S ,求S 与x 之间的函数关系式,并求S 的最大值.(3) 如图2,将抛物线 y=ax +bx+c 向下平移 k 个单位,平移后的顶点式 G' ,与 x轴的交点是 A',B' .若△A'B'G' 是直角三角形,求 k 的值.考点: 待定系数法求一次函数解析式;二次函数图象的几何变换;二次函数的最值;待定系数法求二次函数解析式;勾股定理;~~ 第2题 ~~(2018吴兴.九上期中) 如图抛物线与x 轴分别交于A 、B 两点,顶点C 在y 轴负半轴上,也在正方形ADEB 的边上,已知正方形ADEB 的边长为2,若正方形FGMN 的顶点F、G 落在x 轴上,顶点M 、N 落在图中的抛物线上,则正方形FGMN 的边长为________.~~第3题 ~~(2018吴兴.九上期中) 已知函数的图象如图所示,则当函数 的图象在x 轴上方时,x 的取值范围为( )22A .B .C .D .浙江省湖州市吴兴区2017-2018学年九年级上学期数学期中考试试卷_压轴题解答~~ 第1题 ~~答案:解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:C解析:。
浙江省湖州市吴兴区2017_2018学年九年级数学上学期期末考试试题新人教版-含答案 师生通用
浙江省湖州市吴兴区2017-2018学年九年级数学上学期期末考试试题友情提示:1.全卷分卷Ⅰ与卷Ⅱ两部分,考试时间120分钟,试卷满分为120分.2.试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效. 3.请仔细审题,细心答题,相信你一定会有出色的表现!4.参考公式:二次函数y=ax 2+bx+c 的顶点坐标是)44,2(2ab ac a b --. 卷 Ⅰ一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
请选出各题中一个最符合题意的选项,并在答题卷上相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.如图,Rt△ABC 中,∠C=90°,AB=7,∠B=35°,则AC 的长为-----------( ▲ ) A .7cos35° B .7tan35° C .7sin35° D .7sin55° 2.若29a b =,则a bb +=----------------------------------------------( ▲ )A . 119B .79C .911D . 973.抛物线3)4(22-+=x y 的对称轴是--------------------------------- ( ▲ ) A .直线x=4 B .直线x=-4 C .直线x=3 D .直线x=-34.若△ABC 的每条边长增加各自的10%得到△A′B′C′,则∠B′的度数与其对应角∠B 的度数相比-----------------------------------------------------------( ▲ ) A .增加了10% B .减少了10%C .增加了(1+10%)D .没有改变5.如图,AB 是⊙O 的直径,C 是⊙O 上的一点,OD ⊥BC 于点D ,AC=8,则OD 的长为( ▲ ) A . 3 B .4 C . 4.5 D . 5第5题图第6题图第1题图6.如图,在△ABC中,DE∥BC,且32=DBAD,则下列结论不正确...的是--------(▲)A.32=ECAEB.ECAEDBAD= C.32=BCDED.214=∆DBCEADESS四边形7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长--------------------------------------------(▲)A. 82 B.42 C. 2π D.π8.已知二次函数cbxaxy++=2的y与x的部分对应值如下表:则下列判断中正确的是------------------------------------------(▲)A.抛物线开口向上 B.抛物线与y轴交于负半轴C.当x=4时,y>0 D.方程02=++cbxax的正根在3与4之间9.如图,已知抛物线432-+=xxy,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点()0,2-,()0,2且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是-------(▲)A. B. C. D.10.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点。
浙江省湖州市吴兴区2017_2018学年九年级科学上学期期末考试试题浙教版
酒精和
水混合后体积小于
,是因为分子之间存在间隔
6.下表中有关血液循环系统的器官与组织,其结构特点与其功能相适应的是( ▲ )
选项 器官与组织
结构特点
功能
A
心脏
左心房壁的肌肉最厚 使血液获得的动力越大,向前流动越远
B
主动脉
血管内有动脉瓣
可防止血液倒流回心房
C 毛细血管 管径细红细胞呈单行通过 有利于血液与组织间的物质交换
Cu 2(OH)2CO 3
CuO+
CO 2+
▲
【猜想 与假设】 经仔细了 解了水龙 头的使用 环境后, 据“ 铜绿” 的组成 和査阅的 资料判断, 铜绿可能是铜与 ▲ 作用而形成的。 【设计与实验】借鉴课本“铁钉锈蚀条件的探究” 实验.小刚设计了“钢片锈蚀条件的探究 ” 实验。实验如图所示(所用铜片洁净、光亮,试管内的“ ”为铜片):实验较长时间后。发 现 ▲ 试管中铜片最先生锈(填试管字母编号)。
16.如图 a 所示,相同的烧杯甲和乙装了相同质量的纯净水,在家庭电路中并联接入不同的加
热器 1(电阻 R1)和加热器 2(电阻 R2)加热,忽略散失的热量,得到图 b 所示的水温与加热 时间的图形,则( ▲ )
A 若吸收相同的热量,则甲杯的水升温比乙杯的多
B.加热器 1 的实际功率小于加热器 2 的实际功率 C.电阻 R1 小于电阻 R2 D.加热相同的时间,甲、乙杯吸收的热量是相等的
A.O 型血的血清中含有抗 A 和抗 B 凝集素。
B.适当献血有利于提高自身造血器官的造血功能
C.验血时与 A 型血清发生凝集反应的只有 B 型血
D.输血时应以输同型血为原则
1
知识点简介
9. 如图是比较花生仁、大米、牛肉干三种食物所含能量多少的活动示意图。对于该活动,
九年级上期末考试数学答案
2017—2017学年第一学期期末考试九年级数学试题参考答案及评分标准(共3页)一、选择题(10×3分=30分)1.C ; 2.D ; 3.C ; 4.A ; 5.B ; 6.B ; 7.B ; 8.C ; 9.C ; 10.D .二、填空题(6×3分=18)11.60°; 12.12; 13.20%; 14.(1,0); 15.6π-; 16.(3,2) . 三、解答题(72分)17.(6分)解:a=1, b=1-, c=3-. ------------ 1分△=224(1)41(3)130b ac -=--⨯⨯-=> ------------ 3分方程有两个不等的实数根122b x a -±±== ------------ 5分即121122x x == ----------- 6分 18.(6分)解:设该班男生人数为x 人,依题意得: -2483x = ------------ 4分 解得:x =32, 48-x =16 ------------ 5分即该班男生人数为32人,女生人数为16人. ------------ 6分19.(7分)证明:连OC ,则OC ⊥PQ∴∠BCP +∠BCO =90° ------------ 2分又∵AB 是直径, ∴∠ACB =90°∴∠A +∠B =90° ------------ 4分∵OB =OC∴∠B =∠BCO ------------ 6分∴∠BCP =∠A ------------ 7分20.(7分)解:(1)画树形图:------------ 2分∴21(63P A ==选中型号电脑) ------------ 3分 (2) 设购买A 型号电脑x 台,由(1)知,则购买D 型号电脑或E 型号电脑(36-x )台. 依题意得:①6000x +5000(36-x )=100000 ------------ 4分方程解不合题意,舍去. ------------ 5分②6000x +2000(36-x )=100000 ------------ 6分解得:x =7 ------------7分综合①、②知购买A 型号电脑7台.21.(7分)解:(1)由题知△=2241(24)0k -⨯⨯->, ------------ 2分 解得:52k < ------------ 3分 (2)由(1)知52k <,又k 为正整数,∴k =1或k =2 ------------ 4分 ①当k =1时,原方程可化为:2220x x +-=该方程的两根都不是整数,不合题意,舍去. ------------ 5分②当k =2时,原方程可化为:220x x +=该方程的两根都是整数,符合题意. ------------ 6分∴k =2. ------------ 7分22.(8分)解:(1)设A (a ,b ) 由11122OAM S OM AM ab ∆=== 得:2ab = ------------ 2分 ∴2k ab == ------------ 3分 ∴反比例函数解析式为:2y x =(2)由122y x y x⎧=⎪⎪⎨⎪=⎪⎩解得点A 的坐标为A (2,1) ------------ 4分 由题知B (1,2) ------------ 5分延长AM 到A ',使AM =A 'M ,连A 'B 交x 轴于点P ,则P 为所求由B (1,2),(2,1)A '-求得直线A 'B 的解析式为:35y x =-+ ------------ 6分在35y x =-+中,令y =0,得x =53 ------------ 7分 ∴所求点P 坐标为P (53,0). ------------ 8分 23.(8分)解:(1)设所求函数关系式为:y kx b =+由图象知:360830010k b k b =+⎧⎨=+⎩,解得:30300k b =-⎧⎨=⎩∴所求函数关系式为:y =-30x +600 ------------ 3分(2) 2(6)30(13)1470w y x x =-=--+ ------------ 5分∵a =-30<0,对称轴为x =13 ------------ 6分∴当x ≤13时,w 随x 增大而增大 ------------ 7分∴当x =12时,w 值最大,且最大值为1440元. ------------ 8分24.(10分)(1)证明:连OE .∵AB =AC ,D 是BC 中点∴AD ⊥BC ------------ 1分∵OA =OE , ∴∠OAE =∠OEA∵AE 平分∠BAD , ∴∠DAE =∠OAE∴∠DAE =∠OEA ------------ 2分∴OD ∥AC∴OE ⊥BC ------------ 3分又∵点E 在⊙O 上∴BC 与⊙O 相切. ------------ 4分(2)解:∵AB =AC ,D 是BC 中点∴AD ⊥BC ,∠BAD =∠CAD∵AE 平分∠BAD , ∠BAC =120°∴∠DAE =∠EAF =∠B =30° ------------ 5分在Rt △DAE 中:由2222(2)AD DE AE DE +==,得:2223(2)DE DE +=解得:DE------------ 7分∴AE =2 DE =在Rt △AEF 中,由勾股定理,同上可得:EF =2 ------------ 8分∴AF =2 EF =4在Rt △ABD 中,∵∠B =30°∴AB =2 AD =6 ------------ 9分∴BF =AB -AF =2. ------------ 10分25.(12分)解:(1)把A (-2,0)代入y =a (x -1)2+33,得0=a (-2-1)2+33.∴a =-33 ∴该抛物线的解析式为y =-33(x -1)2+33 ------------ 2分 即y =-33x 2+332x +338. (2)设点D 的坐标为(x D ,y D ),则x D =-)(-332332 =1,y D =-33×1 2+332×1+338=33. ∴顶点D 的坐标为(1,33). ------------ 3分 如图,过点D 作DN ⊥x 轴于N ,则DN =33,AN =3,∴AD =22333)+(=6.∴∠ADN =60°∴∠DAO =60° ------------ 4分 ∵OM ∥AD①当DP ⊥OM 时,四边形DAOP 为直角梯形.过点O 作OE ⊥AD 轴于E .在Rt △AOE 中,∵AO =2,∠EAO =60°,∴AE =1.∵四边形DEOP 为矩形,∴OP =DE =6-1=5.∴t =5(s ) ------------ 5分②当PD =OA 时,四边形DAOP 为等腰梯形,此时OP =AD -2AE =6-2=4.∴t =4(s ) ------------ 6分综上所述,当t =5s ,4s 时,四边形DAOP 分别为直角梯形,等腰梯形.(3)由题知DAOC 是平行四边形.∵∠DAO =60°,OM ∥AD ,∴∠COB =60°.又∵OC =OB ,∴△COB 是等边三角形,∴OB =OC =AD =6.∵BQ =2t ,∴OQ =6-2t (0<t <3) ------------ 7分过点P 作PF ⊥x 轴于F ,则PF =23t . ∴S 四边形BCPQ =S △COB -S △POQ =21×6×33-21×(6-2t )×23t =23(t -23)2+8363 ------------ 10分 ∴当t =23(s )时,S 四边形BCPQ 的最小值为8363. ------------ 11分 此时OQ =6-2t =6-2×23=3,OP =23,OF =43, ∴QF =3-43=49,PF =433. ∴PQ =22QF PF +=2249433)+()(=233. ------------ 12分。
湖州市吴兴区2018-2019学年九年级上期末数学检测题(一)有答案
浙江省湖州市吴兴区2018-2019学年九年级(上)期末数学检测题(一)一.选择题(共10小题,满分30分,每小题3分)1.在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是()A.B.C.D.2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)4.下列说法正确的是()A.矩形都是相似图形B.各角对应相等的两个五边形相似C.等边三角形都是相似三角形D.各边对应成比例的两个六边形相似5.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.D.26.如图,在△ABC中,D、E分别为AB,AC上的点,若DE∥BC,=,则=()A.B.C.D.7.如图,圆上有A,B,C,D四点,其中∠BAD=80°,若圆的半径为9,则的长度为()A.4πB.8πC.10πD.15π8.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④9.将抛物线y=x2+2x+3绕点(﹣1,0)旋转180°,得到的新抛物线的解析式为()A.y=x2﹣2x+3B.y=﹣x2+2x﹣3C.y=﹣x2﹣2x﹣1D.y=﹣x2﹣2x﹣3 10.已知A(x1,2002),B(x2,2002)是二次函数y=ax2+bx+5(a≠0)的图象上两点,则当x=x1+x2时,二次函数的值是()A.B.C.2002D.5二.填空题(共6小题,满分24分,每小题4分)11.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.12.有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.13.如图,在扇形铁皮AOB中,OA=10,∠AOB=36°,OB在直线l上.将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为.14.如图,AB是⊙O的直径,AB=4,∠BAP=40°,点Q为PB的中点,点C是直径AB 上的一个动点,则PC+QC的最小值为.15.某居民楼紧挨一座山坡AB,经过地质人员勘测,当坡度不超过45°时,可以确保山体不滑坡,如图所示,已知AE∥BD,斜坡AB的坡角∠ABD=60°,为防止滑坡,现对山坡进行改造,改造后,斜坡BC与地面BD成45°角,AC=10米.则斜坡BC=米.16.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,tanA=,那么BD=.三.解答题(共8小题,满分54分)17.(6分)﹣2sin45°.18.(6分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=A B•AD;(2)求证:△AFD∽△CFE.19.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.(8分)如图,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.(精确到1mm,参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.(8分)如图,一、二、三、四这四个扇形的面积之比为1:3:5:1.(1)请分别求出它们圆心角的度数.(2)一、二、四这三个扇形的圆心角的度数之和是多少?22.(10分)某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图中的图象是抛物线的一段,它刻画了该软件上市以来累积利润S(万元)与销售时间t(月)之间的函数关系(即前t个月的利润总和S与t之间的函数关系),根据图象提供的信息,解答下列问题:(1)该种软件上市第几个月后开始盈利?(2)求累积利润S(万元)与时间t(月)之间的函数表达式;(3)截止到几月末,公司累积利润达到30万元.23.(10分)杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数;(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大;几个月后,能收回投资?24.如图,二次函数y=﹣x2+x+2的图象与x轴交于点A,B,与y轴交于点C.点P 是该函数图象上的动点,且位于第一象限,设点P的横坐标为x.(1)写出线段AC,BC的长度:AC=,BC=;(2)记△BCP的面积为S,求S关于x的函数表达式;(3)过点P作PH⊥BC,垂足为H,连结AH,AP,设AP与BC交于点K,探究:是否存在四边形ACP H为平行四边形?若存在,请求出的值;若不存在,请说明理由,并求出的最大值.参考答案一.选择题1.解:∵∠C=90°,AC=4,AB=5,∴BC==3,∴tanA==,故选:C.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.4.解:A.矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;B.各角对应相等的两个五边形相似,对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;C.等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D.各边对应成比例的六边形对应角不一定相等,所以不一定是相似六边形,故本选项错误;故选:C.5.解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故选:D.6.解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:B.7.解:如图,设圆心为O,连结OB、OD.∵圆上有A,B,C,D四点,其中∠BAD=80°,∴∠C=180°﹣80°=100°,∴所对的圆心角=2∠C=200°,∵圆的半径为9,∴的长度为:=10π.故选:C.8.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.9.解:y=x2+2x+3,=(x2+2x)+3,=(x2+2x+1﹣1)+3,=(x2+2x+1)﹣1+3,=(x+1)2+2,∴抛物线的顶点坐标为(﹣1,2),∵点(﹣1,2)关于(﹣1,0)中心对称的点的坐标为(﹣1,﹣2),∴抛物线绕着点(﹣1,0)旋转180°后,所得到的新抛物线的解析式为y=﹣(x+1)2﹣2,即y=﹣x2﹣2x﹣3.故选:D.10.解:∵A(x1,2002),B(x2,2002)是二次函数y=ax2+bx+5(a≠0)的图象上两点,又∵点A、B的纵坐标相同,∴A、B关于对称轴x=﹣对称,∴x=x1+x2=﹣,∴a+b(﹣)+5=5;故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.12.【解答】解:由题意可知,设草坪的实际面积为x,又图纸与实际的比例为0.05:15=1:300,所以有(1:300)2=300:xx=27000000cm2=2700m2所以草坪的实际面积为2700m2.故答案为:2700m2.13.解:当OA第1次落在l上时:点O所经过的路线长=++==12π.则当OA第5次落在l上时:点O所经过的路线长=12π×5=60π.故答案是:60π.14.解:作出Q关于AB的对称点D′,连接OP,OD′,QD′.又∵点C在⊙O上,∠BAP=40°,Q为PB的中点,即=,∴∠BAD′=∠BAP=20°.∴∠PAD′=60°.∴∠POD′=120°,∵OP=OD′=AB=4,∴PD′=2.故答案为:2.15.解:作AM⊥BD于点M,作CN⊥BD于点N,如右图所示,∵∠ABD=60°,∠CBD=45°,∴BN=,BM=,BC=,∵CN=AM,AC=BN﹣BM,AC=10米,∴BC=≈33.4米,即斜坡BC的长是33.4米.故答案为:33.416.解:∵在Rt△ABC中,∠C=90°,BC=8,tanA=,∴AC===6,∴AB==10,cosB===.∵边AB的垂直平分线交边AB于点E,∴BE=AB=5.∵在Rt△BDE中,∠BED=90°,∴cos B==,∴BD===.故答案为.三.解答题(共8小题,满分54分)17.解:原式=2﹣﹣2=﹣.18.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.19.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.20.解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°﹣∠BAD=180°﹣90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴mm在Rt△ADF中,cos,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.21.解:(1)∵一、二、三、四这四个扇形的面积之比为1:3:5:1.,∴各个扇形的面积分别占整个圆面积的,∴各个扇形的圆心角的度数分别为,,(2)一、二、四这三个扇形的圆心角的度数之和是36°+36°+108°=180°.22.解:(1)由图象可得,该种软件上市第4个月后开始盈利;(2)设S=a(t﹣2)2﹣2,∵函数图象过点(0,0),∴0=a(0﹣2)2﹣2,得a=,∴累积利润S(万元)与时间t(月)之间的函数表达式是:S=(t﹣2)2﹣2;(3)由题意,当S=30时,30=(t﹣2)2﹣2,解得,t1=10,t2=﹣6(舍去),即截止到10月末,公司累积利润达到30万元;23.解:(1)由题意得:x=1时y=2;x=2时,y=2+4=6代入得:解之得:∴y=x2+x;(2)由题意得:g=33x﹣150﹣(x2+x)=﹣x2+32 x﹣150;(3)g=﹣x2+32 x﹣150=﹣(x﹣16)2+106,值=106,∴当x=16时,g最大即设施开放16个月后,游乐场的纯收益达到最大,又∵当0<x≤16时,g随x的增大而增大;当x≤5时,g<0;而当x>6时,g>0,∴6个月后能收回投资.24.解:(1)二次函数y=﹣x2+x+2,当x=0时,y=2,∴C(0,2),∴OC=2,当y=0时,﹣x2+x+2=0,解得:x1=4,x2=﹣1,∴A(﹣1,0),B(4,0),∴OA=1,OB=4,由勾股定理得:AC==,BC==2;故答案为:,2;(2)∵B(4,0),C(0,2),∴直线BC的解析式为:y=﹣x+2,如图1,过P作PD∥y轴,交直线BC于D,设P(x,﹣x2+x+2),则D(x,﹣x+2),∴PD=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,有S=PD•OB=×4(﹣+2x)=﹣x2+4x(0<x<4);(6分)(3)不存在,如图2,∵AC2+BC2==25=AB2,∴△ABC为直角三角形,即AC⊥BC,∵PH⊥BC,∴AC∥PH,要使四边形ACPH为平行四边形,只需满足PH=AC=,(10分)∴S=BC•PH=×2×=5,∵而S=﹣x2﹣4x=﹣(x﹣2)2+4≤4,所以不存在四边形ACPH为平行四边形,∵AC∥PH,∴△AKC∽△PHK,∴===S≤;∴的最大值是.(12分)(说明:写出不存在给1分,其他说明过程酌情给分)。
2017-2018学年浙教数学九年级上第一学期期末测试-word
第一学期期末测试一、选择题(本大题共10小题,每小题4分,共40分)1.如图,在△ABC 中,DE ∥BC ,若AD ∶AB =1∶3,则△ADE 与△ABC 的面积之比是( )A .1∶3B .1∶4C .1∶9D .1∶16第1题图第3题图第5题图2.抛物线y =x 2-6x +5的顶点坐标为( ) A .(3,-4) B .(3,4) C .(-3,-4) D .(-3,4)3.如图,AB 是⊙O 的直径,∠AOC =130°,则∠D 等于( )A .25°B .35°C .50°D .65°4.将抛物线y =4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是( )A .y =4(x +1)2+3B .y =4(x -1)2+3C .y =4(x +1)2-3D .y =4(x -1)2-35.三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A.34B. 43C. 35D. 456.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )A .抛一枚硬币,出现正面的概率B .掷一枚正方体的骰子,出现6点的概率C .从一副扑克牌中任意抽取一张是红桃的概率D .任意写一个正整数,它能被3整除的概率第6题图第7题图7.如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于点E ,则下列结论中不一定成立的是( )A .AD =BC ′B .∠EBD =∠EDBC .△ABE ∽△CBD D .sin ∠AEB =AB DE8.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是( )A .12米B .83米C .24米D .243米第8题图第9题图第10题图9.如图,在△ABC 中,∠A =90°,AB =AC =2,点O 是边BC 的中点,半圆O 与△ABC 相切于点D 、E ,则阴影部分的面积等于( )A .1-π4 B. π4 C .1-π8 D. π810.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列五个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m ≠1,m 是实数).其中正确的个数为( )A .2个B .3个C .4个D .5个二、填空题(本大题共6小题,每小题5分,共30分)11.若a b =27,则a +b b=________. 12.如图,转动甲、乙两转盘,当转盘停止后,指针指向阴影区域的可能性的大小关系为:甲____乙(填“大于”、“小于”或“等于”).第12题图第13题图13.已知⊙O 直径AB 与弦AC 的夹角为35°,过C 点的切线PC 与AB 的延长线交于点P ,则∠P =____.14.抛物线y =-x 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如下表: x… -2 -1 0 1 2 … y … 0 4 6 6 4 …从上表可知,下列说法正确的是____.①抛物线与x 轴的一个交点为(-2,0);②抛物线与y 轴的交点为(0,6);③抛物线的对称轴是:直线x =1;④在对称轴左侧y 随x 增大而增大.第15题图15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的表达式为y =12x 2-2x -6,AB 为半圆的直径,则这个“果圆”被y 轴截得的“弦”CD 的长为________.第16题图16.(咸宁中考)如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E ,且cos α=45.下列结论: ①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8或252;④0<CE ≤6.4. 其中正确的结论是____.(把你认为正确结论的序号都填上)三、解答题(本大题共8小题,共80分)17.(8分)(孝感中考)如图,在Rt △ABC 中,∠ACB =90°.(1)先作∠ABC 的平分线交AC 边于点O ,再以点O 为圆心,OC 为半径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB 与⊙O 的位置关系,并证明你的结论.第17题图18.(8分)小亮同学为了巩固自己对平行四边形判定知识的掌握情况,设计了一个游戏,他将四边形ABCD 中的部分条件分别写在四张大小、质地及背面颜色都相同的卡片上,卡片如图,他将卡片正面朝下反扣在桌面上,洗匀后从中随机抽取两张,然后根据卡片上的两个条件判断四边形ABCD 是否为平行四边形,请你用列举法(列表法或树状图法)求出他能够判定四边形ABCD 为平行四边形的概率.(卡片可用a 、b 、c 、d 表示)第18题图19.(8分)如图,AB 是⊙O 的直径,BC 是⊙O 的弦,半径OD ⊥BC ,垂足为E ,若BC =63,OE =3;求:(1)⊙O 的半径;(2)阴影部分的面积.第19题图20.(8分)如图,A 、B 两地之间有一座山,汽车原来从A 地到B 地经过C 地沿折线A →C →B 行驶,现开通隧道后,汽车直接沿直线AB 行驶.已知AC =10千米,∠A =30°,∠B =45°.则隧道开通后,汽车从A 地到B 地比原来少走多少千米?(结果保留根号)第20题图21.(10分)(武汉中考)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.22.(12分)(汕尾中考)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB 边交于点D,过点D作⊙O的切线,交BC于E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD·BA;(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.第22题图23.(12分)定义:若经过三角形顶点的一条直线把三角形分割出至少一个图形与原三角形相似,则称这条直线为三角形的自似线,如图,△ABC中,AC=b,BC=a,∠C<∠B<∠A,过顶点A作∠CAD1=∠B,交边BC于点D1,依次过顶点D1作∠CD1D2=∠CAD1,过点D2作∠CD2D3=∠CD1D2,…,过点D n-1作∠CD n-1D n=∠CD n-2D n-1.(1)试证直线AD1是△ABC的自似线;(2)试求线段CD1的长,并猜想CD n的长;(3)当60°<∠A<120°,且n=5时,与△ABC相似的三角形有几个?第23题图24.(14分)如图,在平面直角坐标系中,顶点为(4,1)的抛物线交y轴于点A,交x轴于B,C两点(点B在点C的左侧),已知C点坐标为(6,0).(1)求此抛物线的解析式;(2)连结AB,过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与抛物线的对称轴l相切,先补全图形,再判断直线BD与⊙C的位置关系并加以证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间.问:当点P运动到什么位置时,△P AC的面积最大?求出△P AC的最大面积.第24题图第一学期期末测试1.C 2. A 3. A 4. B 5. D 6. D 7. C8.B 9. B 10. B 【点拨】∵开口向下,∴a<0.∵对称轴在y 轴右侧,∴b>0.∵与y 轴交于x 轴上方,∴c>0,∴abc<0,①不对;∵当x =-1时,a -b +c<0,∴a +c<b ,②不对;∵当x =2时,4a +2b +c>0,∴③正确;∵-b 2a =1,a -b +c<0,即-b 2-b +c<0,∴2c<3b ,④正确;∵x =1时函数取最大值,∴a +b +c>am 2+bm +c(m ≠1),即a +b>m(am +b),⑤正确.11. 9712. 等于13. 20°15. 23+617. (1)如图1; (2)AB 与⊙O 相切.证明:作OD ⊥AB 于D ,如图2.∵BO 平分∠ABC ,∠ACB =90°,OD ⊥AB ,∴OD =OC ,∴AB 与⊙O 相切.图1图2第17题图18.画树状图得:第18题图 ∵共有12种等可能的结果,他能够判定四边形ABCD 为平行四边形的有:ab ,ac ,ba ,bd ,ca ,cd ,dc ,db 共8种情况,∴他能够判定四边形ABCD 为平行四边形的概率为812=23. 19. (1)6 (2)6π-9320. (5+52-53)千米21. (1)当1≤x <50时,y =(200-2x)(x +40-30)=-2x 2+180x +2019,当50≤x ≤90时,y =(200-2x)(90-30)=-120x +12019,综上所述:y =⎩⎪⎨⎪⎧-2x 2+180x +2000(1≤x<50)-120x +12000(50≤x ≤90); (2)当1≤x <50时,二次函数开口向下,二次函数对称轴为x =45,当x =45时,y 最大=-2×452+180×45+2019=6050,当50≤x ≤90时,y 随x 的增大而减小,当x =50时,y 最大=6000,综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元; (3)当20≤x ≤60时,即共有41天每天销售利润不低于4800元.第22题图22.(1)如图,连结OD.∵DE 为切线,∴∠EDC +∠ODC =90°;∵∠ACB =90°,∴∠ECD +∠OCD =90°.又∵OD =OC ,∴∠ODC =∠OCD ,∴∠EDC =∠ECD ,∴ED =EC ;∵AC 为直径,∴∠ADC =90°,∴∠BDE +∠EDC =90°,∠B +∠ECD =90°,∴∠B =∠BDE ,∴ED =EB.∴EB =EC ,即点E 为边BC 的中点;(2)∵AC 为直径,∴∠ADC =∠CDB =∠ACB =90°,又∵∠B =∠B ,∴△ABC ∽△CBD ,∴AB BC =BC BD,∴BC 2=BD·BA ;(3)当四边形ODEC 为正方形时,∠OCD =45°;∵AC 为直径,∴∠ADC =90°,∴∠CAD =90°-∠OCD =90°-45°=45°∴Rt △ABC 为等腰直角三角形.23. (1)证明:∵∠C =∠C ,∠CAD 1=∠B ,∴△CAD 1∽△CBA ,∴直线AD 1是△ABC的自似线. (2)由(1)得△CAD 1∽△CBA ,∴CD 1CA =CA CB ,∴CD 1=b 2a ,CD n =b n +1a n . (3)当∠A =90°时,与△ABC 相似的三角形有10个;当∠A ≠90°时,与△ABC 相似的三角形有5个.24. (1)y =-14x 2+2x -3. (2)补全图形如图1,判断:直线BD 与⊙C 相离.证明:令-14(x -4)2+1=0,则x 1=2,x 2=6. ∴B 点坐标(2,0).又∵抛物线交y 轴于点A ,∴A 点坐标为(0,-3),∴AB =32+22=13.设⊙C 与对称轴l 相切于点F ,则⊙C 的半径CF =2,作CE ⊥BD 于点E ,则∠BEC =∠AOB =90°.∵∠ABD =90°,∴∠CBE =90°-∠ABO ,又∵∠BAO =90°-∠ABO ,∴∠BAO =∠CBE ,∴△AOB ∽△BEC ,∴CE OB =BC AB ,∴CE 2=413,∴CE =813>2,∴直线BD 与⊙C 相离 第24题图(3)如图2,过点P 作平行于y 轴的直线交AC 于点Q ,∵A(0,-3),C(6,0),∴直线AC 解析式为y =12x -3,设P 点坐标为(m ,-14m 2+2m -3),则Q 点的坐标为(m ,12m -3),∴PQ =-14m 2+2m -3-(12m -3)=-14m 2+32m ,∵S △PAC =S △PAQ +S △PCQ =12×(-14m 2+32m)×6=-34(m -3)2+274,∴当m =3时,△PAC 的面积最大为274,∵当m =3时,-14m 2+2m -3=34,∴P 点坐标为(3,34).综上:P 点的位置是(3,34),△PAC 的最大面积是274.。
2017-2018年浙江省湖州市吴兴区初三上学期期末数学试卷含答案解析
2017-2018学年浙江省湖州市吴兴区初三上学期期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.(3分)如图,Rt△ABC中,∠C=90°,AB=7,∠B=35°,则AC的长为()A.7cos35°B.7tan35°C.7sin35°D.7sin55°2.(3分)若,则=()A.B.C.D.3.(3分)将抛物线y=2(x+4)2﹣3的对称轴是()A.直线x=4B.直线x=﹣4C.直线x=3D.直线x=﹣3 4.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10%B.减少了10%C.增加了(1+10%)D.没有改变5.(3分)如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D,AC=8,则OD的长为()A.3B.4C.4.5D.56.(3分)如图,在△ABC中,DE∥BC,且=,则下列结论不正确的是()A.=B.=C.=D.=7.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A.8B.4C.2πD.π8.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x…﹣1013…y…﹣3131…则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=4时,y>0D.方程ax2+bx+c=0的正根在3与4之间9.(3分)如图,已知抛物线y=x2+3x﹣4,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(﹣2,0),(2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是()A.B.C.D.10.(3分)在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.如图,已知⊙O的半径为5,则抛物线y=﹣x2+与该圆所围成的阴影部分(不包括边界)的整点个数是()A.24B.23C.22D.21二、填空题:(本题有6小题,每小题4分,共24分)11.(4分)布袋中装有4个红球和3个黑球,它们除颜色外没有任何其他区别,小红从中随机摸出1个球,摸出红球的概率是.12.(4分)已知线段c是线段a、b的比例中项,且a=4,b=9,则线段c的长度为.13.(4分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π).14.(4分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠AOD;③DM⊥CE;④CM+DM的最小值是10,其中正确的序号是.15.(4分)一个长方体木箱沿斜面下滑,当木箱滑至如图所示位置时,AB=3m,已知木箱高BD=1m,斜面坡角为30°,则木箱端点D距地面AC的高度为.16.(4分)如图1,点D为直角三角形ABC的斜边AB上的中点,DE⊥AB交AC 于E,连EB、CD,线段CD与BF交于点F.若tanA=,则=.如图2,点D为直角三角形ABC的斜边AB上的一点,DE⊥AB交AC于E,连EB、CD;线段CD与BF交于点F.若=,tanA=,则=.三、解答题:(本题有8个小题,共66分)17.(6分)计算:﹣sin60°﹣tan30°.18.(6分)如图所示,点D在△ABC的AB边上,AD=2,BD=4,AC=2.求证:△ACD∽△ABC.19.(6分)2017年11月11日,张杰参加了某网点的“翻牌抽奖”活动.如图所示,4张牌上分别写有对应奖品的价值为10元,15元,20元和“谢谢惠顾”的字样.(1)如果随机翻1张牌,那么抽中有奖的概率为,抽中15元及以上奖品的概率为.(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,用画树状图或列表法列出抽奖的所有等可能性情况,并求出获奖品总值不低于30元的概率.20.(8分)小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度都为6mm的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.(8分)如图,O为半圆的圆心,直径AB=12,C是半圆上一点,OD⊥AC于点D,OD=3.(1)求AC的长;(2)求图中阴影部分的面积.22.(10分)元旦前夕,湖州吴兴某工艺厂设计了一款成本10元/件的工艺品投放市场试销.试销发现,每天销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数:y=﹣10x+700.(利润=销售总价﹣成本总价)(1)如果该厂想要每天获得5000元的利润,那么销售单价应定为多少元/件?(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(3)湖州市物价部门规定,该工艺品销售单价最高不能超过38元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?23.(10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG 是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.24.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A,C,与y轴交于点B.已知点A坐标为(8,0),点B为(0,8),点D为(0,3),tan∠DCO=,直线AB和直线CD相交于点E.(1)求抛物线的解析式,并化成y=a(x﹣m)2+k的形式;(2)设抛物线的顶点为G,请在直线AB上方的抛物线上求点P的坐标,使得S =S△ABG.△ABP(3)点M为直线AB上的一点,过点M作x轴的平行线分别交直线AB,CD于点M,N,连结DM,DN,是否存在点M,使得△DMN为等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.2017-2018学年浙江省湖州市吴兴区初三上学期期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上相应题次中对应字母的方框涂黑,不选、多选、错选均不给分.1.(3分)如图,Rt△ABC中,∠C=90°,AB=7,∠B=35°,则AC的长为()A.7cos35°B.7tan35°C.7sin35°D.7sin55°【解答】解:在Rt△ABC中,sinB=,则AC=AB×sinB=7sin35°,故选:C.2.(3分)若,则=()A.B.C.D.【解答】解:设a=2k,则b=9k.==,故选:A.3.(3分)将抛物线y=2(x+4)2﹣3的对称轴是()A.直线x=4B.直线x=﹣4C.直线x=3D.直线x=﹣3【解答】解:抛物线y=2(x+4)2﹣3的对称轴是x=﹣4;故选:B.4.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10%B.减少了10%C.增加了(1+10%)D.没有改变【解答】解:∵△ABC的每条边长增加各自的10%得△A′B′C′,∴△ABC与△A′B′C′的三边对应成比例,∴△ABC∽△A′B′C′,∴∠B′=∠B.故选:D.5.(3分)如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D,AC=8,则OD的长为()A.3B.4C.4.5D.5【解答】解:∵AB为⊙O直径,∴∠C=90°,∵OD⊥BC,∴∠C=∠ODB=90°,∴AC∥OD,∵AO=OB,∴CD=BD,∴OD=AC=8=4,故选:B.6.(3分)如图,在△ABC中,DE∥BC,且=,则下列结论不正确的是()A.=B.=C.=D.=【解答】解:∵DE∥BC,AD:DB=2:3,∴AD:AB=2:(2+3)=2:5,AE:EC=AD:DB=2:3,DE:BC=AD:AB=2:5,BC:DE=AB:AD=5:2,,∴结论不正确的是C;故选:C.7.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A.8B.4C.2πD.π【解答】解:连接OA、OC,如图.∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则劣弧AC的长==2π.故选:C.8.(3分)已知二次函数y=ax2+bx+c的y与x的部分对应值如表:x…﹣1013…y…﹣3131…则下列判断中正确的是()A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=4时,y>0D.方程ax2+bx+c=0的正根在3与4之间【解答】解:由图表可得,该函数的对称轴是直线x=,有最大值,∴抛物线开口向下,故选项A错误,抛物线与y轴的交点为(0,1),故选项B错误,x=﹣1和x=4时的函数值相等,则x=4时,y=﹣3<0,故选项C错误,方程ax2+bx+c=0的正根在3与4之间,故选项D正确,故选:D.9.(3分)如图,已知抛物线y=x2+3x﹣4,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(﹣2,0),(2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是()A.B.C.D.【解答】解:如图,我们把抛物线沿y轴向上平移,平移后的抛物线和原抛物线及直线x=2,x=﹣2所围成的阴影部分的面积S可以看做和矩形BB′C′C等积,于是可以看出S与m是正比例函数关系故选:B.10.(3分)在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.如图,已知⊙O的半径为5,则抛物线y=﹣x2+与该圆所围成的阴影部分(不包括边界)的整点个数是()A.24B.23C.22D.21【解答】解:y=0的整点个数是1,y=﹣1的整点个数是3,y=﹣2的整点个数是5,y=﹣3的整点个数是7,y=﹣4的整点个数是5,91+3+5+7+5=21.故抛物线y=﹣x2+与该圆所围成的阴影部分(不包括边界)的整点个数是21.故选:D.二、填空题:(本题有6小题,每小题4分,共24分)11.(4分)布袋中装有4个红球和3个黑球,它们除颜色外没有任何其他区别,小红从中随机摸出1个球,摸出红球的概率是.【解答】解:∵布袋中装有4个红球和3个黑球,∴从中任意摸出一个球,则摸出红球的概率是=,故答案为.12.(4分)已知线段c是线段a、b的比例中项,且a=4,b=9,则线段c的长度为6.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故答案为:6.13.(4分)如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,求点A从开始到结束所经过的路径长为(结果保留π)π.【解答】解:Rt△ABC中,∠A=60°,AC==2,∠ACB=30°,∴∠ACA1=150°,点A从开始到结束所经过的路径长为以C为圆心、2为半径的弧,即=π,故答案为:π.14.(4分)如图,在⊙O中,AB是⊙O的直径,AB=10,==,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED=∠AOD;③DM⊥CE;④CM+DM的最小值是10,其中正确的序号是①④.【解答】解:∵==,点E是点D关于AB的对称点,∴=,∴∠DOB=∠BOE=∠COD=×180°=60°,∴①正确;∠CED=∠COD=60°=30°=∠DOB,∴②错误;∵的度数是60°,∴的度数是120°,∴只有当M和A重合时,∠MDE=60°,∵∠CED=30°,∴只有M和A重合时,DM⊥CE,∴③错误;做C关于AB的对称点F,连接CF,交AB于N,连接DF交AB于M,此时CM+DM 的值最短,等于DF长,连接CD,:∵===,并且弧的度数都是60°,∴∠D=×120°=60°,∠CFD=×60°=30°,∴∠FCD=180°﹣60°﹣30°=90°,∴DF是⊙O的直径,即DF=AB=10,∴CM+DM的最小值是10,∴④正确;故答案为①④.15.(4分)一个长方体木箱沿斜面下滑,当木箱滑至如图所示位置时,AB=3m,已知木箱高BD=1m,斜面坡角为30°,则木箱端点D距地面AC的高度为m.【解答】解:连接AD,在Rt△ABD中,AB=3m,BD=1m,则AD=m,又∵tan∠DAB=∴∠DAB≈18.4°,在Rt△ADF中,∠DAF=∠DAB+∠BAC=48.4°,∴DF=AD×sin∠DAF=×sin48.4°=m.答:木箱端点D距地面AC的高度为m.故答案为:m16.(4分)如图1,点D为直角三角形ABC的斜边AB上的中点,DE⊥AB交AC于E,连EB、CD,线段CD与BF交于点F.若tanA=,则=.如图2,点D为直角三角形ABC的斜边AB上的一点,DE⊥AB交AC于E,连EB、CD;线段CD与BF交于点F.若=,tanA=,则=.【解答】解:如图1中,作DH∥BE交AC于H.∵AD=DB,DH∥BE.∴AH=EH,在Rt△ADE中,tan∠A===,设DE=a,则AD=BD=2a,AE=a,EH=,∴BC=a,AC=a,∴EC=AC﹣AE=a,∵EF∥DH,∴===.如图2中,作DH∥BE交AC于H.∵AD:DB=1:3,DH∥BE.∴AH:EH=1:3,在Rt△ADE中,tan∠A===,设DE=a,则AD=2a,BD=6aAE=a,EH=a,∴BC=a,AC=a,∴EC=AC﹣AE=a,∵EF∥DH,∴===,故答案为.,.三、解答题:(本题有8个小题,共66分)17.(6分)计算:﹣sin60°﹣tan30°.【解答】解:原式=2﹣×﹣=2﹣﹣=18.(6分)如图所示,点D在△ABC的AB边上,AD=2,BD=4,AC=2.求证:△ACD∽△ABC.【解答】证明:∵==,==∴=,又∵∠A=∠A∴△ABC∽△ACD.19.(6分)2017年11月11日,张杰参加了某网点的“翻牌抽奖”活动.如图所示,4张牌上分别写有对应奖品的价值为10元,15元,20元和“谢谢惠顾”的字样.(1)如果随机翻1张牌,那么抽中有奖的概率为,抽中15元及以上奖品的概率为.(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,用画树状图或列表法列出抽奖的所有等可能性情况,并求出获奖品总值不低于30元的概率.【解答】解:(1)∵4张牌上分别写有对应奖品的价值为10元,15元,20元和“谢谢惠顾”的字样,∴随机翻1张牌,那么抽中有奖的概率=;抽中15元及以上奖品的概率=,故答案为:,;(2)列表得:第一次第二次101520谢谢10(15,10)(20,10)(谢谢,10)15(10,15)(20,15)(谢谢,15)20(10,20)(15,20)(谢谢,20)谢谢(10,谢谢)(15,谢谢)(20,谢谢)∵由列表图可知,一共有12种等可能性的抽奖结果;其中总值不低于30元的有4种情况.∴获奖品总值不低于30元的概率==.20.(8分)小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度都为6mm的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)【解答】解:作BE⊥m于点E,DF⊥m于点F.∵α+∠DAF=180°﹣∠BAD=180°﹣90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE=12mm,DF=24mm.在Rt△ABE中,sin,∴AB=mm,在Rt△ADF中,cos,∴AD=mm.∴矩形ABCD的周长=2(20+30)=100mm.21.(8分)如图,O为半圆的圆心,直径AB=12,C是半圆上一点,OD⊥AC于点D,OD=3.(1)求AC的长;(2)求图中阴影部分的面积.【解答】解:(1)∵OD⊥AC,∴AD=DC,∵AO=OB,∴BC=2OD=6,∵AB是直径,∴∠ACB=90°,∴AC===6.(2)连接OC,∵OC=OB=BC=6,∴∠BOC=60°,∴∠AOC=120°,∴S阴=S扇形OAC﹣S△AOC=﹣•6•3=12π﹣9.22.(10分)元旦前夕,湖州吴兴某工艺厂设计了一款成本10元/件的工艺品投放市场试销.试销发现,每天销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数:y=﹣10x+700.(利润=销售总价﹣成本总价)(1)如果该厂想要每天获得5000元的利润,那么销售单价应定为多少元/件?(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(3)湖州市物价部门规定,该工艺品销售单价最高不能超过38元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?【解答】解:(1)由题意,得(x﹣10)(﹣10x+700)=5000,解得x1=20,x2=60,∴销售单价为20元/件或60元/件;(2)设每天的销售利润为W元则w=(x﹣10)(﹣10x+700)=﹣10x2+800x﹣7000,∴﹣,此时W有最大值为9000∴当单价定为40元时,销售利润有最大值为9000元;(3)∵k=﹣10<0,∴当x≤40时,W随x的增大而减小又∵x≤38,∴当x=38时,W有最大值.即销售单价定为38元.23.(10分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG 是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;(2)设MN与AB之间的距离为x米,试将△EMN的面积S(平方米)表示成关于x的函数;(3)请你探究△EMN的面积S(平方米)有无最大值?若有,请求出这个最大值;若没有,请说明理由.【解答】解:(1)由题意,当MN和AB之间的距离为0.5米时,MN应位于DC 下方,且此时△EMN中MN边上的高为0.5米.=×2×0.5=0.5(平方米).∴S△EMN即△EMN的面积为0.5平方米.(2)①如图1所示,当MN在矩形区域滑动,即0<x≤1时,△EMN的面积S=×2×x=x;②如图2所示,当MN在三角形区域滑动,即1<x<1+时,如图,连接EG,交CD于点F,交MN于点H,∵E为AB中点,∴F为CD中点,GF⊥CD,且FG=.又∵MN∥CD,∴△MNG∽△DCG.∴,即.故△EMN的面积S=××x=;综合可得:S=(3)①当MN在矩形区域滑动时,S=x,所以有0<S≤1;②当MN在三角形区域滑动时,S=﹣x2+(1+)x,因而,当(米)时,S得到最大值,最大值S===+(平方米).∵+>1,∴S有最大值,最大值为+平方米.24.(12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A,C,与y轴交于点B.已知点A坐标为(8,0),点B为(0,8),点D为(0,3),tan∠DCO=,直线AB和直线CD相交于点E.(1)求抛物线的解析式,并化成y=a(x﹣m)2+k的形式;(2)设抛物线的顶点为G,请在直线AB上方的抛物线上求点P的坐标,使得S =S△ABG.△ABP(3)点M为直线AB上的一点,过点M作x轴的平行线分别交直线AB,CD于点M,N,连结DM,DN,是否存在点M,使得△DMN为等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【解答】解:(1)在Rt△DOC中,∵tan∠DCO=,即=,∴OC=4,∴C(﹣4,0),设y=a(x+4)(x﹣8),把点B(0,8)代入,得a=﹣,∴y=﹣(x+4)(x﹣8)或y=﹣x2+x+8,∴y=﹣(x﹣2)2+9.(2)如图1中,设P(x,﹣x2+x+8),过点P作PF∥y轴交直线AB于F.∵A(8,0),B(0,8)∴直线AB的解析式为y=﹣x+8,∴F(x,﹣x+8)∴PF=﹣x2+2x,过点G作GH∥y轴交直线AB于H,则G(2,9),H(2,6)∴GH=3∵S=S△ABG,△ABP∴PF=GH=3,∴﹣x2+2x=3,解得x=6或2(舍去),∴P(6,5);(3)①当DM=DN时,如图2中,设M(m,﹣m+8),则N(﹣m,﹣m+3),∵MN∥x轴,∴﹣m+8=﹣m+3,∴m=20,∴M(20,﹣12).②当DN=MN时,如图3中,设M(m,﹣m+8),则N(,﹣m+8),∴MN2=(m﹣)2,DN2=()2+(﹣m+5)2,∴(m﹣)2=()2+(﹣m+5)2,∴m=或﹣,∴M (,)或(﹣,).③当MN=DM 时,如图4中,设M (m ,﹣m +8),则N (,﹣m +8),∴MN 2=(﹣m )2,DM 2=m 2+(﹣m +5)2, ∴(﹣m )2=m 2+(﹣m +5)2,∴m=或5(舍去), ∴M (,).附加:初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
浙江省湖州市吴兴区2017-2018学年九年级上学期数学期中考试试卷
浙江省湖州市吴兴区2017-2018学年九年级上学期数学期中考试试卷一、选择题1.已知⊙O的半径为4,若点P是⊙O所在平面内的一点,且OP=5,则点P与⊙O的位置关系为()A. 点P在⊙O上B. 点P在⊙O内C. 点P在⊙O外D. 以上都不对【答案】C2.下列事件中,是随机事件的是()A. 任意选择某一电视频道,它正在播放新闻联播B. 三角形任意两边之和大于第三边C. 是实数,D. 在一个装着白球和黑球的袋中摸球,摸出红球【答案】A3.把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A. B. C. D.【答案】D4.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在优弧AB上.若∠AOD=52°,则∠DEB的度数为()A. 52°B. 40°C. 26°D. 45°【答案】C5.如图的四个转盘中,转盘3,4被分成8等分,若让转盘自由转动一次停止后,指针落在阴影区域内可能性从大到小排列为()A. ①②④③B. ③②④①C. ③④②①D. ④③②①【答案】A6.现有下列四个命题:①同圆中等弧对等弦;②圆心角相等,它们所对的弧长也相等;③三点确定一个圆;④平分弦(不是直径)的直径必垂直于这条弦。
其中正确命题的个数是()A. 1B. 2C. 3D. 4【答案】B7.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A. 9B. 12C. 15D. 18【答案】B8.二次函数,自变量x与函数y的对应值如下表:下列说法正确的是()A. 抛物线的开口向下B. 当x>-3时,y随x的增大而增大C. 二次函数的最小值是-2D. 抛物线的对称轴x=【答案】 D9.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C的位置,A1B1恰好经过点B,则旋转角α的度数等()A. 35°B. 55°C. 65°D. 70°【答案】D10.已知函数的图象如图所示,则当函数的图象在x轴上方时,x的取值范围为()A. B. C. D.【答案】C二、填空题11.抛物线的顶点坐标是________.【答案】(3,-1)12.一个圆形人工湖如图所示,弦AB是湖上的一座桥.已知AB长为80m,圆周角∠C=45°.则这个人工湖的直径为________.【答案】13.已知(-1,),(3,)是抛物线图象上的点,请将用“<”号连接________. 【答案】14.如图,在4×4的方格中,A、B、C、D、E、F分别位于格点上,以点A、点B为顶点,再从C、D、E、F 四点中任取一点作为第三个顶点画三角形,则所画三角形为等腰三角形的概率是________.【答案】15.如图,A、B、C、D是⊙O上的四个点,若+=+,且弦AB=8,CD=4,则⊙O的半径为________.【答案】16.如图抛物线与x轴分别交于A、B两点,顶点C在y轴负半轴上,也在正方形ADEB的边上,已知正方形ADEB的边长为2,若正方形FGMN的顶点F、G落在x轴上,顶点M、N落在图中的抛物线上,则正方形FGMN的边长为________.【答案】三、解答题17.已知二次函数y=ax2+bx+c,当x取1时,函数有最大值为3,且函数的图象经过点(-2,0)。
浙江省湖州市吴兴区2018-2019学年九年级(上)期末数学试卷(含答案)
2018-2019学年浙江省湖州市吴兴区九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.已知两个相似三角形的对应边之比为1:3,则它们的周长比为()A.1:9B.9:1C.1:6D.1:32.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上B.三角形任意两边之差小于第三边C.一个三角形三个内角之和大于180°D.在只有红球的盒子里摸到白球3.将抛物线y=2x2向右平移3个单位,能得到的抛物线是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2 D.y=2(x﹣3)24.已知圆心角为60°的扇形面积为24π,那么扇形的半径为()A.12B.6C.4πD.2π5.如图,直线l1∥l2∥l3,直线AC,DF分别与l1,l2,l3相交于点A,B,C和点D,E,F,若=,DE=3,则EF等于()A.6B.8C.9D.126.如图,已知Rt△ABC中,∠C=90°,AC=6,tan A=,则AB的长是()A.3B.6C.12D.67.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度为()A.1cm B.2cm C.3cm D.4cm8.已知(1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣x2﹣4x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y29.如图,在6×8的正方形网格中,共有48个边长为1的小正方形.A,B,C,D,E都是正方形网格上的格点.连接DE、DB交AC于点P、Q,则PQ的值是()A.B.C.D.10.如图,探究:用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M、P、H三点的圆弧与AH交于R,则弧HR的弧长为()A.B.πC.πD.π二、填空题(本题有6小题,每小题4分,共24分)11.若,则=.12.抛物线y=(x﹣2)2+3的顶点坐标是.13.一个不透明的口袋中有除颜色外完全相同的5个小球.其中黄球有2个,红球有2个,蓝球有1个,随机摸出一个小球为红球的概率是.14.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,CD是斜边AB上的高线,以点C为圆心,2.5为半径作圆,则点D在圆(填“外”,“内”,“上”).15.⊙C经过坐标原点,且与两坐标轴分别交于点A、B,点A的坐标为(0,6),M是圆上一点,∠BMO=150°.则圆心C的坐标为.16.如图,一组抛物线的顶点A1(x1,y1),A2(x2,y2),…A n(x n,y n)(n为正整数)依次是反比例函数y=图象上的点,第一条抛物线以A1(x1,y1)为顶点且过点O(0,0),B1(2,0),等腰△A1OB1为第一个三角形;第二条抛物线以A2(x2,y2)为顶点且经过点B1(2,0),B2(4,0),等腰△A2B1B2为第二个三角形;…;第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1(2n﹣2,0),B n(2n,0),等腰△A n B n﹣1B n为第n个三角形.(1)写出满足△A n B n﹣1B n的面积为整数的n的值.(2)若第n条抛物线为y=a n x2+b n x+c n满足10a n+5b n+c n=0,称“滑翔抛物线”,试求出满足条件的“滑翔抛物线”解析式为.三、解答题(本题有8小题,共66分)17.计算:4sin45°+3tan230°﹣18.已知:如图,点C,D在线段AB上,△PCD是等边三角形,且AC=1,CD=2,DB =4.求证:△ACP∽△PDB.19.每年11月9日为消防宣传日,今年“119”消防宣传月活动的主题是“全民参与,防治火灾”.为响应该主题,吴兴区消防大队到某中学进行消防演习.图1是一辆登高云梯消防车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD 的高度AH为5.2m.当起重臂AC长度为16m,张角∠HAC为130°时,求操作平台C 离地面的高度(结果精确到0.1m)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)20.近年来,吴兴区坚定不移地践行“绿水青山就是金山银山”发展理念,跑出了乡村旅游发展的“吴兴速度”.已成功打造了汇聚文化体验、乡村休闲、养生养老等多元业态的西塞山省级旅游度假区,拥有A﹣菰城景区;B﹣原乡小镇;C﹣丝绸小镇•西山漾;D﹣台湾风情小镇;E﹣古梅花观等高品质景区.吴兴区某中学九年级开展了“我最喜爱的旅游景区”的抽样调查(每人只能选一项).根据收集的数据绘制了两幅不完整的统计图,其中B对应的圆心角为900.请根据图中信息解答下列问题:(1)此次抽取的九年级学生共人,m=,并补全条形统计图;(2)九年级准备在最喜爱原乡小镇的4名优秀学生中任意选择两人去实地考察,这4名学生中有2名男生和2名女生,用树状图或列表法求选出的两名学生都是男生的概率.21.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=8,∠CBD=30°,求图中阴影部分的面积.22.吴兴区文体中心,位于湖州市吴兴区东部新城,于今年上半年完全竣工,现已投入使用.其中体育馆可容纳四千人同时观看比赛.现C区有座位400个,某赛事试营销阶段发现:当票价为80元时,可售出C区票280张,若每降价1元,可多售出6张票.设降价x 元(x取正整数)时,可售出观赛座位票y张.(1)求出y关于x的函数关系式;(2)设C区的总票价为W元,求W关于x的函数关系式,并求出W的最大值;(3)求当票价为多少元时,C区的总共售票收入为23800元.23.我们定义:如图1,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)并缩短一半得到AB',把AC绕点A逆时针旋转β并缩短一半得到AC',连接B'C'.当α+β=180°时,我们称△AB'C'是△ABC的“旋半三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋半中线”,点A叫做“旋半中心”.特例感知:(1)在图2,图3中,△AB'C'是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=BC;②如图3,当∠BAC=90°,BC=4时,则AD长为.猜想论证:(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.拓展应用:(3)如图4,在平面直角坐标系中,△ABC的坐标分别是A(4,3),B(1,0),C(5,0),△AB′C′是△ABC的“旋半三角形”,AD是△ABC的“旋半中线”,连结OD,求OD的最大值是多少?并请直接写出当OD最大时点D的坐标.24.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+x+3交x轴于A,B两点,交y 轴于点C,顶点为D,抛物线对称轴与x轴交点为E.(1)求直线BD的解析式.(2)点M(m,0),N(m+2,0)为x轴上两点,其中2<m<4,MM′,NN′分别垂直于x轴交抛物线于M′,N′,交直线BD于点P,Q.试求:当m为何值时,M′P+N′Q的值最大.(3)在(2)的条件下,作NN′的中垂线l交MM′于点R.现将△RNN′以每秒一个单位的速度向左平移,当点R运动到△ADE的中线AT上时,三角形停止运动.设平移的时间为t秒(t>1),设△RNN′与△ADE重叠部分的面积为S,试求S关于t的函数解析式.2018-2019学年浙江省湖州市吴兴区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.【解答】解:∵两个相似三角形的相似比为1:3,∴它们对应周长的比为1:3.故选:D.2.【解答】解:A、掷一枚硬币,正面朝上,是随机事件,故此选项错误;B、三角形任意两边之差小于第三边,是必然事件,故此选项正确;C、一个三角形三个内角之和大于180°,是不可能事件,故此选项错误;D、在只有红球的盒子里摸到白球,是不可能事件,故此选项错误;故选:B.3.【解答】解:由“左加右减”的原则可知,抛物线y=2x2向右平移3个单位,能得到的抛物线是y=2(x﹣3)2.故选:D.4.【解答】解:设扇形的半径为r.由题意:=24π,∴r2=144,∵r>0,∴r=12,故选:A.5.【解答】解:∵直线l1∥l2∥l3,=,∴,即,解得:EF=9,故选:C.6.【解答】解:在Rt△ABC中,∵tan A=,∴BC=AC tan A=6×=3,则AB===3,故选:A.7.【解答】解:过点O作OF⊥DE,垂足为F,∵OF过圆心,∵DE=8cm,∴EF=DE=4cm,∵OC=5cm,∴OE=5cm,∴OF===3cm.故选:C.8.【解答】解:∵物线y=﹣x2﹣4x+m=﹣(x+2)2+4+m,∴该抛物线的对称轴是直线x=﹣2,开口向下,∵(1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣x2﹣4x+m上的点,1﹣(﹣2)=3,(﹣2)﹣(﹣2)=0,(﹣2)﹣(﹣4)=2,∴y1<y3<y2,故选:D.9.【解答】解:由勾股定理得,AC==10,∵AB∥CD,∴△AQB∽△CQD,△APE∽△CPD,∴=,=,即=,=,解得,AQ=,AP=,则PQ=AQ﹣AP=,故选:C.10.【解答】解:连接AM,MH,MR.∵AM=MH=2,AH=2,∴AM2+MH2=AH2,∴∠AMH=90°,∴△AMH是等腰直角三角形,∵∠MPH=90°,∴MH是圆的直径,∴∠MRH=90°,∴MR⊥AH,∴∠RMH=∠RMA=45°,∴弧RH所对的圆心角为90°,∴的长==.故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.【解答】解:∵,∴设a=3k,b=4k,∴==.故答案为:.12.【解答】解:y=(x﹣2)2+3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,3).故答案为:(2,3)13.【解答】解:∵一个口袋里有5个除颜色外完全相同的小球,其中2个黄球,1个蓝球,2个红球,∴摸到红球的概率是;故答案为:.14.【解答】解:直角△ABC中,AB2=AC2+BC2,AC=4,BC=3,∴AB==5,△ABC的面积S=•AC•BC=•AB•CDCD=.∵<2.5,∴点D在⊙C内,故答案为:内.15.【解答】解:∵∠AOB=90°,∴AB是⊙C的直径,C是线段AB的中点;由于四边形ABMO内接于⊙C,∴∠BAO=180°﹣∠BMO=30°.在Rt△ABO中,OA=6,∠BAO=30°,则OB=6.所以B(﹣6,0),∵A(0,6),B(﹣6,0),∴C(﹣3,3)故答案为:(﹣3,3).16.【解答】解:(1)∵第n条抛物线以A n(x n,y n)为顶点且经过点B n﹣1(2n﹣2,0),B n(2n,0),等腰△A n B n﹣1B n为第n个三角形.∴抛物线的对称轴为:x=2n﹣1,∵点A n(x n,y n)(n为正整数)在反比例函数y=图象上,∴A n的坐标为(2n﹣1,),∴△A n B n﹣1B n的面积=,∴△A n B n﹣1B n的面积为整数的n的值1或4;(2)设第n条抛物线为y=a(x﹣2n+2)(x﹣2n),∴=a×1×(﹣1),a=,∴第n条抛物线为y=(x﹣2n+2)(x﹣2n)=,∵10a n+5b n+c n=0,∴,解得:n=1或n=5,当n=1时,y=﹣7x+14x当n=5时,或y=.故答案为:y=﹣7x+14x或y=.三、解答题(本题有8小题,共66分)17.【解答】解:原式=4×+3×()2﹣2=2+1﹣2=1.18.【解答】证明:∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,PC=CD=PD=2,∴∠PCA=∠PDB=120°,∵AC=1,BD=4,∴,=,∴=,∴△ACP∽△PDB.19.【解答】解:作AF⊥AH于F,CE⊥BD交于点G,∵∠CAH=130°,∴∠CAG=40°,∴CG=AC sin40°=16sin40°≈16×0.64≈10.2,∴CE=CG+GE=15.4(米),操作平台C离地面的高度为15.4米.20.【解答】解:(1)∵B对应的圆心角为90°,B的人数是50,∴此次抽取的九年级学生共50÷=200(人),∵E所占的百分比为×100%=20%,∴m=20,C对应的人数是:200﹣60﹣50﹣20﹣40=30,补图如下:故答案为:200,30.(2)根据题意画图如下:∵共有12种情况,两名学生都是男生的情况有2种,∴两名学生都是男生的概率是=.21.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)连接CD,OD,∵OC∥BD,∴∠OCB=∠CBD=30°,∵OC=OB,∴∠OCB=∠OBC=30°,∴∠AOC=∠OCB+∠OBC=60°,∵∠COD=2∠CBD=60°,∴∠AOD=120°,∴S阴=S扇形OAD﹣S△ADO=﹣•4×2=﹣4 22.【解答】解:(1)根据题意得,y=280+6x;(2)根据题意得,W=(80﹣x)(280+6x),即W=﹣6x2+200x+22400=﹣6(x﹣)2+当x=时,W有最大值,∵x取正整数,∴当x=17时,W最大=24066元;(3)当W=23800时,即﹣6x2+200x+22400=23800,解得:x1=10,x2=(不合题意,舍去),∴票价为80﹣10=70元,答:当票价为70元时,C区的总共售票收入为23800元.23.【解答】解:(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=2AB′=2AC′,∵DB′=DC′,∴AD⊥B′C′,∵∠BAC=60°,∠BAC+∠B′AC′=180°,∴∠B′AC′=120°,∴∠B′=∠C′=30°,∴AD=AB′=BC,故答案为:.②如图3中,∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,∵AB=AB′,AC=AC′,∴△BAC∽△B′AC′,∴BC=2B′C′,∵B′D=DC′,∴AD=B′C′=BC==1,故答案为:1;(2)结论:AD=BC.理由:如图1中,延长AD到M,使得AD=DM,连接B′M,C′M∵B′D=DC′,AD=DM,∴四边形AC′MB′是平行四边形,∴AC′=B′M=AC,∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,∴∠BAC=∠MB′A,∵AB=AB′,∴△BAC∽△AB′M,∴BC=2AM,∴AD=BC.(3)如图4,∵AD=BC,BC=4,∴AD=1,∴D在以A为圆心,以1为半径的圆上,∴当D运动到直线OA与半圆相交时OD最大,∵A(4,3),∴OA=5,∵AD=1,∴OD的最大值是6.过A作AE⊥x轴于E,过D作DF⊥x轴于F,∴AE∥DF,∴△AOE∽△DOF,∴==,∵OE=4,AE=3,∴OF=,DF=,∴D(,).24.【解答】解:(1)令y=0,解得:x=6或﹣2,令x=0,则y=3,则以下各点的坐标为:C(0,3)、B(6,0)、A(﹣2,0)D(2,4),将点B、D的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线BD的表达式为:y=﹣x+6,(2)M(m,0),N(m+2,0),则点M′(m,﹣m2+m+3)、点N′[m+2,﹣(m+2)2+m+5]、点Q(m+2,﹣m+4)、点P(m,﹣m+6),则M′P+N′Q=(﹣m2+m+3)﹣(﹣m+6)+[﹣(m+2)2+m+5]﹣(﹣m+4)=﹣(m﹣3)2+,当m=3时,M′P+N′Q的最大值为;(3)由(2)得:NN′=,S△RNN′=×MN×NN′==,点T的坐标为(2,2),则直线AT的表达式为:y=x+1,设AT与直线l交于点G,则G的纵坐标为,则点G(﹣,),当R、G重合时,t=3﹣(﹣)=;①当1<t≤3时,重叠部分与△RNN′相似,则由形似比等于高的比为,S=×()2=(t﹣1)2,②当3<t时,此时,重叠部分即为△RNN′的面积,即:s=,故:S=.。
20172018第一学期期末测试九年级数学试题及答案
2017—2018学年第一学期期末学业水平测试九年级数学试题:温馨提示分钟。
考试结束后,只分。
考试用时100本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。
满分为1201. 上交答题卡。
毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写答卷前,考生务必用0.52. 铅笔填涂相应位置。
在答题卡规定的位置上,并用2B把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦2B铅笔3.第Ⅰ卷每小题选出答案后,用干净后,再选涂其他答案标号。
答案不能答在试题卷上。
毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能第Ⅱ卷必须用0.54. 写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)分,在每小题给出的四个选项中,只有一项是正确的,请把正确的小题,共36一、选择题:本大题共12. 3分,选错、不选或选出的答案超过一个均记零分选项选出来.每小题选对得22m的值是x+5x+m-3m+2=0的一个根是0,则1.若关于x的一元二次方程(m-1) 2 D.无解.2 C.1或A.1 B206?x?4?x 2.若把方程的左边配成完全平方的形式,则正确的变形是222253)?9??3)(x(((x?3)?5x?3)?13x? B. C.. A. D张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形、圆,在看不见在63.张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是图形的情况下随机摸出12111 A. D C.. B.623322?3)?2(x?y个单位后,所得图象的函数表达式个单位,再向下平移2二次函数4.6图象向左平移是2212???2x6x?yxy?2?12x A. B.2218?6x?y??12x?y2?x182?x C. D .三通管的立体图如图所示,则这个几何体的主视图是5.B. A.D. C.下列命题中,假命题的是6. 等弧所对的圆周角相等 A.两条弧的长度相等,它们是等弧 B.位似图形一定有位似中心 C.所有的等边三角形都相似 D. 两点恰好B、C的菱形ABCD绕点A旋转,当7.如图,边长为2A的长度等于AEF落在扇形的弧EF上时,弧BC DEF????23 D. A. B. C.B3324C 1=∠2,那么添加下列任何一个条件:8.如图,若果∠(第7题图)BCABABAC =),)=,(21 (DEADAEAD AED ,(,4)∠C=∠(3)∠B=∠DADE的个数为其中能判定△ABC∽△题图)8(第 A.1 B.2 C.3D.4AB=8是△ABC的边BC上一点,,AD=4,9.如图,点D 的面积为30,那么△ACD的面积为∠∠DAC=B.如果△ABD15 .5 A. B.7.5 C10 D.(第9题图)k的值10.k的图象没有交点,=y=与一次函数若反比例函数yx-3则x可以是-3.-2DB.-1C. A.121?6x?2x?y?xx,上,且<<都在抛物线11.若点、0)y)(Bx,A(x,y212211yy的大小关系为则与21yyyyyy A. C.< D. B.≠>不能判定 2 211126?yy?x?bA(m,n),利用图象的对称性可知它们的另一与一次函数的图象交于点12.若反比例函数x个交点是)n?n)(?m,(((n,m)?n,?m)?m, C. B. A. D.第Ⅱ卷(非选择题)6小题,共24分,只要求填写最后结果,每小题填对得4分.二、填空题:本大题共. 的圆中,垂直平分半径的弦长为13.半径等于823x?y?x?2二次函数的图象如图所示,14. . 0 当y<时,自变量x的取值范围是 15.如图,在同一平面内,将△逆时针绕点AABC 14题图)(第 AB,∥°到△旋转40AED的位置,恰好使得DC.则∠CAB的大小为 . = °°cos30-sin30°tan45计算:16. tan60°2?y的图象上,若,17.点都在,)),(xy,(x)y,(xy321321x yyyx?0?x?x 的大小关系(用“<,,则”连接),321312题图)(第15是 .∠AMN?30,B为弧AN的中点, P上,在⊙,点的直径,是⊙如图,18. MNOOM=2AO是直径MN 上一动点,则PA+PB的最小值为 .三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题5分,本大题满分10分)20?x?93x?12. (1)用配方法解方程:204?x?9x?3. )用公式法解方程:(2 8分)20.(本大题满分据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情ABD处有一探测仪,的上方,在一条笔直公路境中的速度不得超过B点匀速如平面几何图,,第一次探测到一辆轿车从CD得点,测驶,测得秒后到达向点行,结果精确到)求B,C的距离.(1)通过计算,判断此轿车是否超速.(2 (本大题满分12分) 21.24??2x?8xy?已知二次函数,完成下列各题:2+ky=a(x+h)形式,并写出它的顶点坐标、(1)将函数关系式用配方法化为对称轴. ABC的面积.轴交于)若它的图象与xA、B两点,顶点为C,求△(2 分)22.(本大题满分10 ,的直线互相垂直,垂足为D ADCAB如图,为⊙O的直径,为⊙O上一点,和过C点.DAB且AC 平分∠ 1()求证:DC为⊙的切线;O 3O2()若⊙的半径为,CDAD=4,求的长.10分)23.(本大题满分kmx?y??y xA、CBxy(-1 如图,已知直线,与双曲线)分别交于点轴分别交于点(与,轴、<012x D、).,2)1(a 1)分别求出直线及双曲线的解析式;(y?y x.2)利用图象直接写出,当在什么范围内取值时,(21y?ymx?y?. 时的部分用黑色笔描粗一些3)请把直线上(211y k y?x?m?y12x B C D x OA题图)(第2324.(本大题满分10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?学年第一学期期末学业水平测试2017—2018九年级数学试题参考答案分)个小题,每小题3分,满分36一、选择题(本大题1212 11 7 8 9 10 题号 1 2345 6CDD答案 CBBB A BCAD4分,满分24分)二、填空题(本大题共6个小题,每小题38 3; 15.70°;;14.-1<x13.<2y?y?; 18. 17.;16.1312个小题,共60分)三、解答题(本大题6分,满分10分)19.(每小题520?x?4x?3解:(1)两边同除以3分. ,得……………………………123?4?x?x.移项,得2222?3?x?4x?2?…………………………2配方,得分,21?(x?2) 3. ……………………………分1x?2??,…………………………4分∵ 5分,x=1. ………………………………∴原方程的解为x=321cba………………………………2 ()∵ 1=3,,=-9分=4.a c b,3×4=33>0 ……………………2分=∴⊿)22-4 =(-9-4×∴方程有两个不相等的实数根……………………………4分333333333?x??x??.…………………,即 5分, =21262626(本大题满分8分) 20.解:,在中,,,即,在中,,即,,m20 6分;则的距离为…………………………………,根据题意得:分则此轿车没有超速.…………………………………8 分)21.(本大题满分122+8x-4y=-2x1)解:(21分 =-2(x-4x)-4 ……………………………=-2(x-4x+4-4)-4 ……………………………32 4分2分=-2(x-2)+4. …………………………… 6分),对称轴为直线x=2. ………………所以,抛物线的顶点坐标为(2,422分,,(x-2)=2 ………………………7令(2)y=0得-2(x-2)+4=022??2?22=…………………………=9x-2=分,x,所以x. 所以21222?2?,0),分B(……x 所以与轴的交点坐标为A10(0). ,122?22?24分= ∴S. ×[()] ×…………………)4=-(12ABC△2分)(本大题满分1022.OC(1)证明:连接OCA, OAC=∠∵OA=OC,∴∠OAC, DAC=∠∵AC平分∠DAB,∴∠AD, ∥∠DAC=OCA,∴OC∴∠,∵AD⊥,CDCD,⊥∴OC 5分…………………与⊙O相切于点C;∴直线CD °.,则∠2)解:连接BCACB=90(∠ACB=90°,,∠∵∠DAC=∠OACADC= ,∽△∴△ADCACB2 AC∴,∴=ADAB?,,AD=4,∴AB=6O∵⊙的半径为3,62,∴AC=22∴CD= ……………………………………10分23.(本大题满分10分)y?x?my?x?3C .-1,2)坐标代入……2分,所以,得1解:()把点m=3(1k2y??y?C)坐标代入2(,所以-1把点,.……………3分 2,得k= —2xx2??y D)把点(24(a,1)坐标代入………………………分,所以a=—2.xy?y1???2?x.…………………………利用图象可知,当时,7分21(3)略. ……………………10分24.(本大题满分10分)x元,根据题意,得解:设第二个月的降价应是80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000………………5分x-20x+100=0,2整理,得解这个方程得x=x=10,………………8分21当x=10时,80-x=70>50,符合题意.分1070答:第二个月的单价应是元. ………………注意:评分标准仅做参考,只要学生作答正确,均可得分。
2019-2020学年湖州市吴兴区九年级上册期末数学检测题(一)有答案【精校】.doc
浙江省湖州市吴兴区2019-2020学年九年级(上)期末数学检测题(一)一.选择题(共10小题,满分30分,每小题3分)1.在Rt△ABC中,∠C=90°,AC=4,AB=5,则tanA的值是()A.B.C.D.2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)4.下列说法正确的是()A.矩形都是相似图形B.各角对应相等的两个五边形相似C.等边三角形都是相似三角形D.各边对应成比例的两个六边形相似5.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.D.26.如图,在△ABC中,D、E分别为AB,AC上的点,若DE∥BC,=,则=()A.B.C.D.7.如图,圆上有A,B,C,D四点,其中∠BAD=80°,若圆的半径为9,则的长度为()A.4πB.8πC.10πD.15π8.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④9.将抛物线y=x2+2x+3绕点(﹣1,0)旋转180°,得到的新抛物线的解析式为()A.y=x2﹣2x+3B.y=﹣x2+2x﹣3C.y=﹣x2﹣2x﹣1D.y=﹣x2﹣2x﹣310.已知A(x1,2002),B(x2,2002)是二次函数y=ax2+bx+5(a≠0)的图象上两点,则当x=x1+x2时,二次函数的值是()A.B.C.2002D.5二.填空题(共6小题,满分24分,每小题4分)11.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.12.有一块多边形草坪,在设计图纸上的面积为300cm2,其中一条边的长度为5cm,经测量,这条边的实际长度为15m,则这块草坪的实际面积是.13.如图,在扇形铁皮AOB中,OA=10,∠AOB=36°,OB在直线l上.将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA第5次落在l上时,停止旋转.则点O所经过的路线长为.14.如图,AB是⊙O的直径,AB=4,∠BAP=40°,点Q为PB的中点,点C是直径AB上的一个动点,则PC+QC的最小值为.15.某居民楼紧挨一座山坡AB,经过地质人员勘测,当坡度不超过45°时,可以确保山体不滑坡,如图所示,已知AE∥BD,斜坡AB的坡角∠ABD=60°,为防止滑坡,现对山坡进行改造,改造后,斜坡BC与地面BD成45°角,AC=10米.则斜坡BC=米.16.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,tanA=,那么BD=.三.解答题(共8小题,满分54分)17.(6分)﹣2sin45°.18.(6分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=A B•AD;(2)求证:△AFD∽△CFE.19.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.(8分)如图,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上.已知α=36°,求长方形卡片的周长.(精确到1mm,参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)21.(8分)如图,一、二、三、四这四个扇形的面积之比为1:3:5:1.(1)请分别求出它们圆心角的度数.(2)一、二、四这三个扇形的圆心角的度数之和是多少?22.(10分)某电脑公司开发出一种软件,从研发到年初上市后,经历了从亏损到盈利的过程,如图中的图象是抛物线的一段,它刻画了该软件上市以来累积利润S(万元)与销售时间t(月)之间的函数关系(即前t个月的利润总和S与t之间的函数关系),根据图象提供的信息,解答下列问题:(1)该种软件上市第几个月后开始盈利?(2)求累积利润S(万元)与时间t(月)之间的函数表达式;(3)截止到几月末,公司累积利润达到30万元.23.(10分)杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的二次函数;(1)若维修保养费用第1个月为2万元,第2个月为4万元.求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大;几个月后,能收回投资?24.如图,二次函数y=﹣x2+x+2的图象与x轴交于点A,B,与y轴交于点C.点P是该函数图象上的动点,且位于第一象限,设点P的横坐标为x.(1)写出线段AC,BC的长度:AC=,BC=;(2)记△BCP的面积为S,求S关于x的函数表达式;(3)过点P作PH⊥BC,垂足为H,连结AH,AP,设AP与BC交于点K,探究:是否存在四边形ACP H为平行四边形?若存在,请求出的值;若不存在,请说明理由,并求出的最大值.参考答案一.选择题1.解:∵∠C=90°,AC=4,AB=5,∴BC==3,∴tanA==,故选:C.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.4.解:A.矩形对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;B.各角对应相等的两个五边形相似,对应角相等,对应边不一定成比例,所以不一定是相似图形,故本选项错误;C.等边三角形对应角相等,对应边成比例,所以是相似三角形,故本选项正确;D.各边对应成比例的六边形对应角不一定相等,所以不一定是相似六边形,故本选项错误;故选:C.5.解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故选:D.6.解:∵DE∥BC,∴△ADE∽△ABC,∴,故选:B.7.解:如图,设圆心为O,连结OB、OD.∵圆上有A,B,C,D四点,其中∠BAD=80°,∴∠C=180°﹣80°=100°,∴所对的圆心角=2∠C=200°,∵圆的半径为9,∴的长度为:=10π.故选:C.8.解:设抛物线的解析式为y=ax2+bx+c,将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.9.解:y=x2+2x+3,=(x2+2x)+3,=(x2+2x+1﹣1)+3,=(x2+2x+1)﹣1+3,=(x+1)2+2,∴抛物线的顶点坐标为(﹣1,2),∵点(﹣1,2)关于(﹣1,0)中心对称的点的坐标为(﹣1,﹣2),∴抛物线绕着点(﹣1,0)旋转180°后,所得到的新抛物线的解析式为y=﹣(x+1)2﹣2,即y=﹣x2﹣2x﹣3.故选:D.10.解:∵A(x1,2002),B(x2,2002)是二次函数y=ax2+bx+5(a≠0)的图象上两点,又∵点A、B的纵坐标相同,∴A、B关于对称轴x=﹣对称,∴x=x1+x2=﹣,∴a+b(﹣)+5=5;故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2. 故答案为:2.12.【解答】解:由题意可知,设草坪的实际面积为x , 又图纸与实际的比例为0.05:15=1:300, 所以有(1:300)2=300:x x=27000000cm 2=2700m 2所以草坪的实际面积为2700m 2. 故答案为:2700m 2. 13.解:当OA第1次落在l上时:点O所经过的路线长=++==12π.则当OA 第5次落在l 上时:点O 所经过的路线长=12π×5=60π. 故答案是:60π.14.解:作出Q 关于AB 的对称点D′,连接OP ,OD′,QD′.又∵点C 在⊙O 上,∠BAP=40°,Q 为PB 的中点,即=,∴∠BAD′=∠BAP=20°. ∴∠PAD′=60°. ∴∠POD′=120°,∵OP=OD′=AB=4,∴PD′=2.故答案为:2.15.解:作AM ⊥BD 于点M ,作CN ⊥BD 于点N ,如右图所示, ∵∠ABD=60°,∠CBD=45°,∴BN=,BM=,BC=,∵CN=AM,AC=BN﹣BM,AC=10米,∴BC=≈33.4米,即斜坡BC的长是33.4米.故答案为:33.416.解:∵在Rt△ABC中,∠C=90°,BC=8,tanA=,∴AC===6,∴AB==10,cosB===.∵边AB的垂直平分线交边AB于点E,∴BE=AB=5.∵在Rt△BDE中,∠BED=90°,∴cos B==,∴BD===.故答案为.三.解答题(共8小题,满分54分)17.解:原式=2﹣﹣2=﹣.18.(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.19.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:的倍数的有3种,所以这两个数字之和是3的倍数的概率为=.20.解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°﹣∠BAD=180°﹣90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴mm在Rt△ADF中,cos,∴mm.∴矩形ABCD的周长=2(40+60)=200mm.21.解:(1)∵一、二、三、四这四个扇形的面积之比为1:3:5:1.,∴各个扇形的面积分别占整个圆面积的,∴各个扇形的圆心角的度数分别为,,(2)一、二、四这三个扇形的圆心角的度数之和是36°+36°+108°=180°.22.解:(1)由图象可得,该种软件上市第4个月后开始盈利;(2)设S=a(t﹣2)2﹣2,∵函数图象过点(0,0),∴0=a(0﹣2)2﹣2,得a=,∴累积利润S(万元)与时间t(月)之间的函数表达式是:S=(t﹣2)2﹣2;(3)由题意,当S=30时,30=(t﹣2)2﹣2,解得,t1=10,t2=﹣6(舍去),即截止到10月末,公司累积利润达到30万元;23.解:(1)由题意得:x=1时y=2;x=2时,y=2+4=6代入得:解之得:∴y=x 2+x ;(2)由题意得:g=33x ﹣150﹣(x 2+x )=﹣x 2+32 x ﹣150;(3)g=﹣x 2+32 x ﹣150=﹣(x ﹣16)2+106,∴当x=16时,g 最大值=106,即设施开放16个月后,游乐场的纯收益达到最大,又∵当0<x ≤16时,g 随x 的增大而增大;当x ≤5时,g <0;而当x >6时,g >0,∴6个月后能收回投资.24.解:(1)二次函数y=﹣x 2+x +2,当x=0时,y=2,∴C (0,2),∴OC=2,当y=0时,﹣x 2+x +2=0,解得:x 1=4,x 2=﹣1,∴A (﹣1,0),B (4,0),∴OA=1,OB=4,由勾股定理得:AC==,BC==2;故答案为:,2;(2)∵B (4,0),C (0,2),∴直线BC 的解析式为:y=﹣x +2,如图1,过P 作PD ∥y 轴,交直线BC 于D ,设P (x ,﹣x 2+x +2),则D (x ,﹣x +2),∴PD=(﹣x 2+x +2)﹣(﹣x +2)=﹣x 2+2x ,有S=PD•OB=×4(﹣+2x )=﹣x 2+4x (0<x <4);(6分)(3)不存在,如图2,∵AC2+BC2==25=AB2,∴△ABC为直角三角形,即AC⊥BC,∵PH⊥BC,∴AC∥PH,要使四边形ACPH为平行四边形,只需满足PH=AC=,(10分)∴S=BC•PH=×2×=5,∵而S=﹣x2﹣4x=﹣(x﹣2)2+4≤4,所以不存在四边形ACPH为平行四边形,∵AC∥PH,∴△AKC∽△PHK,∴===S≤;∴的最大值是.(12分)(说明:写出不存在给1分,其他说明过程酌情给分)。
2017-2018学年浙教数学九年级上第一学期期末测试
第一学期期末测试一、选择题(本大题共10小题,每小题4分,共40分)1.如图,在△ABC 中,DE ∥BC ,若AD ∶AB =1∶3,则△ADE 与△ABC 的面积之比是( )A .1∶3B .1∶4C .1∶9D .1∶16第1题图第3题图第5题图2.抛物线y =x 2-6x +5的顶点坐标为( ) A .(3,-4) B .(3,4) C .(-3,-4) D .(-3,4)3.如图,AB 是⊙O 的直径,∠AOC =130°,则∠D 等于( )A .25°B .35°C .50°D .65°4.将抛物线y =4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是( )A .y =4(x +1)2+3B .y =4(x -1)2+3C .y =4(x +1)2-3D .y =4(x -1)2-35.三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A.34B. 43C. 35D. 456.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )A .抛一枚硬币,出现正面的概率B .掷一枚正方体的骰子,出现6点的概率C .从一副扑克牌中任意抽取一张是红桃的概率D .任意写一个正整数,它能被3整除的概率第6题图第7题图7.如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于点E ,则下列结论中不一定成立的是( )A .AD =BC ′B .∠EBD =∠EDBC .△ABE ∽△CBD D .sin ∠AEB =AB DE8.课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB 在地面上的影长BC 为24米,那么旗杆AB 的高度约是( )A .12米B .83米C .24米D .243米第8题图第9题图第10题图9.如图,在△ABC 中,∠A =90°,AB =AC =2,点O 是边BC 的中点,半圆O 与△ABC 相切于点D 、E ,则阴影部分的面积等于( )A .1-π4 B. π4 C .1-π8 D. π810.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列五个结论:①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m ≠1,m 是实数).其中正确的个数为( )A .2个B .3个C .4个D .5个二、填空题(本大题共6小题,每小题5分,共30分)11.若a b =27,则a +b b=________. 12.如图,转动甲、乙两转盘,当转盘停止后,指针指向阴影区域的可能性的大小关系为:甲____乙(填“大于”、“小于”或“等于”).第12题图第13题图13.已知⊙O 直径AB 与弦AC 的夹角为35°,过C 点的切线PC 与AB 的延长线交于点P ,则∠P =____.14.抛物线y =-x 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如下表: x… -2 -1 0 1 2 … y … 0 4 6 6 4 …从上表可知,下列说法正确的是____.①抛物线与x 轴的一个交点为(-2,0);②抛物线与y 轴的交点为(0,6);③抛物线的对称轴是:直线x =1;④在对称轴左侧y 随x 增大而增大.第15题图15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的表达式为y =12x 2-2x -6,AB 为半圆的直径,则这个“果圆”被y 轴截得的“弦”CD 的长为________.第16题图16.(咸宁中考)如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E ,且cos α=45.下列结论: ①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8或252;④0<CE ≤6.4. 其中正确的结论是____.(把你认为正确结论的序号都填上)三、解答题(本大题共8小题,共80分)17.(8分)(孝感中考)如图,在Rt △ABC 中,∠ACB =90°.(1)先作∠ABC 的平分线交AC 边于点O ,再以点O 为圆心,OC 为半径作⊙O (要求:尺规作图,保留作图痕迹,不写作法);(2)请你判断(1)中AB与⊙O的位置关系,并证明你的结论.第17题图18.(8分)小亮同学为了巩固自己对平行四边形判定知识的掌握情况,设计了一个游戏,他将四边形ABCD中的部分条件分别写在四张大小、质地及背面颜色都相同的卡片上,卡片如图,他将卡片正面朝下反扣在桌面上,洗匀后从中随机抽取两张,然后根据卡片上的两个条件判断四边形ABCD是否为平行四边形,请你用列举法(列表法或树状图法)求出他能够判定四边形ABCD为平行四边形的概率.(卡片可用a、b、c、d表示)第18题图19.(8分)如图,AB是⊙O的直径,BC是⊙O的弦,半径OD⊥BC,垂足为E,若BC =63,OE=3;求:(1)⊙O的半径;(2)阴影部分的面积.第19题图20.(8分)如图,A、B两地之间有一座山,汽车原来从A地到B地经过C地沿折线A→C→B 行驶,现开通隧道后,汽车直接沿直线AB行驶.已知AC=10千米,∠A=30°,∠B=45°.则隧道开通后,汽车从A地到B地比原来少走多少千米?(结果保留根号)第20题图21.(10分)(武汉中考)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.22.(12分)(汕尾中考)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB 边交于点D,过点D作⊙O的切线,交BC于E.(1)求证:点E是边BC的中点;(2)求证:BC2=BD·BA;(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.23.(12分)定义:若经过三角形顶点的一条直线把三角形分割出至少一个图形与原三角形相似,则称这条直线为三角形的自似线,如图,△ABC中,AC=b,BC=a,∠C<∠B<∠A,过顶点A作∠CAD1=∠B,交边BC于点D1,依次过顶点D1作∠CD1D2=∠CAD1,过点D2作∠CD2D3=∠CD1D2,…,过点D n-1作∠CD n-1D n=∠CD n-2D n-1.(1)试证直线AD1是△ABC的自似线;(2)试求线段CD1的长,并猜想CD n的长;(3)当60°<∠A<120°,且n=5时,与△ABC相似的三角形有几个?24.(14分)如图,在平面直角坐标系中,顶点为(4,1)的抛物线交y轴于点A,交x轴于B,C两点(点B在点C的左侧),已知C点坐标为(6,0).(1)求此抛物线的解析式;(2)连结AB,过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与抛物线的对称轴l相切,先补全图形,再判断直线BD与⊙C的位置关系并加以证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间.问:当点P运动到什么位置时,△P AC的面积最大?求出△P AC的最大面积.第24题图第一学期期末测试1.C 2. A 3. A 4. B 5. D 6. D7. C8.B9. B10. B【点拨】∵开口向下,∴a<0.∵对称轴在y轴右侧,∴b>0.∵与y轴交于x轴上方,∴c>0,∴abc<0,①不对;∵当x=-1时,a-b+c<0,∴a+c<b,②不对;∵当x=2时,4a+2b+c>0,∴③正确;∵-b2a=1,a-b+c<0,即-b2-b+c<0,∴2c<3b,④正确;∵x=1时函数取最大值,∴a+b+c>am2+bm+c(m≠1),即a+b>m(am +b),⑤正确.11. 9 712. 等于13. 20°14.①②④15. 23+616.①②③④17. (1)如图1;(2)AB与⊙O相切.证明:作OD⊥AB于D,如图2.∵BO平分∠ABC,∠ACB=90°,OD⊥AB,∴OD=OC,∴AB与⊙O相切.图1图2第17题图18.画树状图得:第18题图∵共有12种等可能的结果,他能够判定四边形ABCD 为平行四边形的有:ab ,ac ,ba ,bd ,ca ,cd ,dc ,db 共8种情况,∴他能够判定四边形ABCD 为平行四边形的概率为812=23. 19. (1)6 (2)6π-9320. (5+52-53)千米21. (1)当1≤x <50时,y =(200-2x)(x +40-30)=-2x 2+180x +2000,当50≤x ≤90时,y =(200-2x)(90-30)=-120x +12000,综上所述:y =⎩⎪⎨⎪⎧-2x 2+180x +2000(1≤x<50)-120x +12000(50≤x ≤90); (2)当1≤x <50时,二次函数开口向下,二次函数对称轴为x =45,当x =45时,y 最大=-2×452+180×45+2000=6050,当50≤x ≤90时,y 随x 的增大而减小,当x =50时,y 最大=6000,综上所述,销售该商品第45天时,当天销售利润最大,最大利润是6050元; (3)当20≤x ≤60时,即共有41天每天销售利润不低于4800元.第22题图22.(1)如图,连结OD.∵DE 为切线,∴∠EDC +∠ODC =90°;∵∠ACB =90°,∴∠ECD +∠OCD =90°.又∵OD =OC ,∴∠ODC =∠OCD ,∴∠EDC =∠ECD ,∴ED =EC ;∵AC 为直径,∴∠ADC =90°,∴∠BDE +∠EDC =90°,∠B +∠ECD =90°,∴∠B =∠BDE ,∴ED =EB.∴EB =EC ,即点E 为边BC 的中点;(2)∵AC 为直径,∴∠ADC =∠CDB =∠ACB =90°,又∵∠B =∠B ,∴△ABC ∽△CBD ,∴AB BC =BC BD,∴BC 2=BD·BA ;(3)当四边形ODEC 为正方形时,∠OCD =45°;∵AC 为直径,∴∠ADC =90°,∴∠CAD =90°-∠OCD =90°-45°=45°∴Rt △ABC 为等腰直角三角形.23. (1)证明:∵∠C =∠C ,∠CAD 1=∠B ,∴△CAD 1∽△CBA ,∴直线AD 1是△ABC的自似线. (2)由(1)得△CAD 1∽△CBA ,∴CD 1CA =CA CB ,∴CD 1=b 2a ,CD n =b n +1a n . (3)当∠A =90°时,与△ABC 相似的三角形有10个;当∠A ≠90°时,与△ABC 相似的三角形有5个.24. (1)y =-14x 2+2x -3. (2)补全图形如图1,判断:直线BD 与⊙C 相离.证明:令-14(x -4)2+1=0,则x 1=2,x 2=6. ∴B 点坐标(2,0).又∵抛物线交y 轴于点A ,∴A 点坐标为(0,-3),∴AB =32+22=13.设⊙C 与对称轴l 相切于点F ,则⊙C 的半径CF =2,作CE ⊥BD 于点E ,则∠BEC =∠AOB =90°.∵∠ABD =90°,∴∠CBE =90°-∠ABO ,又∵∠BAO =90°-∠ABO ,∴∠BAO =∠CBE ,∴△AOB ∽△BEC ,∴CE OB =BC AB ,∴CE 2=413,∴CE =813>2,∴直线BD 与⊙C 相离第24题图 (3)如图2,过点P 作平行于y 轴的直线交AC 于点Q ,∵A(0,-3),C(6,0),∴直线AC 解析式为y =12x -3,设P 点坐标为(m ,-14m 2+2m -3),则Q 点的坐标为(m ,12m -3),∴PQ =-14m 2+2m -3-(12m -3)=-14m 2+32m ,∵S △PAC =S △PAQ +S △PCQ =12×(-14m 2+32m)×6=-34(m -3)2+274,∴当m =3时,△PAC 的面积最大为274,∵当m =3时,-14m 2+2m -3=34,∴P 点坐标为(3,34).综上:P 点的位置是(3,34),△PAC 的最大面积是274.2017-2018学年浙教数学九年级上第一学期期末测试11 / 11。
九年级上册湖州数学期末试卷测试卷 (word版,含解析)
九年级上册湖州数学期末试卷测试卷 (word 版,含解析)一、选择题1.下列方程中,是关于x 的一元二次方程的为( ) A .2210x x+= B .220x x --=C .2320x xy -=D .240y -=2.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 3.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .234.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .16 5.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定6.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤7.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月8.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 9.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个 10.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2 B .2C .-3D .311.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( )A .开口向上B .对称轴是y 轴C .有最低点D .在对称轴右侧的部分从左往右是下降的12.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似D .所有矩形都相似二、填空题13.如图,为了测量某棵树的高度,小明用长为2m 的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m ,与树相距15m ,则树的高度为_________m.14.一元二次方程290x 的解是__.15.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.16.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.17.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣3m+2010的值为_____. 18.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.19.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.20.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.21.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.22.如图,E 是▱ABCD 的BC 边的中点,BD 与AE 相交于F ,则△ABF 与四边形ECDF 的面积之比等于_____.23.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分方差众数中位数甲组89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.24.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题25.二次函数y=ax2+bx+c中的x,y满足下表x…-1013…y…0310…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质:(1);(2);(3).26.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cm B.6cm×4.5cm C.7cm×4cm D.7cm×4.5cm27.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.28.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线-2y x =交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标; (2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.29.从甲、乙两台包装机包装的质量为300g 的袋装食品中各抽取10袋,测得其实际质量如下(单位:g )甲:301,300,305,302,303,302,300,300,298,299 乙:305,302,300,300,300,300,298,299,301,305 (1)分别计算甲、乙这两个样本的平均数和方差; (2)比较这两台包装机包装质量的稳定性.30.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y 2x 80=-+. 设这种产品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元? 31.在平面直角坐标系中,直线y =x +3与x 轴交于点A ,与y 轴交于点B ,抛物线y =a 2x +bx +c (a <0)经过点A ,B ,(1)求a、b满足的关系式及c的值,(2)当x<0时,若y=a2x+bx+c(a<0)的函数值随x的增大而增大,求a的取值范围,(3)如图,当a=−1时,在抛物线上是否存在点P,使△PAB的面积为32?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由,32.如图,AB是⊙O的弦,OP OA⊥交AB于点P,过点B的直线交OP的延长线于点C,且BC是⊙O的切线.(1)判断CBP∆的形状,并说明理由;(2)若6,2OA OP==,求CB的长;(3)设AOP∆的面积是1,S BCP∆的面积是2S,且1225SS=.若⊙O的半径为6,45BP=tan APO∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.【详解】解:A.221xx+=,是分式方程,B.220x x--=,正确,C.2320x xy-=,是二元二次方程,D.240y-=,是关于y的一元二次方程,故选B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.2.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .3.D解析:D 【解析】 【分析】根据概率公式直接计算即可. 【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D . 【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.4.D解析:D 【解析】 【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案. 【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12,∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4, ∴△ABC 的面积为:16, 故选D . 【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.5.C解析:C 【解析】 【分析】点到圆心的距离大于半径,得到点在圆外. 【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4, ∴点P 在圆外. 故选:C. 【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.6.D解析:D 【解析】 【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围. 【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴42x ±=∵15x << ∴54t -<≤ 故答案为D . 【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.7.D解析:D【解析】【分析】【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D8.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.9.C解析:C【解析】【分析】①③,根据已知把∠ABD,∠CBD,∠A角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC∽△BCD,从而确定②是否正确,根据AD=BD=BC,即BC AC BC AC BC-=解得AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 10.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m,则1•m=2,解得m=2.故选B.【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x1+x2=-ba,x1•x2=ca.要求熟练运用此公式解题.11.D解析:D【解析】【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【详解】解:∵二次函数y=﹣x2+x=﹣(x12-)2+14,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x=12,故选项B错误;当x=12时取得最大值14,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.【点睛】本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.12.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.二、填空题13.7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m解析:7【解析】设树的高度为x m,由相似可得6157262x+==,解得7x=,所以树的高度为7m14.x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】∵∴=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一解析:x1=3,x2=﹣3.【解析】【分析】先移项,在两边开方即可得出答案.【详解】x-=∵290∴2x=9,∴x=±3,即x1=3,x2=﹣3,故答案为x1=3,x2=﹣3.【点睛】本题考查了解一元二次方程-直接开平方法,熟练掌握该方法是本题解题的关键.15.y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y=-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.16.【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:解析:9【解析】【分析】如图所示,由网格的特点易得△CEF≌△DBF,从而可得BF的长,易证△BOF∽△AOD,从而可得AO与AB的关系,然后根据勾股定理可求出AB的长,进而可得答案.【详解】解:如图所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=12BE=12,∵BF∥AD,∴△BOF∽△AOD,∴11248 BO BFAO AD===,∴89AO AB=,∵AB=∴AO=故答案为:9【点睛】本题以网格为载体,考查了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解答的关键.17.2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5 m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】解解析:2019【解析】【分析】根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,然后整体代入即可求得答案.【详解】解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,∴5m2﹣1=3m,两边同时除以m得:5m﹣1m=3,∴15m﹣3m+2010=3(5m﹣1m)+2010=9+2010=2019,故答案为:2019.【点睛】本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键.18.【解析】分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的410分析:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,则NF=2x,再利用矩形的性质和已知条件证明△AME∽△FNA,利用相似三角形的性质:对应边的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的长.详解:取AB的中点M,连接ME,在AD上截取ND=DF,设DF=DN=x,∵四边形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴2x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵5AB=2,∴BE=1,∴222BM BE+=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,22x=,解得:x=4 3∴22410AD DF+=410.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,19.25%【解析】【分析】设每次降价的百分比为x,根据前量80,后量45,列出方程,解方程即可得到【详解】设每次降价的百分比为x ,,解得:x1=0.25=25%,x2=1.75(不合解析:25%【解析】【分析】设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)45x ,解方程即可得到答案.【详解】设每次降价的百分比为x , 280(1)45x ,解得:x 1=0.25=25%,x 2=1.75(不合题意舍去)故答案为:25%.【点睛】此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1±x )2=后量,即可解答此类问题.20.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4 根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,22CM r =∴NC=ND -CD=42r根据勾股定理可得:NC 2+PN 2=CP 2 即()222422r r -+= 解得:124223,4223r r +==DM >OD ,点M 不在射线OB 上,故舍去) 故答案为:23.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.21.【解析】【分析】过点A 作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出. 41383+ 【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明ABC AEO ∆∆,由三角函数可得出23AOAE=,进而求得6AE=,再通过证明AEB AOC∆∆,可得出23OC BE=,根据三角形三边关系可得:BE OE OB≤+,由勾股定理可得213OE=,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵13sin13B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AOAE=,又∵4AO=,∴6AE=,∵90,90EAB BAO OAC BAO∠+∠=︒∠+∠=︒,∴=EAB OAC∠∠,又∵AC AOAB AE=,∴AEB AOC∆∆,∴23OC ACBE AB==,∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE的最大值为:4,∴OC的最大值为:()284333=+. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 22.【解析】【分析】△ABF 和△ABE 等高,先判断出,进而算出,△ABF 和△ AFD 等高,得,由,即可解出.【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ 解析:25【解析】【分析】△ABF 和△ABE 等高,先判断出23ABF ABE S AF S AE ∆∆==,进而算出6ABCD ABF S S ∆=,△ABF 和 △ AFD 等高,得2ADF ABF S DF S BF∆∆==,由5=2ABE ADF ABF ECDF S S S S S ∆∆∆=--四边形平行四边形ABCD ,即可解出. 【详解】解:∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD =BC ,又∵E 是▱ABCD 的BC 边的中点, ∴12BE EF BF BE AD AF DF BC ====, ∵△ABE 和△ABF 同高,∴23ABF ABE S AF S AE ∆==, ∴S △ABE =32S △ABF , 设▱ABCD 中,BC 边上的高为h , ∵S △ABE =12×BE ×h ,S ▱ABCD =BC ×h =2×BE ×h , ∴S ▱ABCD =4S △ABE =4×32S △ABF =6S △ABF , ∵△ABF 与△ADF 等高, ∴2ADF ABF S DF S BF ∆∆==, ∴S △ADF =2S △ABF ,∴S 四边形ECDF =S ▱ABCD ﹣S △ABE ﹣S △ADF =52S △ABF , ∴25ABFECDF S S ∆=四边形, 故答案为:25. 【点睛】 本题考查了相似三角的面积类题型,运用了线段成比例求面积之间的比值,灵活运用线段比是解决本题的关键.23.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.24.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 三、解答题25.(1)抛物线与x 轴交于点(-1,0)和(3,0);与y 轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x <1时,y 随x 的增大而增大【解析】【分析】根据表格中数据,可得抛物线与x 轴交点坐标,与y 轴交点坐标,抛物线的对称轴直线以及抛物线在对称轴左侧的增减性,从而进行解答.【详解】解:由表格数据可知:当x=0时,y=3;当y=0时,x=-1或3∴该函数三条不同的性质为:(1)抛物线与x 轴交于点(-1,0)和(3,0);与y 轴交于点(0,3);(2)抛物线的对称轴为直线x=1;(3)当x <1时,y 随x 的增大而增大【点睛】本题考查二次函数性质,数形结合思想解题是本题的解题关键.26.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3180n π⨯ 解得:n=240°, 如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm , 故选:B .【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.27.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7,∴3437DB BD =++, ∴BD =9,BF =9+3=12,∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.28.(1)y=﹣(x ﹣1)2+1,C(﹣1,﹣3);(2)3;(3)存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0)【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C 点坐标;(2)设直线AC 的解析式为y =kx +b ,与x 轴交于D ,得到y =2x−1,求得BD 于是得到结论;(3)设出N 点坐标,可表示出M 点坐标,从而可表示出MN 、ON 的长度,当△MON 和△ABC 相似时,利用三角形相似的性质可得MN ON AB BC =或MN ON BC AB=,可求得N 点的坐标.【详解】(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1, 即y=﹣x 2+2x ,联立抛物线和直线解析式可得22-2y x x y x ⎧=+⎨=⎩﹣, 解得20x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩,∴B (2,0),C (﹣1,﹣3); (2)设直线AC 的解析式为y=kx+b ,与x 轴交于D ,把A (1,1),C (﹣1,﹣3)的坐标代入得13k b k b =+⎧⎨-=-+⎩, 解得:21k b =⎧⎨=-⎩, ∴y=2x ﹣1,当y=0,即2x ﹣1=0,解得:x=12,∴D (12,0), ∴BD=2﹣12=32, ∴△ABC 的面积=S △ABD +S △BCD =12×32×1+12×32×3=3; (3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x|,MN=|﹣x 2+2x|,由(2)知,,,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有MN ON AB BC =或MN ON BC AB=, ①当MN ON AB BC =时,∴=|x||﹣x+2|=13|x|, ∵当x=0时M 、O 、N 不能构成三角形,∴x≠0,∴|﹣x+2|=13,∴﹣x+2=±13,解得x=53或x=73,此时N 点坐标为(53,0)或(73,0); ②当或MN ON BC AB =时,∴=,即|x||﹣x+2|=3|x|, ∴|﹣x+2|=3,∴﹣x+2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(53,0)或(73,0)或(﹣1,0)或(5,0).【点睛】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N 、M 的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.29.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x 甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301, x 乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301, 2s 甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2; 2s 乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2; (2)∵2s 甲<2s 乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键.30.(1)2w 2x 120x 1600=-+-;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.【解析】试题分析:(1)根据销售额=销售量×销售价单x ,列出函数关系式;(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.试题解析:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元. 考点:1.二次函数的应用;2.由实际问题列函数关系式;3.二次函数的最值.31.(1)b=3a+1;c=3;(2)103a -≤<;(3)点P,12). 【解析】【分析】(1)求出点A 、B 的坐标,即可求解;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大,则函数对称轴02b x a =-≥,而b=3a+1,即:3102a a+-≥,即可求解; (3)过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,由S △PAB =32,则P Q y y -=1,即可求解.【详解】解:(1)y=x+3,令x=0,则y=3,令y=0,则x=3-,故点A 、B 的坐标分别为(-3,0)、(0,3),则c=3,则函数表达式为:y=ax 2+bx+3,将点A 坐标代入上式并整理得:b=3a+1;(2)当x <0时,若y=ax 2+bx+c (a <0)的函数值随x 的增大而增大, 则函数对称轴02b x a =-≥, ∵31b a =+, ∴3102a a+-≥, 解得:13a ≥-,∴a 的取值范围为:103a -≤<; (3)当a=1-时,b=3a+1=2-二次函数表达式为:223y x x =--+,过点P 作直线l ∥AB ,作PQ ∥y 轴交BA 于点Q ,作PH ⊥AB 于点H ,∵OA=OB ,∴∠BAO=∠PQH=45°,S △PAB =12×AB ×PH=12×32PQ ×22=32, 则PQ=P Q y y -=1,在直线AB 下方作直线m ,使直线m 和l 与直线AB 等距离,则直线m 与抛物线两个交点,分别与点AB 组成的三角形的面积也为32, ∴1P Q y y -=,设点P (x ,-x 2-2x+3),则点Q (x ,x+3),即:-x 2-2x+3-x-3=±1, 解得:35x -±=313x -±=; ∴点P 35-+55+35--55-313-+,1132+)或(3132--,1132-). 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.32.(1)CBP ∆是等腰三角形,理由见解析;(2)BC 的长为8;(3)3tan 2APO ∠=. 【解析】【分析】(1)首先连接OB ,根据等腰三角形的性质由OA =OB 得A OBA ∠=∠,由点C 在过点B 的切线上,且OP OA ⊥,根据等角的余角相等,易证得∠PBC =∠CPB ,即可证得△CBP 是等腰三角形;。
九年级答案
M2017-2018学年度上学期期末考试九年级数学答案及评分标准一、选择题:BACBB DDAAC BDBB二、填空题:15.(-1,1)16.∠A=∠BDF(∠A=∠BFD,∠ADE=∠BFD,∠ADE=∠BDF,DF∥AC,EDBFAEBD=,AEBFDEBD=) 17. 24πcm2 18.四 19. -1或2三、解答题20.解:原式=-3分……………………………………………………………6分21.解:(1)如图,点P即为所求.…………………………………………3分(2)如图,连接OA,OA′,OB.由(1)可得,PA+PB的最小值即为线段A′B的长,…………………………………………………4分∵点A′和点A关于MN轴对称且∠AMN=30°,∴∠AON=∠A′ON=2∠AMN=∠60°.…………5分又∵点B为 AN的中点,∴∠BON=12∠AON=30°,∴∠A′OB=90°.……………………………………………………………7分又∵MN=4,∴OB=OA′=2.在Rt△A′OB中,由勾股定理得A′B.………………………………………9分∴PA+PB的最小值是……………………………………………………………10分22.解:(1)请画出△ABC向左平移6个单位长度后得到的△A1B1C1,如图1所示,……………………………………………………………2分(2)以点为位似中心,将△ABC缩小为原来的2,得到△A2B2C2,请在y轴右侧画出△A2B2C2,如图2所示,……………………………………………………………4分∵A(2,2),C(4,-4),B(4,0),∴直线AC解析式为y=-3x+8,与x轴交于点D(83,0),………………………6分∵∠CBD=90°,∴CD=∴sin∠DCB=43BDCD==.……………………………………8分∵∠A2C2B2=∠ACB,∴sin∠A2C2B2=sin∠DCB=10.……………………………………………10分23.解:(1)证明:∵AB 是⊙O 的直径, ∴∠BCA =90°, ∴∠B +∠BAC =90°, ∵∠D =∠B ,∠EAC =∠D , ∴∠EAC =∠B ,∴∠EAC +∠BAC =90°,即∠BAE =90°, ∴BA ⊥AE , ∵BA 过O ,∴直线AE 是⊙O 的切线.……………………………………………………………4分 (2)解:如图,作FH ⊥BC 于点H , ∵∠BAD =∠BCD ,cos ∠BAD =43, ∴cos ∠BCD =43, 在Rt △CFH 中,∵CF =310∴CH =CF ·cos ∠BCD =310×43=25,∵BC =4, ∴BH =BC -CH =4-25=23, ∵AB 是⊙O 的直径, ∴∠BCA =90°, ∵∠BAC =30°, ∴∠B =60°,∴BF =︒60cos BH=2123=3.……………………………………………………………10分24. 解:(1)240.……………………………………………………………2分 (2)设参加这次旅游有a 人. ∵10×240=2400<3600, ∴a >10.∵25×150=3750>3600, ∴a <25.综合知,10<a <25.……………………………………………………………4分 设直线BC 的函数表达式为y =kx b +,把B (10,240),C (25,150)代入,得2401015025k b k b =+⎧⎨=+⎩.,解得k =-6,b =300.∴直线BC 的函数表达式为y =6300x -+∴人数为a 时的人均费用为6300a -+.……………………………………8分 根据题意,得(6300)a a -+=3600. 整理,得250600a x -+=0. 解得1a =20,2a =30.∵10<a <25,∴a =20.答:参加这次旅游有20人.……………………………………………………………12分25. 解: (1)∵直线y =-33x +3;分别与x 轴、y 轴交于B 、C 两点, ∴点B 的坐标为(3,0),点C 的坐标为(0,3). ∴∠ACO +∠BCO =90°,∠ACO +∠CAO =90°.∴∠CAO =∠BCO∵∠AOC =∠COB =90°.∴△AOC ∽△CO B.∴AO CO =CO BO .∴AO 3=33.∴AO =l .∴点A 的坐标为(-1,0).……………………………………………………………5分 (2)∵抛物线y =ax 2+bx +3;经过A 、B 两点, ∴⎩⎨⎧a -b +3=09a +3b +3=0解得:⎩⎪⎨⎪⎧a =-33b =233∴抛物线的解析式为y =-33x 2+233x +3………………………………10分 (3)由题意知,△DMH 为直角三角形,且∠M =30°,当MD 取得最大值时,△DMH 的周长最大. 设M (x ,-33x 2+233x +3),D (x ,-33x +3), 则MD =(-33x 2+233x +3)-(-33x +3), 即:MD =-33x 2+3x (0<x <3) MD =-33(x -32)2+334∴当x =32时,MD 有最大值334∴△DMH 周长的最大值为334+334×12+334×32=93+98……………15分。
2017-2018学年九年级上数学期末试卷及答案解析
)
A.1 个 B.2 个 C.3 个 D.4 个
二、填空题
;④
11、方程
有两个不等的实数根,则 a 的取值范围是________。
12、如图,⊙O 中,弦 AB=3,半径 BO=,C 是 AB上一点且 AC=1,点 P 是⊙O 上一动点,连 PC,则 PC长的最小 值是
B.4
C.5 D.6
8、.已知二次函数 y=ax2+bx+c(a≠0)的图象如图,
有下列 5 个结论:①abc<0;②3a+c>0;
③4a+2b+c>0;④2a+b=0;⑤b2>4ac.
其中正确的结论的有( )
A. 1 个 B. 2 个 C. 3 个 D. 4 个
9、如图,已知 AB=12,点 C,D 在 AB上,且 AC=DB=2,点 P 从点 C 沿线段 CD向点 D 运动(运动到点 D 停止),以 AP、BP为斜边在 AB的同侧画等腰 Rt△APE和等腰 Rt△PBF,连接 EF,取 EF的中点 G,下列说法中正确的有 ()
C.与 x 轴相切、与 y 轴相离 D.与 x 轴、y 轴都相切
7、某口袋中有 20个球,其中白球 x 个,绿球 2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜, 甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则 乙获胜.则当 x=________时,游戏 对甲、乙双方公平 ()
A.3
5、如图,A,B,C是⊙O 上三个点,∠AOB=2∠BOC,则下列说法中正确的是
A. ∠OBA=∠OCA
B. 四边形 OABC内接于⊙O
C.. AB=2BC
D. ∠OBA+∠BOC=90°
6、在平面直角坐标系中,以点(3,2)为圆心,2 为半径的圆与坐标轴的位置关系为( )
2017-2018学年九年级数学上期末试卷含详细答案解析
2017-2018学年九年级数学上期末试卷含详细答案解析数学试卷一、选择题(每小题3分,满分30分)1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.07.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+49.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.2710.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1二、填空题(每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.5013.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.三、解答题(本大题共9小题,满分102分)17.(9分)解方程:x2﹣6x+8=0.18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.参考答案一、选择题1.在下列四个图案中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.解:A、B、C是中心对称图形,D不是中心对称图形,故选:D.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.ʘO的半径为5cm,点A到圆心O的距离OA=4cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定【分析】根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,∴点A在⊙O内.故选:B.【点评】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.3.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,5)B.(3,﹣5)C.(﹣3,5)D.(﹣2,5)【分析】由抛物线解析式即可求得答案.解:∵y=﹣2(x﹣3)2+5,∴抛物线顶点坐标为(3,5),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.4.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是()A.“22选5”B.“29选7”C.一样大D.不能确定【分析】先计算出“22选5”和“29选7”获奖的可能性,再进行比较,即可得出答案.解:“22选5”福利彩票中,全部获奖的可能性为:,“29选7”福利彩票中,全部获奖的可能性为:,∵<,∴获一等奖机会大的是“29选7”,故选:B.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y =﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3 【分析】利用待定系数法求出函数值即可判断.解:当x=﹣3时,y1=1,当x=﹣1时,y2=3,当x=1时,y3=﹣3,∴y3<y1<y2故选:C.【点评】本题考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可能是()A.3 B.2 C.1 D.0【分析】根据判别式的意义得到△=(﹣2)2﹣4m>0,然后解关于m的不等式,最后对各选项进行判断.解:根据题意得△=(﹣2)2﹣4m>0,解得m<1.故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.已知如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为()A.60°B.50°C.40°D.30°【分析】首先连接AC,由AB是⊙O的直径,可得∠ACB=90°,然后由圆周角定理,求得∠A=∠D,继而求得答案.解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠A=∠CDB=40°,∴∠CBA=90°﹣∠A=50°.故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.8.把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4 B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4 D.y=2(x﹣3)2+4【分析】抛物线y=2x2的顶点坐标为(0,0),则把它向左平移3个单位,再向上平移4个单位,所得抛物线的顶点坐标为(﹣3,4),然后根据顶点式写出解析式.解:把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数解析式为y=2(x+3)2+4.故选:A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F.S△AEF=3,则S△FCD为()A.6 B.9 C.12 D.27【分析】先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.解:∵四边形ABCD是平行四边形,AE:EB=1:2,∴AE:CD=1:3,∵AB∥CD,∴∠EAF=∠DCF,∵∠DFC=∠AFE,∴△AEF∽△CDF,∵S△AEF=3,∴,解得S△FCD=27.故选:D.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.10.如图,△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC.则BN:NQ:QM等于()A.6:3:2 B.2:1:1 C.5:3:2 D.1:1:1【分析】连结MF,如图,先证明MF为△CEA的中位线,则AE=2MF,AE∥MF,利用NE∥MF得到==1,==,即BN=NM,MF =2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,所以AN=3b,然后利用AN∥MF得到===,所以NQ=a,QM=a,再计算BN:NQ:QM的值.解:连结MF,如图,∵M是AC的中点,EF=FC,∴MF为△CEA的中位线,∴AE=2MF,AE∥MF,∵NE∥MF,∴==1,==,∴BN=NM,MF=2NF,设BN=a,NE=b,则NM=a,MF=2b,AE=4b,∴AN=3b,∵AN∥MF,∴===,∴NQ=a,QM=a,∴BN:NQ:QM=a:a:a=5:3:2.故选:C.【点评】本题考查了平行线分线段成比例定理、三角形中位线性质等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题,学会利用参数解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,满分18分.)11.点A(1,﹣2)关于原点对称的点A′的坐标为(﹣1,2).【分析】直接利用关于原点对称点的性质进而得出答案.解:点A(1,﹣2)关于原点对称的点A′的坐标为:(﹣1,2).故答案为:(﹣1,2).【点评】此题主要考查了关于原点对称点的性质,正确把握横纵坐标的关系是解题关键.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为0.5(精确到0.1).投篮次数(n)50 100 150 200 250 300 500投中次数(m)28 60 78 104 123 152 251投中频率(m/n)0.56 0.60 0.52 0.52 0.49 0.51 0.50【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.解:由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:≈0.5.故答案为:0.5.【点评】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.13.已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.【分析】由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解.解:依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1﹣(3﹣1)=﹣1,∴交点坐标为(﹣1,0)∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x的一元二次方程﹣x2+2x+m=0的解为x1=﹣1或x2=3.故答案为:x1=﹣1或x2=3.【点评】本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.14.将一个底面半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是144度.【分析】根据圆锥的侧面积公式得出圆锥侧面积,再利用扇形面积求出圆心角的度数.解:∵将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,∴圆锥侧面积公式为:S=πrl=π×6×15=90πcm2,∴扇形面积为90π=,解得:n=144,∴侧面展开图的圆心角是144度.故答案为:144【点评】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥侧面积是解决问题的关键.15.已知一等腰三角形的底边长和腰长分别是方程x2﹣3x=4(x﹣3)的两个实数根,则该等腰三角形的周长是10或11.【分析】因式分解法解方程求得x的值,再分两种情况求解可得.解:解方程x2﹣3x=4(x﹣3),即(x﹣3)(x﹣4)=0得x=3或x =4,若腰长为3时,周长为3+3+4=10,若腰长为4时,周长为4+4+3=11,故答案为:10或11.【点评】本题主要考查解一元二次方程和等腰三角形的能力,解题的关键是熟练掌握因式分解法解一元二次方程的能力和等腰三角形的定义.16.如图,在平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P是线段BO、OA上的动点,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,),(2,0),(,0).【分析】分类讨论:当PC∥OA时,△BPC∽△BOA,易得P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,易得P点坐标为(2,0);当PC⊥AB时,如图,由于∠CAP=∠OAB,则Rt△APC∽Rt △ABC,得到=,再计算出AB、AC,则可利用比例式计算出AP,于是可得到OP的长,从而得到P点坐标.解:当PC∥OA时,△BPC∽△BOA,由点C是AB的中点,所以P 为OB的中点,此时P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,由点C是AB的中点,所以P为OA的中点,此时P点坐标为(2,0);当PC⊥AB时,如图,∵∠CAP=∠OAB,∴Rt△APC∽Rt△ABC,∴=,∵点A(4,0)和点B(0,3),∴AB==5,∵点C是AB的中点,∴AC=,∴=,∴AP=,∴OP=OA﹣AP=4﹣=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(0,),(2,0),(,0).故答案为:(0,),(2,0),(,0).【点评】本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;有两组角对应相等的两个三角形相似.也考查了坐标与图形性质.注意分类讨论思想解决此题.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.)17.(9分)解方程:x2﹣6x+8=0.【分析】把方程左边分解得到(x﹣2)(x﹣4)=0,则原方程可化为x﹣2=0或x﹣4=0,然后解两个一次方程即可.解:x2﹣6x+8=0(x﹣2)(x﹣4)=0,∴x﹣2=0或x﹣4=0,∴x1=2 x2=4.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.(9分)如图,在△ABC中,∠ACB=90°,AB=5,BC=4,将△ABC绕点C顺时针旋转90°,若点A、B的对应点分别是点D、E,请直接画出旋转后的三角形简图(不要求尺规作图),并求点A 与点D之间的距离.【分析】首先根据题意画出旋转后的三角形,易得△ACD是等腰直角三角形,然后由勾股定理求得AC的长.解:如图,∵在△ABC中,∠ACB=90°,AB=5,BC=4,∴AC==3,∵将△ABC绕点C顺时针旋转90°,点A,B的对应点分别是点D,E,∴AC=CD=3,∠ACD=90°,∴AD==3.【点评】此题考查了旋转的性质以及勾股定理.注意掌握旋转前后图形的对应关系是解此题的关键.19.(10分)在湖州创建国家卫生文明城市的过程中,张辉和夏明积极参加志愿者活动,当时有下列四个志愿者工作岗位供他们选择:①清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用A1,A2表示).②宣传类岗位:垃圾分类知识宣传;交通安全知识宣传(分别用B1,B2表示).(1)张辉同学从四个岗位中随机选取一个报名,恰好选择清理类岗位概率为是;(2)若张辉和夏明各随机从四个岗位中选一个报名,请你利用树状图或列表法求出他们恰好都选择同一个岗位的概率.【分析】(1)直接利用概率公式求解即可;(2)根据题意先画出树状图,得出所以等可能的结果数,再找出张辉和夏明恰好都选择田赛的结果数,然后根据概率公式求解即可.解:(1)张辉同学选择清理类岗位的概率为:=;故答案为:;(2)根据题意画树状图如下:共有16种等可能的结果数,张辉和夏明恰好选择同一岗位的结果数为4,所以他们恰好选择同一岗位的概率:=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(10分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.【分析】(1)利用过直线上一点作直线的垂线确定D点即可得;(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB∽△ACB,根据相似三角形的性质即可得到结论.解:(1)如图所示,CD即为所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴=,∴BC2=BD•AB.【点评】本题考查了复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和相似三角形的判定和性质.21.(12分)随着市民环保意识的增强,春节期间烟花爆竹销售量逐年下降.某市2015年销售烟花爆竹20万箱,到2017年烟花爆竹销售量为9.8万箱.(1)求该市2015年到2017年烟花爆竹年销售量的平均下降率;(2)预测该市2018年春节期间的烟花爆竹销售量.【分析】(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,根据2015年和2017年销售的箱数,列出方程,求解即可.(2)根据(1)中的平均下降率预测该市2018年春节期间的烟花爆竹销售量.解:(1)设该市2015年到2017年烟花爆竹年销售量的平均下降率为x,依题意得:20(1+x)2=9.8,解这个方程,得x1=0.3,x2=1.7,由于x2=1.7不符合题意,即x=0.3=30%.答:该市2015年到2017年烟花爆竹年销售量的平均下降率为30%.(2)由题意,得9.8×(1﹣30%)=6.86(万箱)答:预测该市2018年春节期间的烟花爆竹销售量为6.86万箱.【点评】此题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点,且∠DBC=∠A=60°,连接OE并延长与⊙O 相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6cm,求弦BD的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE⊥BD,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC,由△OBC的面积求出BE,即可得出弦BD的长.(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DBC=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,∠DBC=∠A=60°,BC⊥OB,∴OC=12,∵△OBC的面积=OC•BE=OB•BC,∴BE=,∴BD=2BE=6,即弦BD的长为6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.23.(12分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且,双曲线y=(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y=中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC ﹣S△OCE﹣S△OAD进行计算.解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴==,即==,∴DN=2,AN=1,∴ON=OA﹣AN=4,∴D点坐标为(4,2),把D(4,2)代入y=得k=2×4=8,∴反比例函数解析式为y=;(2)S四边形ODBE=S梯形OABC﹣S△OCE﹣S△OAD=×(2+5)×6﹣×|8|﹣×5×2=12.【点评】本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.24.(14分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.【分析】(1)将抛物线解析式配方成顶点式即可得;(2)①画出函数的大致图象,由图象知直线l经过顶点式时,直线l 与抛物线只有一个交点,据此可得;②画出翻折后函数图象,由直线l与新的图象恰好有三个公共点可得﹣2m+3=﹣7,解之可得;(3)由开口向上及函数值都不小于1可得,解之即可.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.【点评】本题主要考查抛物线与x轴的交点及解不等式组得能力,根据题意画出函数的图象,结合函数图象得出对应方程或不等式组是解题的关键.25.(14分)如图,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P,Q分别从BC两点同时出发,其中点P沿BC向终点C运动.速度为1cm/s;点Q沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).(1)求x为何值时,PQ⊥AC;(2)设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;(3)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围.【分析】(1)若使PQ⊥AC,则根据路程=速度×时间表示出CP和CQ的长,再根据30度的直角三角形的性质列方程求解;若使PQ⊥AB,则根据路程=速度×时间表示出BP,BQ的长,再根据30度的直角三角形的性质列方程求解;(2)首先画出符合题意的图形,再根据路程=速度×时间表示出BP,CQ的长,根据等边三角形的三线合一求得PD的长,根据30度的直角三角形的性质求得PD边上的高,再根据面积公式进行求解;(3)根据(1)中求得的值,确定圆与AB、AC相切时的t的值,即可分情况进行讨论.解:(1)当Q在AB上时,显然PQ不垂直于AC,当Q在AC上时,由题意得,BP=x,CQ=2x,PC=4﹣x;∵AB=BC=CA=4,∴∠C=60°;若PQ⊥AC,则有∠QPC=30°,∴PC=2CQ,∴4﹣x=2×2x,∴x=;当x=(Q在AC上)时,PQ⊥AC;(2)如图②,当0<x<2时,P在BD上,Q在AC上,过点Q作QN⊥BC于N;∵∠C=60°,QC=2x,∴QN=QC×sin60°=x;∵AB=AC,AD⊥BC,∴BD=CD=BC=2,∴DP=2﹣x,∴y=PD•QN=(2﹣x)•x=﹣x2+x;(3)显然,不存在x的值,使得以PQ为直径的圆与AC相离,由(1)可知,当x=时,以PQ为直径的圆与AC相切;当点Q在AB上时,8﹣2x=,解得x=,故当x=或时,以PQ为直径的圆与AC相切,当0≤x<或<x<或<x≤4时,以PQ为直径的圆与AC相交.【点评】本题考查三角形综合题、等边三角形的性质、直角三角形的性质以及直线和圆的位置关系求解.解题的关键是用动点的时间x和速度表示线段的长度,学会利用参数解决问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省湖州市吴兴区2017-2018学年九年级上学期期末考试数学试题一、选择题1.如图,Rt△ABC中,∠C=90°,AB=7,∠B=35°,则AC的长为()A. 7cos35°B. 7tan35°C. 7sin35°D. 7sin55°第1题第5题2.若,则()A. B. C. D.3.抛物线的对称轴是( )A.直线x=4B.直线x=-4C.直线x=3D.直线x=-34.若△ABC的每条边长增加各自的10%得到△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A. 增加了10%B. 减少了10%C. 增加了(1+10%)D. 没有改变5.如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D,AC=8,则OD的长为( )A.3B.4C. 4.5D.56.如图,在△ABC中,DE∥BC,且,则下列结论不正确的是()A. B. C. D.7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A.8B.4C.2D.第6题第7题8.已知二次函数的与的部分对应值如下表:则下列判断中正确的是()A. 抛物线开口向上B. 抛物线与轴交于负半轴C. 当=4时,>0D. 方程的正根在3与4之间9.如图,已知抛物线y=x2+3x−4 ,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(-2,0), (2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是()第9题第10题A. B. C. D.10.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点。
如图,已知⊙O的半径为5,则抛物线与该圆所围成的阴影部分(不包括边界)的整点个数是()A.24B.23C.22D.21二、填空题11.布袋中装有4个红球和3个黑球,它们除颜色外没有任何其他区别,小红从中随机摸出1个球,摸出红球的概率是________.12.已知线段c是线段a、b的比例中项,且a=4,b=9,则线段c的长度为________.13.如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,则点A从开始到结束所经过的路径长为(结果保留π)________.第11题14.如图,在⊙O中,AB是⊙O的直径,AB=10,,点E是点D关于AB的对称点,M 是AB上的一动点,下列结论:①∠BOE=60°;②∠CED= ∠AOD;③DM⊥CE;④CM+DM的最小值是10,其中正确的序号是________.第14题第15题15.一个长方体木箱沿斜面下滑,当木箱滑至如图所示位置时,AB=3m,已知木箱高BD=1m,斜面坡角为30°,则木箱端点D距地面AC的高度为________.16.如图1,点D为直角三角形ABC的斜边AB上的中点,DE⊥AB交AC于E, 连EB、CD,线段CD与BF 交于点F。
若tanA= ,则=________。
如图2,点D为直角三角形ABC的斜边AB上的一点,DE⊥AB 交AC于E, 连EB、CD;线段CD与BF交于点F。
若= ,tanA= ,则=________。
第16题三、解答题:17.计算:18.如图所示,点D在△ABC的AB边上,AD=2,BD=4,AC= 2.求证:△ACD∽△ABC.第18题19.2017年11月11日,张杰参加了某网点的“翻牌抽奖”活动。
如图所示,4张牌上分别写有对应奖品的价值为10元,15元,20元和“谢谢惠顾”的字样。
(1)如果随机翻1张牌,那么抽中有奖的概率为________ ,抽中15元及以上奖品的概率为________ 。
(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,用画树状图或列表法列出抽奖的所有等可能性情况,并求出获奖品总值不低于30元的概率。
第19题20.小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD 放在每格宽度都为6mm的横格纸中,恰好四个顶点都在横格线上,已知α =36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)第20题21.如图,已知点O为半圆的圆心,直径AB=12,C是半圆上一点,OD⊥AC于点D,OD=3.(1)求AC的长;(2)求图中阴影部分的面积.第21题22.元旦前夕,湖州吴兴某工艺厂设计了一款成本10元/件的工艺品投放市场试销。
试销发现,每天销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数:y=-10x+700.(利润=销售总价-成本总价)(1)如果该厂想要每天获得5000元的利润,那么销售单价应定为多少元/件?(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(3)湖州市物价部门规定,该工艺品销售单价最高不能超过38元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?23.某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD 是矩形,其中AB=2米,BC=1米;上部△CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB 平行的伸缩横杆.(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;(2)设MN与AB之间的距离为x 米,试将△EMN的面积S(平方米)表示成关于x的函数;(3)请你探究△EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.第22题24.如图,在平面直角坐标系中,抛物线与x轴交于点A,C,与y轴交于点B。
已知点A 坐标为(8,0),点B为(0,8),点D为(0,3),tan∠DCO= ,直线AB和直线CD相交于点E。
(1)求抛物线的解析式,并化成y=a ( x−m ) 2+k的形式;(2)设抛物线的顶点为G,请在直线AB上方的抛物线上求点P的坐标,使得S△ABP = S△ABG .(3)点M为直线AB上的一点,过点M作x轴的平行线分别交直线AB,CD于点M,N,连结DM,DN,是否存在点M,使得△DMN为等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由。
第24题浙江省湖州市吴兴区2017-2018学年九年级上学期期末考试数学试题一、选择题1.如图,Rt△ABC中,∠C=90°,AB=7,∠B=35°,则AC的长为()A. 7cos35°B. 7tan35°C. 7sin35°D. 7sin55°【答案】C【考点】锐角三角函数的定义【解析】∵∠C=90°,AB=7,∠B=35°,∴sinB=sin35°=,∴AC=7sin35°.故答案为:C.【分析】根据锐角三角函数正弦定义即可得出答案.2.若,则()A. B. C. D.【答案】A【考点】比例的性质【解析】∵=,∴==.故答案为:A.3.抛物线的对称轴是( )A.直线x=4B.直线x=-4C.直线x=3D.直线x=-3【答案】B【考点】二次函数的性质【解析】∵y=2(x+4)2−3,∴对称轴为:x=-4.故答案为:B4.若△ABC的每条边长增加各自的10%得到△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A. 增加了10%B. 减少了10%C. 增加了(1+10%)D. 没有改变【答案】D【考点】相似三角形的判定与性质【解析】∵△ABC的每条边长增加各自的10%得到△A′B′C′,∴△ABC∽△A′B′C′,∴∠B′=∠B,故答案为:D.5.如图,AB是⊙O的直径,C是⊙O上的一点,OD⊥BC于点D,AC=8,则OD的长为( )A.3B.4C. 4.5D.5【答案】B【考点】三角形中位线定理,圆周角定理【解析】∵AB是⊙O的直径,∴∠ACB=90°,即AC⊥BC,又∵OD⊥BC,∴AC∥OD,∵O为AB中点,∴OD是△ACB中位线,∵AC=8,∴OD=AC=4.故答案为:B.6.如图,在△ABC中,DE∥BC,且,则下列结论不正确的是()A. B. C. D.【答案】C【考点】平行线分线段成比例,相似三角形的性质【解析】∵DE∥BC,=,∴==,故A、B正确,∴A、B不符合题意;∵DE∥BC,=,∴==,∴==,∴=.故C错误,D正确,∴C符合题意;D不符合题意;故答案为:C.7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A.8B.4C.2D.【答案】C【考点】圆心角、弧、弦的关系,圆周角定理,弧长的计算【解析】∵四边形ABCD是⊙O的内接四边形,∠B=135°,∴∠D=180°-135°=45°,∴∠AOC=2∠D=90°,∵⊙O的半径为4,∴劣弧AC的长为:==2.故答案为:C.8.已知二次函数的与的部分对应值如下表:则下列判断中正确的是()A. 抛物线开口向上B. 抛物线与轴交于负半轴C. 当=4时,>0D. 方程的正根在3与4之间【答案】D【考点】二次函数的性质,二次函数图象与系数的关系,待定系数法求二次函数解析式【解析】由图表可知:,∴,∴二次函数解析式为:y=-x2+3x+1,∴抛物线开口向下,故A错误,A不符合题意;∵c=1,∴抛物线与y轴正半轴相交,故B错误,B不符合题意;当x=4时,y=-30,故C错误,C不符合题意;当y=0时,x2-3x-1=0,∴x=,∴34,故D正确,D符合题意;故答案为:D.9.如图,已知抛物线y=x2+3x−4 ,把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(-2,0), (2,0)且平行于y轴的两条直线所围成的阴影部分的面积为s,平移的距离为m,则下列图象中,能表示s与m的函数关系的图象大致是()A. B. C. D.【答案】B【考点】二次函数图象与几何变换【解析】如图:把此抛物线沿y轴向上平移,平移后的抛物线和原抛物线与经过点(-2,0), (2,0)且平行于y轴的两条直线所围成的阴影部分的面积s可以看作与矩形B′BCC′等积,从而得出s与m是正比例函数关系.故答案为:B.10.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点。