列方程解应用题(盈亏问题)

合集下载

简易方程盈亏问题

简易方程盈亏问题
2.小军今年年龄的4倍减去18,正好是6月份的总天数.小军今年岁.
3.银行卡上一般存入为正,支出为负.小明妈妈的工资卡上有5000元,5月10日她支出3000元,记作,5月25日又存入1500元,现在妈妈工资卡上有元
4.在数轴上有一个点,已知离原点的距离是15个单位长度,这个点表示的数为.
5.如果在数轴上表示-2.5、1.125、 、2这四个数,其中离0点最远.
签字确认
学员教师班主任
6.在数轴上,所有的数都在0的右边,也就是数都比0大,而数都比0小.
应用题
(1)一个学生如果用他所有的钱去买11本练习本,就剩下5角钱,如果买15本练习本,就缺7角,这个学生有多少钱?
(2)某人打算在一些天内读完一本书,每天读40页,就剩下130页,每天读50页,正好按时读完。这本书有多少页?
(3)学生们分宿舍,每间住4人,有6人没有住处,如果每间住6人,又有4间没人住,问:有多少人?宿舍有多少间?
一、知识要点
盈亏问题
分类:
两盈:两次分配都有多余;
两不足:两次分配都不够;
盈适足:一次分配有余,一次分配正好;
不足适足:一次分配不够,一次分配正好。
盈亏问题有以下数量关系,解题时可以运用
(1)“两亏”问题的数量关系:
两次亏数的差÷两次分得的差=参与分配对象总数
(2)“两盈”问题的数量关系:
两次盈数的差÷两次分得的差=参与分配对象总数
2、将若干橘子分给几位小朋友,如果每人分到5个,那么还多6个;如果每人分到6个,那么正好分完。小朋友有几位?共有多少个橘子?
3、学校有一批图书,分给几个班级,如果每班分15本,就多10本,如果每个班分18本,那么就有一个班只分到4本,这些图书有多少本?分给几个班级?

盈亏问题的方程

盈亏问题的方程

1.某商店出售A、B、C三种商品,一月份C商品的销售金额占商店总销售金额的60%,预计二月份A、B商品的销售金额比一月份A、B商品的销售金额减少5%,要使二月份商店的总销售金额比一月份的总销售金额增长10%,那么必须使C商品的销售金额比一月份增长百分之几?2.某市百货商场元月1日举行促销活动,购物不超过200元不优惠,超过200元但不足500元的九折优惠,超过500元时其中500元打九折,超过500元的8折优惠,某人先后两次购物分别用了134元和466元。

1)此人两次购物的商品如果不打折,一共值多少元?2)在这次活动中他节省了多少钱?3)若此人将这两次购物合成一次购物是否更节省?为什么?3.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店最多可打折出售此商品.利润赢亏问题(1)销售问题中常出现的量有:进价、售价、标价、利润等(2)有关关系式:商品利润=商品售价—商品进价=商品标价×折扣率—商品进价商品利润率=商品利润/商品进价商品售价=商品标价×折扣率1、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?2、某商品标价为165元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进货价),则该商品的进货价是3、某种商品的进货价每件为x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折降价并让利40元销售,仍可获利10%(相对于进价),则x=元4、某商场企业的会计记录中有关某项产品的成本资料如下:其中制造成本(单件):原料20元,直接人工成本8元;间接成本:固定成本70000元,可变成本6元/件;销售成本与杂项开支:固定成本30000元,可变成本6元/件;该产品单件售价为60元。

问:(1)若给定利润目标为60000元,求其应达到的产量水平?(2)若预测到下一计划年度的需求量仅有6000件,求该产量下的利润?(3)若预测到下一计划年度的需求量仅有6000件,而企业希望取得60000元利润,当销售价格不能变动时,可以通过降低可变成本来实现利润指标,求在给定产量、利润、售价和固定成本不变时,单件产品的可变成本应为多少?(4)若预测到下一计划年度的需求量仅有6000件,而企业希望取得60000元利润,当可变成本不能变动时,可以通过提高价格来实现利润指标,求在给定产量、利润、可变成本和固定成本不变时,单件产品的售价应为多少?(5)计算产量为6000件时,安全边际率为多少?该计划是否安全?盈亏问题:在日常生活中常有这样的问题:一定数量的物品分给一定数量的人,没人多一些,物品就不够;没人少一些,物品就有余。

专题30一元一次方程应用之销售盈亏问题(原卷版)

专题30一元一次方程应用之销售盈亏问题(原卷版)

专题30 一元一次方程应用之销售盈亏问题1.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是150元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他()A.不赚不亏B.赚10元C.赔20元D.赚20元2.已知某商店有两个进价不同的计算器,都卖了100 元,其中一个盈利60% ,另一个亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利37.5 元C.亏损25 元D.盈利12.5 元3.一件工艺品按成本价提高50%后,以105元售出,则这件工艺品的利润是()A.20元B.25元C.30元D.35元4.一件商品按成本价提高30%后标价,又以8折销售,售价为416元,这件商品卖出后获得利润()元.A.16B.18C.24D.327.据了解,个体服装销售要高出进价的20%方可盈利,一销售老板以高出进价的60%标价,如果一件服装标价240元,那么:(1)进价是多少元?(2)最低售价多少元时,销售老板方可盈利?8.“双十一”期间,某电商决定对网上销售的商品一律打8折销售,张燕购买一台某种型号时发现,每台比打折前少支付500元,求每台该种型号打折前的售价.9.贵阳市人民广场某超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)的12(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中甲种商品的件数不变,乙种商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?10.“元旦”期间,某文具店购进80只两种型号的文具进行销售,其进价和售价如表:(1)该店用700元可以购进A,B两种型号的文具各多少只?(2)在(1)的条件下,若把所购进A,B两种型号的文具全部销售完,利润率有没有超过35%?请你说明理由.11.某学校2019学年举行席地绘画大赛.共收到绘画作品480件,其中的优秀作品评出了一、二、三等奖.(1)则a= ;b= ;c= ;(2)学校决定为获一等奖同学每人购买一个书包,获得二等奖同学每人购买一个文具盒,获得三等奖同学每人购买一支钢笔,并且每位获奖同学颁发一个证书,已知文具盒单价是书包单价的35,证书的单价是文具盒单价的110,钢笔的单价是文具盒单价的16,学校购买书包、文具盒、钢笔共用4000元,那么学校购买证书共用了多少元?12.目前节能灯已基本普及,节能还环保,销量非常好,某商场计划购进甲、乙两种型号节能灯共1200只,这两种节能灯的进价、售价如表所示:(1)商场应如何进货,使进货款恰好为46000元?(2)若商场销售完节能灯后获利不超过进货价的30%,至少购进甲种型号节能灯多少只?13.某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:(1)这天该经营户批发了长豆角和番茄各多少千克?(2)当天卖完这些番茄和长豆角能盈利多少元?14.列一元一次方程解决下面的问题新隆嘉水果店第一次用800元从水果批发市场购进甲、乙两种不同品种的苹果,其中甲种苹果的重量比乙种苹果重量的2倍多20千克,甲、乙两种苹果的进价和售价如下表:(1)惠民水果店第一次购进的甲、乙两种苹果各多少千克?(2)惠民水果店第二次以第一次的进价又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果按原价销售,乙种苹果打折销售.第二次甲、乙两种苹果都售完后获得的总利润为820元,求第二次乙种苹果按原价打几折销售?15.2019年元旦,某超市将甲种商品降价30%,乙种商品降价20%开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为2400元,某顾客参加活动购买甲、乙各一件,共付1830元.(1)甲、乙两种商品原销售单价各是多少元?(2)若商场在这次促销活动中甲种商品亏损25%,乙种商品盈利25%,那么商场在这次促销活动中是盈利还是亏损了?如果是盈利,求商场销售甲、乙两种商品各一件盈利了多少元?如果是亏损,求销售甲、乙两种商品各一件亏损了多少元?16.列方程式应用题.天河食品公司收购了200吨新鲜柿子,保质期15天,该公司有两种加工技术,一种是加工为普通柿饼,另一种是加工为特级霜降柿饼,也可以不需加工直接销售.相关信息见表:由于生产条件的限制,两种加工方式不能同时进行,为此公司研制了两种可行方案:方案1:尽可能多地生产为特级霜降柿饼,没来得及加工的新鲜柿子,在市场上直接销售;方案2:先将部分新鲜柿子加工为特级霜降柿饼,再将剩余的新鲜柿子加工为普通柿饼,恰好15天完成.请问:哪种方案获利更多?获利多少元?17.引进扶贫产品,丰富市民菜篮子.为了完成新时代脱贫攻坚的目标任务,某市商务局近些年致力于帮扶地区特色产品走进市民的菜篮子.该市帮助扶贫产品和市场需求有效对接,实现了农产品的特色化、品牌化,助力更多优质农产品走出了地区、走向了全国.已知该市去年和今年两年的“明星”扶贫农产品销售总额为179.8万,其中“明星”扶贫农产品去年的价格为16元/千克,今年的价格为12元/千克,今年的销售产量比去年增长了25%.(1)请问今年的“明星”扶贫农产品销售了多少千克?(2)为了促进该地区滞销农产品的销售,现市商务局决定采用直播带货的方式进行销售.某电商平台采取分段收取“坑位费”的计算方法,如市商务局“直播带货”销售农产品的销售额不超过20万的部分按15%交给电商公司,超过20万不超过50万的部分按12%交给电商公司,超过50万的部分按10%的比例交给电商公司.已知此次直播扣除坑位费的销售额为643700元,则这次直播未扣除坑位费的销售额为多少?。

初中一元一次方程应用问题培优系列:销售盈亏问题(原创)

初中一元一次方程应用问题培优系列:销售盈亏问题(原创)

初中一元一次方程应用问题培优系列:专题一:销售中的盈亏当今社会是一个经济社会,与我们相关最密切的经济问题就是商业中的各种销售行为,这种销售行为在一元一次方程的应用问题,常常出现在各种考数学试和竞赛中。

因此对一元一次方程应用问题我们第一关注的就是销售中的盈亏问题。

.基本概念和公式:进价:也可称买入价、成本价进价=售价/(1+利润率)售价:卖价,实际销售的价格、成交价售价=进价(1+利润率)标价(定价):对外标示的出卖价(实际有可能不是按标价出售)折扣率:通常说的几折,如九折就是按标价90%销售打折价:在标价的基础上打折后的售价售价=标价*折扣率利润:纯收入利润=售价-进价利润率:利润占进价的百分比利润率=利润/进价=(售价-进价)/进价商品的销售盈亏判断:利润》>0盈利,利润<0亏损判断买入的付出与卖出的收入的大小核心提示:●上面的公式往往会在三个量之间进行转换应用,不会仅仅按上述公式形式单一应用。

往往会在三个量中知道任意两个量求另一个量;●上述几个公式中,最核心和最常用的就是利润率的计算公式。

因此该公式的灵活应用是我们解决这类问题的关键;●对问题中的每一个量,我们都要先明确他是我们上述概念中的那个量。

以及他们与利润率中涉及的几个量之间的关系;●当涉及亏损时,一定注意利润率为负,也就是说,当说亏损p%时,上述公式中的利润率为-p%●如果涉及总额而不仅仅是单价,那么上述公式销售价变为销售总收入、进价变为总进货成本、利润率是一样的,则上述公式可变为:销售总收入=进货总成本(1+利润率);●如果问题中明显感觉已知数据不够,如上攻量中,只有一个量给出明确数据,而另外的两个量中,一个为未知数,另一个也不明确,我们可以设定这个不太明确的量为未知常数,最后在解方程时这个未知常数一般会抵消或约分掉。

这也是一元一次方程中所有问题中可能会使用的方法。

实际应用专练:1.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A.60元B.80元C.120元D.180元2.附表为服饰店贩卖的服饰与原价对照表.某日服饰店举办大拍卖,外套依原价打六折出售,衬衫和裤子依原价打八折出售,服饰共卖出200件,共得24000元.若外套卖出x件,则依题意可列出下列哪一个一元一次方程式?()服饰原价(元)外套250衬衫125裤子125A.0.6×250x+0.8×125(200+x)=24000 B.0.6×250x+0.8×125(200﹣x)=24000C.0.8×125x+0.6×250(200+x)=24000 D.0.8×125x+0.6×250(200﹣x)=240003.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。

列方程解应用题100道附详解

列方程解应用题100道附详解

列方程解应用题100道附详解(1) 【浓度问题】甲、乙两种酒精的质量分数分别为80%和60%,现在要配制质量分数为65%的酒精4000克,应当从这两种酒精中各取多少克?(2) 【盈亏问题】同学们聚餐,若每桌坐8个人,则有6个人没座位;若每桌坐10人,则剩下一张桌子无人坐.问共有多少名同学?(3) 【行程问题】北京和上海相距1320千米.甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?(4) 【和倍问题】甲、乙、丙三个数的和为112,丙数比乙数多4,乙数是甲数的4倍,求这三个数.(5) 【分数应用题】为了庆祝六一儿童节,学校买来红气球和黄气球共200个,红气球的14比黄气球的15多14个.学校买来红气球和黄气球各多少个? (6) 【盈亏问题】四(2)班同学去公园租船游玩,如果每条船坐6人,则空出1人的位置;如果每条船坐7人,则空出8人的位置.问有学生多少人?共租了多少条船?(7) 【盈亏问题】甲、乙、丙三人去看同一部电影,如用甲带的钱买三张电影票,还差39元;如果用乙带的钱去买三张电影票,还差50元;如果用甲、乙、丙三个人带去的钱买三张电影票,就多26元,已知丙带了25元钱,请问:一张电影票多少元?(8)【工程问题】大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容积是小池的1.5倍,问:两池中共有多少吨水?(9)【和倍问题】甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后乙水池的水是甲水池的2倍?(10)【位值原理】一个六位数的左边第一位数字是1.如果把这个数字移到最右边,那么所得的六位数是原数的3倍,求原数.(11)【浓度问题】甲容器中有质量分数为10%的盐水400克,乙容器中有质量分数为15%的盐水240克,往甲、乙两容器中倒入等量的水,使两个容器中盐水的质量分数相同,每个容器应加入多少水?(12)【位值原理】一个两位数,个位数字与十位数字之和为8,将个位数字与十位数字对调后,所得的新数比原来的数大54,求原来的两位数.(13)【鸡兔同笼】一共有5只鸡和兔放在同一个笼子里,它们一共有12只脚,那么笼子里一共有几只鸡?几只兔?(14)【盈亏问题】同学们来到探险世界,由勇敢的船长带领大家去体验原始森林中的河流之旅.如果每条船坐10人,则有8人没有座位;如果每条船改坐12人,则有4人没有座位.一共有多少名同学来到探险世界?(15)【分数应用题】小华和小红共有910元存款,小华存款的25和小红存款的14相等,她们俩入各有存款多少元?(16)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8.问:第二组有多少个数?(17)【盈亏问题】一个小组去山坡植树,如果每人栽4棵,还剩12棵;如果每人栽8棵,则缺4棵,这个小组有几人?一共有多少棵树苗?(18)【差倍问题】红盒子里有32个球,蓝盒子里有57个球,以后红盒子里每次放入9个,蓝盒子里每次放入4个,几次后两盒球数相等?(19)【盈亏问题】学校给一批新入学的学生分配宿舍.如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间.求学生宿舍有多少间?住宿学生有多少人?(20)【行程问题】某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了5.5时.问:他步行了多远?(21)【盈亏问题】有一棵古树,用一根绳子绕树三圈,余8米,如果绕树五圈,则绳子余下2米.你知道树周长是几米吗?绳子有多长?(22) 【分数应用题】阅览室看书的学生中,男生比女生多10人,后来男生减少14,女生减少16,剩下的男、女生人数相等,原来一共有多少名学生在阅览室看书? (23) 【和倍问题】有甲、乙、丙三个数,乙数是甲数的5倍,丙数比乙数少4,且三个数的和是95,求这三个数.(24) 【盈亏问题】孙悟空采到一堆桃子,平均分给花果山的小猴子吃.每只小猴子分9个,有4只小猴子没有分到;第二次重分,每只小猴分7个,刚好分完.问:孙悟空采到多少个桃子?小猴子有多少只?(25) 【分数应用题】甲仓有货物52吨,从乙仓运出15到甲仓,这时乙仓比甲仓多19,求乙仓原有货物多少吨.(26) 【鸡兔同笼】绘画室中有3腿的凳子和4腿的椅子共40张,房间里恰好有40位小朋友坐在这40张凳子和椅子上.昊昊数了一下,凳子的腿、椅子的腿和小朋友的腿数,总数是225.那么绘画室中,凳子有几张?(27) 【倍数问题】某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座.若每座住宅使用红砖80立方米,灰砖30立方米,那么,红砖缺40立方米,灰砖剩40立方米.问:计划修建住宅多少座?(28) 【和倍问题】六年级有三个班,共有153人.六(1)班人数是六(3)班的1.12倍,六(2)班比六(3)班少3人,三个班各有多少人?(29)【和倍问题】甲、乙两个农场一共收获了80万吨小麦,甲农场收获的小麦比乙农场的4倍多10万吨,则甲、乙两个农场各收获了多少万吨小麦?(30)【盈亏问题】小羽带了一些钱去买香蕉,如果买4千克,则还剩下8元钱;如果买6千克,则少4元,问:香蕉每千克多少元?小羽带了多少元?(31)【行程问题】已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒.求火车的速度和长度.(32)【分数应用题】有—个水池,第一次放出全部水25,第二次放出40立方米,第三次又放出剩下水的25,池里还剩水57立方米,全池蓄水多少立方米?(33)【年龄问题】今年奶奶的岁数是小亮岁数的9倍,去年奶奶的岁数是小亮岁数的10倍,小亮和奶奶在去年和今年的岁数分别是多少岁?(34)【和倍问题】甲、乙、丙三个数的和是218,已知甲数除以乙数、乙数除以丙数都是商3余2,甲、乙、丙三个数各是多少?(35)【平均数问题】一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分.求这个班男生有多少人?(36)【行程问题】小明从家出发到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则早到4分钟,小明家到学校有多远?(37)【倍数问题】布袋里有红球和黄球若干个,红球比黄球的3倍多6个,若每次取出8个红球和4个黄球,当黄球正好取完时,红球还剩30个,袋子里原有红球、黄球各多少个?(38)【工程问题】筑路队计划每天筑路720米,正好按期筑完.实际每天多筑80米,这样,比原计划提前3天完成了筑路任务.要筑的路有多长?(39)【行程问题】甲、乙二人分别从A,B两地同时出发,两人同向而行,甲26分钟赶上乙;两人相向而行,6分钟可相遇.已知乙每分钟行50米,求A,B两地的距离.(40)【鸡兔同笼】商店有胶鞋、布鞋共46双,胶鞋每双7.5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元.问:胶鞋有多少双?(41)【行程问题】小红从家到火车站赶乘火车,每小时行4千米,火车开时她还离车站1千米;每小时行5千米,她就早到车站12分钟.小红家离火车站多少千米?(42)【和倍问题】在一个雾霾天,狐狸,兔子和狗熊去卖口罩.狐狸说:狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个…….兔子说:“我卖的价格是狐狸的一半.”结果它们卖了相同数量的口罩,一共卖了210元,那么狐狸卖了多少元?(43)【工程问题】甲、乙两队合修一条公路.甲队单独修要15天修完,乙队单独修要20天修完,现在两队同时修了几天后,由甲队单独修了8天修完,求乙队修了几天?(44)【差倍问题】甲仓有86吨货物,乙仓有42吨货物,从甲仓运多少吨货物到乙仓,才能使乙仓的货物比甲仓的2倍还少4吨?(45)【和倍问题】甲、乙、丙、丁四人共做零件265个,如果甲多做15个,乙少做5个,丙做的个数乘以2,丁做的个数除以3,那么四个人做的零件数恰好相等,问:丙做了多少?(46)【平均数问题】有两组数,第一组9个数的和是63,第二组的平均数是11,两组中所有数的平均数是8.问:第二组有多少个数?(47)【盈亏问题】商店卖一批小收音机.如果每台卖58元,则可盈利1200元;如果每台卖55元,则可盈利600元.问:商店原有多少台收音机?进价多少元?(48)【倍数问题】学学和思思有一些大白兔奶糖,本来学学的大白兔奶糖数量是思思的6倍,后来两人又各自得到了40块,结果学学的大白兔奶糖数量是思思的2倍,那么原来他们一共有块大白兔奶糖?(49)【位值原理】一个两位数,十位上的数字比个位上的数字少1,如果十位上的数字扩大到4倍,个位上的数字减去2,那么,所得的两位数比原来大58,求原来的两位数.(50) 【差倍问题】某区小学生进行两次数学竞赛,第一次及格的比不及格的3倍多4人;第二次及格人数增加了5人,正好是不及格人数的6倍.问共有多少学生参加数学竞赛.(51) 【分数应用题】一个班女同学比男同学的23多4人,如果男生减少3人,女生增加4人,男、女生人数正好相等.这个班男、女生各有多少人?(52) 【倍数问题】一群小朋友去春游,男孩每人戴一顶黄帽,女孩每人戴一顶红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?(53) 【行程问题】两个集镇之间的公路除了上坡就是下坡,没有平路,客车上坡的速度保持为每小时15千米,下坡则保持为每小时30千米.现知客车在两地之间往返一次,需在路上行驶6小时,求两地之间的距离(54) 【行程问题】小强从家到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校.小强从家到学校的路程是多少米?(55) 【和倍问题】甲、乙、丙三数的和是100,甲数除以乙数与丙数除以甲数的结果都是商5余1.问:乙数是多少?(56) 【分数应用题】甲、乙两班各有一个图书室,共有303本书,已知甲班图书的513和乙班图书的14合在一起是95本.那么甲班图书有多少本?(57) 【盈亏问题】五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上坐8人.五年级共有多少人?(58) 【和倍问题】某小学图书馆里科技书的本数是故事书的3倍,活动课上,每班借7本科技书,5本故事书,故事书借完时,科技书还剩96本,图书馆里有科技书和故事书各多少本?(59) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(60) 【平均数问题】两组学生进行跳绳比赛,平均每人跳152下.甲组有6人,平均每人跳140下,乙组平均每人跳160下.乙组有多少人?(61) 【倍数问题】教室里有若干学生,走了10个女生后,男生人数是女生的1.5倍,又走了10个女生后,男生人数是女生的4倍.问:教室里原有多少个学生?(62) 【分数应用题】小伟和小刚共有800元存款,王伟取出自己存款的45,李刚取出自己存款的34,这时两人还共有存款170元,王伟和李刚原来各有存款多少元? (63) 【分数应用题】赵师傅以每只2.80元的价格购进一批玩具狗,然后以每只3.60元的价格卖出,当卖出总数的56时,不仅收回了全部成本,还盈利24元,赵师傅一共购进多少只玩具狗?(64)【百分数应用题】某商店出售一种商品,每售出1件可获利润18元,售出40%后每件减价10元出售,全部售完,共获利3000元.问商店共售出这种商品多少件?(65)【行程问题】大毛、二毛从相距1000米的学校和图书馆同时出发相向而行,8分钟后两人相遇,已知大毛的速度是二毛的4倍,求大毛每分钟走多少米?二毛每分钟走多少米?(66)【盈亏问题】同学们来到游乐园游玩,他们乘坐观光车.如果每车坐6人,则多出6人;如果每车坐8人,则少2人.一共多少辆观光车?共有多少名同学?(67)【盈亏问题】老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?多少个苹果?(68)【倍数问题】六(1)班有58人,六(2)班有26人,从六(1)班调多少人到六(2)班,才能使六(2)班人数比六(1)班人数的2倍少9人?(69)【盈亏问题】幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具;如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个?(70)【分数应用题】两座粮仓,甲仓装粮食100吨,如果从乙仓中运出13放到甲仓,这时,乙仓的粮食比甲仓少19.求乙仓原有粮食多少吨?(71) 【倍数问题】教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍.问:最初有多少个女生?(72) 【倍数问题】甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?(73) 【分数应用题】甲、乙、丙三人同乘汽车到外地旅行,三人所带行李的重量都超过了可免费携带行李的重量,需另付行李费,三人共付4元,而三人行李共重150千克.如果一个人带150千克的行李,除免费部分外,应另付行李费8元.求每人可免费携带的行李重量.(74) 【分数应用题】两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?(75) 【分数应用题】甲书架上的书是乙书架上的56,两个书架上各借出154本后,甲书架上的书是乙书架上的47,甲、乙两书架上原有书各多少本? (76) 【分数应用题】甲、乙两校共有22人参加竞赛,甲校参加人数的15比乙校参加人数的14少1人,甲、乙两校各有多少人参加?(77)【倍数问题】有6筐苹果,每筐苹果个数相等.如果从每筐拿出40个,6筐苹果剩下的总和正好是原来2筐苹果的个数相等.原来每筐苹果有多少个?(78)【浓度问题】质量分数为20%,18%和16%的三种盐水混合后得到100克18.8%的盐水.如果18%的盐水比16%的盐水多30克,三种盐水各有多少克?(79)【和倍问题】甲布袋有280个玻璃球,乙布袋有40个玻璃球,从甲布袋取多少个放入乙布袋,才能使甲布袋的玻璃球比乙布袋的2倍还多35个?(80)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(81)【百分数应用题】小华到商店买红、蓝两种笔共66支,红笔每支定价5元,蓝笔每支定价9元.由于买的数量较多,商店就给予优惠,红笔按定价85%付钱,蓝笔按定价80%付钱.如果她付的钱比按定价少付了18%,那么她买了红笔多少支?(82)【行程问题】一辆汽车从甲地到乙地.第一小时行了全程的16,第二小时行了80千米,第三小时行了剩下的25,这时距乙地还有100千米,甲、乙两地相距多少千米?(83)【倍数问题】学校体育器材室里,足球的个数是排球的2倍.体育课上,每班借8个足球,5个排球,排球借完时,足球还有48个.体育器材室原有足球、排球各多少个?(84)【倍数问题】苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,梨正好吃完,而苹果还剩下7个,原来的苹果有多少个?(85)【差倍问题】哥哥与弟弟做题比赛,哥哥做的数学题比弟弟多18道,哥哥做的题是弟弟的4倍.两人各做了多少道数学题?(86)【和倍问题】第一个正方形的边长比第二个正方形边长的2倍多1厘米,它们的周长之和是88厘米,它们的面积之和是多少?(87)【盈亏问题】三年级给优秀学生发奖品书,如果每个学生发5册还剩32册;如果其中10个学生发4册,其余每人发8册,就恰好发完.那么优秀学生有多少人?奖品书有多少册?(88)【行程问题】学校规定上午8时到校,小明去上学,如果每分钟走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,由家到学校的路程是多少?(89)【行程问题】甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度.(90)【平均数问题】一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元.问这位技术工得多少元?(91)【鸡兔同笼】六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了多少道题?(92)【分数应用题】甲、乙两个仓库共有510吨货物,从甲仓运走14,从乙仓运走13后,两仓库剩下的货物正好相等,甲、乙两个仓库原有货物各多少吨?(93)【平均数问题】五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了.经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?(94)【和倍问题】西红柿和黄瓜共有180千克,西红柿的3倍比黄瓜的2倍少10千克,西红柿和黄瓜各多少千克?(95)【盈亏问题】杨老师将一叠练习本分给第一小组同学.如果每人分7本还多7本;如果每人分8本则正好分完.请算一算,第一小组有几个学生?这叠练习本一共有多少本?(96)【百分数应用题】某文体商店用2200元进了一批篮球和足球,篮球比足球多15个,商店出售足球的定价是20元,篮球的定价比足球增加20%,这批球售完后共得利润1020元,足球和篮球各有多少个?(97) 【分数应用题】师徒两人合作加工400个零件,师傅加工的15比徒弟加工的14还多8个,师徒两人各加工了多少个?(98) 【盈亏问题】王老板承接了建筑公司一项运输1200块玻璃的业务,并签了合同.合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了要扣除一块的运费外,还要赔偿25元.王老板把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元.问:运输过程中损坏了多少块玻璃?(99) 【浓度问题】在质量分数为25%的食盐水20千克中加入10%的食盐水和白开水各若干千克,加入的食盐水是白开水的2倍,得到了质量分数为20%的食盐水,求加入10%的食盐水多少千克.(100) 【分数应用题】某车间生产甲、乙两种零件,生产的甲种零件比乙种零件多12个,乙种零件全部合格,甲种零件只有45合格,两种零件合格的共有42个,两种零件个生产了多少个?列方程解应用题100道详细解答(1)解:设甲种酒精取了x克,则乙种酒精取了(4000-x)克,可得方程x×80%+(4000-x)×60=4000×65%,x=1000.4000-1000=3000(克).所以从甲种酒精中取了1000克,从乙种酒精中取了3000克.(2)解:设有x张桌子,则8x+6=10x-10,x=8,同学:8×8+6=70(名)答:共有70名同学.(3)解:设乙车每小时行x千米.(120+x)×6=1320,x=100答:乙车每小时行100千米.(4)解:设甲数为x,则x+4x+(4x+4)=112,x=12.答:甲数是12,乙数是48,丙数是52.(5)解:设红气球有x个,根据题意列方程,14x-15×(200-x)=14,x=120.200-120=80(个),所以,学校买来红气球120个,黄气球80个.(6)解:设共租了x条船,则6x-1=7x-8,解得:x=7,6×7-1=41(人).答:学生共有41人,共租了7条船.(7)解:设一张电影票x元,则甲带了3x-39元,乙带了3x-50元,列出方程:3x-39+3x-50+25=3x+26,解得:x=30.答:一张电影票30元.(8)解:设小池注满水为x吨,则大池注满水为1.5x吨.由两池共有水量,可列方程1.5x+5=x+30.解得=50.两池共有水50+30=80(吨)(9)解:设x分钟以后乙水池的水是甲水池的2倍,30+3x=2(60-3x),x=10,答:10分钟以后乙水池的水是甲水池的2倍.(10)解:设这个六位数除去最左边的第一位数字1以后,所剩下的数为x,那么原六位数是100000+x,新六位数是10x+1,则10x+1=3(100000+x),x=42857.原六位数是142857.(11)解:设每个容器中应加入水x克,则根据题意,有40010%24015% 400240x x⨯⨯=++,x=1200.答:每个容器中应加入水1200克.(12)解:设原来两位数的十位数字为x,则个位数字是(8-x).10x+(8-x)+54=10(8-x)+x,x=1.答:原来的两位数为17.(13)解:设兔是ⅹ只,那么,鸡的只数就是(5-ⅹ)只,4x+2(5-x)=12,x=1,答:鸡有4只,兔有1只.(14)解:设有x条船,则10x+8=12x+4,解得:x=2,10×2+8=28(人).答:一共有28名同学.(15)解:设小华有x元,则小红有(910-x)元,根据题意列方程,25x=14(910-x),x=350.910-350=560(元).故小华有350元,小红有560元(16)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.答:第二组有3个数.(17)解:设这个小组有x人,则4x+12=8x-4,解得:x=4,4×4+12=28(棵).答:这个小组有4人,一共有28棵树苗.(18)解:设x次后两盒球数相等.则32+9x=57+4x,解得x=5.答:5次后两盒球数相等.(19)解:设学生宿舍有x间,则12x+34=14(x-4),解得:x=45,14×(45-4)=574(人),答:学生宿舍有45间,住宿生有574人.(20)解:设他步行了x千米,则有x÷5+(60-x)÷18=5.5.解得x=15(千米)(21)解:设树的周长是x米,则3x+8=5x+2,解得:x=3,3×3+8=17(米).答:树周长3米,绳子长17米.(22)解:设女生有x人,则男生有(x+10)人,(1-16)x=(x+10)×(1-14),x=90,90+90+10=190人(23)解:设甲数为x,则乙为5x,丙为5x-4,得:x+5x+5x-4=95.解得:x=9.答:三个数分别为9,45,41.(24)解:设小猴子有x只,则9(x-4)=7x,解得:x=18,7×19=126(个).答:桃子有126个,小猴子有18只.(25)解:设乙仓原有货物x吨,则(52+15x)×(1+19)=(1-15)x,x=100.答:乙仓原有货物100吨.(26)解:设有凳子x张,椅子(40-x)张,则3x+(40-x)×4+80=225,解得:x=15答:绘画室中共有15张凳子(27)解:设计划修建住宅x座,则红砖有(80x-40)立方米,灰砖有(30x+40)立方米.根据红砖量是灰砖量的2倍,列出方程80x-40=(30x+40)×2,解得:x=6.答:计划修建住宅6座.(28)解:设六(3)班有x人,则1.12x+(x-3)+x=153,x=50.答:六(1)班有56人,六(2)班有47人,六(3)班有50人.(29)解:设乙农场收获了x万吨,甲农场收获了(4x+10)万吨,x+(4z+10)=80,x=14,甲:4×14+10=66(万吨),答:甲农场收获了66万吨,乙农场收获了14万吨.(30)解:设香蕉每千克x元,则4x+8=6x-4,解得:x=6,4×6+8=32(元).答:香蕉每千克6元,小羽带了32元.(31)解:设火车长为x米.根据火车的速度得(1000+x)÷120=(1000-x)÷80.解得x=200(米),火车速度为(1000+200)÷120=10(米/秒)(32)解:设全池蓄水量为x,那么第一次放出的水应为25x,第二次放出的水是40立方米,第三次放出的水应是剩下的水的(x-25x-40)×25,则25x+40+(x-25x-40)×25+57=x,解得:x=225.答:全池蓄水量为225立方米.(33)解:设小亮今年x岁,则10×(x-1)=9x-1,x=9,答:小亮今年9岁,去年8岁;奶奶今年81岁,去年80岁.(34)解:设丙数为x,则(3x+2)×3+2+(3x+2)+x=218,x=16.甲数为152,乙数为50,丙数为16.(35)解:设这个班有男生=人.则90.5×x+21×92=91.2(x+21),解得:x=24人.答,这个班男生有24人.(36)解:设小明到学校原计划需要x分钟,则40(x+2)=50(x-4),解得:x=28.40×(28+2)=1200(米).答:小明家到学校1200米.(37)解:设取了x次,则4x×3+6=8x+30,x=6.答:红球有78个,黄球有24个.(38)解:设原计划x天完成,则720x=(720+80)(x-3),解得:x-30,720×30=21600(米).答:要筑的路长21600米.(39)解:设甲每分钟走x米.由A,B两地距离可得(x+50)×6=(x-50)×26.解得x=80(米).答:A,B两地距离为(80+50)×6=780(米). (40)解:设有胶鞋x双,则有布鞋(46-x)双.7.5x-5.9(46-x)=10,解得:x=21.答:胶鞋有21双.(41)解:设小红出发时离火车开还有x时.由到车站的距离可列方程4x+1=5(x-0.2),解得x=2,所以距离火车站2×4+1=9千米.答:小红家离火车站9千米.(42)解:假设狗熊卖了x元,由题意知,狐狸就是4x,兔子就是2x.那么4x+2x+x=210,x=30,狐狸卖了4×30=120元.(43)解:设甲先工作了x天后乙接着做,共用了(18-x)天完成,根据题意,有(1-1 20×x)÷115=18-x,x=12.18-x=6.所以甲工作了12天,乙工作了6天.(44)解:设从甲仓运x吨货物到乙仓,则42+x=(86-x)×2-4,x=42.答:应从甲仓运42吨货物到乙仓.(45)解:设相等的零件数为x个,则x-15+x+5+0.5x+3x=265,x=50.丙做了25个.(46)解:设第二组有x个数,则63+11x=8×(9+x),解得x=3.(47)解:设商店原有x台收音机,则58x-1200=55x-600,解得:x=200.(58×200-1200)÷200=52(元).答:商店原有200台收音机,每台进价52元.(48)解:设思思原有x块,学学原有6x块,2×(x+40)=6x+40,x=10,学学:6×10=60(块),两人一共:10+60=70(块).答:原来他们一共有70块大白兔奶糖.(49)解:设两位数的个位数字是x,则十位上的数字是(x-1),原来这个两位数是10×(x-1)+x,把十位数字扩大到4倍,是4(x-1),个位上的数字减去2,是(x-2),现在的两位数为10×4(x-1)+(x-2),根据题意可列出方程:10×4(x-1)+(x-2)=10×(x-1)+x+58,解得:x=3.所以原来的两位数是23.(50)解:设第一次不及格x人,则及格(3x+4)人,3x+4+5=6(x-5),x=13,13×3+4+13=56(人).答:共有56名学生参加数学竞赛.(51)解:设男生有x人,则女生有(23x+4)人.x-3=23x+4+4,x=33,23×33+4=26(人),答:这个班男生有33人,女生有26人.(52)解:设有x个男孩.因为每个人看不到自己的帽子,根据男孩看的情况,有女孩(x-5-1)个.再根据女孩看的情况,可列方程x=[(x-5-l)-1]×2.解得x=14人(53)解:设两地之间的距离为x,则x15+x30=6,x=60.答:两地之间的距离是60千米.(54)解:设小强到学校原计划需要x分钟,则50(x+3)=60(x-2),解得:x。

列方程解应用题销售中的盈亏问题

列方程解应用题销售中的盈亏问题

列方程解应用题—销售中的盈亏问题教师:苏云礼单位:桐畈镇中学授课年级:七年级时间:2014年11月19日一、教学目标(一) 知识与技能 1. 通过分析打折销售中的数量关系,经历应用方程解决实际问题的过程;2. 了解商品销售中相关概念的含义,通过分析打折销售中的数量关系,利用成本、售价、标价、利润、利润率之间的关系列方程解决实际问题.(二) 过程与方法通过分析打折销售中的数量关系.(三) 情感、态度与价值观在学习数学过程中体验数学就在我们身边,是为我们的社会和我们的生活服务的,从而树立人人学有用的数学的思想,培养学生热爱数学的热情,实事求是的态度及与人合作、交流的能力.二、教学重难点重点:根据打折销售这一问题情境中的数量关系列出一元一次方程,能运用方程解决实际问题;难点:从利润、成本、售价之间的数量关系找出等量关系,建立方程并正确求解.突破难点的关键是要理解售价、标价、进价、利润、利润率等相关概念的意义和它们之间的关系,考虑问题时多与实际问题联系三、教学准备布置社会调查任务,选择一个适当的打折活动做调查。

目的:把知识生活化。

商品销售虽然是发生在学生身边的事情,但亲自经历商品销售的往往是少数学生。

因此提前让学生进行调查,给他们充分的独立思考、探究的时间。

使学生独立面对新问题,然后在独立思考的同时他们学生也有充分的时间和空间进行讨论、交流、研究,不仅达到提前预习的目的,更让学生体验数学与周围世界的联系以及数学在社会生活中的作用和意义,逐步领会学习数学与个人成长之间的关系。

四、教学过程设计环节一情境引入汇报结果获取信息同学们到商场了解了有关打折销售的问题,获得了那些信息请大家交流一下. (目的:由于学生小学已经学过一部分相关知识而且又提前安排了社会调查。

安排这样的交流活动实际是学生独立面对生活时能力的体现,同时也体现了新的课程理念所倡导的在自主、合作中学习. 学生活动效果。

学生调查的很全面事例很详实.他们对各种打折方式都进行了探讨。

七年级数学盈亏问题应用题

七年级数学盈亏问题应用题

七年级数学盈亏问题应用题一、基础盈亏问题(1 - 10题)1. 某商店以每件50元的价格购进一批商品,若按每件60元出售,可销售800件;若每件提价1元,其销售量就减少20件。

问:为获得最大利润,售价应定为多少?最大利润是多少?- 解析:设售价定为x元,因为进价为50元,所以每件利润为(x - 50)元。

销售量为800-20×(x - 60)=2000 - 20x件。

利润y=(x - 50)(2000 - 20x)=- 20x^2+3000x - 100000。

对于二次函数y = ax^2+bx + c(a=-20,b = 3000),当x=-(b)/(2a)=-(3000)/(2×(-20)) = 75时,y有最大值。

把x = 75代入利润函数可得y=(75 - 50)(2000-20×75)=25×500 = 12500元。

2. 一批货物,如果每车装3吨,这批货物就有2吨不能运走;如果每车装4吨,装完这批货物后,还可以装其他货物1吨。

问有多少辆车?这批货物有多少吨?- 解析:设车有x辆。

根据货物重量不变可列方程3x+2 = 4x-1。

移项可得4x-3x=2 + 1,解得x = 3辆。

货物重量为3×3+2=11吨。

3. 学校将一批铅笔奖给三好学生。

如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。

三好学生有多少人?铅笔有多少支?- 解析:设三好学生有x人。

根据铅笔总数不变可列方程9x-45=7x - 7。

移项得9x-7x=45 - 7,2x = 38,解得x = 19人。

铅笔数为9×19-45=126支。

4. 用绳测井深,把绳三折,井外余2米;把绳四折,还差1米不到井口。

求井深和绳长各多少米?- 解析:设井深为x米。

绳长不变,根据题意可列方程3(x + 2)=4(x - 1)。

展开括号得3x+6 = 4x-4,移项得4x-3x=6 + 4,解得x = 10米。

小学数学应用专题--- 盈亏问题(含答案)

小学数学应用专题--- 盈亏问题(含答案)

小学数学应用题专题盈亏问题知识点复习:1、盈亏问题:把若干物体平均分给一定数量的对象,并不是每次都能正好分完。

如果物体不够分,少了,叫亏;如果物体还有剩余,就叫盈。

2、盈亏问题的解题方法:(1)公式法:前提人、房间、船或车的数量不变(盈+亏)+两次分差=份数;(大盈-小盈)+两次分差=份数;(大亏-小亏)+两次分差=份数(2)方程法:(最好的方法)根据被分的物体数量相等列方程,设分东西的(比如人,房间,船,车)为未知数。

盈亏问题复习试题时间:1小时总分:60分姓名:一、单选题(共5题;共10分)1.一次数学竞赛,共15道题,每做对一道题得8分,做错一道题倒扣4分,小平共得72分,他做对了()道题.A. 9B. 8C. 11D. 102.米奇专卖店以100元的单价卖出两套不同的童装,其中一套赚20%,另一套亏本20%,那么这个童装店卖这两套服装总体核算是()A. 亏本B. 赚钱C. 不亏也不赚D. 不能确定亏本或赚钱3.妈妈买来一箱桔子,若每天比计划多吃一个,则比计划少吃2天;若每天比计划少吃一个,则计划的时间过去后,还剩12个,那么这一箱桔子共()个.A. 50B. 60C. 70D. 804.有一批正方形砖,如拼成一个长与宽之比为5:4的大长方形,则余38块,如改拼成长与宽各增加1块的大长方形,则少53块,那么,这批砖共有()块.A. 1838B. 2038C. 1853D. 20535.有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人.问:这个班共有________同学?A. 54B. 36C. 27D. 18二、填空题(共4题;共5分)6.有一批树苗,如果每组种3棵,则剩5棵;如果每组种4棵,则缺2棵.有________个组在种树?有________棵树?7.老师买回一些练习本,每人发5本,则缺6本;如果每人发3本,则多出8本.老师计划发给________个同学.8.幼儿园的老师给小朋友发苹果,每位小朋友4个,就多出12个,每个小朋友6个,就少12个,共有苹果________ 个.9.一盘草莓约20个左右,几位小朋友分.若每人分3个,则余下2个;若每人分4个,则差3个.这盘草莓有________ 个.三、应用题(共9题;共45分)10.有一筐苹果,分给幼儿园的小朋友,如果每人分3个就多出12个;如果每人分4个则少34个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盈亏问题
例1、幼儿园一个班的小朋友分饼干,如果每人分6块饼干,那么还多出12块;如果每人分8块饼干,那么还差24块饼干。

求幼儿园这个班的小朋友有多少个?饼干共有多少块?
练 1、一堆桃子分给一群猴子,如果每只猴子分5个桃子,则桃子剩下30个没分完,如果每只猴子分8个,则刚好分完.求有多少个桃子?多少个猴子?
2、老师将一批练习本发给班上的同学,如果每人发6本,就少94本;如果每人发4本,就少2本。

求班上的人数和所发的练习本数?
3、学校买来一批书奖励三好学生,如果每人奖8本,则剩10本;如果每人奖7本,则剩15本,学校有三好学生多少人?学校共买书多少本?
例2、六(2)班的同学去划船,他们算了一下,如果增加一条船。

正好每条船坐6人;如果减少一条船,正好每条船坐9人。

求原计划准备租()条船?六(2)班有()个同学?
练 1、红山小学学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?
2、用绳子测水池的水深,绳子两折时,余6米,绳子三折时还差4米,求绳子全长和水池的深度?
例3、少先队员去植树.如果每人种5棵,还有3棵没人种;如果其中2人各种4棵,其余的人各种6棵,这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?
练园林工人种树,其中有3人分得树苗各4棵,其余的每人分3棵,这样最后余下树苗11棵;如果1人先分3棵,其余的每人分5棵,则树苗恰好分尽。

求人数和树苗的总数?
例3、学校买来一些篮球和排球分给各班,买来的排球个数是篮球的2倍。

如果篮球每班分2个,则多余4个;如果排球每班分5个,则少2个。

求学校买来篮球和排球各多少个?
练幼儿园有梨数是桃子数的2倍,分给幼儿园小朋友,每人分桃5个,最后余下15个;每人分梨14个,则梨数差30个.问幼儿园有桃、梨多少个?
综合练习
1、阅览室买来115本书,其中科幻书是故事书的2倍,故事书比文艺书多5本,这三种书各多少本?
2、有两根电线,第一根长64米,第二根长52米,剪去同样长后,第一根是第二根的3倍,则每根电线剪
去几米?
3、火树银花楼七层,层层红灯倍加增,共有红灯三八一,试问四层几红灯?
4、同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年
级,那么六年级的捐款钱数还比二年级多40元,两个年级分别捐款多少元?
5、A、B、C三所小学学生人数的总和为1997人,已知A校学生人数的2倍,B校学生人数减去3人与C校
学生加上6人都是相等的。

求A、B、C三个学校各有学生多少人?
6、面值是2元、5元的人民币共27张,合计99元。

两种面值的人民币各是多少张?
7、一批水泥,用小车装载,要用45辆,用大车装载,只用36辆,每辆大车比小车多装4吨。

这批水泥共
多少吨?
8、某次数学竞赛共20道题,评分标准是每做对一道得5分,每做错一道倒扣1分,刘量参加了这次竞赛,
得了64分。

刘量做对了多少道题?
9、有8个谜语让60人猜,猜对共338人次。

每人至少猜对3个,猜对3个的油6人,猜对4个的10人,
猜对5个和7个的人数同样多,8个全猜对的有多少人?
10、父子二人现在的年龄和是46岁,儿子13岁。

几年后,父亲年龄是儿子年龄的2倍?
11、叔叔比小华大18岁,明年叔叔的年龄是小华的3倍,小华今年几岁?
12、阿姨给幼儿园小朋友分饼干.如果每人分3块,则多出16块饼干;如果每人分5块,那么就缺4块
饼干.问有多少小朋友,有多少块饼干?
13、小强由家里到学校,如果每分钟走60米,正好准时到达学校;如果每分钟走70米,就可以比上课
时间提前2分钟到校.小强家到学校的路程是多少米?
14、用一根绳子测量井的深度,如果将绳两折时,多5米,;如果绳子3折时,差4米,绳子长?米,井深?
米.
15、少先队员去植树.如果每人种5棵,还有32棵没人种;如果其中10人各种4棵,其余的人各种8棵,
这些树苗正好种完.问有多少少先队员参加植树,一共种多少树苗?
16、苹果个数是梨子数的3倍,如果每天吃2个梨和5个苹果,当梨吃完时,苹果还剩20个。

问梨和苹果
各有多少个?。

相关文档
最新文档