【小升初】小学数学列方程解应用题专项训练及答案解析
(完整版)小升初数学专项题-列方程解应用题

列方程解应用题【基础概念】:列方程解决问题就是根据题目中的等量关系先列出方程,再求得问题中的未知量的一种解决问题的方法。
知量的一种解决问题的方法。
把所求问题用一个字母表示,把所求问题用一个字母表示,把所求问题用一个字母表示,并让其参与分析与列式,并让其参与分析与列式,并让其参与分析与列式,很快理很快理清题中的数量关系,可以使一些整数、分数、百分数的应用题化难为易,既可以节省时间,又可以提高解题能力。
【典型例题1】:贵诚超市推销一种积压商品,减价25%出售,每件售价42元,原定价是多少元?【小结】:解决这类问题首先要找到等量关系——原价-减少的钱数=现价,再根据等量关系列出方程,从而解决问题。
【巩固练习】1.列方程解答。
2.列方程解答。
【典型例题2】:甲乙两地相距480千米,客货两车同时从甲乙两地相向而行,客车平均每小时行65千米,货车平均每小时行60千米,行驶了3小时,这时两车还相距多少千米?小时,这时两车还相距多少千米?【小结】:解决这类问题的关键是要明确“行驶的路程、剩下的路程、甲乙两地的距离”之间的关系,即行驶的路程+剩下的路程=甲乙两地的距离,列出方程解答即可。
甲乙两地的距离,列出方程解答即可。
【巩固练习】【巩固练习】3. 甲乙两地相距480千米.客车和货车同时从两地相对开出,千米.客车和货车同时从两地相对开出,相向而行,相向而行,4小时后,小时后,两车还两车还相距80千米.已知货车每小时行53千米,问客车每小时行多少千米?千米,问客车每小时行多少千米?4.一辆客车和一辆货车从甲乙两地同时出发相向而行,经过45小时两车相遇,这时货车行了全程的40%,已知货车每小时行60千米,求甲乙两地的距离。
千米,求甲乙两地的距离。
5、有两包面粉,第一包重是第二包的两倍,如果从第一包取出10千克放入第二包,那么两包样重,问,第一包面粉多重?6、六年级学生合买一件礼物 给母校作纪念,如果 每人出6元则多48元,如果每人出4.5元 ,则小27元,求六年级学生人数?7、妈妈买回一箱梨,按计划天数,如果每天吃四个,由多出24个,如果每天吃6个,则少四个,问计划吃多少天,妈妈买回了多少梨?8、育英学校小学体育室里有足球个数是排球数的2倍,体育课上,每班借7个足球5个排球,排球借完时,还有足球72个,体育室原来有足球排球多少个?9、甲乙仓库的冰箱台数是乙仓库的2倍,每天从甲仓库运出3台,从乙仓库运出冰箱2台,运出几天后,乙仓库的冰箱正好用完,而甲仓库还有25 台,原来乙仓库还有冰箱多少台10、有三个连续的整数,已知最少的数加上中间的数的两倍再加上最大的数的三倍的和是68,求这三个连续的整数?11、已知三个连续奇数之和是75,求这三个数? 12、10年前父亲的年纪是儿子年纪的7倍,15年后父亲的年纪是他儿子的2倍,问今年父子二人各多少岁?13、小明今年的年龄是明明年龄的5倍,25年后,小明的年龄是明明年龄的2倍少16,问小明和明明各多少岁14、商店购进一批皮球每只成本1.5元,出售时每只售价2元,当商店卖到皮球剩20只时,成本已经全部收回,并且赚了50元,问商店原进购皮球多少只?15、一辆卡车运矿石,晴天每天可运20次,雨天可运12次,一共运了112次,平均每天运次,问这几天当中有几个晴天几个雨天?14次,问这几天当中有几个晴天几个雨天?答案及解析:答案及解析:例1、【思路分析】:本题中的等量关系是:原价-减少的钱数=现价,减少的钱数=原价×25%,所以原价-原价×25%=现价,即可解决。
小升初小学数学应用题提高练习《列方程解含有两个未知数的应用题》答案详解

《列方程解含有两个未知数的应用题》1.(2012•碑林区校级自主招生)有2只桶装油44千克,如第一桶倒出15,第二桶里倒进2.8千克,则2只桶内油相等,原来第二桶装油多少千克.( )A .18千克B .15千克C .8千克D .28千克【解答】解:设原来第一桶装油x 千克,则第二桶装油(44)x -千克,1(144 2.85x x -=-+,444 2.85x x =-+, 946.85x =, 946.85x =÷, 26x =,442618-=(千克). 答:原来第二桶装油18千克.故选:A .2.(2012•吉水县)100个大饼分给100个人吃,大人每人分3个,小孩3人共一个,则大人是( )A .20个B .25个C .30个D .35个【解答】解:设有x 个大人,有y 个小孩,根据题意可得方程:100x y +=,①,131003x y +=,②,②3⨯-①可得:8200x =,则25y =,答:大人有25人.故选:B .3.(2012•慈溪市校级自主招生)车库中停放若干辆双轮摩托车和四轮小轿车,已知车的辆数与车轮数的比是2:5,摩托车与四轮小轿车的比是( )A .4:1B .3:1C .2:1D .1:1【解答】解:设四轮小轿车有x 辆,双轮摩托车有y 辆,():(42)2:5x y x y ++=,(42)25()x y x y +⨯=+,8455x y x y +=+,8554x x y y -=-,3x y =,所以,:3:1y x =,答:摩托车与四轮小轿车的比是3:1.故选:B .4.(2011•广元校级自主招生)动物园的门票售价:成人票每张50元,儿童票每张30元.某日动物园售出门票700张,收入29000元.设儿童票售出x 张,根据题意可列出方程为( )A .3050(700)29000x x +-=B .5030(700)29000x x +-=C .3050(700)29000x x ++=D .5030(700)29000x x ++=【解答】解:设儿童票售出x 张,则儿童票总价为30x 元,成人票总价为50(700)x -元.因此可列方程为:3050(700)29000x x +-=.故选:A .5.(2011•船营区校级二模)有一堆硬币,硬币的面值为1分,2分,5分三种,如果这堆硬币面值的总和是1元,其中2分的硬币与1分的硬币的个数之比为2:13,那么5分硬币有( )枚.A .1B .2C .3D .4【解答】解:因为2分的硬币与1分的硬币的个数之比为2:13,所以2分的硬币与1分的硬币的个数有可能是:(1)2枚2分硬币13枚1分硬币,(10022131)5-⨯-⨯÷,(100413)5=--÷,835=÷,(枚,不合题意;(2)4枚2分硬币26枚1分硬币,-⨯-⨯÷,(10024261)5=--÷,(100826)5665=÷,=(枚),不合题意;13.2(3)6枚2分硬币39枚1分硬币,-⨯-⨯÷,(10062391)5=--÷,(1001239)5495=÷,=(枚),不合题意;9.8(4)8枚2分硬币52枚1分硬币,-⨯-⨯÷,(10082521)5=--÷,(1001652)5325=÷,=(枚),不合题意;6.4(5)10枚2分硬币65枚1分硬币,-⨯-⨯÷,(100102651)5=--÷,(1002065)5=÷,155(枚,合题意;因为硬币的枚数只能是整数,所以5分硬币有3枚,故选:C .6.(2019春•武侯区期末)“姐姐和弟弟一共有180张邮票,其中姐姐的邮票数是弟弟的3倍,弟弟有多少张邮票?(列方程解答)”淘气在解决这道题时这样设未知数并列方程.解:设弟弟有x 张邮票,姐姐有3x 张邮票①这样设未知数并列方程是否正确?在括号内填“正确”或“不正确” 不正确 .②如果不正确,请指出原因,并填在括号里. .【解答】解:设弟弟有x 张,姐姐有3x 张3180x x +=4180x =45x =答:弟弟45张邮票.由以上可知:①这样设未知数是正确的,但是没列方程,所以是不正确的.②没列方程,再添加上方程3180x x +=.故答案为:不正确,没列方程,再添加上方程3180x x +=.7.(2019春•麟游县期末)李叔叔买2张桌子和8把椅子共花1200元,已知4张椅子的价钱可以买1张桌子,每把椅子 75 元,每张桌子 元.【解答】解:1200(284)÷+÷,1200(22)=÷+,12004=÷,300=(元),300475÷=(元),答:每把椅子75元,每张桌子300元,故答案依次为:75,300.8.(2019•杭州模拟)甲、乙两人存款若干元,甲存款是乙的3倍,如甲取出240元,乙取出40元,那么两人存款相等,甲、乙原来各自存款分别是300元和元.【解答】解:设乙有钱x元,甲有3x元.-=-,x x324040x x x x-+-=-+-,324024024040x=,2200x÷=÷,222002x=,100甲的钱数;x=⨯=(元);33100300答:甲、乙原来各自存款分别是300元和100元.故答案为:300,100.9.(2018•徐州)一家汔车销售店有若干部福特汽车和丰田汽车等待销售.福特汽车的数量是丰田汽车的3倍.如果每周销售2辆丰田汽车和4辆福特汽车,丰田汽车销售时还剩下30辆福特汽车.请问:原有丰田汽车和福特汽车各是30、90辆.【解答】解:设x周丰田汽车销售完,由题意得:-=4230x xx=230x÷=÷2230215x=.⨯=(辆),15230⨯=(辆),303090答:原有丰田汽车30辆、福特汽车90辆.故答案为:30、90.10.(2014春•深圳期末)水果店运来西瓜的个数是白兰瓜个数的2倍.如果每天卖白兰瓜40个,西瓜50个,若干天后卖完了白兰瓜,西瓜还剩360个.水果店运来的西瓜和白兰瓜共1440个.【解答】解:设白兰瓜卖完所用天数为x天.2(40)50360x x=+,8050360x x=+,30360x=,12x=,白兰瓜个数为:1240480⨯=(个),西瓜个数为:4802960⨯=(个),西瓜和白兰瓜共:4809601440+=(个).答:水果店运来的西瓜和白兰瓜共1440个.故答案为:1440.11.(2013•广州模拟)100个和尚分100个馒头,大和尚1人分3个,小和尚3人分1个,正好分完,这样看大和尚有25个.【解答】解:10031003xx-+=,8200x=,25x=,答:大和尚有25个.故答案为:25.12.(2012•长清区校级模拟)春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽了杨树总数的35和30棵柳树后,又临时运来15棵槐树,这时剩下的三种树的棵数正好相等.原计划栽杨树825棵,槐树棵,柳树棵.【解答】解:设剩下的三种树的棵数各为x棵,则已经载了杨树:333(1)552x x÷-⨯=(棵).根据原来的总棵树,可得方程:33301515002x x++-=,91515002x+=,915151500152x +-=-,914852x =,9221485299x ⨯=⨯, 330x =; 所以原计划栽杨树:3330(1)5÷-,原计划栽槐树:33015315-=(棵); 原计划栽柳树:33030360+=(棵);23305=÷,53302=⨯,825=(棵);答:原计划栽杨树 825棵,槐树 315棵,柳树 360棵.13.(2019秋•长垣县期末)学校买了5个排球和8个篮球,共用了300元,已知一个篮球的价钱比一个排球的价钱便宜8元,一个排球和一个篮球各多少元?【解答】解:设每个排球的单价为x 元,则每个篮球的单价为(8)x -元,58(8)300x x +-=5864300x x +-=136********x -+=+13364x =131336413x ÷=÷28x =28820-=(元)答:一个排球28元,一个篮球20元.14.(2019•湘潭模拟)甲乙两个学生原计划每天自学的时间相同,若甲每天自学时间增加40分钟,乙每于自学时间减少40分钟,则乙5天的自学时间仅等于甲1天的自学时间,求甲乙原订每天自学时间是多少?(用算术、方程两种方法解答)【解答】解:(1)算术法:(4040)(51)40+÷-+80440=÷+2040=+60=(分钟)(2)设甲乙原计划每天自学的时间相同是x 分钟,则变化后的甲每天自学时间为40x +分钟,乙自学时间是40x -分钟,根据题意可得方程:5(40)40x x -=+,520040x x -=+,4240x =,60x =,答:甲乙原订每天自学时间是60分钟.15.(2019•衡水模拟)李叔今年在他的78公顷的土地上种植了黄瓜和茄子,其中黄瓜的种植面积是茄子种植面积的14.黄瓜和茄子的种植面积分别是多少公顷? 【解答】解:设茄子的种植面积是x 公顷,则黄瓜的种植面积是14x 公顷,1748x x += 5748x = 54744585x ⨯=⨯710x =71710440⨯=(公顷) 答:茄子的种植面积是710公顷,黄瓜的种植面积是740公顷. 16.(2018秋•南京期末)小明把720毫升果汁倒入5个小杯和2个大杯,正好都倒满.一个大杯的容量比一个小杯多45毫升.一个小杯和一个大杯的容量各是多少毫升?【解答】解:设一个小杯的容量为x 毫升,则一个大杯的容量为(45)x +毫升,5(45)2720x x ++⨯=5290720x x ++=790720x +=7909072090x +-=-776307x ÷=÷90x =.9045135+=(毫升),答:一个小杯的容量是90毫升,一个大杯的容量是135毫升.17.(2017秋•卢龙县期末)希望小学四、五年级共有学生450人,五年级人数是四年级人数的1.5倍.四、五年级各有学生多少人?(用方程解)【解答】解:设四年级有x 人,则五年级有1.5x 人,1.5450x x +=2.5450x =2.5 2.5450 2.5x ÷=÷180x =180 1.5270⨯=(人)答:四年级有学生180人,五年级有学生270人.18.(2017秋•扬州期末)有一根红彩带和一根绿彩带,红彩带的长是绿彩带的3倍,比绿彩带长2.4米.这两根彩带各长多少米?(用方程解)【解答】解:设绿长度长x 米,则红彩带长3x 米,3 2.4x x -=2 2.4x =22 2.42x ÷=÷1.2x =.1.22.43.6+=(米)答:红彩带长3.6米,绿彩带长1.2米.19.(2018秋•盐城期末)2筐苹果和3筐梨共重95千克,每筐苹果比每筐梨多10千克.苹果和梨每筐各重多少千克?【解答】解:设梨每筐重x 千克,则苹果每筐重(10)x +千克,根据题意列方程为:2(10)395x x ++=52095x +=575x =15x =151025+=(千克)答:苹果每筐重25千克,梨每筐重15千克.20.小海妈妈的水果店里有榴莲、丑橘共80箱,榴莲每箱500元,丑橘每箱300元,全部卖出后,榴莲比丑橘收入多16000元.问:两种水果各多少箱?【解答】解:设榴莲有x 箱,则丑橘有(80)x -箱,500(80)30016000x x --⨯=5002400030016000x x -+=8002400016000x -=80024000240001600024000x -+=+80040000x =80080040000800x ÷=÷50x =.805030-=(箱),答:榴莲有50箱,丑橘有30箱.21.学校买来一批体育用品,羽毛球拍是乒乓球拍的2倍,分给同学们,每组分乒乓球拍5副,余乒乓球拍15副,每组分羽毛球拍14副,则差30副,问:学而思学校买来羽毛球拍、乒乓球拍各多少副?【解答】解:设学生的组数是x 组,则:(515)21430x x +⨯=-10301430x x +=-14103030x x -=+460x =15x =乒乓球拍:⨯+15515=+7515=(副)90羽毛球拍:⨯-141530=-21030180=(副)答:学校买来羽毛球拍180副、乒乓球拍90副.22.水果店批发市场里苹果的存量是橘子的3倍,每天从市场里运出2.5吨的苹果和1.5吨的橘子,若干天后这批橘子运完了,苹果还剩10吨.这批橘子有多少吨?苹果有多少吨?【解答】解:设运了x天橘子运完了,苹果还剩10吨.+=⨯x x2.510 1.53x x+=2.510 4.5-=x x4.5 2.510x=21022102x÷=÷x=5⨯+苹果的总质量:2.5510=+12.510=(吨)22.5⨯=(吨)橘子的质量:1.557.5答:这批橘子有7.5吨,苹果有22.5吨.23.(2019•郑州模拟)王军的张数是李明张数的3倍,如果王军拿60张邮票送给李明,两人的邮票张数一样多,王军有邮票多少张?(列方程解)【解答】解:设李明有x张,则王军有3x张,36060x x -=+2120x =60x =603180⨯=(张)答:王军有邮票180张.24.(2019•郑州模拟)小明买6支铅笔和5支钢笔共花了24.6元,已知每支钢笔比铅笔贵3.6元,铅笔和钢笔每支各多少元?【解答】解:先设每支铅笔x 元,则每支钢笔( 3.6)x +元,由题意可得方程:65( 3.6)24.6x x +⨯+=,651824.6x x ++=,1124.618x =-,11 6.6x =,0.6x =,0.6 3.6 4.2+=(元);答:每支铅笔1.5元,每支钢笔4.2元.25.(2019•宿迁模拟)希望小学买了1只篮球和8个皮球,正好用去330元.皮球的单价是篮球的13,皮球和篮球的单价各是多少元?【解答】解:设篮球单价是x 元,183303x x +⨯=,83303x x +=,111111330333x ÷=÷,90x =;190303⨯=(元);答:皮球单价是30元,篮球单价是90元.26.(2019•怀化模拟)100名师生绿化校园,老师每人栽3棵树,学生每2人栽1棵树,总共栽了100棵,老师栽 60 棵,学生栽 棵.【解答】解:设老师有x 人,则学生有(100)x -人,由题意得:13(100)1002x x +-=,13501002x x +-=,5502x =,20x =,学生有:1002080-=(人),则老师栽的棵数:20360⨯=(棵), 学生栽的棵数:180402⨯=(棵); 答:老师栽60棵,学生栽40棵.故答案网:60,40.27.(2019•宁波)某公园对团体游园购买门票的规定如下表:今有甲、乙两个旅游团,若分别购票,两团总计应付门票费1142元.如合在一起作为一个团体购票,总计只应付门票费864元.问:这两个旅游团各有多少人?【解答】解:两个团的总人数;8648108÷=(人),设甲团有x 人,则乙团有(108)x -人,12(108)101142x x +-⨯=,121080101142x x +-=,210801142x +=,21080108011421080x +-=-,262x =,31x=;-=(人);1083177答:甲旅游团有31人,乙旅游团有77人或甲旅游团有77人,乙旅游团有31人.28.(2018•上海)已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?【解答】解:设一把椅子的价格是x元,则一张桌子的价格就是10x元,根据题意可得方程:-=x x10288x=9288x=32⨯=(元)则桌子的价格是:3210320答:一张桌子320元,一把椅子32元.29.(2019秋•交城县期末)上海科技馆上月参观人数达到13.78万人次,其中少年儿童参观者是成人的1.6倍.上月参观科技馆的少年儿童和成人各有多少人次?(用方程解)【解答】解:设成年人有x人,则儿童的人数就是1.6x,根据题意得:x x+=,1.613.78x=,2.613.78x÷=÷,2.6 2.613.78 2.6x=,5.3⨯=(万人).1.6 5.38.48答:上月参观科技馆的少年儿童有8.48万人,成人有5.3万人.30.(2019•雨花区)由奶糖和巧克力糖混合成的一堆糖中,如果增加10颗奶糖后,巧克力糖占总数的60%,再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原来混合糖中有奶糖、巧克力糖各多少颗?【解答】解:设原来混合糖中有奶糖和巧克力糖共x颗,根据题意可得方程:+=++-,60%(10)75%(1030)30x x0.156x =,40x =,巧克力糖:(4010)60%30+⨯=(颗),奶糖:403010-=(颗),答:原来巧克力糖有30颗,奶糖有10颗.31.(2019•衡水模拟)星期天王老师看见张老师和李老师每人买了一袋大米就问:“你们每人买了多少千克大米?”张老师笑笑说:“我买的大米重量李老师米的2倍,如果我倒出5千克给李老师,这两袋就一样重了,你算算看!”请你帮助王老师算一算吧!【解答】解:设李老师米为x 千克,则张老师的米为2x 千克,根据题意得255x x -=+,255x x -=+,10x =,101020+=;答:张老师买了20千克,李老师买了10千克.32.(2019•长沙县)一群公猴、母猴、小猴共38只,每天摘桃266个.已知1只公猴每天摘桃10个,1只母猴每天摘桃8个,1只小猴每天摘桃5个.又知公猴比母猴少4只,那么这群猴子中,小猴有多少只?【解答】解:设母猴有x 只,公猴就有(4)x -只,小猴就有[38(4)]x x ---只,由题意得:8(4)10[38(4)]5266x x x x +-⨯+---⨯=,8104010210266x x x +--+=,896x =,12x =,小猴有:3812(124)3812818---=--=(只);答:这群猴子中,小猴有18只.33.(2019•衡水模拟)一套西装180元,其中裤子的价格是上衣的35,上衣和裤子的价钱分别是多少元?(用方程解)【解答】解:设裤子的价钱x 元,上衣的价钱是35x 元,31805x x +=,81805x =,888180555x ÷=÷,112.5x =, 裤子的价钱:3112.567.55⨯=(元).答:上衣和裤子的价钱分别是112.5元、67.5元.。
小升初数学试题列方程解应用题通用含答案

小升初数学试题列方程解应用题通用含答案甲船的油量为595+x吨,乙船的油量为225-x吨。
根据题意得:595+x=4(225-x)化简得:x=61所以,乙船要抽出61吨油给甲船。
2.120千米解析】设两镇间的距离为d千米。
甲行驶的距离为15×0.5=7.5千米,乙行驶的距离为10×t千米(t为小时数)。
甲返回西镇后,行驶的距离为15×0.5=7.5千米,再行驶d千米到东镇,总共行驶的距离为7.5+d+7.5+10t。
乙行驶的总距离为d千米。
根据题意得:7.5+d+7.5+10t=1.5+d+10(t-0.5)+30化XXX:d=120所以,两镇间的距离为120千米。
3.哥哥现在27岁,弟弟现在9岁解析】设弟弟当年的年龄为x岁,则哥哥当年的年龄为3x岁。
根据题意得:3x=x+27-30= x-3化简得:x=6所以,哥哥现在27岁,弟弟现在9岁。
4.每筐有68个苹果解析】设每筐有x个苹果,则甲筐剩下的苹果数为x-150,乙筐剩下的苹果数为x-194.根据题意得:x-150=3(x-194) 化简得:x=68所以,每筐有68个苹果。
5.高中毕业生有272人,初中毕业生有408人解析】设初中学生人数为x,则高中学生人数为5x/6.设初中毕业生人数为y,则高中毕业生人数为12y/17.根据题意得:5x/6-12y/17=520化XXX:y=204代入可得:x=680所以,高中毕业生有272人,初中毕业生有408人。
6.第二次降价后的价格是原定价的50%解析】假设原定价为1元/斤,按100%的利润定价,则售价为2元/斤。
按38%的利润重新定价,则售价为1.38元/斤。
售出其中的40%后,剩余的水果全部降价出售,实际获得的总利润为1.506元/斤。
设第二次降价后的售价为x元/斤,则有:0.6×1.38+0.4×x=1.506化简得:x=0.5所以,第二次降价后的价格是原定价的50%。
六年级下册数学-小升初解方程应用题及答案0-人教版

-小升初解方程应用题及答案-人教版一、解答题(题型注释)1=2的过程,请你先判断一下,他做得对不对,如果错了,请说明错在哪一步?如果a=b,且a,b>0,则1=2.证明:①因为:a,b>0②又因为:a=b③两边同“×b”,有:a×b=b×b④两边同“﹣a×a”,得:a×b﹣a×a=b×b﹣a×a⑤两边分别提取与分解:a×(b﹣a)=(b+a)×(b﹣a)⑥两边同“÷(b﹣a)”,得a=(b+a)⑦用b=a代入,得:a=2a⑧两边同“÷a”,有:1=2所以:1=2正确!2.你能快速比较出a与b的大小嘛?(1)a+4=6+b a b(2)a﹣0.3=b﹣0.4 a b(3)50+b=a﹣12 a b(4)4a=5b a b(5)10÷a=8÷b a b(6)a÷15=b×3 a b.3.根据等式的性质在○里填上运算符号,在□里填数.x﹣16=40 52﹣4x=4x﹣16+16=40○□4x○□=□4.用方程表示下面的数量关系。
我有x岁,爸爸41岁。
我们俩相差29岁。
()5.用方程表示下面的数量关系。
小明有150㎝,小丽有y㎝。
小丽比小明矮5㎝。
()6.用方程表示下面的数量关系。
有a颗水果糖,平均分给26个小朋友,每人分3颗,正好分完。
()7.果园里采摘了一批苹果.每25千克装一箱,正好装124箱.采摘的这批苹果共有多少千克?(要求列出两种不同的含有未知数X的等式进行解答)8.某小学六年级举行健美操比赛,参加比赛的女生比男生多28人.结果男生全部获奖,女生则有25%的人未获奖,男女生获奖总人数为42人.又已知参加比赛的人数与全年级人数的比是2:5.该校六年级一共有多少人?9.10袋大包洗衣粉和2袋小包洗衣粉共重16千克,小包的质量是大包的13,大包洗衣粉每袋重多少千克?10.粮店有大米20袋,面粉50袋,共重2250千克,已知1袋大米的重量和2袋面粉的重量相等,那么一袋大米重多少千克?11.如下图所示,一架天平的左边托盘中放一个20克和一个30克的木块,右边托盘中放一个50克的砝码,天平处于平衡状态.请用一个等式表示左右两个托盘中物体的质量.12.如下图所示,一架天平左边托盘中放一个20克的木块和一个未知质量(用x表示)的木块,右边托盘中放一个100克的砝码,当天平平衡时,请用一个等式表示出来.13.用方程解答.4 5减815的差乘一个数,等于27,这个数是多少?14.在平衡天平的两端将物品加倍或只取它的几分之一,天平会怎样?参数答案1.解:第⑥步出错,因为a=b,所以b﹣a=0;根据等式的性质,等式的两边同时除以不为0的数,等式才能成立,而这里b﹣a,所以等式不成立了.所以在第⑥步出错【解析】1.等式的性质是指在等式的两边同时加上、减去同一个数,或同时乘或除以同一个不为0的数,等式的左右两边仍相等;据此可知这个同学在第6步做错了,因为a=b,所以b﹣a=0,而⑥是两边同时除以(b﹣a)不符合等式的性质,所以错误.本题给出的步骤较多,具有迷惑性,关键是熟知等式的性质,除以的数不能为0.2.(1)>(2)<(3)<(4)>(5)>(6)>【解析】2.(1)和相等,一个加数大,那么另一个加数就小;(2)差相等,减数小,被减数也就小;(3)令等式等于50,那么b=0,a=62,比较得解;(4)积相等,一个因数大,另一个因数就小得解;(5)令等式等于1,那么b=8,a=10,比较得解;(6)令等式等于1,那么b= 13,a=15,比较得解.解决此题最好的办法是令等式等于一个具体的数值,求出a和b的数值,进而比较得解.3.解: x﹣16=40,在方程的两边同时加上16,为:x﹣16+16=40+16;52﹣4x=4,在方程的两边同时加上4x,为:4x+4=52;故答案为:+,16,+,4,52.【解析】3.根据等式的性质:在等式的左右两边同时加上、减去、乘、除以(不为0)一个数,等式仍然成立.此题考查等式的性质的运用.4.41-x=29【解析】4.根据题意,爸爸的年龄比我大,所以爸爸的年龄减去我的年龄等于相差的年龄。
(完整版)小升初典型应用题精练列方程解应用题附答案

典型应用题精练(列方程解应用题)列一元一次方程解应用题的几种常见题型及其特点归纳下来,如下:(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。
问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。
基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
(4)行程问题。
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静水中速度-水流速度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
(5)工程问题。
其基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
当工作总量未给出具体数量时,常设总工作量为“1”,分析时可采用列表或画图来帮助理解题意。
(6)溶液配制问题。
其基本数量关系是:溶质=溶液×浓度(浓度溶质溶液,溶液溶质浓度==),溶液=溶质+溶剂。
2020小升初数学第24课时 列方程解应用题 l (通用版,含答案 )(共53张PPT)

考点二
找等量关系的方法
1.根据数学术语找等量关系 应用题中的数量关系: 一般为和差关系或倍数关系, 常用“一 共有”“比……多”“比……少”“是……的几倍”等术语表 示。在解题时可根据这些关键术语去找等量关系,按叙述顺序来 列方程。
例:学校开展植树活动,五年级植树 50 棵,比四年级植树棵 数的 2 倍少 4 棵,四年级植树多少棵? 这道题的关键词是“比……少” ,从这里可以找出等量关系: 四年级植树棵数的 2 倍减去 4 等于五年级植树的棵数。 设四年级植树 x 棵,则列方程为 2x- 4= 50。
速度
(4)学校买来 5 盒羽毛球和 18 副羽毛球拍,共用去 640 元,已 知每盒羽毛球 20 元,每副羽毛球拍多少元?题目中数量间的相等 关系是 ( ( 羽毛球的总价+羽毛球拍的总价=共用去的钱数 )。 )或
共用去的钱数-羽毛球的总价=羽毛球拍的总价
2.根据题意列方程。 (1)一批货物,先运走 120 吨,又运走 75 吨,还剩下 115 吨, 这批货物原来有多少吨?设这批货物原来有 x 吨,则所列方程是 ( x- 120- 75= 115 )或 ( x- 115= 120+ 75 )。
【解】 设裤子的价格是 x 元,上衣的价格就是 1.5x 元。 x+ 1.5x= 200 2.5x÷ 2.5= 200÷ 2.5 x= 80 1.5x= 1.5× 80= 120 答:上衣和裤子的价格分别是 120 元、 80 元。
【例 3】 某班学生合买一件礼物送给数学老师,如果 每人出 6 角,则多 4 元 8 角,如果每人出 5 角,则差 3 角,求这 个班的学生人数。 ☞ 思路点拨 本题考查根据常用的数量关系找等量关系。这
2.根据常用的数量关系找等量关系 常见的数量关系:工作效率×工作时间=工作总量,单价× 数量=总价,速度×时间=路程……在解题时,可以根据这些数 量关系去找等量关系。 例: 每个足球的价格是 75.5 元, 151 元钱可以买多少个足球? 根据“单价×数量=总价”找等量关系。 设可以买 x 个足球,则列出方程为 75.5x= 151。
小升初数学《解方程》完整知识点讲解与专项练习题及答案

小升初《解方程》专题知识点整理+列方程解应用题专项训练《解方程》知识点列方程解应用题题型汇总练习1、0.3乘以14的积比这个数的3倍少0.6,求这个数是多少?2、甲数比乙数多34,甲数是乙数的3倍,甲乙各是多少?3、今年10月份,李明家用电131度,王强家用电120度,王强家少缴电费5.5元。
平均每度电多少元?4、长方形养鸡场的栅栏长400米,长是宽的3倍,求养鸡场的面积是多少?5、鸡兔同笼,头共有20个,腿共有56条,鸡兔各有多少只?6、鸡兔数量相同,鸡腿比兔腿少30条,鸡兔各有多少只?7、爷爷比小明大52岁,今天爷爷的年龄是小明的5倍,爷爷和小明今年各是多少岁?8、甲乙两地相距360km,张三由甲地开往乙地,李四以45km/时的速度由乙地开往甲地,3个小时后,两人相距15km,张三的速度是多少千米?9、沈阳与北京相距约700km,土豆与地瓜分别从沈阳和北京出发,相向而行,土豆每小时行驶80km,地瓜每小时行驶70km。
土豆出发5个小时后,地瓜才出发,在经过多少小时才能相遇?10、长方形养鸡场的一个长面靠墙,栅栏长400米,长是宽的2倍,养鸡场的面积是多少?11、甲乙两人骑自行车,同时从相距65km的两地相向而行,甲车每小时行驶17.5km,1小时候,两人相距32.5km,乙车每小时行驶多少千米?12、一个三层书架共有书159本,第一层比第二层的4倍少2本,第三层比第二层的3倍多1本。
第三层书架有多少本书?13、土豆和地瓜同时分别从两地相向而行,8小时相遇。
如果他们每小时多行2.5km,那么就6小时相遇。
问两地相距多少千米?14、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本?15、汽车从甲地到乙地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时。
求甲乙两地的距离?16、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?17、三个连续的一位小数的和是1.5,这三个小数分别是多少?18、甲乙两个书架,若从甲书架取出8本放入乙书架,两个书架的本数就一样多;如果从乙书架取出13本放入甲书架,甲书架的书就是乙书架的2倍。
【小升初】小学数学《列方程解应用题专题课程》含答案

21.列方程解应用题知识要点梳理一、列方程解应用题的意义列方程解应用题就是用字母表示实际问题里的某个未知数,根据等量关系列出含有未知数的等式,即方程。
二、列方程解应用题的一般步骤1.审题:了解题中的已知条件和未知量,明确各个数量之间的关系,找出等量关系。
2.设:用字母表示题中的一个未知量,并用含该字母的代数式表示其他的未知量。
3.列:找出能够表示应用题全部含义的一个数量关系,列出方程4.解:解列出的方程5.答:检验所求的解是否符合题意,写出答案。
列方程解应用题,关键是寻找题中的等量关系。
方法:(1)直接设未知数;(2)间接设未知数。
途径:(1)根据关键句设未知数;(2)根据单位“1”设未知数;(3)根据公式设未知数。
考点精讲分析典例精讲考点1 直接列方程解应用题【例1】甲和乙一共有100元钱,甲用去,乙用去后,两人一共还剩下60元,甲原来有多少钱?【精析】设甲原有x元,则乙原有(100-x)。
甲剩下的钱可以用 -元表示,乙剩下的钱可以用--元表示,然后根据两人一共剩下60元列出方程。
【答案】设甲原有x元,则乙原有(100-x)。
---答:甲原来有72元钱。
【归纳总结】此题比较简单,直接设未知数即可,利用两个等量关系设未知数和列方程。
考点2 间接列方程解应用题【例2】东方小学体育室的足球个数是篮球的3倍,体育课上,每班借6个足球,5个篮球,篮球借完时,还有72个足球。
体育室里原有足球和篮球各多少个?【精析】设班级数共为x个,那么借出的足球为6x个,借出的篮球为5x个。
【答案】设借球的班级数为x个。
篮球:58=40个足球:403=120个答:体育室里原有足球120个,篮球40个。
【归纳总结】隐含的等量关系是借的班数相同,间接设未知数,设班数为x。
考点3 列方程解含比例的应用题【例3】李叔叔与王叔叔8月份收入的钱数之比是8:5,8月份支出的钱数之比是8:3,月底李叔叔结余800元,王叔叔结余980元,8月份两人各收入多少元?【精析】由题意可知:收入比是8:5,设李叔叔的收入为8x元,王叔叔的收入为5x 元,收入减去结余等于支出,由此可列方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学小升初列方程解应用题轻松闯关1.甲船载油595吨,乙船载油225吨,要使甲船的载油量为乙船的4倍,必须从乙船抽多少吨油给甲船?2.甲、乙两人骑自行车同时从西镇出发去东镇,甲每小时行15千米,乙每小时行10千米。
甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试求两镇间的距离。
3.哥哥现在的年龄是弟弟当年年龄的3倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁?4.两筐苹果,每筐的个数相等,从甲筐卖出150个,从乙筐卖出194个后,剩下的苹果甲筐是乙筐的3倍,原来每筐有多少个?5.高中学生的人数是初中学生人数的5/6,高中毕业生的人数是初中毕业生人数的12/17。
高、初中的毕业生离校后,高、初中留下的人数都是520。
那么,高、初毕业生共有多少人?6.某商店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售,由于定价过高,无人购买,后来不得不按38%的利润重新定价,这样售出了其中的40%。
此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果。
结果,实际获得的总利润是原定利润的30.2%。
那么,第二次降价后的价格是原定价的百分之多少?7.学校早晨6:00开校门,晚上6:40关校门。
下午有一同学问老师现在的时间,老师说:从开校门到现在时间的1加上现在到关校3门时间的1,就是现在的时间。
那么现在的时间是下午几点?48.甲河是乙河的支流,甲河水流速度为每小时3千米,乙河水流速度为每小时2千米。
一艘船沿乙河逆水航行6小时,行了84千米到达甲河,在甲河还要顺水航行133千米。
求这艘船一共航行多少小时?9.某校100名学生在一次语、数、外三科竞赛中,参加语文竞赛的有39人,参加数学竞赛的有49人,参加外语竞赛的有41人,既参加语文竞赛又参加数学竞赛的有14人,既参加数学竞赛又参加外语竞赛的有13人,既参加语文竞赛又参加外语竞赛的有9人,有1人三项都没有参加,问三项都参加的有多少人?参考答案1.61吨【解析】先找相等的关系。
乙船抽出一部分油给甲船后,使甲船的油等于乙船的油的4倍,即:甲船的油+乙船抽出的油=(乙船的油-乙船抽出的油)×4,我们可以设乙船抽出的油为x吨,利用等量关系列出方程求解。
解:设从乙船抽出x吨油,则595+x=(225-x)×4595+x=900-4x4x+x=900-5955x=305x=61答:必须从乙船抽出61吨油给甲船。
总结:这类题目的难度为易,告诉你其中一个条件,就是谁如何,而其他的是它的多少倍(在多多少或少多少),那么,直接设问题问的问题,来得出等式,求出答案。
2.30千米【解析】由甲从西镇出发,行了30分钟,因有事用原速返回西镇,这样又得需要30分钟,到西镇后又耽搁了半小时,甲前后共耽误了0.5×3=1.5小时,但在甲耽误的时间里,乙没有停留,因此可以看作乙比甲从西镇提前1.5小时出发,然后甲追乙,结果比乙晚30分钟到达东镇,如果设甲第二次从西镇出发到东镇所用时间为x小时,我们可以得出东西两镇的距离为:甲时速×x=乙在甲前的路程+乙时速×(x-0.5),根据这样的等量关系,可以列出方程求解。
解:设甲第二次从西镇出发到东镇所用的时间为x小时,则15x=10×(0.5×3)+10(x-0.5)15x=15+10x-515x-10x=15-55x=10x=2代入15x=15×2=30答:东西两镇的距离是30千米。
总结:像这类应用题,老生常谈的路程问题,在小学五年级的智力闯关资料中,用代数方法,解析了路程问题。
其实这就是行程问题中经常遇到的相遇问题。
两者同时从两地相向而行,这就是相遇问题。
当然,大家也一定知道了,相遇的时间该如何表示了。
3.哥哥现在的年龄是18岁,弟弟现在的年龄是12岁。
【解析】解答有关年龄方面的问题时,注意两人的年龄差经过多少年都不会变,因此可以根据这个差不变找等量关系.如果假设哥哥现在的年龄为x岁,由于哥哥与弟弟现在的年龄和是30岁,所以弟弟现在的年龄为30-x岁,又因为哥哥当年的年龄与弟弟现在的年龄相同,所以哥哥当年的年龄为30-x岁,又由于哥哥现在的年龄是弟弟当年年龄的3倍,所以弟弟当年的年龄为X/3岁,列表如下:他们的年龄差不变。
设哥哥现在的年龄为x,则xX-(30-x)=30-x-3xX-30+x=30-x-3x2x-30=30-x-3方程两边同乘以3,得6x-90=90-3x-x6x+4x=90+9010x=180x=18代入30-x=30-18=12答:哥哥现在的年龄是18岁,弟弟现在的年龄是12岁.思考:如果设弟弟现在的年龄为x岁,如何列方程呢?总结:这类的实际问题,做出试题答案后,要注意放到实际中检验,可遵循,一下方法来解答。
(1)“设”:用字母(例如x)表示问题的未知量;(2)“找”:看清题意,分析题中及其关系,找出用来列方程的等量关系;(3)“列”:用字母的代数式表示相关的量,根据等量关系列出方程。
(4)“解”:解方程;(5)“验”:检查求得的值是否正确和符合实际情形,并写出答案;(6)“答”:答出题目中所问的问题。
4.216个【解析】设:原来每筐x个。
甲筐剩下的=乙筐剩下的3倍x一150=(x一194)×3x一150=3x一5822x=432x=216答:原来甲筐有苹果216个。
总结:这些问题,可以转变看做实际应用问题,初学应用题时,往往见到“多”字就用加法计算,这是造成错解一的主要原因;再就是认为应用题总是“前面的数量加上后面的数量”,或者是“前面的数量减去后面的数量”,这是造成错解二的主要原因。
要防止这种错误的产生,从乙开始学习应用题,就要注意培养分析题中已知条件和要求问题的习惯,确定解法后要进行检验,想一想这样计算对不对。
5.1160人【解析】要想求出高、初中毕业生共有的人数,可以先分别求出高中毕业生与初中毕业生各是多少。
已知条件中高中毕业生是初中毕业生人数的12/17,又知高、初中毕业生离校后都留下520人,如果设初中毕业生为x人,则原初中生有(x+520)人,高中毕业生为1217x人,原高中生有(1217x+520)人。
根据高中学生人数是初中学生人数的56找出等量关系。
解:设初中毕业生有x 人,依题意,有1217x +520=56(x +520) 13102x=5206x=680 高中毕业生共有1712x =1712×680=480(人) 高、初中毕业生共有:680+480=1160(人)。
总结:调配问题是应用题中的一种类型,初步学会列方程解调配问题各类型的应用题;各部分量之和等于总量是解决这类应用题的基关键所在。
6.62.5%【解析】根据“实际获得的总利润是原定利润的30.2%”列方程。
解:设成本为单位1。
原定价是按100%的利润定价的,则原定价是200%。
第一次降价是按38%的利润定价的,则第一次降价后的定价是138%。
设第二次降价是按x%的利润定价的,则第二次降价后的定价是x%+1。
根据题意列方程:38%×40%+x%×(1-40%)=30.2%×1解得x%=25%。
则第二次降价后的定价是25%+1=125%。
125%÷200%=62.5%。
所以第二次降价后的价格是原价格的62.5%。
总结:在一些数学问题中要清楚商店出售商品,总是期望获得利润.例如某商品买入价(成本)是50元,以70元卖出,就获得利润70-50=20(元).通常,利润也可以用百分数来说,20÷50=0.4=40%,我们也可以说获得 40%的利润.因此利润的百分数=(卖价-成本)÷成本×100%。
卖价=成本×(1+利润的百分数)。
成本=卖价÷(1+利润的百分数)。
商品的定价按照期望的利润来确定。
定价=成本×(1+期望利润的百分数)定价高了,商品可能卖不掉,只能降低利润(甚至亏本),减价出售.减价有时也按定价的百分数来算,这就是打折扣、减价25%,就是按定价的(1-25%)= 75%出售,通常就称为75折,因此卖价=定价×折扣的百分数。
7.4点【解析】根据“从开校门到现在时间的13加上现在到关校门时间的14,就是现在的时间”列方程。
解:设现在的时间是下午x点。
由从早上6:00到现在的时间是12-6+x=6+x小时,从现在到晚上6:40的时间是203-x小时。
根据题意得方程:6 3x+2634x-=x解得:x=4答:现在的时间是下午4点。
总结:两车没有相遇,从表面上看虽然不是相遇问题,但是两车所有的时间是相同的,因此可以当做相遇问题来解答。
要注意表面现象是相遇,实质上有追及的特点。
因此可以按照追及问题来解答。
在做题过程中要抓住题目的本质,究竟考虑速度和,还是考虑速度差,要针对题目中的条件认真思考。
千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”。
8.13小时【解析】分此题应该将甲河、乙河以及船航行的情况画在图上,帮助我们理解题意。
船在两条河流中航行,速度、时间、路程都不相等,但是船在静水中的速度(即船本身的速度)是相等的。
解:设这艘船在甲河中航行了x小时,则船在乙河中的逆水速度为846+2+3)千米/时,根据题意千米/时,船在甲河的顺水速度为(846得(84+2+3)x=133,解得x=7,x+6=13(小时)6答:这艘船一共航行了13小时。
9.6人【解析】此题的数量较多,关系也比较复杂,我们可以借助表示集合的韦恩图来表示它们。
设三项都参加的有x人,则既参加语文又参加数学,但不参加外语的有14-X人,其他数据见下图,根据题意,得39+[41-13-(9-X)]+[49-14-(13-x)]+(13-x)+1=100解得x=6答:三项都参加的有6人。
总结:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。
这是从整体到部分的一种思维过程,其思考方向是从未知到已知。