平面向量与函数综合题

合集下载

三角函数和平面向量专题练习2

三角函数和平面向量专题练习2
26 π 且与点 A 相距10 13 海里 45° + θ , sin , 0 θ = < θ < 26 2

B
的位置 C 处 (1) 求该船的行驶速度.
西
A
45° θ
C D

(2) 若该船不改变航行方向,判断它是否会进入警戒 水域,并说明理由.
P E Q
20 用 a, b, c 分别表示 ∆ABC 的三个内角 A, B, C 所对的边的边长, R 表示 ∆ABC 的外接圆半径 (1)如图在 O 以为圆心,半径为 2 的 O 中, BC , BA 分别是 O 的弦,其中 BC = 2, ∠ABC = 45° ,求 弦 AB 的长 (2)在 ∆ABC 中,若 ∠C 为钝角,求证: a 2 + b 2 ≤ 4 R 2 (3)给定三个正实数 a, b, R ,其中 a ≥ b ,问 a, b, R 满足怎样的关系是时,以 a, b 为边长,以 R 为外 接圆半径的 ∆ABC 不存在,存在一个,或存在两个(全等的 三角 形 算作同 一个 ), 在 ∆ABC 存 在的 情况 下 ,用 a, b, R 表 示c
uuu r uuur
1 2
16. 在三角形 ABC 中, 用 a, b, c 分别表示 ∆ABC 的三个内角 A, B, C 所对的边的边长,已知
∠B = 45° , b = 10, cos C = 2 5 5
(1)求边长 BC 的值 (2 若 AB 的中点为 D ,求中线 CD 的值.
2/8
π π 17. 已知函数 f ( x ) = 2 sin x + − 2 cos x, x ∈ , π 6 2
2 n 为偶数时, ○
f n (θ ) = sin n θ + cos n θ ,∴ f n′ (θ ) = n sin n −1 θ ⋅ cos θ − n cos n −1 θ sin θ = n sin θ cos θ ( sin n − 2 θ − cos n − 2 θ )

平面向量综合题答案

平面向量综合题答案

1、已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足[).,0(+∞∈++=λλ则P 点的轨迹一定通过△ABC 的(A )A .重心B .垂心C .内心D .外心3、已知向量OA ,OB 的夹角为60°,|OA |=|OB |=2,若OC =2OA +OB ,则△ABC 为( C ) A. 等腰三角形 B. 等边三角形 C. 直角三角形D. 等腰直角三角形【方法】选择基底;数量积公式4、非零向量OA a =,OB b =,若点B 关于OA 所在直线的对称点为1B ,则向量1OB OB +为( A )A 、22(a b )aa⋅ B 、2(a b )aa⋅ C 、2(a b )aa⋅ D 、(a b )a a⋅【方法】待定系数法;向量三角形法则5、如右图所示,,,A B C 是圆O 上的三点,CO 的延长线与线段AB交于圆内一点D ,若OC xOA yOB =+,则( C ) A .01x y <+< B .1x y +>C .1x y +<-D .10x y -<+<6、定义平面向量的正弦积为||||sin 2a b a b θ⋅=,(其中θ为a 、b 的夹角),已知△ABC 中,AB BC ⋅=BC CA ⋅,则此三角形一定是( A )A .等腰三角形B . 直角三角形C . 锐角三角形D . 钝角三角形7、已知四边形ABCD的对角线相交于一点,()1,3 AC=,()3,1BD=-,则AB CD⋅的取值范围是()A.()2,0B.(]4,0C.[)0,2-D.[)0,4-【答案】C.【解析】取(0,0)A,则(1,3)C;设11(,)B x y,22(,)D x y,则21213,1.x xy y⎧-=-⎪⎨-=⎪⎩所以()()1122,3,1AB x y x y==+-,()221,3CD x y=--,求得22223131()()2222AB CD x y-+⋅=++--≥-,当1131,231,2xy⎧+=⎪⎪⎨-⎪=⎪⎩且2231,231,2xy⎧-+=⎪⎪⎨+⎪=⎪⎩时,AB CD⋅取到最小值2-,此时四边形ABCD的对角线恰好相交于一点,故选C.9、已知点OAOQOPAyxyxyxyxP(sin),0,3(,13211294:),(∠⎪⎩⎪⎨⎧≤--≤-+≥-+则设的坐标满足为坐标原点)的最大值为 510、如图,已知1||=→OA,3||=→OB,0=⋅→→OBOA点C在线段AB上,且AOC∠=030,设→→→+=OBnOAmOC,)(Rnm∈,则mn等于 311、已知→→ba,为平面向量,若→→+ba与→a的夹角为3π,→→+ba与→b的夹角为4π,则→→||||ba=【解】图解法12、已知直线x y a +=与圆224x y +=交于,A B 两点,且||||OA OB OA OB +=-(其中O 为坐标原点),则实数a 的值为 2或2-13、设O 为ABC ∆的外心,且543=++ ,则ABC ∆的内角C 的值为4π【方法】基底选择C AOB ∠=∠2 , o 22900)5()43(=∠⇒=•⇒-=+→→→→→AOB OB OA OC OB OA15、设P 为ABC ∆所在平面内一点,且→→→→=--025AC AB AP ,则PAB ∆的面积与ABC ∆的面积之比等于 15【方法】图解法;向量平行四边形法则16、在直角△ABC 中,︒=∠90BCA ,1==CB CA ,P 为AB 边上的点且AB AP λ=,若PB PA AB CP ⋅≥⋅,则λ的取值范围是 ]1,222[- 【方法】建立坐标系18、在ABC ∆中,点D 在线段BC 的延长线上,且→→=CD BC 3,点O 在线段CD 上(与点C 、D 不重合),若→→→-+=AC x AB x AO )1(则x 的取值范围是 1(,0)3-【方法】选择基底;向量相等19、在△ABC 中,E 、F 分别为AB ,AC 中点.P 为EF 上任一点,实数x ,y 满足PA +x PB +y PC =0.设△ABC ,△PBC ,△PCA ,△P AB 的面积分别为S ,1S ,2S ,3S ,记11S S λ=,22SS λ=,33S Sλ=,则当λ2·λ3取最大值时,2x +y 的值为220、已知向量与AC 的夹角为0120,32==,若+=λ,且,⊥,则实数λ的值为712 【解析】 0)()(=-⋅+=⋅λ得712039430))()(22=⇒=++--⇒=⋅-+-⋅λλλλλAB AC AC AB AC AB ,选D21、已知向量与AC 的夹角为0120,32==,若+=λ,且,⊥,则实数λ的值为712 【解】 0)()(=-⋅+=⋅λ得712039430))()(22=⇒=++--⇒=⋅-+-⋅λλλλλ,选D 22、已知点G 是ABC ∆的重心,AB μλ+=(λ, R ∈μ ),若0120=∠A ,2-=⋅AC AB3223、在矩形ABCD P若→→→+=AD AB AP μλ,24、P 是ABC ∆所在平面上一点,满足→→→→=++AB PC PB PA 2,若12ABC S ∆=,则PAB ∆的面积为4【解析】由()22PA PB PC AB PB PA ++==-,得3PA PB PC CB =-=,所以PABC ,且13PA BC=,ABC∆的边AB上的高是ABP∆边AB上的高的3倍,所以13ABPABCSS∆∆=,由12,4ABC ABPS S∆∆=∴=25、已知点O为ABC∆内一点,且→→→→=++0OCOBOA则:ABC BOCS S∆∆=________3:1.【解】330OA OB OC OA OA AB OA AC OA AB AC OA AD++=++++=++=+=,即3AO AD=,又12AE AD=,所以有21,33AO AE OE AE==即,则:ABC BOCS S∆∆=3:1AE OE=:.26、已知菱形ABCD的边长为a,∠DAB=60°,2EC DE=,则.AE DB的值为32a-.27、如图,∆AOB为等腰直角三角形,1OA=,CO为斜边AB的高,点P在射线CO上,则AP⋅OP 的最小值为18-.【解析】如图所示,AP =OP -OA ,设0t OP =≥.∴()2AP ⋅OP =OP -OA ⋅OP =OP -OA ⋅OP2222112488t t t⎛⎫=-=--≥- ⎪ ⎪⎝⎭,当24t =时取等号,∴AP ⋅OP 的最小值为18-.28、在长方形ABCD 中,,,12==AD AB 点N M 、分别是CD BC 、边上的点,且._________,的取值范围是则AN AM CDCN BCBM ⋅=2),(4329、在ABC ∆中,若D 是AB 的中点,P 在线段CD 上移动,当222CP BP AP ++最小时,求:PC PD 的比值为 230、在ABC ∆中,D 是BC 上一点,→→-=DB DC 2,若2||=→AB ,3||=→AC ,则||→AD 的取值范围为 .)37,31(31、已知平面向量)(,βαβα≠满足2=α,且α与αβ-的夹角为120°,t R ∈,则βαt t +-)1( 的取值范围是 ),3[+∞.32、 设点M 是线段BC 的中点,点A 在直线BC 外,ABC ∆中BC 边上的高为h ,且216BC =||||→→→→-=+AC AB AC AB 则h 的最大值为_____________2.平面向量8.O 是ABC ∆所在平面内一点,动点P 满足(),0sin sin AB AC OP OA AB BAC Cλλ=++>,则动点P 的轨迹一定通过ABC ∆的 ( C )(A) 内心 (B) 外心 (C) 重心 (D) 垂心10.如图放置的正方形, 1.,ABCD AB A D =分别在x 轴、y 轴的正半轴(含原点) 上滑动,则OC OB ⋅的最大值是 ( D ) (A) 1 (B)2(C) 3 (D) 2ABOC第10题图13.已知正△ABC 的边长为1,点G 为边BC 的中点,点,D E 是线段,AB AC 上的动点,DE 中点为F .若AD AB λ=,(12)AE AC λ=-()λ∈R ,则FG 的取值范围为 17,24⎡⎤⎢⎥⎣⎦.14@.如图,//AB MN ,且2OA OM =,若OP xOA yOB =+,(其中,x y R ∈),则终点P 落在阴影部分(含边界) 时,21y x x +++的取值范围是 4[,4]3 .16.已知O 是ABC ∆的外心,2,3AB AC ==,若AO xAB y AC =+且21x y +=,则cos BAC ∠=4316.已知(0,0)O ,(cos ,sin )A αα,(cos ,sin )B ββ,(cos ,sin )C γγ,若(2)0kOA k OB OC +-+=,(02)k <<,则cos()αβ-的最大值是 12-.14.已知向量,a b 满足:||13a =,||1b =,|5|12a b -≤,则b 在a 上的投影的取值范围是 5113[,].8.(2009山东卷理)设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( ) A.0PA PB += B.0PC PA += C.0PB PC += D.0PA PB PC ++= 【解析】:因为2BC BA BP +=,所以点P 为线段AC 的中点,所以应该选B 。

函数及导数、三角函数、平面向量经典题选解析

函数及导数、三角函数、平面向量经典题选解析

函数及导数、三角函数、平面向量经典题选★函数及导数部分1.(2013天津)设函数2()2,()ln 3x f x e x g x x x =+-=+-,若实数,a b 满足()0,()0f a g b ==,则( )【A 】.()0()A g a f b << .()0()B f b g a << .0()()C g a f b << .()()0D f b g a << 【解析】易知2()2,()ln 3x f x e x g x x x =+-=+-在定义域内均为增函数,且(0)1,(1)10(0,1);(1)2,(2)ln 210(1,2)()0()f f e a g g b g a f b =-=->⇒∈=-=+>⇒∈⇒<<。

2.(2013新课标)若函数22()(1)()f x x x ax b =-++的图像关于直线2x =-对称,则()f x 的最大值是______【解析】由题可设22()(4)f x x x m p =-+++,其中,m p 为待定常数,由22()(1)()(1)(1)0f x x x ax b f f =-++⇒=-=,即2222(1)(5)0,(1)(3)01,16()(41)16f m p f m p m p f x x x =-++=-=--+=⇒=-=⇒=-+-+,易知当2410x x +-=,即2x =-max ()16f x =。

【法二】由于函数的定义域为R 且图像关于直线2x =-对称,故可令(1)(3),(1)(5)f f f f -=-=-,代入可得22398()(1)(815)52515a b a f x x x x a b b -==⎧⎧⇒⇒=-++⎨⎨-==⎩⎩,则322'()4242884(2)(41)f x x x x x x x =---+=-++-,令'()02f x x =⇒=-或2-,代入可得最大值为16。

平面向量与数列函数的综合运用练习初二数学下册综合算式专项练习题

平面向量与数列函数的综合运用练习初二数学下册综合算式专项练习题

平面向量与数列函数的综合运用练习初二数学下册综合算式专项练习题一. 平面向量综合题1. 已知向量AB = 3i - 2j,向量AC = -4i + 3j,求向量BC。

解: 由向量相减得到向量BC = AC - AB。

BC = (-4i + 3j) - (3i - 2j)= -4i + 3j - 3i + 2j= -7i + 5j所以向量BC = -7i + 5j。

2. 已知向量AB = 2i + 3j,向量AC = 5i - j,求向量BA 和向量CA。

解:向量BA = -AB = -(2i + 3j) = -2i - 3j向量CA = -AC = -(5i - j) = -5i + j所以向量BA = -2i - 3j,向量CA = -5i + j。

二. 数列函数综合题1. 给定数列 {an} 的通项公式为 an = 3n + 2,计算前5项的和 Sn。

解:数列的前5项分别为 a1 = 3(1) + 2 = 5, a2 = 3(2) + 2 = 8, a3 = 3(3) + 2 = 11, a4 = 3(4) + 2 = 14, a5 = 3(5) + 2 = 17。

前5项的和 Sn = a1 + a2 + a3 + a4 + a5 = 5 + 8 + 11 + 14 + 17 = 55。

所以前5项的和 Sn = 55。

2. 给定数列 {bn} 的通项公式为 bn = 2n^2 + n,计算前4项的乘积Pn 和后4项的平均数 Mn。

解:数列的前4项分别为 b1 = 2(1^2) + 1 = 3, b2 = 2(2^2) + 2 = 10, b3 =2(3^2) + 3 = 21, b4 = 2(4^2) + 4 = 36。

前4项的乘积 Pn = b1 * b2 * b3 * b4 = 3 * 10 * 21 * 36 = 22680。

数列的后4项分别为 b5 = 2(5^2) + 5 = 55, b6 = 2(6^2) + 6 = 90, b7= 2(7^2) + 7 = 147, b8 = 2(8^2) + 8 = 232。

三角函数与平面向量综合测试题

三角函数与平面向量综合测试题

约稿:三角函数与平面向量综合测试题广东省珠海市斗门区第一中学 于发智 519100 jianghua20011628@一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,恰有..一项..是符合题目要求的。

1.下列函数中,周期为2π的是( ) A .sin2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x = 2.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >3. 条件甲a =+θsin 1,条件乙a =+2cos2sin θθ,那么 ( )A .甲是乙的充分不必要条件B .甲是乙的充要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD =B.2AO OD =C.3AO OD =D.2AO OD =5. 若函数f (x )=3sin21x , x ∈[0, 3π], 则函数f (x )的最大值是 ( ) A.21 B.32 C.22 D.23 6. (1+tan25°)(1+tan20°)的值是 ( ) A.-2 B.2 C.1 D.-1 7.α、β为锐角a =sin(βα+),b =ααcos sin +,则a 、b 之间关系为 ( )A .a >bB .b >aC .a =bD .不确定8. 下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|.B ACD③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 3632sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 ① ④ ((写出所有真命题的编号))9. )sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则 ( ) A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数 C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数10. 使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为( ) A .π25B .π45 C .πD .π2311、在直角坐标系xOy 中,,i j分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC中,2AB i j =+ ,3AC i k j =+,则k 的可能值有 ( ) A 、1个 B 、2个 C 、3个 D 、4个12. 如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 ( )(A )32 (B )364(C )4173 (D )3212二、填空题:本大题共4小题,每小题4分,共16分。

新教材高中数学第2章平面向量及其应用综合检测题北师大版必修第二册

新教材高中数学第2章平面向量及其应用综合检测题北师大版必修第二册

第二章综合检测题考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中正确的是( D ) A .OA →-OB →=AB → B .AB →+BA →=0 C .0·AB →=0D .AB →+BC →+CD →=AD →[解析] 起点相同的向量相减,则取终点,并指向被减向量,OA →-OB →=BA →;AB →,BA →是一对相反向量,它们的和应该为零向量,AB →+BA →=0;0·AB →=0.2.如右图,a -b 等于( C )A .2e 1-4e 2B .-4e 1-2e 2C .e 1-3e 2D .3e 1-e 2[解析] a -b =e 1-3e 2.3.设O ,A ,M ,B 为平面上四点,OM →=λOB →+(1-λ)OA →,且λ∈(1,2),则( B ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,B ,M 四点共线[解析] OM →=λOB →+OA →-λOA →,所以OM →-OA →=λ(OB →-OA →),AM →=λAB →,由λ∈(1,2)可知,A ,B ,M 三点共线,且B 在线段AM 上.4.已知a 、b 、c 分别是△ABC 三个内角A 、B 、C 的对边,b =7,c =3,B =π6,那么a 等于( C )A .1B .2C .4D .1或4[解析] 在△ABC 中,b =7,c =3,cos B =32,由余弦定理有b 2=a 2+c 2-2ac cos B ,即7=a 2+3-3a ,解得a =4或a =-1(舍去).故a 的值为4.5.已知向量a =(1,2),b =(-2,3),c =(4,5),若(a +λb )⊥c ,则实数λ=( C ) A .-12B .12C .-2D .2[解析] a +λb =(1,2)+(-2λ,3λ) =(1-2λ,2+3λ),由(a +λb )⊥c ,可得(1-2λ)×4+(2+3λ)×5=0,解得λ=-2.6.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为(D )A .1B .2C . 2D . 3[解析] 由sin 2A +sin 2B -sin A sin B =sin 2C ,得a 2+b 2-ab =c 2,cos C =a 2+b 2-c 22ab =12.∵C ∈(0°,180°),∴C =60°. ∴sin C =32,∴S △ABC =12ab sin C = 3. 7.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC →,则AD 的长为⎝ ⎛⎭⎪⎫sin 75°=6+24( C )A .4(3-1)B .4(3+1)C .4(3-3)D .4(3+3)[解析] 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin 45°sin 75°=8(3-1),因为BD →=3-12BC →,所以BD =3-12BC .又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos 60° =4(3-3).故选C .8.如图所示,半圆的直径AB =4,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值是( D )A .2B .0C .-1D .-2[解析] 由平行四边形法则得PA →+PB →=2PO →,故(PA →+PB →)·PC →=2PO →·PC →,又|PC →|=2-|PO →|,且PO →,PC →反向,设|PO →|=t (0≤t ≤2),则(PA →+PB →)·PC →=2PO →·PC →=-2t (2-t )=2(t 2-2t )=2[(t -1)2-1].∵0≤t ≤2,∴当t =1时,(PA →+PB →)·PC →取得最小值-2,故选D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)9.设向量a ,b 满足:|a |=3,|b |=4,a ·b =0,以a ,b ,a -b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数可以是( ABC )A .0或1B .2或3C .4D .6[解析] 由题意可知该三角形为直角三角形,其内切圆半径恰好为1,它与半径为1的圆的公共点个数可能为0个,1个,2个,3个,4个,故选ABC .10.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( AB ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n[解析] 对于A 和B 属于数乘对向量与实数的分配律,正确;对于C,若m =0,则不能推出a =b ,错误;对于D,若a =0,则m ,n 没有关系,错误.故选AB .11.对于△ABC ,有如下命题,其中正确的有( ACD ) A .若sin 2A =sin 2B ,则△ABC 为等腰三角形 B .若sin A =cos B ,则△ABC 为直角三角形 C .若sin 2A +sin 2B +cos 2C <1,则△ABC 为钝角三角形D .若AB =3,AC =1,B =30°,则△ABC 的面积为34或 32[解析] 对于A,sin 2A =sin 2B ,∴A =B ⇒△ABC 是等腰三角形;对于B,由sin A =cos B ,∴A -B =π2或A +B =π2.∴△ABC 不一定是直角三角形,B 错误;对于C,sin 2A +sin 2B <1-cos 2C=sin 2C ,∴a 2+b 2<c 2,∴△ABC 为钝角三角形,C 正确;对于D,如图所示,由正弦定理,得sin C =c ·sin B b =32.而c >b ,∴C =60°或C =120°,∴A =90°或A =30°,∴S △ABC =12bc sin A =32或34,D 正确.故选ACD .12.给出下列四个命题,其中正确的选项有( ABC )A .非零向量a ,b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角是30°B .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形C .若单位向量a ,b 的夹角为120°,则当|2a +x b |(x ∈R )取最小值时x =1D .若OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),∠ABC 为锐角,则实数m 的取值范围是m >-34[解析]A 中,令OA →=a ,OB →=b .以OA →,OB →为邻边作平行四边形OACB . ∵|a |=|b |=|a -b |,∴四边形OACB 为菱形,∠AOB =60°,∠AOC =30°,即a 与a +b 的夹角是30°,故A 正确;B 中,∵(AB →+AC →)·(AB →-AC →)=0,∴|AB →|2=|AC →|2,故△ABC 为等腰三角形,故B 正确;C 中,∵(2a +x b )2=4a 2+4x a ·b +x 2b 2=4+4x cos 120°+x 2=x 2-2x +4=(x -1)2+3,故|2a +x b |取最小值时x =1.故C 正确;D 中,∵BA →=OA →-OB →=(3,-4)-(6,-3)=(-3,-1),BC →=OC →-OB →=(5-m ,-3-m )-(6,-3)=(-1-m ,-m ),又∠ABC 为锐角,∴BA →·BC →>0,即3+3m +m >0,∴m >-34.又当BA →与BC →同向共线时,m =12,故当∠ABC 为锐角时,m 的取值范围是m >-34且m ≠12,故D 不正确.故选ABC .三、填空题(本大题共4小题,每小题5分,共20分)13.已知a ,b 为单位向量,且a ·b =0,若c =2a -5b ,则cos 〈a ,c 〉= 23.[解析] 由题意,得cos 〈a ,c 〉=a ·2a -5b|a |·|2a -5b |=2a 2-5a ·b|a |·|2a -5b |2=21×4+5=23. 14.设向量a ,b ,c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a|=1,则|a|2+|b|2+|c|2的值是 4 .[解析] 由于a ⊥b ,由此画出以a ,b 为邻边的矩形ABCD ,如图所示,其中,AD →=a ,AB →=b ,∵a +b +c =0,∴CA →=c ,BD →=a -b .∵(a -b )⊥c ,∴矩形的两条对角线互相垂直,则四边形ABCD 为正方形. ∴|a |=|b |=1,|c |=2,|a|2+|b|2+|c|2=4.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B = 217,c = 3 . [解析] 由正弦定理,得a sin A =b sin B ,∴7sin 60°=2sin B ,得sin B =217,由余弦定理,得cos A =b 2+c 2-a 22bc =4+c 2-74c =12,解得c =3.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(a +b -c )·(a +b +c )=3ab ,且c =4,则△ABC 面积的最大值为 4 3 .[解析] (a +b -c )(a +b +c )=(a +b )2-c 2=a 2+2ab +b 2-c 2=3ab ,∴a 2+b 2-c 2=ab . 又∵a 2+b 2-c 2=2ab cos C , ∴2ab cos C =ab ,∴cos C =12,∵C ∈(0,π),∴C =π3.由余弦定理,得c 2=a 2+b 2-2ab cos C ,∴16=a 2+b 2-2ab cos π3=a 2+b 2-ab ≥2ab -ab =ab ,∴ab ≤16.∴△ABC 面积的最大值S =12ab sin C ≤12×16×sin π3=4 3.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知向量a ,b 满足b =(1,3),a ·b =4,(a -2b )⊥a . (1)求向量a 与b 的夹角; (2)求|2a -b |的值;(3)若向量c =3a -4b ,d =m a +b ,c ∥d ,求m 的值.[解析] (1)因为(a -2b )⊥a ,所以(a -2b )·a =0,|a |2=8,即|a |=2 2.设向量a 与b 的夹角为θ,则cos θ=b ·a |b ||a |=22,又θ∈[0,π],所以θ=π4.(2)由向量模的计算公式|a |=a ·a ,得|2a -b |=2a -b2=4|a |2-4a ·b +|b |2=32-16+4=2 5.(3)因为c ∥d ,所以c =λd ,设3a -4b =λ(m a +b ),则⎩⎪⎨⎪⎧3=λm ,-4=λ,解得m =-34.18.(本小题满分12分)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值. [解析] (1)AB →=(3,5),AC →=(-1,1),求两条对角线的长即求|AB →+AC →|与|AB →-AC →|的大小.由AB →+AC →=(2,6),得|AB →+AC →|=210,由AB →-AC →=(4,4),得|AB →-AC →|=4 2.∴以线段AB ,AC 为邻边的平行四边形的两条对角线的长分别为210和4 2. (2)OC →=(-2,-1),∵(AB →-tOC →)·OC →=AB →·OC →-tOC →2, 易求AB →·OC →=-11,OC →2=5, ∴由(AB →-tOC →)·OC →=0得t =-115.19.(本小题满分12分)(2021·新高考全国卷Ⅰ)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .[解析] (1)由BD sin ∠ABC =a sin C 得,BD =a sin C sin ∠ABC ,在△ABC 中由正弦定理知:csin C=bsin ∠ABC ,即sin C sin ∠ABC =cb,∴BD =acb,又b 2=ac ,∴BD =b . (2)由题意知:BD =b ,AD =2b 3,DC =b3,∴cos ∠ADB =b 2+4b 29-c 22b ·2b 3=13b 29-c 24b 23,同理cos ∠BDC =b 2+b 29-a 22b ·b 3=10b 29-a22b 23, ∵∠ADB =π-∠CDB ,∴cos ∠ADB =-cos ∠BDC ,即13b 29-c 24b 23=a 2-10b 292b 23, 整理得2a 2+c 2=11b 23,又b 2=ac ,∴2a 2+b 4a 2=11b 23,整理得6a 4-11a 2b 2+3b 4=0,解得a 2b 2=13或a 2b 2=32,在由余弦定理知:cos ∠ABC =a 2+c 2-b 22ac =43-a 22b 2,当a 2b 2=13时,cos ∠ABC =76>1不合题意; 当a 2b 2=32时,cos ∠ABC =712; 综上,cos ∠ABC =712.20.(本小题满分12分)△ABC 是等腰直角三角形,∠B =90°,D 是边BC 的中点,BE ⊥AD ,垂足为E ,延长BE 交AC 于F ,连接DF ,求证:∠ADB =∠FDC .[解析] 如图,以B 为原点,BC 所在直线为x 轴建立直角坐标系,设A (0,2),C (2,0),则D (1,0),AC →=(2,-2).设AF →=λAC →,则BF →=BA →+AF →=(0,2)+(2λ,-2λ)=(2λ,2-2λ). 又DA →=(-1,2),BF →⊥DA →, ∴BF →·DA →=0,∴-2λ+2(2-2λ)=0, ∴λ=23.∴BF →=⎝ ⎛⎭⎪⎫43,23,DF →=BF →-BD →=⎝ ⎛⎭⎪⎫13,23.又DC →=(1,0),∴cos ∠ADB =DA →·DB →|DA →|·|DB →|=55,cos ∠FDC =DF →·DC →|DF →|·|DC →|=55,又∠ADB ,∠FDC ∈(0,π), ∴∠ADB =∠FDC .21.(本小题满分12分)如图所示,甲船以每小时30 2 n mile 的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20 n mile.当甲船航行20 min 到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距10 2 n mile,问乙船每小时航行多少n mile?[解析] 如图,连接A 1B 2,由题意知A 2B 2=10 2 n mile,A 1A 2=302×2060=10 2 n mile. 所以A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, 所以△A 1A 2B 2是等边三角形. 所以A 1B 2=A 1A 2=10 2 n mile.由题意知,A 1B 1=20 n mile,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200. 所以B 1B 2=10 2 n mile.因此,乙船速度的大小为10220×60=302(n mile/h).答:乙船每小时航行30 2 n mile.22.(本小题满分12分)已知向量a =(2+sin x,1),b =(2,-2),c =(sin x -3,1),d =(1,k ),(x ∈R ,k ∈R ).(1)若x ∈⎣⎢⎡⎦⎥⎤-π2,π2,且a ∥(b +c ),求x 的值; (2)若函数f (x )=a ·b ,求f (x )的最小值;(3)是否存在实数k ,使得(a +d )⊥(b +c )?若存在,求出k 的取值范围;若不存在,请说明理由.[解析] (1)∵b +c =(sin x -1,-1),又a ∥(b +c ), ∴-(2+sin x )=sin x -1,即sin x =-12.又x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴x =-π6.(2)∵a =(2+sin x,1),b =(2,-2), ∴f (x )=a ·b =2(2+sin x )-2=2sin x +2.又x∈R,∴当sin x=-1时,f(x)有最小值,且最小值为0.(3)∵a+d=(3+sin x,1+k),b+c=(sin x-1,-1),若(a+d)⊥(b+c),则(a+d)·(b+c)=0,即(3+sin x)(sin x-1)-(1+k)=0,∴k=sin2x+2sin x-4=(sin x+1)2-5.由sin x∈[-1,1],∴-5≤(sin x+1)2-5≤-1,得k∈[-5,-1].∴存在k∈[-5,-1],使得(a+d)⊥(b+c).。

2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。

第六章平面向量及其应用综合训练-2021-2022学年高一下学期数学人教A版(2019)必修第二册

第六章平面向量及其应用综合训练-2021-2022学年高一下学期数学人教A版(2019)必修第二册

第六章 平面向量及其应用 章末综合训练一、选择题1. 下列结论中,不正确的是 ( ) A .若 AB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则 AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ B .向量 AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线与 AB ⃗⃗⃗⃗⃗ ∥CD ⃗⃗⃗⃗⃗ 的意义是相同的 C .若向量 a ,b ⃗ 满足 ∣a ∣=∣∣b ⃗ ∣∣,则 a =b ⃗ D .若 AB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则 BA ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗2. 设 a ,b ⃗ 是向量,则“∣a ∣=∣b ⃗ ∣”是“∣a +b ⃗ ∣=∣a −b⃗ ∣”的 ( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件3. 已知向量 a 与 b ⃗ 方向相反,a =(1,−√3),|b ⃗ |=2,则 |a −b⃗ |= ( )A . 2B . 4C . 8D . 164. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 a =3,b =7,cosB =−12,则 c = ( )A . 4B . 5C . 8D . 105. 在 △ABC 中,∠BAC =60∘,∠BAC 的平分线 AD 交 BC 边于点 D ,已知 AD =2√3,且λAB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −13AC ⃗⃗⃗⃗⃗ (λ∈R ),则 AB ⃗⃗⃗⃗⃗ 在 AD ⃗⃗⃗⃗⃗ 方向上的投影数量为 ( )A . 1B . 32C . 3D .3√326. 如图所示,为了测量山高 MN ,选择 A 和另一座山的山顶 C 作为测量基点,从 A 点测得 M 点的仰角 ∠MAN =60∘,C 点的仰角 ∠CAB =45∘,∠MAC =75∘,从 C 点测得 ∠MCA =60∘,已知山高 BC =500 m ,则山高 MN (单位:m )为 ( )A . 750B . 750√3C . 850D . 850√37. 已知在 △ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,若 b =1,c =√3,且 2sin (B +C )cosC =1−2cosAsinC ,则 △ABC 的面积是 ( )A .√34B . 12C .√34或√32D .√34或 128. 已知 e 1⃗⃗⃗ ,e 2⃗⃗⃗是平面内两个夹角为 2π3的单位向量,设 m ⃗⃗ ,n ⃗ 为同一平面内的两个向量,若 m ⃗⃗ =e 1⃗⃗⃗ +e 2⃗⃗⃗ ,∣n ⃗ −e 1⃗⃗⃗ ∣=12,则 ∣m ⃗⃗ −n ⃗ ∣ 的最大值为 ( )A . 12B . 32C .√3−12D .√3+12二、多选题9. 如图,在平行四边形 ABCD 中,下列计算错误的是 ( )A . AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ B . AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DO ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ C . AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ D . AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =0⃗ 10. △ABC 满足下列条件,其中有两个解的是 ( )A . b =3,c =4,B =30∘B . b =12,c =9,C =60∘C . b =3√3,c =6,B =60∘D . a =5,b =8,A =30∘ 11. 设 a ,b⃗ 是两个非零向量.则下列命题为假命题的是 ( ) A .若 ∣∣a +b ⃗ ∣∣=∣a ∣−∣∣b ⃗ ∣∣,则 a⊥b ⃗ B .若 a ⊥b ⃗ ,则 ∣∣a +b ⃗ ∣∣=∣a ∣−∣∣b ⃗ ∣∣C .若 ∣∣a +b ⃗ ∣∣=∣a ∣−∣∣b ⃗ ∣∣,则存在实数 λ,使得 b⃗ =λaD .若存在实数 λ,使得 b ⃗ =λa ,则 ∣∣a +b ⃗ ∣∣=∣a ∣−∣∣b ⃗ ∣∣12. 《数书九章》是南宋时期杰出数学家秦九韶的著作,全书十八卷,共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积术”中提出了已知三角形三边 a ,b ,c ,求面积的公式,这与古希腊的海伦公式完全等价,其求法是:“以少广求之,以小斜幂并大斜幂减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂减上,余四约之,为实;一为从隅,开平方得积.”若把以上这段文字写成公式,即 S =√14[c 2a 2−(c 2+a 2−b 22)2].现有 △ABC 满足 sinA:sinB:sinC =2:3:√7,且 △ABC 的面积 S =6√3,请运用上述公式判断下列结论正确的是 ( ) A . △ABC 的周长为 10+2√7B . △ABC 三个内角 A ,B ,C 满足 2C =A +B C . △ABC 外接圆的直径为4√213D . △ABC 的中线 CD 的长为 3√2三、填空题13. 在 △ABC 中,sinA:sinB:sinC =3:2:4,则 cosC = .14. 已知 A ,B ,C 三点共线,若 O 是这直线外一点,满足 mOA ⃗⃗⃗⃗⃗ −2OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ,则点 A 分 BC⃗⃗⃗⃗⃗ 的比为 .15. 已知 △ABC 的面积为 3√15,且 AC −AB =2,cosA =−14,则 BC 的长为 .16.如图所示,等腰梯形ABCD中,AB=4,BC=CD=2,若E,F分别是BC,AB上的点,且满足BEBC =AFAB=λ,当AE⃗⃗⃗⃗⃗ ⋅DF⃗⃗⃗⃗⃗ =0时,则实数λ的值是.四、解答题17.已知a=(1,2),b⃗=(−3,2),当k为何值时:(1) ka+b⃗与a−3b⃗垂直?(2) ka+b⃗与a−3b⃗平行?平行时它们是同向还是反向?18.如图所示,AD,BE,CF是△ABC的三条高,求证:AD,BE,CF相交于一点.19.已知平面向量a,b⃗,c满足∣a∣=4,∣∣b⃗∣∣=3,∣c∣=2,b⃗⋅c=3,求(a−b⃗)2(a−c)2−[(a−b⃗)⋅(a−c)]2的最大值.20. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,已知 a =1,B =π3,△ABC 的面积为3√34.(1) 求 △ABC 的周长; (2) 求 cos (B −C ) 的值.21. 已知 △ABC 的外接圆半径为 R ,其内角 A ,B ,C 的对边长分别为 a ,b ,c ,设 2R (sin 2A −sin 2B )=(a −c )sinC . (1) 求角 B ;(2) 若 b =12,c =8,求 sinA 的值.22. 已知 O 为坐标原点,对于函数 f (x )=asinx +bcosx ,称向量 OM⃗⃗⃗⃗⃗⃗ =(a,b ) 为函数 f (x ) 的伴随向量,同时称函数 f (x ) 为向量 OM ⃗⃗⃗⃗⃗⃗ 的伴随函数. (1) 设函数 g (x )=√3sin (π+x )−sin (3π2−x),试求 g (x ) 的伴随向量 OM ⃗⃗⃗⃗⃗⃗ ;(2) 记向量 ON ⃗⃗⃗⃗⃗⃗ =(1,√3) 的伴随函数为 f (x ),当 f (x )=85,且 x ∈(−π3,π6) 时,求 sinx 的值; (3) 将(1)中函数 g (x ) 的图象的横坐标伸长为原来的 2 倍(纵坐标不变),再把整个图象向右平移2π3个单位长度得到 ℎ(x ) 的图象,已知 A (−2,3),B (2,6),问在 y =ℎ(x ) 的图象上是否存在一点 P ,使得 AP ⃗⃗⃗⃗⃗ ⊥BP⃗⃗⃗⃗⃗ ?若存在,求出 P 点坐标;若不存在,说明理由.。

平面向量复习综合练习题及答案

平面向量复习综合练习题及答案
A. B. C. D.4
10、(全国2 理5)在?ABC中,已知D是AB边上一点,若 =2 , = ,则?=
(A) (B) (C) - (D) -
11、(北京理4)已知 是 所在平面内一点, 为 边中点,且 ,那么
A. B. C. D.
12、(福建理4文8)对于向量,a、b、c和实数 ,下列命题中真命题是
A.(2,14)B.(2,- )C.(-2, )D.(2,8)
答案:选B
16.定义平面向量之间的一种运算“⊙”如下:对任意的a=(m,n),b=(p,q),令a⊙b= mq-np,下面说法错误的是( )
A.若a与b共线,则a⊙b =0B.a⊙b =b⊙a
C.对任意的 R,有( a)⊙b = (a⊙b)D.(a⊙b)2+(a·b)2= |a|2|b|2
求 。
31、已知A(2,0),B(0,2),C(cos ,sin ),且0< <
(1)若|OA+OC|= ,求OB与OC的夹角;
(2)若AC⊥BC,求tan 的值。
32、
求证:(1)A、B、D三点共线.
33、已知 之间有关系 ,其中k>0,
(1)k表示 ;(2)求 的最小值,并求此时 夹角的大小。
20.P是圆C: 上的一个动点,A( ,1),则 的最小值为______2( -1)
21.已知 =(3,2), =(-1,0),向量 + 与 -2 垂直,则实数 的值为_________1
22.在直角三角形 中, ,点 是斜边 上的一个三等分点,则
23、(江西理15)如图,在 中,点 是 的中点,过点 的直线分别交直线 , 于不同的两点 ,若 , ,则 的值为.
(1)求角 的大小;

高考立体几何、数列、三角函数、不等式、平面向量综合经典试题练习(含答案)

高考立体几何、数列、三角函数、不等式、平面向量综合经典试题练习(含答案)


cos
x




0


2

的部分图象如图所示,f
x0


f
0 ,
则正确的选项是( )
试卷第 2页,总 9页
A.

6
,
x0

1
C.

3
,
x0

1
B.

6
,
x0

4 3
D.

3
,
x0

2 3
20.已知 | a | 1,| b | 2, a 与 b 的夹角为 600,若 a kb 与 b 垂直,则 k 的值为( )
B. 2 2
C. 3 2
D.1
22 . . 设 G 是 ABC 的 重 心 , 且
(56 sin A)GA (40 sin B)GB (35 sin C)GC 0 ,则角 B 的大小为
()
A.45° B.60° C.30° D.1 5°
23.在△ABC 中,a=2,b=2 ,B=45°,则 A 等于( )

CC1 c 则A1B
(A) a+b-c
(B) a–b+c
(C)-a+b+c.
(D)-a+b-c
18.函数 f x sin 2 x
3
sin
x
cos
x
在区间
4
,
2

上的最大值为(

(A) 3 2
(B)1 3
(C)1
(D) 1 3 2
19.已知函数

平面向量及其应用综合练习题 百度文库

平面向量及其应用综合练习题 百度文库

一、多选题1.若a →,b →,c →是任意的非零向量,则下列叙述正确的是( ) A .若a b →→=,则a b →→= B .若a c b c →→→→⋅=⋅,则a b →→= C .若//a b →→,//b c →→,则//a c →→D .若a b a b →→→→+=-,则a b →→⊥2.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角B .向量a 在bC .2m +n =4D .mn 的最大值为2 3.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S = 4.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC <<5.在ABC 中,内角,,A B C 所对的边分别为,,a b c .根据下列条件解三角形,其中有两解的是( )A .10,45,70b A C ==︒=︒B .45,48,60b c B ===︒C .14,16,45a b A ===︒D .7,5,80a b A ===︒6.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =bC .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立D .在ABC 中,sin sin sin +=+a b cA B C7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( )A .B .C .8D .8.ABC 中,4a =,5b =,面积S =c =( )A BC D .9.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且()()()::9:10:11a b a c b c +++=,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC ∆是钝角三角形C .ABC ∆的最大内角是最小内角的2倍D .若6c =,则ABC ∆ 10.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( )A .若a b >,则sin sin AB >B .若sin 2sin 2A B =,则ABC 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形D .若2220a b c +->,则ABC 是锐角三角形11.已知a 、b 是任意两个向量,下列条件能判定向量a 与b 平行的是( ) A .a b =B .a b =C .a 与b 的方向相反D .a 与b 都是单位向量12.给出下列命题正确的是( ) A .一个向量在另一个向量上的投影是向量 B .a b a b a +=+⇔与b 方向相同 C .两个有共同起点的相等向量,其终点必定相同D .若向量AB 与向量CD 是共线向量,则点,,,A B C D 必在同一直线上 13.(多选题)下列命题中,正确的是( ) A .对于任意向量,a b ,有||||||a b a b +≤+; B .若0a b ⋅=,则00a b ==或; C .对于任意向量,a b ,有||||||a b a b ⋅≤ D .若,a b 共线,则||||a b a b ⋅=±14.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC =C .AB DC >D .BC AD ∥15.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=的格点B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个二、平面向量及其应用选择题16.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10m 到位置D ,测得45BDC ∠=︒,则塔AB 的高是(单位:m )( )A .2B .106C .103D .1017.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若3a =边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23π B .43π C .6π D .3π 18.在ABC 中,A ∠,B ,C ∠所对的边分别为a ,b ,c ,过C 作直线CD 与边AB 相交于点D ,90C ∠=︒,1CD =.当直线CD AB ⊥时,+a b 值为M ;当D 为边AB 的中点时,+a b 值为N .当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为( ) A .MB .NC .22D .119.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒20.在三角形ABC 中,若三个内角,,A B C 的对边分别是,,a b c ,1a =,42c =,45B =︒,则sin C 的值等于( )A .441B .45C .425D .44121.如图,在ABC 中,60,23,3C BC AC ︒===,点D 在边BC 上,且27sin 7BAD ∠=,则CD 等于( )A 23B 3C 33D 4322.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .23BG BE = B .2CG GF = C .12DG AG =D .0GA GB GC ++=23.在ABC 中,若()()0CA CB CA CB +⋅-=,则ABC 为( ) A .正三角形B .直角三角形C .等腰三角形D .无法确定24.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .1425.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-26.题目文件丢失!27.在ABC 中,()2BC BA AC AC +⋅=,则ABC 的形状一定是( ) A .等边三角形 B .等腰三角形C .等腰直角三角形D .直角三角形28.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD - 29.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形30.在ABC ∆中,2,2,120,,AC AB BAC AE AB AF AC λμ==∠===,M 为线段EF 的中点,若1AM =,则λμ+的最大值为( ) A 7B 27C .2D 21 31.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B .332C .33D 332.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭33.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进50 m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50 m ,山坡对于地平面的坡度为θ,则cos θ等于( )A .3 B .2 C .31- D .21-34.题目文件丢失!35.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米【参考答案】***试卷处理标记,请不要删除一、多选题 1.ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应,若,则向量长度相等,方向相同,故,故正确; 对于,当且时,,但,可以不相等,故错误; 对应,若,,则方向相同 解析:ACD 【分析】根据平面向量的定义、数量积定义、共线向量定义进行判断. 【详解】对应A ,若a b =,则向量,a b 长度相等,方向相同,故||||a b =,故A 正确; 对于B ,当a c ⊥且b c ⊥时,··0a c b c ==,但a ,b 可以不相等,故B 错误; 对应C ,若//a b ,//b c ,则,a b 方向相同或相反,,b c 方向相同或相反, 故,a c 的方向相同或相反,故//a c ,故C 正确;对应D ,若||||a b a b +=-,则22222?2?a a b b a a b b ++=-+,∴0a b =,∴a b ⊥,故D 正确.故选:ACD 【点睛】本题考查平面向量的有关定义,性质,数量积与向量间的关系,属于中档题.2.CD 【分析】对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用()∥判断;对于D ,利用C 的结论,2m+n=4,结合基本不等式判断. 【详解】 对于A ,向量(解析:CD 【分析】对于A ,利用平面向量的数量积运算判断; 对于B ,利用平面向量的投影定义判断;对于C ,利用(a b -)∥c 判断;对于D ,利用C 的结论,2m +n =4,结合基本不等式判断. 【详解】对于A ,向量a =(2,1),b =(1,﹣1),则2110a b ⋅=-=>,则,a b 的夹角为锐角,错误;对于B ,向量a =(2,1),b =(1,﹣1),则向量a 在b 方向上的投影为2a b b⋅=,错误;对于C ,向量a =(2,1),b =(1,﹣1),则a b -= (1,2),若(a b -)∥c ,则(﹣n )=2(m ﹣2),变形可得2m +n =4,正确;对于D ,由C 的结论,2m +n =4,而m ,n 均为正数,则有mn 12=(2m •n )12≤ (22m n +)2=2,即mn 的最大值为2,正确; 故选:CD. 【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于基础题.3.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错;ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴2sin a R A ===,R =D 错. 故选:AB . 【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.4.ABD 【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得,故正确; 对于,,选项:如图解析:ABD 【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确;对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个.故B ,D 正确,C 错误. 故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.5.BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由,所以,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为,且,所以角有两解析:BC 【分析】根据题设条件和三角形解的个数的判定方法,逐项判定,即可求解,得到答案. 【详解】对于选项A 中:由45,70A C =︒=︒,所以18065B A C =--=︒,即三角形的三个角是确定的值,故只有一解; 对于选项B 中:因为csin 83sin 115B C b ==<,且c b >,所以角C 有两解; 对于选项C 中:因为sin 2sin 17b A B a ==<,且b a >,所以角B 有两解; 对于选项D 中:因为sin sin 1b AB a=<,且b a <,所以角B 仅有一解. 故选:BC .【点睛】本题主要考查了三角形解得个数的判定,其中解答中熟记三角形解得个数的判定方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.ACD【分析】对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确; 对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中解析:ACD 【分析】对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确; 对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误; 对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R CR B C+=+=左边,故该选项正确.【详解】对于A ,由正弦定理2sin sin sin a b cR A B C===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2π,∴a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确;对于D ,由正弦定理2sin sin sin a b cR A B C===,可得右边=2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++=左边,故该选项正确.故选:ACD. 【点睛】本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.AC 【分析】利用余弦定理:即可求解. 【详解】在△ABC 中,b =15,c =16,B =60°, 由余弦定理:,即,解得.故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基解析:AC【分析】利用余弦定理:2222cos b a c ac B =+-即可求解.【详解】在△ABC 中,b =15,c =16,B =60°,由余弦定理:2222cos b a c ac B =+-,即216310a a -+=,解得8a =故选:AC【点睛】本题考查了余弦定理解三角形,需熟记定理,考查了基本运算,属于基础题.8.AB【分析】在中,根据,,由,解得或,然后分两种情况利用余弦定理求解.【详解】中,因为,,面积,所以,所以,解得或,当时,由余弦定理得:,解得,当时,由余弦定理得:,解得所以或解析:AB【分析】在ABC 中,根据4a =,5b =,由1sin 2ABC S ab C ==60C =或120C =,然后分两种情况利用余弦定理求解.【详解】ABC 中,因为4a =,5b =,面积ABC S =所以1sin 2ABC S ab C ==所以sin 2C =,解得60C =或120C =,当60C =时,由余弦定理得:2222cos 21c a b ab C =+-=,解得c =当120C =时,由余弦定理得:2222cos 61c a b ab C =+-=,解得c =所以c =c =故选:AB【点睛】本题主要考查三角形面积公式和余弦定理的应用,还考查了运算求解的能力,属于中档题. 9.ACD【分析】先根据已知条件求得,再根据正余弦定理计算并逐一判断即可.【详解】因为所以可设:(其中),解得:所以,所以A 正确;由上可知:边最大,所以三角形中角最大,又 ,所以角为解析:ACD【分析】先根据已知条件求得::4:5:6a b c =,再根据正余弦定理计算并逐一判断即可.【详解】因为()()()::9:10:11a b a c b c +++=所以可设:91011a b x a c x b c x +=⎧⎪+=⎨⎪+=⎩(其中0x >),解得:4,5,6a x b x c x ===所以sin :sin :sin ::4:5:6A B C a b c ==,所以A 正确;由上可知:c 边最大,所以三角形中C 角最大, 又222222(4)(5)(6)1cos 022458a b c x x x C ab x x +-+-===>⨯⨯ ,所以C 角为锐角,所以B 错误;由上可知:a 边最小,所以三角形中A 角最小, 又222222(6)(5)(4)3cos 22654c b a x x x A cb x x +-+-===⨯⨯,所以21cos22cos 18A A =-=,所以cos2A cosC = 由三角形中C 角最大且C 角为锐角,可得:()20,A π∈,0,2C π⎛⎫∈ ⎪⎝⎭所以2A C =,所以C 正确; 由正弦定理得:2sin c R C =,又sin 8C ==所以2R =,解得:7R =,所以D 正确. 故选:ACD.【点睛】本题考查了正弦定理和与余弦定理,属于基础题.10.AC【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到,从而得到是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判解析:AC【分析】对选项A ,利用正弦定理边化角公式即可判断A 正确;对选项B ,首先利用正弦二倍角公式得到sin cos sin cos A A B B =,从而得到ABC 是等腰三角形或直角三角形,故B 错误;对选项C ,利用正弦定理边化角公式和两角和差公式即可判断C 正确;对D ,首先根据余弦定理得到A 为锐角,但B ,C 无法判断,故D 错误.【详解】对选项A ,2sin 2sin sin sin a b r A r B A B >⇒>⇒>,故A 正确;对选项B ,因为sin 2sin 2sin cos sin cos A B A A B B =⇒=所以A B =或2A B π+=,则ABC 是等腰三角形或直角三角形.故B 错误;对选项C ,因为cos cos a B b A c -=,所以()sin cos sin cos sin sin A B B A C A C -==+,sin cos sin cos sin cos cos sin A B B A A B A B -=+,sin cos cos sin B A A B -=,因为sin 0B ≠,所以cos 0A =,2A π=,ABC 是直角三角形,故③正确; 对D ,因为2220a b c +->,所以222cos 02a b c A ab +-=>,A 为锐角. 但B ,C 无法判断,所以无法判断ABC 是锐角三角形,故D 错误.故选:AC本题主要考查正弦定理和余弦定理解三角形,同时考查学三角函数恒等变换,属于中档题. 11.AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若,则与平行,A选项合乎题意;对于B选项,若,但与的方向不确定,则与不一定平行,B选项不合乎题意;对于C选项,若与的方向相反,解析:AC【分析】根据共线向量的定义判断即可.【详解】对于A选项,若a b=,则a与b平行,A选项合乎题意;=,但a与b的方向不确定,则a与b不一定平行,B选项不合乎题对于B选项,若a b意;对于C选项,若a与b的方向相反,则a与b平行,C选项合乎题意;对于D选项,a与b都是单位向量,这两个向量长度相等,但方向不确定,则a与b不一定平行,D选项不合乎题意.故选:AC.【点睛】本题考查向量共线的判断,考查共线向量定义的应用,属于基础题.12.C【分析】对A,一个向量在另一个向量上的投影是数量;对B,两边平方化简;对C,根据向量相等的定义判断;对D,根据向量共线的定义判断.【详解】A中,一个向量在另一个向量上的投影是数量,A解析:C【分析】对A,一个向量在另一个向量上的投影是数量;+=+;对B,两边平方化简a b a b对C,根据向量相等的定义判断;对D,根据向量共线的定义判断.A 中,一个向量在另一个向量上的投影是数量,A 错误;B 中,由a b a b +=+,得2||||2a b a b ⋅=⋅,得||||(1cos )0a b θ⋅-=,则||0a =或||0b =或cos 1θ=,当两个向量一个为零向量,一个为非零向量时,a 与b 方向不一定相同,B 错误;C 中,根据向量相等的定义,且有共同起点可得,其终点必定相同,C 正确;D 中,由共线向量的定义可知点,,,A B C D 不一定在同一直线上,D 错误. 故选:C 【点睛】本题考查了对向量共线,向量相等,向量的投影等概念的理解,属于容易题.13.ACD【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确; 当时,,故选项B 错误; 因为,故选项C 正确;当共线同向时,,当共线反解析:ACD 【分析】利用向量数量积的定义和运算法则逐项判断后可得正确的选项.【详解】由向量加法的三角形法则可知选项A 正确;当a b ⊥时,0a b ⋅=,故选项B 错误; 因为||cos ||||a b a b a b θ⋅=≤,故选项C 正确;当,a b 共线同向时,||||cos 0||||a b a b a b ⋅==,当,a b 共线反向时,||||cos180||||a b a b a b ⋅=︒=-,所以选项D 正确.故选:ACD.【点睛】本题考查向量加法的性质以及对向量数量积的运算规律的辨析,注意数量积运算有交换律,但没有消去律,本题属于基础题.14.BD【分析】根据向量的模及共线向量的定义解答即可;【详解】解:与显然方向不相同,故不是相等向量,故错误;与表示等腰梯形两腰的长度,所以,故正确;向量无法比较大小,只能比较向量模的大小,故解析:BD【分析】根据向量的模及共线向量的定义解答即可;【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误; AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确;向量无法比较大小,只能比较向量模的大小,故C 错误;等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确;故选:BD .【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.15.BCD【分析】根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,,设,若,所以解析:BCD【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,设(,)B m n ,若10OA OB -=(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确. 若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.二、平面向量及其应用选择题16.B【分析】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有3x ,在△BCD 中,CD=10,∠BCD=105°,∠BDC=45°,∠CBD=30°,由正弦定理可求 BC ,从而可求x 即塔高.【详解】设塔高为x 米,根据题意可知在△ABC 中,∠ABC=90°,∠ACB=60°,AB=x ,从而有3x ,23x , 在△BCD 中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30° 由正弦定理可得,sin sin BC CD BDC CBD = 可得,BC=10sin 453102sin 303x ==. 则6;所以塔AB 的高是6米;故选B .【点睛】本题主要考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,即正确建立数学模型,结合已知把题目中的数据转化为三角形中的数据,进而选择合适的公式进行求解.17.A【分析】根据题意得出tan tan tan A B C a b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长.【详解】0a OA b OB c OC ⋅+⋅+⋅=,a b OC OA OB c c∴=--, 同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c C b B cC ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B C a b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==, 由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R,则22sin a R A ===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A.【点睛】 本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题.18.C【分析】当直线CD AB ⊥时,由直角三角形的勾股定理和等面积法,可得出222+=a b c , 1ab c =⨯,再由基本不等式可得出2c ≥,从而得出M 的范围.当D 为边AB 的中点时,由直角三角形的斜边上的中线为斜边的一半和勾股定理可得2c =,2224a b c +==,由基本不等式可得出2ab ≤,从而得出N 的范围,可得选项.【详解】当直线CD AB ⊥时,因为90C ∠=︒,1CD =,所以222+=a b c ,由等面积法得1ab c =⨯,因为有222a b ab +≥(当且仅当a b =时,取等号),即()22>0c c c ≥,所以2c ≥, 所以+M a b ===≥(当且仅当a b =时,取等号),当D 为边AB 的中点时,因为90C ∠=︒,1CD =,所以2c =,2224a b c +==, 因为有222a b ab +≥(当且仅当a b =时,取等号),即42ab ≥,所以2ab ≤,所以+N a b ===≤(当且仅当a b =时,取等号),当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大的数),则m 的最小值为(此时,a b =);故选:C.【点睛】本题考查解直角三角形中的边的关系和基本不等式的应用,以及考查对新定义的理解,属于中档题.19.C【分析】 首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】 因为27a b +=,所以2()7a b +=, 即22447a a b b +⋅+=, 因为221a b ==,所以12a b ⋅=, 所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒,故选:C.【点睛】 该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目.20.B【分析】在三角形ABC 中,根据1a =,c =45B =︒,利用余弦定理求得边b ,再利用正弦定理sin sin b c B C=求解. 【详解】在三角形ABC 中, 1a =,c =45B =︒,由余弦定理得:2222cos b a c ac B =+-,13221252=+-⨯⨯=,所以5b =, 由正弦定理得:sin sin b c B C=,所以2sin 42sin 55c B C b ===,故选:B【点睛】本题主要考查余弦定理和正弦定理的应用,所以考查了运算求解的能力,属于中档题. 21.A【分析】首先根据余弦定理求AB ,再判断ABC 的内角,并在ABD △和ADC 中,分别用正弦定理表示AD ,建立方程求DC 的值.【详解】AB =3==,222cos 22AB BC AC B AB BC +-∴===⋅, 又因为角B 是三角形的内角,所以6B π=,90BAC ∴∠=,sin BAD ∠=,cos 7BAD ∴∠==,sin cos 7DAC BAD ∴∠=∠=, 在ABD △中,由正弦定理可得sin sin BD B AD BAD ⋅=∠, 在ADC 中,由正弦定理可得sin sin DC C AD DAC⋅=∠,()1DC DC ⨯=,解得:3DC =. 故选:A【点睛】本题考查正余弦定理解三角形,重点考查数形结合,转化与化归,推理能力,属于中档题型.22.C【分析】由三角形的重心定理和平面向量的共线定理可得答案.【详解】 ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G 为重心,则23BG BE =,2CG GF =,12DG GA =且0GA GB GC ++= 故选:C【点睛】本题考查了三角形的重心定理和向量共线定理,属于中档题.23.C【分析】利用平面向量的数量积的运算性质可得(CA CB + 2222)()0CA CB CA CB b a -=-=-=,从而可得答案.【详解】 解:在ABC 中,(CA CB + 2222)()0CA CB CA CB b a -=-=-=, a b ∴=,ABC ∴为等腰三角形,故选:C .【点睛】本题考查三角形形状的判断,考查向量的数量积的运算性质,属于中档题.24.C【解析】【分析】取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心,则0DW BC ⋅=, 再用AB 、AC 表示AW ,AG ,BC 再根据向量的数量积的运算律计算可得.【详解】解:如图,取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心0DW BC ∴⋅=()()22113323AG AD AB AC AB AC ∴==⨯+=+ ()12AW AD DW AB AC DW =+=++ ()()()115326AW AG AB AC AB AC DW AB AC DW +=++++=++ ()()()5566AB AC DW AB AG AW BC BC B W C BC AC D ⎡⎤∴+⋅=⋅=⋅⋅⎢++++⎥⎣⎦()56AB A BC C =⋅+ ()()56C AC AB AB A =⋅+- ()()222242105566AC AB =-=-= 故选:C【点睛】本题考查平面向量的数量积的定义和性质,考查三角形的重心和外心的性质及向量中点的向量表示,考查运算能力,属于中档题.25.D【分析】由22()S a b c +=+,利用余弦定理、三角形的面积计算公式可得:1sin 2cos 22bc A bc A bc =+,化为sin 4cos 4A A -=,与22sin cos 1A A +=.解出即可.【详解】解:22()S a b c +=+,2222S b c a bc ∴=+-+,∴1sin 2cos 22bc A bc A bc =+, 所以sin 4cos 4A A -=,因为22sin cos 1A A +=.解得15cos 17A =-或cos 1A =-. 因为1cos 1A -<<,所以cos 1A =-舍去.15cos 17A ∴=-. 故选:D .【点睛】本题考查了余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.26.无27.D【分析】先根据向量减法与向量数量积化简得边之间关系,再判断三角形形状.【详解】因为()()()222BC BA AC BC BA BC BA BC BA AC +⋅=+⋅-=-=,所以222a c b -=,即ABC 是直角三角形,选D.【点睛】判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用πA B C ++=这个结论.28.D 【分析】 利用向量的三角形法则和向量共线定理可得:DF AF AD =-,1=2AF AE ,=AE AB BE +,1=2BE BC ,=BC AD ,即可得出答案.【详解】 利用向量的三角形法则,可得DF AF AD =-,=AE AB BE +, E 为BC 的中点,F 为AE 的中点,则1=2AF AE ,1=2BE BC 1111==()=+2224DF AF AD AE AD AB BE AD AB BC AD ∴=--+-- 又=BC AD1324DF AB AD ∴=-. 故选D.【点睛】本题考查了向量三角形法则、向量共线定理,考查了推理能力与计算能力.向量的运算有两种方法:一是几何运算,往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算,建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单).29.D【分析】由已知22:tan :tan a b A B =,利用正弦定理及同角的三角函数的基本关系对式子进行化简,然后结合三角函数的性质再进行化简即可判断.【详解】∵22:tan :tan a b A B =, 由正弦定理可得,22sin sin tan sin cos sin sin sin tan sin cos cos AA A AB B B B B B AB===, ∵sin sin B 0A ≠, ∴sin cos sin cos A B B A=, ∴sin cos sin cos A A B B =即sin 2sin 2A B =,∵()(),0,,0,A B A B ππ∈+∈, ∴22A B =或22A B π+=,∴A B =或2A B π+=,即三角形为等腰或直角三角形, 故选D .【点睛】本题考查同角三角函数的基本关系及正弦定理的应用,利用正弦定理进行代数式变形是解题的关键和难点.30.C【分析】 化简得到22AM AB AC λμ=+,根据1AM =得到221λμλμ+-=,得到λμ+的最大值. 【详解】 ()1222AM AE AF AB AC λμ=+=+, 故2222224cos1201222AM AB AC λμλμλμλμλμ⎛⎫=+=++⨯︒=+-= ⎪⎝⎭ 故()()()222223134λμλμλμλμλμλμ=+-=+-≥+-+,故2λμ+≤. 当1λμ==时等号成立.故选:C .【点睛】本题考查了向量的运算,最值问题,意在考查学生的综合应用能力.31.B【分析】由条件和余弦定理得到6ab =,再根据三角形的面积公式计算结果.【详解】由条件可知:22226c a b ab =+-+,①由余弦定理可知:222222cos c a b ab C a b ab =+-=+-,②所以由①②可知,62ab ab -=-,即6ab =,则ABC 的面积为11sin 62222S ab C ==⨯⨯=. 故选:B【点睛】本题考查解三角形,重点考查转化与化归思想,计算能力,属于基础题型.32.D【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x 的取值范围.【详解】设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-,所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭.故选:D【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.33.C【分析】易求30ACB ∠=︒,在ABC 中,由正弦定理可求BC ,在BCD 中,由正弦定理可求sin BDC ∠,再由90BDC θ∠=+︒可得答案.【详解】45CBD ∠=︒,30ACB ∴∠=︒,在ABC 中,由正弦定理,得sin sin BC AB CAB ACB =∠∠,即50sin15sin30BC =︒︒,解得25(62)BC =-, 在BCD 中,由正弦定理,得sin sin BC CD BDC CBD =∠∠,即25(62)50sin 45-=︒, 31sin BDC -∴∠=,即31sin(90)θ-+︒=, 31cos θ-∴=, 故选:C .【点睛】该题考查正弦定理在实际问题中的应用,由实际问题恰当构建数学模型是解题关键.34.无35.D【分析】作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .【详解】解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,在Rt BSD ∆中,sin75BD BS =︒2000sin15sin75=︒︒2000sin15cos15=︒︒1000sin30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D .【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.。

平面向量综合试题(含答案)

平面向量综合试题(含答案)

BAC D平面向量一、选择题:1、在平面上,已知点A(2,1),B(0,2),C(-2,1),O(0,0).给出下面得结论:①②③其中正确..结论得个数就是()A.1个B.2个C.3个D.0个2.下列命题正确得就是()A.向量得长度与向量得长度相等B.两个有共同起点且相等得向量,其终点可能不同C.若非零向量与就是共线向量,则A、B、C、D四点共线D.若,则3、若向量= (1,1), = (1,-1), =(-1,2),则等于( )A、+B、C、D、+4.若,且与也互相垂直,则实数得值为( )A. B、6C、D、35.已知=(2,3), =(,7) ,则在上得正射影得数量为( )A、B、C、D、6.己知(2,-1)、(0,5) 且点P在得延长线上,,则P点坐标为()A、(-2,11)B、(C、(,3)D、(2,-7)7.设就是非零向量,若函数得图象就是一条直线,则必有( )A.ﻩ B. C.ﻩD.8.已知D点与ABC三点构成平行四边形,且A(-2,1),B(-1,3),C(3,4),则D点坐标为( )A、(2,2) B、(4,6) C、(-6,0) D、(2,2)或(-6,0)或(4,6)9、在直角中,就是斜边上得高,则下列等式不成立得就是(A)(B)(C)(D)10. 设两个向量与其中为实数、若则得取值范围就是( )A、B、C、D、10.已知P={a|a=(1,0)+m(0,1),m∈R},Q={b|b=(1,1)+n(-1,1),n∈R}就是两个向量集合,则P∩Q 等于( )A.{(1,1)} B.{(-1,1)} C.{(1,0)}D.{(0,1)}二、填空题:11.若向量得夹角为,,则.12.向量.若向量,则实数得值就是ﻩﻩ.13.向量、满足==1,=3,则=14. 如图,在中,就是边上一点,则、15.如图,在中,点就是得中点,过点得直线分别交直线,于不同得两点,若,,则得值为ﻩ. 三、解答题:16、设两个非零向量e1、e2不共线、如果=e1+e2,2e1+8e2,=3(e1-e2)⑴求证:A、B、D共线;⑵试确定实数k,使ke1+e2与e1+ke2共线、17、已知△ABC中,A(2,4),B(-1,-2),C(4,3),BC边上得高为AD、⑴求证:AB⊥AC;⑵求点D与向量得坐标、17.(10分)已知sin(α+错误!)=-错误!,α∈(0,π).(1)求错误!得值;(2)求cos(2α-错误!)得值.18.已知矩形相邻得两个顶点就是A(-1,3),B(-2,4),若它得对角线交点在x轴上,求另两个顶点得坐标.19、已知△顶点得直角坐标分别为、(1)若,求sin∠得值;(2)若∠就是钝角,求得取值范围、20.已知向量.(1)若,求; (2)求得最大值.21、设向量,函数、(Ⅰ)求函数得最大值与最小正周期; (Ⅱ)求使不等式成立得得集合、 22.(12分)已知向量a =(cos α,sin α),b =(c os β,sin β),|a -b |=错误!.(1)求co s(α-β)得值; (2)若0<α<\f(π,2),-错误!<β<0,且si n β=-错误!,求sin α.平面向量参考答案一、选择题:1-5:BA BBC 6、A 7、 A 【解析】,若函数得图象就是一条直线,即其二次项系数为0, 0, 8、D 9、 C 、【分析】: ,A就是正确得,同理B 也正确,对于D 答案可变形为,通过等积变换判断为正确、 10、 A 【分析】由可得,设代入方程组可得消去化简得,再化简得再令代入上式得可得解不等式得因而解得、故选A 10、 A 二、填空题: 11、 【解析】。

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。

常考问题平面向量的线性运算及综合应用

常考问题平面向量的线性运算及综合应用

常考问题平面向量的线性运算及综合应用部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑常考问题8平面向量的线性运算及综合应用[真题感悟] 1.(2018·辽宁卷>已知点A(1,3>,B(4,-1>,则与向量A错误!同方向的单位向量为( >.b5E2RGbCAPA.错误!B.错误!p1EanqFDPwC.错误!D.错误!DXDiTa9E3d解读A错误!=(4,-1>-(1,3>=(3,-4>,∴与A错误!同方向的单位向量为错误!=错误!.RTCrpUDGiT答案A 2.(2018·福建卷>在四边形ABCD中,错误!=(1,2>,错误!=(-4,2>,则该四边形的面积为( >5PCzVD7HxAA.错误!B.2错误!C.5D.10解读因为错误!·错误!=0,所以错误!⊥错误!.jLBHrnAILg 故四边形ABCD的面积S=错误!|错误!||错误!|=错误!×错误!×2错误!=5.xHAQX74J0X答案C 3.(2018·湖北卷>已知点A(-1,1>,B(1,2>,C(-2,-1>,D(3,4>,则向量错误!在错误!方向上的投影为( >LDAYtRyKfEA.错误!B.错误!C. -错误!D.-错误!解读错误!=(2,1>,错误!=(5,5>,所以错误!在错误!方向上的投Zzz6ZB2Ltk影为错误!=错误!=错误!=错误!.dvzfvkwMI1答案A 4.(2018·新课标全国Ⅰ卷>已知两个单位向量a,b的夹角为60°,c=ta+(1-t>b.若b·c=0,则t=________.rqyn14ZNXI 解读因为向量a,b为单位向量,又向量a,b的夹角为60°,所以a·b=错误!,由b·c=0,得∴b·c=ta·b+(1-t>·b2=错误!t+(1-t>×12=错误!t+1-t=1-错误!t=0.∴t=2.EmxvxOtOco答案2 5.(2018·山东卷>已知向量错误!与错误!的夹角为120°,且|错误!|=3,|错误!|=2.若A错误!=λ错误!+错误!,且错误!⊥错误!,则实数λ的值为________.SixE2yXPq5解读由错误!⊥错误!知错误!·错误!=0,即错误!·错误!=(λ错误!+错误!>·(错误!-错误!>=(λ-1>错误!·错误!-λA 错误!2+错误!2=(λ-1>×3×2×错误!-λ×9+4=0,解得λ=错误!.6ewMyirQFL答案错误![考题分析]题型选择题、填空题难度低档考查平面向量的有关概念(如单位向量>、数量积的运算(求模与夹角等>.中档在平面几何中,求边长、夹角及数量积等.高档在平面几何中,利用数量积的计算求参数值等.1.向量的概念(1>零向量模的大小为0,方向是任意的,它与任意非零向量都共线,记为0.(2>长度等于1个单位长度的向量叫单位向量,a的单位向量为±错误!.(3>方向相同或相反的向量叫共线向量(平行向量>.(4>如果直线l的斜率为k,则a=(1,k>是直线l的一个方向向量.(5>|b|cos〈a,b〉叫做b在向量a方向上的投影.2.两非零向量平行、垂直的充要条件设a=(x1,y1>,b=(x2,y2>,(1>若a∥b⇔a=λb(λ≠0>;a∥b⇔x1y2-x2y1=0.(2>若a⊥b⇔a·b=0;a⊥b⇔x1x2+y1y2=0.3.平面向量的性质(1>若a=(x,y>,则|a|=错误!=错误!.(2>若A(x1,y1>,B(x2,y2>,则|A错误!|=错误!.kavU42VRUs (3>若a=(x1,y1>,b=(x2,y2>,θ为a与b的夹角,则cosθ=错误!=错误!.y6v3ALoS89 4.当向量以几何图形的形式出现时,要把这个几何图形中的一个向量用其余的向量线性表示,就要根据向量加减法的法则进行,特别是减法法则很容易使用错误,向量错误!=错误!-错误!(其中O为我们所需要的任何一个点>,这个法则就是终点向量减去起点向量.M2ub6vSTnP 5.根据平行四边形法则,对于非零向量a,b,当|a+b|=|a-b|时,平行四边形的两条对角线长度相等,此时平行四边形是矩形,条件|a+b|=|a-b|等价于向量a,b互相垂直,反之也成立.0YujCfmUCw 6.两个向量夹角的范围是[0,π],在使用平面向量解决问题时要特别注意两个向量夹角可能是0或π的情况,如已知两个向量的夹角为钝角时,不单纯就是其数量积小于零,还要求不能反向共线.eUts8ZQVRd热点一平面向量的线性运算【例1】(2018·江苏卷>设D,E分别是△ABC的边AB,BC上的点,AD=错误!AB,BE=错误!BC.若错误!=λ1错误!+λ2错误!(λ1,λ2为实数>,则λ1+λ2的值为________.sQsAEJkW5T解读如图,错误!=错误!+错误!=错误!错误!+错误!错误!=错误!错误!+错误!(错误!-错误!>=-错误!错误!+错误!错误!,则λ1=-错误!,λ2=错误!,λ1+λ2=错误!.GMsIasNXkA答案错误![规律方法]在一般向量的线性运算中,只要把其中的向量当作字母,其运算类似于代数中合并同类项的运算,在计算时可以进行类比.本例中的第(1>题就是把向量错误!用TIrRGchYzg 错误!,错误!表示出来,再与题中已知向量关系式进行对比,得出相等关系式,可求相应的系数.7EqZcWLZNX【训练1】(2018·天津卷>在平行四边形ABCD中,AD=1,∠BAD=60°,E为CD的中点.若错误!·错误!=1,则AB的长为________.lzq7IGf02E 解读在平行四边形ABCD中,取AB的中点F,则错误!=错误!,∴错误!=错误!=错误!-错误!错误!,又错误!=错误!+错误!,zvpgeqJ1hk ∴错误!·错误!=(错误!+错误!>·(错误!-错误!错误!>=错误!2-错误!错误!·错误!+错误!·错误!-错误!错误!2=|错误!|2+错误!|错误!||错误!|·cos60°-错误!|错误!|2=1+错误!×错误!|错误!|-错误!|错误!|2=1.NrpoJac3v1∴错误!|错误!|=0,又|错误!|≠0,∴|错误!|=错误!.1nowfTG4KI答案错误!热点二平面向量的数量积【例2】若两个非零向量a,b满足|a+b|=|a-b|=2|a|,则向量b与a+b的夹角为( >.A.错误!B.错误!C.错误!D.错误!fjnFLDa5Zo 解读法一由已知|a+b|=|a-b|,两边平方,整理可得a·b=0.①由已知|a+b|=2|a|,两边平方,整理可得a2+b2+2a·b=4a2.②把①代入②,得b2=3a2,即|b|=错误!|a|.③而b·(a+b>=b·a+b2=b2,故cos〈b,a+b〉=错误!=tfnNhnE6e5错误!=错误!=错误!.HbmVN777sL又〈b,a+b〉∈[0,π],所以〈b,a+b〉=错误!.法二如图,作O错误!=a,O错误!=b,以OA,OB为邻边作平行四边形OACB,则O错误!=a+b,B错误!=a-b.V7l4jRB8Hs 由|a+b|=|a-b|,可知|O错误!|=|B错误!|,所以平行四边形OACB是矩形.又|a+b|=|a-b|=2|a|,可得|O错误!|=|B错误!|=2|O错误!|,故在Rt△AOB中,|错误!|=错误!83lcPA59W9=错误!|O错误!|,故tan∠OBA=错误!=错误!,所以∠BOC=∠OBA=错误!.而〈b,a+b〉=∠BOC=错误!.mZkklkzaaP答案A [规律方法]求解向量的夹角,关键是正确求出两向量的数量积与模.本例中有两种解法,其一利用已知向量所满足的条件和向量的几何意义求解,其二构造三角形,将所求夹角转化为三角形的内角求解,更为直观形象.AVktR43bpw 【训练2】(2018·湖南卷>已知a,b是单位向量,a·b=0.若向量c满足|c-a-b|=1,则|c|的取值范围是( >.ORjBnOwcEd A.[错误!-1,错误!+1] B.[错误!-1,错误!+2]2MiJTy0dTTC.[1,错误!+1] D.[1,错误!+2]解读由a,b为单位向量且a·b=0,可设a=(1,0>,b=(0,1>,又设c=(x,y>,代入|c-a-b|=1得(x-1>2+(y-1>2=1,又|c|=错误!,故由几何性质得错误!-1≤|c|≤错误!+1,即错误!-1≤|c|≤错误!+1.答案A热点三平面向量与三角函数的综合【例3】已知向量m=(sinx,-1>,n=(cosx,3>.(1>当m∥n时,求错误!的值;(2>已知在锐角△ABC中,a,b,c分别为角A,B,C的对边,错误!c=2asin(A+B>,函数f(x>=(m+n>·m,求f错误!的取值范围.gIiSpiue7A解(1>由m∥n,可得3sinx=-cosx,于是tanx=-错误!,∴错误!=错误!=错误!=-错误!.uEh0U1Yfmh(2>在△ABC中A+B=π-C,于是sin(A+B>=sinC,由正弦定理,得错误!sinC=2sinAsinC,∵sinC≠0,∴sinA=错误!.又△ABC为锐角三角形,∴A=错误!,于是错误!<B<错误!.∵f(x>=(m+n>·m=(sinx+cosx,2>·(sinx,-1>=sin2x+sinxcosx-2=错误!+错误!sin2x-2=错误!sin错误!-错误!,IAg9qLsgBX ∴f错误!=错误!sin错误!-错误!=错误!sin2B-错误!.由错误!<B<错误!得错误!<2B<π,∴0<sin2B≤1,-错误!<错误!sin2B-错误!≤错误!-错误!,WwghWvVhPE即f(B+错误!>∈错误!.asfpsfpi4k [规律方法]在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题.在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.ooeyYZTjj1【训练3】(2018·江苏卷>已知向量a=(cosα,sinα>,b=(cosβ,sinβ>,0<β<α<π.BkeGuInkxI(1>若|a-b|=错误!,求证:a⊥b;(2>设c=(0,1>,若a+b=c,求α,β的值.(1>证明由|a-b|=错误!,即(cosα-cosβ>2+(sinα-sinβ>2=2,整理得cosαcosβ+sinαsinβ=0,即a·b=0,因此a⊥b.PgdO0sRlMo(2>解由已知条件得错误!3cdXwckm15 cosβ=-cosα=cos(π-α>,由0<α<π,得0<π-α<π,又0<β<π,故β=π-α.则sinα+sin (π-α>=1,即sinα=错误!,故α=错误!或α=错误!.当α=错误!时,β=错误!(舍去>h8c52WOngM 当α=错误!时,β=错误!.审题示例(四> 突破有关平面向量问题的思维障碍图1解读法一设直角三角形ABC的两腰长都为4,如图1所示,以C为原点,CA,CB所在的直线分别为x轴,y轴,建立平面直角坐标系,则A(4,0>,B(0,4>,因为D为AB的中点,所以D(2,2>.因为P为CD的中点,所以P(1,1>.故|PC|2=12+12=2,|PA|2=(4-1>2+(0-1>2=10,|PB|2=(0-1>2+(4-1>2=10,所以错误!=错误!=10.v4bdyGious图2法二如图2所示,以C为坐标原点,CA,CB所在的直线分别作为x轴,y轴建立平面直角坐标系.设|CA|=a,|CB|=b,则A(a,0>,B(0,b>,则D错误!,P错误!,J0bm4qMpJ9∴|PC|2=错误!2+错误!2=错误!+错误!,XVauA9grYP|PB|2=错误!2+错误!2=错误!+错误!,bR9C6TJscw|PA|2=错误!2+错误!2=错误!+错误!,pN9LBDdtrd 所以|PA|2+|PB|2=10错误!=10|PC|2,DJ8T7nHuGT∴错误!=10.法三如图3所示,取相互垂直的两个向量C错误!=a,C错误!=b 作为平面向量的基向量,显然a·b=0.QF81D7bvUA图3则在△ABC中,B错误!=a-b,因为D为AB的中点,所以C错误!=错误!(a+b>.4B7a9QFw9h 因为P为CD的中点,所以P错误!=-错误!C错误!=-错误!×错误!(a+b>=-错误!(a+b>.在△CBP中,P错误!=P错误!+C 错误!=-错误!(a+b>+b=-错误!a+错误!b,在△CAP中,P 错误!=P错误!+C错误!=-错误!(a+b>+a=错误!a-错误!b.所以|P错误!|2=错误!2=错误!(a2+b2+2a·b>=错误!(|a|2+|b|2>,|P错误!|2=错误!2=错误!a2+错误!b2-错误!a·b=错误!|a|2+错误!|b|2,|P错误!|2=错误!2=错误!a2+错误!b2-错误!a·b=错误!|a|2+错误!|b|2.故错误!=错误!=10.ix6iFA8xoX答案D 方法点评以上根据向量数与形的基本特征,结合题目中的选项以及直角三角形的条件,从三个方面提出了不同的解法,涉及向量的基本运算、坐标运算等相关知识,在寻找解题思路时,应牢牢地把握向量的这两个基本特征.wt6qbkCyDE [针对训练]在△ABC中,已知BC=2,错误!·错误!=1,则△ABC的面积S△ABC最大值是________.Kp5zH46zRk解读以线段BC所在直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系,则B(-1,0>,C(1,0>.设A(x,y>,则错误!=(-1-x,-y>,错误!=(1-x,-y>,于是错误!·错误!=(-1-x>(1-x>+(-y>(-y>=x2-1+y2.Yl4HdOAA61由条件错误!·错误!=1知x2+y2=2,ch4PJx4BlI这表明点A在以原点为圆心,错误!为半径的圆上.当OA⊥BC时,△ABC面积最大,即S△ABC=错误!×2×错误!=错误!.(建议用时:60分钟>1.(2018·陕西卷>设a,b为向量,则“|a·b|=|a||b|”是“a∥b”的( >.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解读由|a||b||cos〈a,b〉|=|a||b|,则有cos〈a,b〉=±1.即〈a,b〉=0或π,所以a∥b.由a∥b,得向量a与b同向或反向,所以〈a,b〉=0或π,所以|a·b|=|a||b|.qd3YfhxCzo答案C 2.已知向量a与b的夹角为120°,|a|=3,|a+b|=错误!则|b|等于( >.E836L11DO5A.5B.4C.3D.1解读向量a与b的夹角为120°,|a|=3,|a+b|=错误!,则a·b=|a||b|·cos120°=-错误!|b|,|a+b|2=|a|2+2a·b+|b|2.所以13=9-3|b|+|b|2,则|b|=-1(舍去>或|b|=4.答案B 3.(2018·辽宁一模>△ABC中D为BC边的中点,已知A错误!=a,A错误!=b则在下列向量中与A错误!同向的向量是( >.S42ehLvE3MA.错误!+错误!B.错误!-错误!501nNvZFisC.错误!D.|b|a+|a|b解读∵A错误!=错误!(A错误!+A错误!>=错误!(a+b>,jW1viftGw9∴向量错误!与向量A错误!是同向向量.xS0DOYWHLP答案C 4.已知非零向量a,b,c满足a+b+c=0,向量a与b的夹角为60°,且|a|=|b|=1,则向量a与c的夹角为( >.LOZMkIqI0wA.30°B.60°C.120°D.150°解读因为a+b+c=0,所以c=-(a+b>.所以|c|2=(a+b>2=a2+b2+2a·b=2+2cos60°=3.所以|c|=错误!.ZKZUQsUJed 又c·a=-(a+b>·a=-a2-a·b=-1-cos60°=-错误!,设向量c与a的夹角为θ,则cosθ=错误!=错误!=-错误!.又0°≤θ≤180°,所以θ=150°.dGY2mcoKtT答案D5.(2018·安徽卷>在平面直角坐标系中,O是坐标原点,两定点A,B满足|错误!|=|错误!|=错误!·错误!=2,则点集{P|错误!=λ错误!+μ错误!,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( >.rCYbSWRLIA A.2错误!B.2错误!C.4错误!D.4错误!FyXjoFlMWh 解读由|错误!|=|错误!|=错误!·错误!=2,知cos∠AOB=错误!,又0≤∠AOB≤π,则∠AOB=错误!,又A,B是两定点,可设A(错误!,1>,B(0,2>,P(x,y>,由错误!=λ错误!+μ错误!,可得错误!⇒错误!TuWrUpPObX 因为|λ|+|μ|≤1,所以错误!+错误!≤1,当错误!7qWAq9jPqE 由可行域可得S0=错误!×2×错误!=错误!,所以由对称性可知点P所表示的区域面积S=4S0=4错误!,故选D.llVIWTNQFk答案D 6.(2018·新课标全国Ⅱ卷>已知正方形ABCD的边长为2,E为CD的中点,则错误!·错误!=________.yhUQsDgRT1解读由题意知:错误!·错误!=(错误!+错误!>·(错误!-错误!>=(错误!+错误!错误!>·(错误!-错误!>=错误!2-错误!错误!·错误!-错误!错误!2=4-0-2=2.MdUZYnKS8I答案2 7.(2018·江西卷>设e1,e2为单位向量,且e1,e2的夹角为错误!,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为________.09T7t6eTno 解读a在b方向上的射影为|a|cos〈a,b〉=错误!.∵a·b=(e1+3e2>·2e1=2e错误!+6e1·e2=5.|b|=|2e1|=2.∴错误!=错误!.答案错误! 8.在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P 是腰DC上的动点,则|P错误!+3P错误!|的最小值为______.e5TfZQIUB5解读建立如图所示的直角坐标系,设DC=m,P(0,t>,t∈[0,m],由题意可知,A(2,0>,B(1,m>,P错误!=(2,-t>,P错误!=(1,m-t>,P错误!+3P错误!=(5,3m-4t>,|P错误!+3P 错误!|=错误!≥5,当且仅当t=错误!m时取等号,即|P错误!+3P错误!|的最小值是5.s1SovAcVQM答案59.如图,在平面直角坐标系xOy中,点A在x轴正半轴上,直线AB的倾斜角为错误!,|OB|=2,设∠AOB=θ,θ∈错误!.GXRw1kFW5s(1>用θ表示点B的坐标及|OA|;(2>若tanθ=-错误!,求O错误!·O错误!的值.UTREx49Xj9解(1>由题意,可得点B的坐标为(2cosθ,2sinθ>.在△ABO中,|OB|=2,∠BAO=错误!,∠B=π-错误!-θ=错误!-θ.由正弦定理,得错误!=错误!,8PQN3NDYyP即|OA|=2错误!sin错误!.mLPVzx7ZNw(2>由(1>,得O错误!·O错误!=|O错误!||O错误!|cosθAHP35hB02d=4错误!sin错误!cosθ.NDOcB141gT因为tanθ=-错误!,θ∈错误!,1zOk7Ly2vA所以sinθ=错误!,cosθ=-错误!.又sin错误!=sin错误!cosθ-cos错误!sinθ=错误!×错误!-错误!×错误!=错误!,fuNsDv23Kh 故O错误!·O错误!=4错误!×错误!×错误!=-错误!.tqMB9ew4YX 10.已知△ABC的内角A,B,C所对的边分别是a,b,c,设向量m =(a,b>,n=(sinB,sinA>,p=(b-2,a-2>.HmMJFY05dE(1>若m∥n,求证:△ABC为等腰三角形;(2>若m⊥p,边长c=2,C=错误!,求△ABC的面积.(1>证明因为m∥n,所以asinA=bsinB,即a·错误!=b·错误!(其中R是△ABC外接圆的半径>,所以a=b.所以△ABC为等腰三角形.ViLRaIt6sk(2>解由题意,可知m·p=0,即a(b-2>+b(a-2>=0,所以a+b =ab,由余弦定理,知4=c2=a2+b2-2abcos错误!=(a+b>2-3ab,即(ab>2-3ab-4=0,所以ab=4或ab=-1(舍去>.9eK0GsX7H1所以S△AB C=错误!absinC=错误!×4×sin错误!=错误!.naK8ccr8VI11.如图所示,A,B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,∠AOP=θ(0<θ<π>,C点坐标为(-2,0>,平行四边形OAQP的面积为S.B6JgIVV9ao(1>求O错误!·O错误!+S的最大值;P2IpeFpap5(2>若CB∥OP,求sin错误!的值.3YIxKpScDM解(1>由已知,得A(1,0>,B(0,1>,P(cos θ,sin θ>,因为四边形OAQP是平行四边形,所以O错误!=O错误!+O错误!=(1,0>+(cosθ,sinθ>gUHFg9mdSs=(1+cosθ,sinθ>.所以O错误!·O错误!=1+cos θ.uQHOMTQe79又平行四边形OAQP的面积为S=|O错误!|·|O错误!|sinθ=sinθ,IMGWiDkflP 所以O错误!·O错误!+S=1+cosθ+sinθ=错误!sin错误!+1.WHF4OmOgAw又0<θ<π,所以当θ=错误!时,O错误!·O错误!+S的最大值为错误!+1.aDFdk6hhPd(2>由题意,知C错误!=(2,1>,O错误!=(cosθ,sinθ>,ozElQQLi4T因为CB∥OP,所以cosθ=2sinθ.又0<θ<π,cos2θ+sin2θ=1,解得sinθ=错误!,cosθ=错误!,所以sin2θ=2sinθcosθ=错误!,cos2θ=cos2θ-sin2θ=错误!.CvDtmAfjiA 所以sin错误!=sin2θcos错误!-cos2θsin错误!=错误!×错误!-错误!×错误!=错误!.QrDCRkJkxh申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。

高考中的三角函数与平面向量问题

高考中的三角函数与平面向量问题
高考专题突破二
高考中的三角函数与平面向量问题
内容索引
考点自测 题型分类 深度剖析 课时作业
考点自测
1.(2016·全国Ⅱ)若将函数 y=2sin 2x 的图象向左平移1π2个单位长度,则平移
后图象的对称轴为
A.x=k2π-π6(k∈Z)
√B.x=k2π+π6(k∈Z)
C.x=k2π-1π2(k∈Z)
123456
解答
解答
2.(2016·北京)在△ABC 中,a2+c2=b2+ 2ac.
(1)求 B 的大小;
解 由 a2+c2=b2+ 2ac,得 a2+c2-b2= 2ac.
由余弦定理,得
cos
a2+c2-b2 B= 2ac =
22aacc=
2 2.
又 0<B<π,所以 B=π4.
123456
解答
(2)求 2cos A+cos C 的最大值.
解答
(2)若bcos C+ccos B=1,△ABC的周长为5,求b的长. 解 由余弦定理可知,
a2+b2-c2 a2+c2-b2 bcos C+ccos B=b· 2ab +c· 2ac =22aa2=a=1, 由(1)知ca=ssiinn CA=2,则 c=2, 由周长a+b+c=5,得b=2.
D.x=k2π+1π2(k∈Z)
12345
解析 答案
2.(2016·全国Ⅲ)在△ABC 中,B=π4,BC 边上的高等于13BC,则 cos A 等于
A.3
10 10
B.
10 10
√C.-
10 10
D.-3
10 10
解析 设 BC 边上的高 AD 交 BC 于点 D,由题意 B=π4,可知 BD=13BC,

2023北京高一(上)期末数学汇编:平面向量及其应用章节综合

2023北京高一(上)期末数学汇编:平面向量及其应用章节综合

2023北京高一(上)期末数学汇编平面向量及其应用章节综合一、单选题 1.(2023秋·北京昌平·高一统考期末)如图,在矩形ABCD 中,对角线,AC BD 交于点O ,则下列各式一定成立的是( )A .AB CD = B .AC BD =C .12AO CA =D .()12AO AB AD =+ 2.(2023秋·北京丰台·高一统考期末)AB AD CD −+化简后等于( ) A .BCB .CBC .BDD .DB3.(2023秋·北京西城·高一统考期末)已知a 为单位向量,则“||||1a b b +−=”是“存在0λ>,使得b a λ=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(2023秋·北京西城·高一统考期末)正方形ABCD 的边长为1,则|2|AB AD +=( ) A .1B .3CD .55.(2023秋·北京西城·高一统考期末)如图,在平行四边形ABCD 中,AC AB −=( )A .CB B .ADC .BD D .CD6.(2023秋·北京房山·高一统考期末)在ABC 中,D 为BC 的中点,则( ) A .AD AB AC =+ B .1122AD AB AC =+ C .BC AB AC =−D .1122BC AB AC =− 7.(2023秋·北京房山·高一统考期末)已知()2,1A −,()1,3B ,则线段AB 中点的坐标为( )A .()3,2B .3,12⎛⎫ ⎪⎝⎭C .()1,4−D .1,22⎛⎫− ⎪⎝⎭8.(2023秋·北京房山·高一统考期末)已知向量()1,a x =,(),4b x =,则“2x =”是“a b ∥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.(2023秋·北京·高一北京师大附中校考期末)已知平面向量a ,b 是非零向量,2a =,()2a a b ⊥+,则向量b 在向量a 方向上的投影为( ) A .1−B .1C .2−D .210.(2023秋·北京·高一北京师大附中校考期末)已知2a b ==,2a b ⋅=,则a b −=( ) A .1BC .2D 211.(2023秋·北京·高一校考期末)已知向量(1,)a m =,(1,1)b =−,(3,0)c =r,若//()a b c +,则m =( ) A .1−B .12C .2D .2−12.(2023秋·北京西城·高一北京八中校考期末)已知a →,b →是不共线的向量,AB a b λ→→→=+,()AC a b R μλμ→→→=+∈,,那么A ,B ,C 三点共线的充要条件为( ). A .2λμ+= B .1λμ=C .1λμ=−D .1λμ−=二、填空题13.(2023秋·北京·高一校考期末)根据毕达哥拉斯定理,以直角三角形的三条边为边长作正方形,从斜边上作出的正方形的面积正好等于在两直角边作出的正方形面积之和.现在对直角三角形CDE 按上述操作作图后,得如图所示的图形.若AF AB AD x y =+,则x y +=__________.14.(2023秋·北京昌平·高一统考期末)已知向量,a b 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则43a b −=__________.15.(2023秋·北京房山·高一统考期末)已知向量()2,1a =r,()0,2b =−,则2a b −=________.16.(2023秋·北京房山·高一统考期末)已知向量()1,1a =,非零向量b 满足a b a b +=−,请写出b 的一个坐标________. 三、解答题17.(2023秋·北京·高一校考期末)如图所示,在ABC 中,点D 是边BC 的中点,点E 是线段AD 靠近A 的三等分点.过点E 的直线与边,AB AC 分别交于点,P Q .设,PB AP QC AQ λμ==,其中,0λμ≥.(1)试用AD 与BC 表示、AB AC ,写出过程; (2)求证:λμ+.18.(2023秋·北京·高一北京师大附中校考期末)在ABC 中,D E 、为边BC AC 、上的点,且满足,BD CE m n BCEA==.(1)若ABC 为边长为2的等边三角形,,112m n ==,求AD BE ⋅;(2)若11,,32m n DE xAB yAC ===+,求x y +;(3)若π,2,1,3A AB AC m n ∠====,求AD BE ⋅的最大值; (4)若将“D E 、为边BC AC 、上的点”改为“D E 、在ABC 的内部(包含边界)”,其它条件同(1),则AD BE ⋅是否为定值?若是,则写出该定值;若不是,则写出取值范围.(不需要说明理由) 19.(2023秋·北京西城·高一北京八中校考期末)如图,在平行四边形OADB 中,设11,,,33OA a OB b BM BC CN CD ====.试用求,a b 表示,OM ON 及MN .20.(2023秋·北京昌平·高一统考期末)如图,在ABC 中,11,32AM AB BN BC ==.设,AB a AC b ==.(1)用,a b 表示,BC MN ;(2)若P 为ABC 内部一点,且51124AP a b =+.求证:,,M P N 三点共线. 21.(2023秋·北京丰台·高一统考期末)如图,在平行四边形ABCD 中,2AE AB =,13DF DE =.设AB a =,AD b =.(1)用a ,b 表示AC ,DE ;(2)用向量的方法证明:A ,F ,C 三点共线.22.(2023秋·北京房山·高一统考期末)已知向量a ,b 不共线,且2OA a b =−,3OB a b =+,OC a b λ=+.(1)将AB 用a ,b 表示; (2)若OA OC ∥,求λ的值;(3)若3λ=−,求证:A ,B ,C 三点共线.参考答案1.D【分析】由矩形的几何性质,结合各线段对应向量的关系判断各项的正误.【详解】由图知:AB DC CD ==−,故A 错误;,AC BD 不相等,即AC BD ≠,故B 错误;1122AO AC CA ==−,故C 错误;()12AO AB AD =+,故D 正确.故选:D 2.B【分析】根据向量的加法和减法运算即可求解.【详解】因为AB AD CD DB CD CD DB CB −+=+=+=, 故选:B . 3.B【分析】对于前者是否能推出后者,我们举出反例0b =即可,对于后者是否推前者,由后者可得,a b 共线且同方向,则||||||1a b b a b b a +−=+−==,即后者能推出前者,最后即可判断. 【详解】若0b =,则||||1a b b a +−==,但此时不存在0λ>,使得b a λ=, 故不存在0λ>,使得b a λ=,故前者无法推出后者, 若存在0λ>,使得b a λ=,则,a b 共线且同方向,此时||||||1a b b a b b a +−=+−==,故后者可以推出前者, 故“||||1a b b +−=”是“存在0λ>,使得b a λ=的必要不充分条件”, 故选:B. 4.D【分析】利用向量数量积的运算性质,结合正方形中垂直关系及边长即可求解. 【详解】在正方形ABCD 中,如图所示,2222|2|(2)441045AB AD AB AD AB AB AD AD +=+=+⋅+=++=, 25AB AD ∴+=故选:D. 5.B【分析】根据向量运算得AC AB AD −=.【详解】由图知AC AB BC AD −==, 故选:B. 6.B【分析】根据向量加减法运算法则运算求解即可. 【详解】解:因为ABC 中,D 为BC 的中点,所以BC AC AB =−,()11112222AD AB BC AB AC AB AB AC =+=+−=+,故选:B7.D【分析】通过线段AB 的A 点和B 点坐标,由中点坐标公式即可求出线段AB 中点的坐标. 【详解】在线段AB 中,()2,1A −,()1,3B∴线段AB 中点的坐标为1,22⎛⎫− ⎪⎝⎭.故选:D. 8.A【分析】利用向量平行的坐标表示判断即可.【详解】若2x =,则()1,2a =,()2,4b =,2b a ∴=,则a b ∥; 若a b ∥,则24x =,解得2x =±,∴“2x =”是“a b ∥”的充分不必要条件,故选:A. 9.A【分析】首先通过条件()2a a b ⊥+求得·2a b =−,然后根据数量积的运算公式求出·b cos θ,进而求解b 在a 方向上投影.【详解】平面向量a b 、是非零向量,()22a a a b =⊥+,,()2·2?2?||2?42?a a b a a a b a a b a b ∴+=+=+=+0=,则·2a b =−.设a 与b 夹角为θ,···2a b a b cos θ==−,则2·1b cos aθ−==−, b ∴在a 方向上投影为1−.故选:A 10.C【分析】根据数量积的运算律,即可求出. 【详解】因为()22222a b a b a b a b −=−=+−⋅2222224=+−⨯=,所以,2a b −=. 故选:C. 11.B【分析】首先求出b c +的坐标,再根据向量共线的坐标表示计算可得. 【详解】解:因为(1,)a m =,(1,1)b =−,(3,0)c =r, 所以()(1,1)(3,0)2,1b c +=−+=,又//()a b c +, 所以211m =⨯,解得12m =. 故选:B 12.B【分析】若A 、B 、C 三点共线,则向量AC →与AB →平行,根据题中等式结合向量平行的充要条件列式,即可找出使A 、B 、C 三点共线的充要条件.【详解】解:若A 、B 、C 三点共线,则向量//AC AB →→即存在实数k ,使得AB k AC →→=,AB a b λ→=+,AC a b μ→=+()a b k a b λμ∴+=+,可得1kk λμ=⎧⎨=⎩,消去k 得1λμ= 即A 、B 、C 三点共线的充要条件为1λμ= 故选:B .13 【分析】建立平面直角坐标系,标出各个点的坐标,利用平面向量的坐标运算即可得解. 【详解】如图,以A 为原点,分别以,AB AD 为,x y 轴建立平面直角坐标系,设正方形ABCD 的边长为2a ,则正方形DEHI ,正方形EFGC 边长为a可知()0,0A ,()2,0B a ,()0,2D a ,)1DF a =则)1cos30F x a =⋅,)1sin302F y a a =⋅+,即F ⎫⎪⎪⎝⎭又AF AB AD x y =+,()()()2,00,22,2x a y a ax ay ⎫∴=+=⎪⎪⎝⎭即22ax ay ⎧⎪⎪⎨⎪=⎪⎩,即22ax ay +=,化简得x y +=14【分析】由图知||1,||2,,45a b a b ==<>=︒,应用向量数量积的运算律求得24310a b −=,即可得结果. 【详解】由图知:||1,||2,,45a b a b ==<>=︒,则12cos451a b ⋅=⨯︒=, 又222431624916241810a b b b a a ⋅−=−=−++=,则4310a b −=. 15.()2,5【分析】根据向量坐标运算即得.【详解】因为()2,1a =r,()0,2b =−,所以()22,5a b −=. 故答案为:()2,5. 16.1,1(答案不唯一)【分析】设出向量b 的坐标,根据题意可得0a b ⋅=,进而即得. 【详解】设向量(),b x y =,220x y +≠,由a b a b +=−,可得222222a a b b a a b b +⋅+=−⋅+,0a b ∴⋅=,又()1,1a =,所以0x y +=,令1x =,可得()1,1b =−, 所以向量b 的坐标可为1,1. 故答案为:1,1.17.(1)12=−AB AD BC ,12=+AC AD BC(2)4λμ+=【分析】(1)由平面向量基本定理可得答案; (2)由平面向量基本定理、向量的三点共线可得答案. 【详解】(1)因为点D 是边BC 的中点,所以1122=+=+=−AB AD DB AD CB AD BC ,12=+=+AC AD DC AD BC ;(2)因为,PB AP QC AQ λμ==,所以()()1,1λμ+=+=AP AB AQ AC , 因为()12AD AB AC =+, 所以()11113666AE AD AB AC AP AQ λμ++==+=+, 因为P E Q 、、三点共线,所以11166λμ+++=,可得4λμ+=为定值.18.(1)32−(2)13−(3)12−(4)不是定值,理由见解析【分析】(1)D E 、分别是BC AC 、的中点,、AB AC 的夹角为60,()12AD AB AC =+,()122=−+BE AB AC ,计算AD BE ⋅即可; (2)若11,32m n ==,则D 距离是B 近的BC 三等分点,E 是距离C 近的AC 三等分点,则由2133=+=+DE DC CE BC AC 可得,x y ,从而求出x y +; (3)11+==+CE AC n EAEA,()1=−+AD m AB mAC ,11=−++BE AB AC n ,且[]0,1m ∈,由AD BE ⋅()13171=++−+m m ,[]11,2+∈m ,令()[]13,1,2=+∈f x x x x ,由函数的单调性定义可得()13f x x x=+在[]1,2x ∈上单调递增,可求出AD BE ⋅的最大值;(4)以CB 的中点F 为原点,CB 所在的直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系,,设(),D x y ,(),E m n , 可得点D 在以B 为圆心,半径为1的三角形ABC 内部的圆弧上,包括与三角形ABC的边上的两个交点F H 、,点E 在三角形ABC 内部线段AC 的垂直平分线上,包括点B 和AC 的中点N ,取点D 、点E 特殊位置可得答案.【详解】(1)若ABC 为边长为2的等边三角形,,112m n ==,则D E 、分别是BC AC 、的中点,、AB AC 的夹角为60,()12AD AB AC =+,()()()1112222=+=−+−=−+BE BA BC AB AC AB AB AC ,所以()()124⋅=+⋅−+AD BE AB AC AB AC ()221113282244422⎛⎫=−−⋅+=⨯−−⨯⨯+=− ⎪⎝⎭AB AB AC AC ;(2)若11,,32m n DE xAB yAC ===+,则D 距离是B 近的BC 三等分点,E 是距离C 近的AC 三等分点,则()212112333333=+=−=−−=−DE DC CE BC AC AC AB AC AC AB , 所以12,33==−x y ,121333+=−=−x y ;(3)因为=CE n EA,所以11++===+CE CE EA AC n EAEAEA,()()1=+=+=+−=−+AD AB BD AB mBC AB m AC AB m AB mAC , 11=+=−++BE BA AE AB AC n ,因为m n =,所以11=−++BE AB AC m ,且[]0,1m ∈, 所以()()111⎛⎫⋅=−+⋅−+ ⎪+⎝⎭AD BE m AB mAC AB AC m ()2211134111−⎛⎫=−+−⋅+=+− ⎪+++⎝⎭m m m AB m AB AC AC m m m m , ()13171=++−+m m ,[]11,2+∈m , 令()[]13,1,2=+∈f x x x x,设1212x x ≤<≤, 所以()()()121212121212311133⎛⎫−−=+−+=− ⎪⎝⎭x x f x f x x x x x x x x x , 因为1212x x ≤<≤,所以12120,310−<−>x x x x ,所以()()12f x f x <,()13f x x x=+在[]1,2x ∈上单调递增, 所以()111317327122++−≤⨯+−=−+m m , 当12m +=即1m =时AD BE ⋅有最大值为12−; (4)以CB 的中点F 为原点,CB 所在的直线为x 轴,BC 的垂直平分线为y 轴建立如图所示平面直角坐标系,则()()(1,0,1,0,B C A −, 设(),D x y ,(),E m n,因为1,12==BD CE BC EA,1=化简得()2211x y ++=,10+=m ,所以点D 在以B 为圆心,半径为1的三角形ABC 内部的圆弧上,包括与三角形ABC 的边上的两个交点F H 、,并且F H 、都为所在边的中点,点E 在三角形ABC 内部线段AC 的垂直平分线上,包括点B 和AC 的中点N ,当点D 为AB 中点H ,E 与B 点重合时,12⎛==− ⎝⎭AD AH ,0=BE , 所以0⋅=AD BE ,而当,112m n ==时,由(1)32⋅=−AD BE , 故AD BE ⋅不是定值.2130,,,⎡==∈∠=⎣AB BD BE ABE ,所以向量AB 与BE 的夹角为150,设DBE θ∠=,则030,θ⎡⎤∈⎣⎦,cos 1θ⎤∈⎥⎣⎦, 则()⋅=+⋅=⋅+⋅AD BE AB BD BE AB BE BD BEcos θ=⋅+⋅AB BE BD BE ()cos 3cos θθ=+=−+BE BE BE ,所以()cos θ⎡∈⎢⎣,而⎡∈⎣BE , 可得()33cos ,02θ⎡⎤−∈−⎢⎥⎣⎦BE , 所以3,02⎡⎤⋅∈−⎢⎥⎣⎦AD BE .19.15,66OM a b =+22,33ON a b =+1126MN a b =− . 【详解】在平行四边形OADB 中,,a b OD a b BA +=−=,所以()11115,36666OM OB BM OB BC OB BA b a b a b =+=+=+=+−=+ ()142222,333333ON OC CN OC CD OC OD a b a b =+=+===+=+ 进而得221511336626MN ON OM a b a b a b ⎛⎫⎛⎫=−=+−+=− ⎪ ⎪⎝⎭⎝⎭ 20.(1)BC b a =−,1126b MN a =+ (2)证明见解析【分析】(1)由图中线段的位置及数量关系,用,AC AB 表示出,BC MN ,即可得结果; (2)用,a b 表示AM AN +,得到AM AP AN λμ=+,根据向量共线的结论1λμ+=即证结论.【详解】(1)由题图,BC AC AB b a =−=−,121211()232326BN BM BC AB b a a b a MN =−=+=−+=+.(2)由1111151()3323262AM AN AB AC CN AB AC BC a b b a a b +=++=+−=+−−=+, 又51124AP a b =+,所以1122AM AP AN =+,故,,M P N 三点共线.21.(1)AC a b =+,2DE a b =−;(2)答案见详解.【分析】(1)根据向量加法的平行四边形法则,可得AC ,由DE DA AE =+结合已知可得DE ; (2)根据AF AD DF =+可推出()23AF b a +=,即23AF AC =.再根据有公共点A ,可证得三点共线. 【详解】(1)解:根据向量加法的平行四边形法则,可得AC AB AD a b =+=+. 22DE DA AE AD AB a b =+=−+=−. (2)证明:由(1)知,2DE a b =−,所以121333DF DE a b ==−, 所以AF AD DF =+2133a b b =−+()2233a A b C ==+, 所以,AF ,AC 共线.又直线AF ,直线AC 有公共点A ,所以,A ,F ,C 三点共线.22.(1)AB =2a b +;(2)12−; (3)详见解析.【分析】(1)根据向量的减法运算即得;(2)根据向量共线定理可得OA tOC =,进而可得21t t λ=⎧⎨−=⎩,即得; (3)由题可得AC AB =−,然后根据向量共线定理结合条件即得.【详解】(1)因为2OA a b =−,3OB a b =+,所以AB ()322OB OA a b a b a b =−=+−−=+;(2)因为//OA OC ,2OA a b =−,OC a b λ=+,所以OA tOC =,即()2a b t a b λ−=+,又向量a ,b 不共线,所以21t t λ=⎧⎨−=⎩,解得12,2t λ==−, 即λ的值为12−; (3)当3λ=−时, 2OA a b =−,3OC a b =−,AB =2a b +, 所以()322AC OC OA a b a b a b AB =−=−−−=−−=−, 所以//AC AB ,又,AC AB 有公共点A ,所以A ,B ,C 三点共线.。

三角函数、平面向量专题试题集

三角函数、平面向量专题试题集

三角函数、平面向量专题试题集三角函数.平面向量专题试题集1. 函数的最小正周期为 ( A )A. B. C.8D.42. 已知函数的图象的一条对称轴方程为直线_=1,若将函数的图象向右平移b个单位后得到y=sin_的图象,则满足条件的b的值一定为( C )A.B. C.D.3. 在△ABC,为角A.B.C所对的三条边.(1)求时,t的取值范围;(2)化简(用(1)中t表示).(1)∵,∴△ABC为直角三角形,∴∠A+∠B= …………2分又…………4分∵ ∴, ∴…………6分(2)∵ ∴…………9分…………12分4. 已知向量a和b的夹角为60°,a = 3,b = 4,则(2a –b)·a等于 ( B )(A)15 (B)12 (C)6 (D)35. 已知.(Ⅰ)求cos的值;(Ⅱ)求满足sin(– _ ) – sin (+ _) + 2cos=的锐角_.解:(Ⅰ)因为,所以.(2分)所以=, (4分)由,所以.(6分)(Ⅱ)因为sin() – sin() + 2cos,所以, (8分)所以sin_=, (10分)因为_为锐角,所以.(12分)6. 下列函数中,最小正周期为,且图象关于直线对称的是( B )A. B.C. D.7. 若是纯虚数,则的值为 ( B )A.B.C.D.8. 已知向量上的一点(O为坐标原点),那么的最小值是( B )A.-16 B.-8 C.0 D.49. _年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是的值等于( D )A.1 B.C.D.-10. 为锐角,为钝角,=.11. 已知a=1,b=,(1)若a//b,求a·b;(2)若a,b的夹角为135°,求a+b.解(1),①若,同向,则……3分②若,异向,则……3分(2)的夹角为135°,……2分……2分……2分12.已知函数(1)将的形式,并求其图象对称中心的横坐标;(2)如果△ABC的三边a.b.c成等比数列,且边b所对的角为_,试求_的范围及此时函数f(_)的值域.解:(1) ……3分由即对称中心的横坐标为……3分(2)由已知.……3分的值域为……2分综上所述, ……1分13. 设平面上的动向量a=(s,t),b=(-1,t2-k)其中s,t为不同时为0的两个实数,实数,满足a⊥b,(1)求函数关系式(2)若函数上是单调增函数,求证:;(3)对上述,存在正项数列,其中通项公式并证明.(1)解: ……3分(2)证明:成立, ……2分故; ……1分(3)故因为……4分事实上,……4分方法1:方法2:14. 如果函数的最小正周期是T,且当时取得最大值,那么( A )A. B. C. D.15. 在中,已知,那么一定是( B )A.直角三角形B.等腰三角形C.等腰直角三角形D.正三角形16. 已知,那么的值为,的值为.17. 若 , 且()⊥ ,则与的夹角是 ( B )(A)(B)(C)(D)18. 把y = sin_的图象向左平移个单位,得到函数y = sin的图象;再把所得图象上的所有点的横坐标伸长到原来的2倍,而纵坐标保持不变,得到函数的图象.19. 已知直线:_ – 2y + 3 = 0 ,那么直线的方向向量为(2,1)或等(注:只需写出一个正确答案即可);过点(1,1),并且的方向向量2与1满足1·= 0,则的方程为2_ + y – 3 = 0.20. 已知:tan= 2,求:(Ⅰ)tan的值;(Ⅱ)sin2的值.解:(Ⅰ)== 2,∴tan. (5分)(Ⅱ)解法一:sin2+sin2+ cos2= sin2+ sin2+ cos2– sin2= 2sincos+ cos2 (8分)= (11分)=.(13分)(Ⅱ)解法二:sin2+ sin2+ cos2= sin2+ sin2+ cos2– sin2= 2sincos+ cos2 (1)(8分)∵tan=,∴为第一象限或第三象限角.当为第一象限角时,sin=,cos=,代入(1)得2sincos+ cos2=; (10分)当为第三象限角时,sin=,cos=,代入(1)得2sincos+ cos2=. (12分)综上所述:sin2+ sin2+ cos2=.(13分)21. 已知常数a _gt; 0,向量,,经过定点A (0,–a )以+为方向向量的直线与经过定点B (0,a)以+ 2为方向向量的直线相交于点P,其中∈R.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)若,过E (0,1)的直线l交曲线C于M.N两点,求的取值范围.解:(Ⅰ)设P点的坐标为(_,y),则,,又,故,.由题知向量与向量平行,故(y + a) = a_.又向量与向量平行,故y – a = 2.两方程联立消去参数,得点P (_,y)的轨迹方程是(y + a)(y – a)= 2a2_2,即y2 – a2 = 2a2_2.(6分)(Ⅱ)∵,故点P的轨迹方程为2y2 – 2_2= 1,此时点E (0,1)为双曲线的焦点.①若直线l的斜率不存在,其方程为_ = 0,l与双曲线交于.,此时. (8分)②若直线l的斜率存在,设其方程为y = k_ + 1,代入2y2 – 2_2= 1化简得2(k2 – 1) _2 + 4k_ + 1 = 0.∴直线l与双曲线交于两点,∴△=(4k)2 – 8 (k2 – 1) _gt; 0且k2 –1≠0.解得k≠±1.设两交点为M (_1,y1).N (_2,y2),则_1 + _2 =,_1_2 =. (10分)此时= _1_2 + k2_1_2= (k2 + 1) _1_2 =.当–1 _lt; k _lt; 1时,k2 – 1 _lt; 0,故≤;当k _gt; 1或k _lt; – 1时,k2 – 1 _gt; 0,故.综上所述,的取值范围是∪. (13分)22.23.24.25.26.27.28.29.30.31.32. 已知向量=(8, _),=(_,1),其中_>0,若(-2)∥(2+),则_的值为A.4B.8C.0D.2解:-2=(8-2_,_-2),2+=(16+_,_+1)由(-2)∥(2+),得(8-2_,_-2)=λ(16+_,_+1)即_THORN; _=4.选A33. 同时具有以下性质:〝①最小正周期实π;②图象关于直线_=对称;③在[-]上是增函数〞的一个函数是A.y=sin()B.y=cos(2_+)C.y=sin(2_-)D.y=cos(2_-)解:由性质①排除A,由性质②排除D,由性质③排除B,选C.34. 在△ABC中,已知sin2Asin2B=,tanAtanB=3,求角C.解:∵sin2Asin2B=,∴sinAsinBcosAcosB=……①……3’由A.B∈(0,π),知sinAsinB>0,∴cosAcosB>0又tanAtanB=3,即=3……②……6’由①②得:∴c osC=-cos(A+B)=-cosAcosB+sinAsinB=而C∈(0,π),∴C=.35. 如图,已知点P(3,0),点A.B分别在_轴负半轴和y轴上,且=0,,当点B在y轴上移动时,记点C的轨迹为E.(1)求曲线E的方程;(2)已知向量=(1,0),=(0,1),过点Q(1,0)且以向量+k(k∈R)为方向向量的直线l交曲线E于不同的两点M.N,若D(-1,0),且>0,求k的取值范围.解:(1)设A(a,0)(a<0),B(0,b),C(_,y)则=(_-a,y),=(a,-b),=(3,-b),∵=0,,∴……3’消去a.b得:y2=-4_∵a<0,∴_=3a<0故曲线E的方程为y2=-4_(_<0)……5’(2)设R(_,y)为直线l上一点,由条件知)即(_-1,y)=λ(1,k)∴,消去λ得l的方程为:y=k(_-1) ……7’由_THORN;k2_2-2(k2-2)_+k2=0 ……(_)∵直线l交曲线E与不同的两点M.N∴△>0 _THORN; -1<k<1……①……9’设M(_1,y1),N(_2,y2),则=(_1+1,y1),=(_2+1,y2)∵M.N在直线y=k(_-1)上,∴y1=k(_1-1),y2=k(_2-1)又由(_),有_1+_2=,_1_2=2∴=(_1+1)(_2+1)+y1y2=(_1+1)(_2+1)+k2(_1-1)(_2-1)=(k2+1)_1_2+(1-k2)(_1+_2)+k2+1=由条件知:>0 _THORN;k2>……②……12’由①②知:-1<k<-或<k<1.……13’36. 设集合,集合,则( A )A.中有3个元素 B.中有1个元素C.中有2个元素 D.37. 在△中,〝是〝〞的( C )A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件38. 函数在下面哪个区间内是增函数( C )A.B.C. D.39. 函数的最小正周期为.40. 在三角形ABC中,设,,点在线段上,且,则用表示为.41. 将圆按向量平移得到圆,则的坐标为(-1,2);将抛物线按的相反向量平移后的曲线方程为.42. 已知向量,,,其中.(Ⅰ)当时,求值的集合;(Ⅱ)求的最大值.解:(Ⅰ)由,得,即.…………4分则,得.…………………………………5分∴为所求.…………………………………6分(Ⅱ),……………10分所以有最大值为3. (12)分。

例说平面向量与三角函数的综合性问题

例说平面向量与三角函数的综合性问题

说 :题 以线 量 载 , 、 , . 明本 是 共 向 为体利 / 求 t 0 丁
谊, o

. . +

莲 髻 鬟





中 角
, ,


, 上∞ ,


I 嘉 豫 掰 求的 g ; 三
1:( 譬 一 小解 : 1) 1,) , , 2 ‘ m 4 (
u 手。 ~
‘ .

・ c, z 手 唔, ・ 手 一
时 L o 6 nZ u— o i



取范 手 孑 詈 J2 值 一, , 亍 时 【 ̄ 2s i 3 :
哨 的向量运算。 蓄 赛 署
年 囊 高磊 盂
竺嘉 耄荦
篙量 垒
] 。 i AA C 角 对 .  ̄ . B A , , 的 对 B C
o]=A 曰 + ss … 或 s: i A一 8i n =2 n 2 ,B 手  ̄


线
3 I. ). . (+ t n ,+ 。 x 2 a0y 1)
x 2 a0 + t n 一1
c.c , , 一 等 3 手
三 磊 角嚣袤妻
; 巍麓 鋈
2抓 表 现 手 法 中 的 以 动 写 静 、 小 见 . 以 大、 虚实 结 合 等 3抓 修 辞 手 法 中 的 比 喻 、 人 、 张 、 . 拟 夸 抒 发 了作 者 怎 样 的 思 想 感 情 或 间 接 流 露 出 作 者 怎 样 的 情 感 。 其 主 要 方 法 就 是 运 用 上 面 所 说 的 联 系 法和 诗 词 的 艺 术 手 法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数与平面向量综合一、选择题 (10×5分=50分) 1.已知等腰三角形底角的正弦值为,32则顶角的正弦值是 ( A ) A .594 B .592C .594-D .592- 2.函数x y sin =的图象按向量)2,2(π-=平移后与)(x g 的图象重合,则函数=)(x g (A )A .2cos +xB .2cos --xC .2cos -xD .2cos +-x3.等边ABC ∆的边长为1,设===,,,则=⋅+⋅+⋅( B )A .23B .21C .23-D .21-4.已知,4-<k 则函数)1(cos 2cos -+=x k x y 的最小值是 ( A )A .1B .1-C .12+kD .12+-k5.若θ是第三象限角,且2sin2cossin 1θθθ+=+,则2θ是 ( B )A .第二、四象限角B .第二象限角C .第三象限角D .第四象限角6.已知P 是ABC ∆所在平面内的一点,若R PB PA CB ∈+=λλ,。

则点P 一定在( B )A .ABC ∆内部B .AC 边所在直线上C .AB 边所在直线上D .BC 边所在直线上7.把函数x x y sin cos 3-=的图象按向量)0()0,(>-=m m a 平移,所得的图象关于y 轴对称,则m 的最小正值是 ( D )A .6π B .3π C .π32 D .π65 8.在ABC ∆中,下列三角表达式:①C B A sin )sin(++ ②A C B cos )cos(++ ③ 2tan 2tanC B A + ④ 2sec 2cos AC B +,其中恒为定值的是 ( B ) A .①② B .②③ C .③④D .②④9.已知ABC ∆中,点D 在BC 边上,且2=,,s r +=则s r +的值( D )A .32B .34C .3-D .010.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=, 若⋅≥⋅, 则实数λ的取值范围是 ( B ) A .112λ≤≤ B .112λ-≤≤ C .1122λ≤≤+ D .1122λ-≤≤+二、填空题(6×5=30) 11.︒︒-︒25cos 25sin 5cos 2的值为12.函数)32sin(4π--=x y 的单调减区间是5,1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦_____________13.直角坐标平面上向量)3,2(),1,4(-==在直线λ上的射影长度相等,则直线l 的斜率为3或12-_____________ 14.已知,为互相垂直的单位向量,λ+=-=,2,且,的夹角为锐角,则实数λ的取值范围1(,2)(2,)2-∞-⋃-__________15.在AOB ∆中,)sin 5,cos 5(),sin 2,cos 2(ββαα==OB OA ,若5-=⋅,则AOB∆的面积为_2_________ 16. 在ABC ∆中,O 为中线AM 上的一个动点,若2=AM ,则)(OC OB OA +⋅的最小值是___-2_________ 三、解答题:17.(本题10分)设πππ471217,53)4cos(<<=+x x ,求x x x tan 1sin 22sin 2-+的值。

解:532,cos()3445x x ππππ<+<+=,44sin(),tan()4543x x ππ∴+=-+=-, 原式=2sin (sin cos )sin 2tan()cos 2()tan()cos sin 444cos x x x x x x x x x xπππ+⎡⎤=⋅+=-+⋅+⎢⎥-⎣⎦9428(21)()25375=-⨯-⨯-=-18. (本题12分) 记向量)sin ,(cos )(θθθ=n(1)求两向量的数量积)0()4(⋅π(2)令函数)()2()(4)0()2()(R x x x x f ∈⋅+⋅=π,求函数)(x f 的最小值及相应的x值。

解:(Ⅰ) ()(0)coscos 0sinsin 0444n n πππ⋅=+=(Ⅱ) ()(2)(0)4()()cos 24sin 2f x n x n n x n x x π=⋅+⋅=+2212sin 4sin 2(sin 1)3x x x =-+=--+. 当sin 1x =-,即2()2x k k z ππ=-∈时,()f x 取最小值5-.19.(本题12分)已知锐角三角形ABC 中,c b a ,,分别是角C B A ,,的对边,且bc a c b =-+222, (1) 求角A 的大小(2) 求)62sin(sin 22π++=B B y 得最大值,并求出取得最大值时角B 的大小。

解:(Ⅰ)由余弦定理得 2221cos ,223b c a A A bcπ+-==∴=. (Ⅱ) 111cos 22cos 22cos 2122y B B B B B =-++=-+ =sin(2)16B π-+, 25,0,2(,)32666B C B B πππππ+=<<∴-∈-又 max 2,,2623B B y πππ∴-===当即时20.(本题12分)过ABC ∆的重心G 任作一直线分别交AC AB ,于点E D ,,若)0(,≠==mn n m ,求证:311=+nm . 证明:如图,连结AG ,并延长交BC 于F12(),231()3111()()33311()33AF AB AC AG AFAG AB AC ABC AG AD AB AC mAB m AB ACAEG GE AE AGnAC AB AC AB =+=∴=+∆=-=+-=-+∆=-=-+=-在中,DG 在中,1()3n AC+-1()311()33DG GE AC m DG GE n λλλ⎧-=-⎪⎪⎨⎪=-⎪⎩与共线,且AB ,不共线13有= 得化简得 3m n mn += 113m n∴+= 21.(本题12分)已知函数x c x b a x f 2cos 2sin )(++=的图象经过点)1,4(),1,0(πB A 且当]4,0[π∈x 时,)(x f 取得最大值122-(1)求函数)(x f 的解析式(2)是否存在向量,使得将函数)(x f 的图象按向量平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个向量m ,若不存在,说明理由。

解:由题知11a c ab +=⎧⎨+=⎩ 1b c a ∴==-(Ⅰ)())sin(2)430,,2,4444f x aa x x x πππππ∴=-+⎡⎤⎡⎤∈∴+∈⎢⎥⎢⎥⎣⎦⎣⎦10)1110)121011()1)4a a a a a a a a a f x x π->+-==--<+-⨯=-==-∴=-++当时,由解得当时,无解当时,即a=1时,a=相矛盾。

综上可知(Ⅱ)()2g x x π=是奇函数,将g(x)的图象向左平移个单位再8向下平移一个单位就可以得到()f x 的图象,因此,将()f x 的图象向右平移8π个单位,再向上平移一个单位就可以得到奇函数()2g x x =的图象,故是(,1)8m π=满足条件的一个向量。

22.(本题12分)已知向量),1,1(=向量与向量的夹角为π43,且1-=⋅ (1)求向量(2)若向量与向量)0,1(=q 的夹角为.2π向量)2cos 2,(cos 2CA p =,其中C A ,为ABC ∆+的取值范围。

解:(Ⅰ)设),(y x n =,由1-=⋅可得1-=+y x ①与夹角为π43,有π43=⋅,1,122=+=y x 则②由①②得,{10-==x y 或{1=-=x y ,即)0,1(-=或)1,0(-=(Ⅱ)由与垂直知,)1,0(-=,由C A B +=2知3π=B ,π32=+C A , ,320π<<A )1,0(-= ,)cos ,(cos )12cos 2,(cos 2C A CA p n =-=+∴)32cos(211)]234cos(2[cos 21122cos 122cos 1cos cos 22ππ++=-++=+++=+=+A A A CA C Aππππ353232,320<+<<<A A,,21)32cos(1<+≤-∴πA,45)32cos(21121<++≤∴πA ),45,21[∈+)25,22[+.。

相关文档
最新文档