2006广西玉林市、防城港市中考数学试题非课改卷含答案.
2024年中考数学卷含解析
2024年中考数学卷含解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A.60°B.35°C.30.5°D.30°2.如图,以O为圆心的圆与直线y x=-+交于A、B两点,若△OAB 恰为等边三角形,则弧AB的长度为()A.23πB.πC.23πD.13π3.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A.方有两个相等的实数根B.方程有一根等于0C.方程两根之和等于0D.方程两根之积等于04.实数213-的倒数是()A.52-B.52C.35-D.35)A.±4B.4C.2D.±26.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A.平均数B.中位数C.众数D.方差7.如图,△ABC 中,DE 垂直平分AC 交AB 于E,∠A=30°,∠ACB=80°,则∠BCE 等于()A.40°B.70°C.60°D.50°8.如图,在△ABC 中,∠ACB=90°,沿CD 折叠△CBD,使点B 恰好落在AC 边上的点E 处.若∠A=24°,则∠BDC 的度数为()A.42°B.66°C.69°D.77°9.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是()A.2sin AB A=B.2cos AB A =C.2tan BC A =D.2cot BC A=10.如图,⊙O 与直线l 1相离,圆心O 到直线l 1的距离=4,将直线l 1绕点A 逆时针旋转30°后得到的直线l 2刚好与⊙O 相切于点C,则OC=()A.1B.2C.3D.411.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9B.8,8.5C.16,8.5D.16,10.512.2017年北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为()A.280×103B.28×104C.2.8×105D.0.28×106二、填空题:(本大题共6个小题,每小题4分,共24分.)13.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t 2,那么飞机着陆后滑行_____秒停下.14.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.15.计算:2111x x x+=--___________.16.若反比例函数y=1m x-的图象在每一个象限中,y 随着x 的增大而减小,则m 的取值范围是_____.17.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.有意义,则x 的取值范围是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)12)﹣2(2)化简:22222()x x y x yx y x y x y +--÷++-.20.(6分)某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?21.(6分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)线段AC,AG,AH什么关系?请说明理由;设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.22.(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为.(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.23.(8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)24.(10分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.25.(10分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.26.(12分)如图,已知点D在反比例函数y=mx的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=2 5.(1)求反比例函数y=mx和直线y=kx+b的解析式;(2)连接CD,试判断线段AC与线段CD的关系,并说明理由;(3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA 与点M,求∠BMC的度数.27.(12分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理即可解答.【详解】连接OB,∵点B是弧AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选D.【点睛】此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.2、C【解析】过点O作OE AB⊥,∵y x=-+,∴3,0)D ,3)C ,∴COD 为等腰直角三角形,45ODC ∠=︒,26sin 45322OE OD =⋅︒==,∵OAB △为等边三角形,∴60OAB ∠=︒,∴622sin 6023OE AO ==⋅=︒∴60122π22ππ36063AB r ︒=⋅=⋅=︒.故选C.3、C【解析】试题分析:根据已知得出方程ax 2+bx +c =0(a ≠0)有两个根x =1和x =﹣1,再判断即可.解:∵把x =1代入方程ax 2+bx +c =0得出:a +b +c =0,把x =﹣1代入方程ax 2+bx +c =0得出a ﹣b +c =0,∴方程ax 2+bx +c =0(a ≠0)有两个根x =1和x =﹣1,∴1+(﹣1)=0,即只有选项C 正确;选项A、B、D 都错误;4、D 【解析】因为213-=53,所以213-的倒数是35.故选D.5、B【解析】根据算术平方根的意义求解即可.【详解】=4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.6、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.故选B.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7、D【解析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.8、C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.9、C【解析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵90︒∠=C,2AC=,∴2 cos ACAAB AB==,∴2cosABA=,故选项A,B 错误,∵tan 2BC BC A AC ==,∴2tan BC A =,故选项C 正确;选项D 错误.故选C.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.10、B【解析】先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC 的长.【详解】解:在Rt△ABO 中,sin∠OAB=OB OA =4=2,∴∠OAB=60°,∵直线l 1绕点A 逆时针旋转30°后得到的直线l 1刚好与⊙O 相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=12OA=1.故选B.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.11、A【解析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.12、C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将280000用科学记数法表示为2.8×1.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【详解】由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750即当t=1秒时,飞机才能停下来.故答案为1.【点睛】本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.14、127或2【解析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=12 7;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.15、x+1【解析】先通分,进行分式的加减法,再将分子进行因式分解,然后约分即可求出结果.【详解】解:2111x x x+--=2111x x x ---211x x -=-()()111x x x +-=-1x =+.故答案是:x+1.【点睛】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.16、m>1【解析】∵反比例函数m 1y x-=的图象在其每个象限内,y 随x 的增大而减小,∴m 1->0,解得:m>1,故答案为m>1.17、﹣1【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,整理得k 2+1k=0,解得k 1=0,k 2=﹣1,因为k≠0,所以k的值为﹣1.故答案为:﹣1.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、x2【解析】根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.【详解】由题意得:2-x≥0,解得:x≤2,故答案为x≤2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)2;(2)x﹣y.【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x﹣y.点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元.【解析】(1)设商场第一次购进套运动服,根据“第二批所购数量是第一批购进数量的2倍,但每套进价多了10元”即可列方程求解;(2)设每套运动服的售价为y 元,根据“这两批运动服每套的售价相同,且全部售完后总利润率不低于20%”即可列不等式求解.【详解】(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=.答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+,y解这个不等式,得200答:每套运动服的售价至少是200元.【点睛】此题主要考查分式方程的应用,一元一次不等式的应用,解题的关键是读懂题意,找到等量及不等关系,正确列方程和不等式求解. 21、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面或2或..积不变.②m的值为8【解析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【详解】(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC ∽△ACG ,∴AH AC AC AG=,∴AC 2=AG •AH .(3)①△AGH 的面积不变.理由:∵S △AGH =12•AH •AG =12AC 2=12)2=1.∴△AGH 的面积为1.②如图1中,当GC =GH 时,易证△AHG ≌△BGC ,可得AG =BC =4,AH =BG =8,∵BC ∥AH ,∴12BC BE AH AE ==,∴AE =23AB =83.如图2中,当CH =HG 时,易证AH =BC =4,∵BC∥AH,∴BE BCAE AH=1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,设BM=BE=m,则CM=m,∴m m=4,∴m﹣1),∴AE,综上所述,满足条件的m的值为83或2或.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.22、(1)7、30%;(2)补图见解析;(3)105人;(3)1 2【解析】试题分析:(1)先根据绘画类人数及其百分比求得总人数,继而可得答案;(2)根据(1)中所求数据即可补全条形图;(3)总人数乘以棋类活动的百分比可得;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:解:(1)本次调查的总人数为10÷25%=40(人),∴参加音乐类活动的学生人数为40×17.5%=7人,参加球类活动的人数的百分比为1240×100%=30%,故答案为7,30%;(2)补全条形图如下:(3)该校学生共600人,则参加棋类活动的人数约为600×740=105,故答案为105;(4)画树状图如下:共有12种情况,选中一男一女的有6种,则P(选中一男一女)=612=12.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、操作平台C离地面的高度为7.6m.【解析】分析:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF即可.详解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH-∠HAF=118°-90°=28°,在Rt△ACF中,∵sin∠CAF=CF AC,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.24、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:.考点:列表法与树状图法.25、(1)13;(2)13.【解析】(1)直接根据概率公式求解即可;(2)根据题意先画出树状图,得出所有情况数和甲、乙两位嘉宾能分为同队的结果数,再根据概率公式即可得出答案.【详解】解:(1)∵共有三根细绳,且抽出每根细绳的可能性相同,∴甲嘉宾从中任意选择一根细绳拉出,恰好抽出细绳AA1的概率是=1 3;(2)画树状图:共有9种等可能的结果数,其中甲、乙两位嘉宾能分为同队的结果数为3种情况,则甲、乙两位嘉宾能分为同队的概率是31 93=.26、(1)6yx-=,2y x25=-(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC 的解析式;(2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.本题解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=25,∴25OC OA =,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x 轴,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣6x,设直线AC 关系式为y=kx+b,∵过A(1,0),C(0,﹣2),∴052k b b =+⎧⎨-=⎩,解得252k b ⎧=⎪⎨⎪=-⎩,∴y=25x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC 和△BCD 中OA BCAOC DBC OC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如图,连接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x 轴,∴四边形AEBD 为平行四边形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD 为等腰直角三角形,∴∠BMC=∠DAC=41°.27、共有7人,这个物品的价格是53元.【解析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.。
中考数学规律题
“发现数学规律题”的解题思想相关知识:常见数列的一般公式。
(1)1,2,3,4,…, n (2) 1,4,9,16,…, n2(3)1,3,5,7,9,…, 2n-1. (4) 2,4,6,8,10,…, 2n.(5) 1,3,6,10,15,…, n(n+1)/2.(6) 1,1/2,1/3,1/4,…, 1/n.(7) 1,1/4,1/9,1/16,…, 1/n2. (8) 1/2,1/6,1/12,1/20,…, 1/n(n+1).(9)2,4,8,16,32,…, 2n .典型例题分类解析一、要善于抓主要矛盾有些题目看上去很大、很复杂,实际上,关键性的内容并不多。
对题目做一番认真地分析,去粗取精,取伪存真,把其中主要的、关键的内容抽出来,题目的难度就会大幅度降低,问题也就容易解决了。
例如、观察下列数表:根据数列所反映的规律,第行第列交叉点上的数应为 .总结:数学规律题总是与数相关的问题,所发①首先列出符合要求的数,②然后再寻找其规律还有,邵阳市2006年初中毕业学业考试试题卷(课改区)的数学试题“图中的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤……,则第n个等腰直角三角形的斜边长为_____________。
”也可以按照这个思想求解。
二、要抓题目里的变量例如,用同样规格的黑白两种颜色的正方形瓷砖按下图方式铺地板,则第(3)个图形中有黑色瓷砖块,第个图形中需要黑色瓷砖块(用含的代数式表示).(海南省2006年初中毕业升考试数学科试题(课改区))云南省2006年课改实验区高中(中专)招生统一考试也出有类似的题目:“观察图(l)至(4)中小圆圈的摆放规律,并按这样的规律继续摆放,记第n个图中小圆圈的个数为m,则,m=(用含 n 的代数式表示).”三、要善于比较“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
2009广西玉林防城港中考数学试题
温馨提示:亲爱的同学,答题前,请你先通览全卷;答题时,认真审题,由易到难;答 题后,细心检查.祝你考得最佳成绩. 一、填空题(本大题共 10 小题,每小题 2 分,共 20 分.请将答案直接填写在题中的横线 上. ) 1.计算: 1 3 = 2.当 x = 3.分解因式 4a 1 =
2
. 时,分式
x 1 没有意义. x
. 时,梯形 ABCD 是等腰梯
y
4.在梯形 ABCD 中, AD ∥ BC ,当添加一个条件 形. (不添加辅助线或字母,只需填一个条件) . 5.如图 1,已知直线 a ∥ b ,则 y 与 x 的函数关系是
.
x° 40°
B A
a
6.下列说法: ① 圆柱体的左视图必是一个圆; ② 任意一个三角形 必有一个内切圆.正确说法的序号是 .
发芽数(粒) 三种型号种子数百分比 500 400 300 200 100 420
( )Hale Waihona Puke 370A30%
B
30%
C 图8
C
A
B 图9
C
各种型号种子
(1) C 型号种子的发芽数是_________粒; (2)通过计算说明,应选哪种型号的种子进行推广?(精确到 1% ) (3)如果将所有已发芽的种子放到一起,从中随机取出一粒,求取到 C 型号发芽种子的概 率.
3 的结果是(
2
) C.3 D. 3
B. 9
12.跑步是一项增强体质的简易体育活动.某校某天早上参加晨跑人数有 2318 人,用科学 记数法表示这个数是( )
318 10 A. 2. . 10 C. 2318
广西初三初中数学中考真卷带答案解析
广西初三初中数学中考真卷班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.(1)求证:∠ABD=∠CBD;(3分)(2)若∠C=2∠E,求证:AB=DC;(4分)(3)在(2)的条件下,求四边形AEBD的面积.(5分)2.如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.(1)求a,c的值;(4分)(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;(4分)(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)(4分)3.在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(5分)(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:(1)tan∠PEF的值是否发生变化?请说明理由;(5分)(2)直接写出从开始到停止,线段EF的中点经过的路线长.(4分)4.(11·钦州)(本题满分6分)先化简,再求值:(a+1)(a-1)+a (1-a),其中a=2012.5.(11·钦州)(本题满分6分)如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.6.(11·钦州)(本题满分7分)如图,在平面直角坐标系中,点O为原点,反比例函数y=的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上.(1)求反比例函数的关系式;(2)直接写出菱形OABC的面积.7.(11·钦州)(本题满分9分)某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:频数分布表扇形统计图(1)频数分布表中的m=_ ▲,n=_ ▲;(2)样本中位数所在成绩的级别是_ ▲,扇形统计图中,E组所对应的扇形圆心角的度数是_ ▲;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?8.(11·钦州)(本题满分9分)某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2 000千克/亩、2 500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68 000千克,求A、B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?9.10.(8分)如图,已知CA=CD,∠1=∠2.(1)请你添加一个条件,使得△ABC≌△DEC.你添加的条件是;(2)添加条件后证明:△ABC≌△DEC.11.(8分)小华是某校八年级一班的学生,他班上最高的男生大伟的身高是174cm,最矮的男生小刚的身高是150cm,为了参加学校篮球队的选拔,小华对班上30名男生的身高(单位:cm)进行了统计.请你根据上面不完整的频率分布表,解答下列问题:(1)表中a和b所表示的数分别为a=,b=;(2)小华班上男生身高的极差是 cm;(3)身高的中位数落在哪个分组?;(4)若身高不低于165cm的男生可以参加选拔,则符合条件的男生占全班男生的百分之几?12.(8分)如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx-2的图象经过点A、C,并与y轴交于点E,反比例函数的图象经过点A.(1)点E的坐标是;(2)求一次函数和反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.13.(8分)2009年,王先生在某住宅小区购买了一套140m2的住房,当时该住房的价格为2500元/m2,两年后该住房的价格变为3600元/m2.(1)问该住房价格的年平均增长率是多少?(2)王先生准备进行室内装修,在购买相同质量的材料时,甲、乙两建材商店有不同的优惠方式:在甲商店累计购买2万元材料后,再购买的材料按原价的90%收费;在乙商店累计购买1万元材料后,再购买的材料按原价的95%收费.当王先生计划累计购买材料超过2万元时,请你帮他算一算在何种情况下选择哪一家建材商店购买材料可获得更大优惠.14.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当∠B AC=60º时,DE与DF有何数量关系?请说明理由;(3)当AB=5,BC=6时,求tan∠BAC的值.15.(12分)如图,抛物线:y=ax2+bx+4与x轴交于点A(-2,0)和B(4,0)、与y轴交于点C.(1)求抛物线的解析式;(2)T是抛物线对称轴上的一点,且△ACT是以AC为底的等腰三角形,求点T的坐标;(3)点M、Q分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相向而行.当点M原点时,点Q立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动.过点M的直线l⊥轴,交AC或BC于点P.求点M的运动时间t(秒)与△APQ的面积S的函数关系式,并求出S的最大值.二、选择题1.(11·钦州)70等于A.0B.1C.7D.-72.(11·钦州)一组数据3,4,5,5,6,8的极差是A.2B.3C.4D.53.(11·钦州)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立体的个数是A.3B.4C.5D.64.(11·钦州)“十二·五”期间,,钦州市把“建大港,兴产业,造新城”作为科学发展的三大引擎,其中到2015年港品吞吐能力争取达到120 000 000吨,120 000 000用科学记数法表示为A.1.2×107B.12×107C.1.2×108D.1.2×10-85.(11·钦州)下列计算正确的是6.(11·钦州)如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格,B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针方向90º旋转,再右平移6格D.把△ABC绕着点A顺时针方向90º旋转,再右平移6格7.(11·钦州)下列关于x的一元二次方程中,有两个不相等的实数根的方程是A.x2+1=0B.x2-2x+1=0C.x2+x+1=0D.x2+2x-1=08.(11·钦州)已知⊙O1和⊙O2的半径分别为2和5,如果两圆的位置关系为外离,那么圆心距O1O2的取值范围在数轴上表示正确的是9.(11·钦州)在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件A.必然事件B.不可能事件C.随机事件D.确定事件10.(11·钦州)函数y=ax-2 (a≠0).与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是11.(11·钦州)一个圆锥的底面圆的周长是2π,母线长是3,则它的侧面展开图的圆心角等于A.150ºB.120ºC.90ºD.60º12.(11·钦州)如图,在梯形ABCD中,AB∥CD,AB=3CD,对角线AC、BD交于点O,中位线EF与AC、BD分别交于M、N两点,则图中阴影部分的面积是梯形ABCD面积的A.B.C.D.13.-7的绝对值是【】14.点P(2,-3)所在的象限是【】A.第一象限B.第二象限C.第三象限D.第四象限15.涠洲岛是全国假日旅游新热点,上岛休闲度假,体验海岛风情,感受火山文化已成为众多游客的首选,据统计该景区去年实现门票收入约598000元.用科学记数法表示598000是【】A.0.598×106B.59.8×104C.5.98×104D.5.98×10516.下列四个图形中,是轴对称图形的有【】17.如图,由6个小正方体搭建而成的几何体的俯视图是【】18.下列运算正确的是【】A.(-2x2)3=-6x6B.x4÷x2=x2C.2x+2y=4xy D.(y+x)(-y+x)=y2-x219.若三角形的两边长分别为2和6,则第三边的长可能是【】A.3B.4C.5D.820.21.若一个圆柱的底面半径为1、高为3,则该圆柱的侧面展开图的面积是【】A.6B.C.D.22.已知⊙O1与⊙O2相切,若⊙O1的半径为1,两圆的圆心距为5,则⊙O2的半径为【】A.4B.6C.3或6D.4或623.如图所示,渔船在A处看到灯塔C在北偏东60º方向上,渔船向正东方向航行了12海里到达B处,在B处看到灯塔C在正北方向上,这时渔船与灯塔C的距离是【】24.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90º后,所得直线的解析式为【】A.y=x-2B.y=-x+2C.y=-x-2D.y=-2x-1三、填空题1.(11·钦州)在-2,2,这三个实数中,最小的是 _ .2.(11·钦州)写出一个正比例函数,使其图象经过第二、四象限:_ .3.(11·钦州)在4张完全相同的卡片上分别画上图①、②、③、④.在看不见图形的情况下随机抽取一张,卡片上的图形是中心对称图形的概率是 _ .4.(11·钦州)分式方程=的解是_ .5.(11·钦州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是_ .6.(11·钦州)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2011次运动后,动点P的坐标是_ .7.因式分解:xy-7y=.8.9.函数的自变量x的取值范围是.10.若一个多边形的内角和是900º,则这个多边形是边形.11.在完全相同的四张卡片上分别写有如下四个命题:①半圆所对的弦是直径;②圆既是轴对称图形,又是中心对称图形;③弦的垂线一定经过这条弦所在圆的圆心;④圆内接四边形的对角互补.把这四张卡片放入一个不透明的口袋内搅匀,从口袋内任取一张卡片,则取出卡片上的命题是真命题的概率为.12.如图,△ABC的面积为63,D是BC上的一点,且BD∶CD=2∶1,DE∥AC交AB于点E,延长DE到F,使FE∶ED=2∶1,则△CDF的面积为.四、计算题(6分)计算:.广西初三初中数学中考真卷答案及解析一、解答题1.如图,在梯形ABCD中,AD∥BC,AD=AB,过点A作AE∥DB交CB的延长线于点E.(1)求证:∠ABD=∠CBD;(3分)(2)若∠C=2∠E,求证:AB=DC;(4分)(3)在(2)的条件下,求四边形AEBD的面积.(5分)【答案】(1)证明:∵AD∥BC∴∠ADB=∠CBD∵AB=AD∴∠ADB=∠ABD∴∠ABD=∠CBD(2)∵AE∥DB∴∠E=∠CBD由(1)得∠ABD=∠CBD∴∠ABC=2∠CBD=2∠E又∵∠C=2∠E∴∠ABC=∠C在梯形ABCD中,∴AB=DC【解析】略2.如图,抛物线y=ax2-4ax+c(a≠0)经过A(0,-1),B(5,0)两点,点P是抛物线上的一个动点,且位于直线AB的下方(不与A,B重合),过点P作直线PQ⊥x轴,交AB于点Q,设点P的横坐标为m.(1)求a,c的值;(4分)(2)设PQ的长为S,求S与m的函数关系式,写出m的取值范围;(4分)(3)以PQ为直径的圆与抛物线的对称轴l有哪些位置关系?并写出对应的m取值范围.(不必写过程)(4分)【答案】【解析】略3.在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(5分)(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:(1)tan∠PEF的值是否发生变化?请说明理由;(5分)(2)直接写出从开始到停止,线段EF的中点经过的路线长.(4分)【答案】【解析】略4.(11·钦州)(本题满分6分)先化简,再求值:(a+1)(a-1)+a (1-a),其中a=2012.【答案】解:解法一:原式=a2-1+a-a2 ………………4分=a-1………………5分当a=2012时,原式=a-1=2012-1=2011………………6分解法二:原式=(a+1)(a-1)-a (a-1)………………2分=(a-1) (a+1-a)=a-1………………5分当a=2012时,原式=a-1=2012-1=2011………………6分【解析】略5.(11·钦州)(本题满分6分)如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.【答案】证明:∵四边形ABCD是平行四边形∴BC=AD BC∥AD………………2分∴∠ACB=DAC………………3分∵BE∥DF∴∠BEC=∠AFD………………4分∴△CBE≌△ADF………………5分∴BE=DF………………6分【解析】略6.(11·钦州)(本题满分7分)如图,在平面直角坐标系中,点O为原点,反比例函数y=的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上.(1)求反比例函数的关系式;(2)直接写出菱形OABC的面积.【答案】解:(1)∵y=的图象经过点(1,4),∴4=,即k=4………………3分∴所求反比例函数的关系式为y=………………4分=8………………7分(2)S菱形OABC【解析】略7.(11·钦州)(本题满分9分)某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:频数分布表扇形统计图(1)频数分布表中的m=_ ▲,n=_ ▲;(2)样本中位数所在成绩的级别是_ ▲,扇形统计图中,E组所对应的扇形圆心角的度数是_ ▲;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有多少人?【答案】(1)4,8(2)D 1080(3)800=528(人)答:该校九年级的学生中,体育综合测试成绩不少于80分的大约有528人【解析】略8.(11·钦州)(本题满分9分)某生姜种植基地计划种植A、B两种生姜30亩.已知A、B两种生姜的年产量分别为2 000千克/亩、2 500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68 000千克,求A、B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A、B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?【答案】解:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2 000x+2 500(30-x)=68 000解得x=14∴30-x=16答:种植A种生姜14亩,那么种植B种生姜16亩.(2)由题意得,x≥ (30-x)解得x≥10………………5分设全部收购该基地生姜的年总收入为y元,则y=8×2 000x+7×2 500(30-x)=-1 500 x+525 000………………7分∵y随x的增大而减小,当x=10时,y有最大值此时,30-x=20,y的最大值为510 000元………………8分答:种植A种生姜10亩,那么种植B种生姜20亩,全部收购该基地生姜的年总收入最多为510 000元.………………9分【解析】略9.【答案】解:原式===当时,【解析】略10.(8分)如图,已知CA=CD,∠1=∠2.(1)请你添加一个条件,使得△ABC≌△DEC.你添加的条件是;(2)添加条件后证明:△ABC≌△DEC.【答案】(1)CB=CE(或∠B=∠E,∠A=∠D有一个即可)(2)证明:∵∠1=∠2 ∴∠ACB=∠DCE在△ACB和△DCE中,∵CA=CD,∠ACB=∠DCE,CB=CE∴△ACB≌△DCE【解析】略11.(8分)小华是某校八年级一班的学生,他班上最高的男生大伟的身高是174cm,最矮的男生小刚的身高是150cm,为了参加学校篮球队的选拔,小华对班上30名男生的身高(单位:cm)进行了统计.请你根据上面不完整的频率分布表,解答下列问题:(1)表中a和b所表示的数分别为a=,b=;(2)小华班上男生身高的极差是 cm;(3)身高的中位数落在哪个分组?;(4)若身高不低于165cm的男生可以参加选拔,则符合条件的男生占全班男生的百分之几?【答案】解:(1)(2)24(3)(4)30%【解析】略12.(8分)如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx-2的图象经过点A、C,并与y轴交于点E,反比例函数的图象经过点A.(1)点E的坐标是;(2)求一次函数和反比例函数的解析式;(3)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.【答案】解:(1)点E的坐标为,(2)由题意得知AB∥OE,∴,∴∵嗲你C的坐标为(4,0),∴把嗲你C的坐标(4,0)代入得,,∴,∴所求一次函数为。
2007年全国各地中考试题130多份标题汇总
2007年全国各地中考试题130多份标题汇总2007年安徽省初中毕业学业考试数学试卷及答案2007年安徽省芜湖市初中毕业学业考试数学试卷及参考答案2007年北京市高级中等学校招生统一考试数学试卷及参考答案2007年福建省福州市毕业会考、高级中等学校招生考试卷及答案(扫描)2007年福建省福州市初中毕业会考、高级中等学校招生考试数学试卷及答案2007年福建省龙岩市初中毕业、升学考试数学试题及参考答案2007年福建省宁德市初中毕业、升学考试数学试题及参考答案2007年福建省泉州市初中毕业、升学考试数学试题2007年福建省三明市初中毕业生学业考试数学试题及参考答案2007年福建省厦门市初中毕业和高中阶段各类学校招生数学试题及答案2007年甘肃省白银等3市旧课程数学试题2007年甘肃省白银等7市新课程中考数学试题及参考答案2007年甘肃省兰州市初中毕业生学业考试数学试卷A卷及参考答案2007年甘肃省陇南市中考数学试题及参考答案2007年广东省初中毕业生学业考试数学试题2007年广东省佛山市高中阶段学校招生考试数学试卷2007年广东省广州市初中毕业生学业考试数学试卷2007年广东省茂名市初中学业与高中阶段学校招生考试试题及答案2007年广东省梅州市初中毕业生学业考试数学试题及参考答案2007年广东省韶关市初中毕业生学业考试数学试题及参考答案2007年广东省深圳市初中毕业生学业考试数学试卷及参考答案2007年广东省中山市初中毕业生学业考试数学试卷及参考答案2007年广西省河池市中等学校招生统一考试数学试题及参考答案(课改区)2007年广西省柳州市、北海市中考数学试卷(课改实验区用)2007年广西省南宁市中等学校招生考试(课改实验区)数学试题及参考答案2007年广西省玉林市、防城港市初中毕业升学考试数学试题及参考答案2007年广西省中等学校招生河池市统一考试数学试题及答案(非课改区)2007年贵州省安顺市初中毕业生学业课改实验区数学科试题2007年贵州省毕节地区高中、中专、中师招生统一考试2007年贵州省贵阳市初中毕业生学业考试数学试卷及参考答案2007年贵州省黔东南高中、中专、中师招生统一考试数学试题2007年贵州省遵义市初中学业统一考试数学试卷2007年海南省初中毕业升学考试数学试题2007年河北省初中毕业生升学考试数学试卷及参考答案2007年河北省课程改革实验区初中毕业生学业考试试题及参考答案2007年河南省高级中等学校招生学业考试试卷2007年河南省开封市高中阶段各类学校招生考试题2007年黑龙江省哈尔滨市初中升学考试数学试卷2007年黑龙江省牡丹江市课程改革实验区初中毕业学业考试数学试题2007年湖北省恩施自治州初中毕业、升学考试数学及答案2007年湖北省黄冈市普通高中和中等职业学校招生考试数学试题2007年湖北省荆门市初中毕业生学业考试数学试卷(含答案)(扫描版)2007年湖北省荆门市初中毕业生学业考试数学试题及参考答案2007年湖北省荆州市中考数学试题2007年湖北省潜江市、仙桃市、江汉油田初中毕业生学业考试试题及答案2007年湖北省十堰市初中毕业生学业考试数学试卷2007年湖北省武汉市新课程初中毕业生学业考试数学试卷2007年湖北省咸宁市初中毕业生学业考试数学试卷2007年湖北省襄樊市初中毕业、升学统一考试非课改区数学试题及参考答案2007年湖北省孝感市初中毕业生学业考试数学及答案2007年湖北省宜昌市初中毕业生学业考试数学试题及参考答案2007年湖南省长沙市初中毕业学业考试试卷及答案2007年湖南省常德市初中毕业学业考试数学试卷2007年湖南省郴州市基教试验区初中毕业学业考试数学试卷及答案2007年湖南省怀化市初中毕业学业考试数学试卷及参考答案2007年湖南省邵阳市初中毕业学业考试试题卷2007年湖南省湘潭市初中毕业学业考试数学试卷2007年湖南省永州市初中毕业学业考试数学试卷2007年湖南省岳阳市初中毕业学业考试试卷及参考答案2007年湖南省株洲市初中毕业学业考试数学试卷2007年吉林省长春市初中毕业生学业考试数学试题及答案2007年吉林省初中毕业生学业考试数学试题及参考答案2007年江苏省常州市初中毕业、升学统一考试数学试卷及参考答案2007年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学试题2007年江苏省连云港市中考数学试题与参考答案2007年江苏省南京市初中毕业学业考试数学试题及参考答案2007年江苏省南通市初中毕业、升学考试数学试题2007年江苏省苏州市初中毕业暨升学考试试卷及参考答案2007年江苏省宿迁市中考数学试卷及参考答案2007年江苏省泰州市初中毕业、升学统一考试数学试题及答案2007年江苏省无锡市初中毕业高级中等学校招生考试数学试卷及参考答案2007年江苏省徐州市初中毕业、升学考试数学试题2007年江苏省盐城高中阶段招生统一考试数学试题(扫描版)2007年江苏省扬州市初中毕业、升学考试数学及参考答案(扫描版)2007年江苏省扬州市初中毕业、升学统一考试数学试题及参考答案2007年江苏省中考数学试卷及参考答案2007年江西省南昌市初中毕业暨中等学校招生考试数学试卷及参考答案2007年江西省中等学校招生考试数学试题及参考答案2007年辽宁省大连市初中毕业升学统一考试数学试题2007年辽宁省沈阳市中等学校招生统一考试数学试题及参考答案2007年辽宁省十二市初中毕业生学业考试数学试卷及参考答案2007年内蒙古自治区赤峰市初中毕业、升学统一考试数学试卷及参考答案2007年内蒙古自治区鄂尔多斯市初中毕业升学考试数学试题及参考答案2007年内蒙古自治区呼和浩特市中考数学试卷及参考答案2007年内蒙古自治区乌兰察布市初中升学考试数学试题及参考答案2007年宁夏回族自治区课改实验区初中毕业暨高中招生考试试题及答案2007年山东省滨州市中等学校招生统一考试数学试卷及参考答案2007年山东省德州市中等学校招生考试数学试题及参考答案2007年山东省东营市初中毕业暨高中阶段教育学校招生考试数学试题及答案2007年山东省济南市高中阶段学校招生考试数学试题及答案2007年山东省济宁市中等学校招生考试数学试题及参考答案2007年山东省聊城市普通高中招生统一考试数学试卷及参考答案2007年山东省临沂市初中毕业与高中招生考试考数学试卷及答案(扫描版)2007年山东省临沂市初中毕业与高中招生考试数学试题(Word版含答案)2007年山东省青岛市中考数学试卷(含答案)2007年山东省日照市中等学校统一招生考试数学试题及参考答案2007年山东省泰安市年中等学校招生考试数学试卷(课改实验区用)2007年山东省泰安市中等学校招生考试数学试卷及参考答案(非课改区)2007年山东省威海市初中升学考试数学试题及参考答案2007年山东省潍坊市初中学业水平考试数学试卷及参考答案2007年山东省烟台市初中毕业、升学统一考试数学试卷2007年山东省枣庄市中等学校招生考试数学试题及答案2007年山东省中等学校招生考试数学试题2007年山东省淄博市中等学校招生考试数学试题2007年山西省临汾市初中毕业生学业数学考试试题及参考答案2007年陕西省基础教育课程改革实验区初中毕业学业考试数学试题2007年上海市初中毕业生统一学业考试试卷及答案2007年四川省巴中市高中阶段教育招生考试2007年四川省成都市高中阶段教育学校统一招生考试试卷及参考答案2007年四川省德阳市初中毕业生学业考试数学试卷及答案2007年四川省乐山市高中阶段教育学校招生统一考试数学试题及参考答案2007年四川省泸州市初中毕业暨高中阶段学校招生统一考试数学试题及答案2007年四川省眉山市高中阶段教育学校招生考试数学试卷及参考答案2007年四川省绵阳市高级中等教育学校招生统一考试数学试题(含答案)2007年四川省内江初中毕业会考暨高中阶段招生考试试卷2007年四川省内江市初中毕业会考暨高中阶段招生考试数学试卷及参考答案2007年四川省南充市高中阶段学校招生统一考试数学试卷及参考答案2007年四川省宜宾市高中阶段学校招生考试数学试卷2007年四川省资阳市高中阶段学校招生统一考试数学试题及参考答案2007年四川省自贡市初中毕业暨升学考试数学试题及参考答案2007年台湾地区中考数学第一次测验试题及参考答案2007年天津市中考数学试卷及答案2007年云南省高中(中专)招生统一考试(课改实验区)数学试题及答案2007年云南省昆明市高中(中专)招生统一考试数学试卷2007年云南省双柏县初中毕业考试数学试卷(含答案)2007年浙江省初中毕业生学业考试数学试题及参考答案2007年浙江省杭州市数学中考试题及参考答案2007年浙江省湖州市初中毕业生学业考试数学试卷及参考答案2007年浙江省嘉兴市初中毕业生学业考试数学参考答案2007年浙江省嘉兴市初中毕业生学业考试数学试卷2007年浙江省金华中考数学试题及参考答案2007年浙江省丽水市初中毕业生学业考试数学试卷及参考答案2007年浙江省宁波市中考数学试题及参考答案2007年浙江省衢州市初中毕业生学业水平考试数学试题及参考答案2007年浙江省绍兴市初中毕业生学业考试数学试卷2007年浙江省台州市初中毕业生学业考试数学试卷及参考答案2007年浙江省温州市初中毕业学业考试数学试卷2007年浙江省义乌市初中毕业生学业考试数学试题及参考答案2007年浙江省舟山市初中毕业生学业考试数学试题及参考答案2007年重庆市初中毕业生学业暨高中招生考试试卷及参考答案。
广西壮族自治区玉林市北流市2024-2025学年九年级上学期11月期中数学试题(含答案)
2024年秋季期期中适应性训练九年级数学(全卷共三大题,共4页,满分为120分,考试时间:120分钟)注意事项:1.本考卷分试题卷和答题卡两部分.请将答案填写在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.2.选择题每小题选出答案后,考生用2B 铅笔把答题卡上对应题目的选项标号涂黑.3.非选择题,考生用直径0.5毫米黑色签字笔在答题卡上各题的答题区域内作答.一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,将正确答案涂在答题卡相应的位置上.1.一元二次方程的二次项系数、一次项系数、常数项分别是( )A .3,,B .3,6,C .,,1D .3,6,12.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .等腰梯形B .矩形C .等边三角形D .平行四边形3.抛物线的开口方向是( )A .向左B .向右C .向上D .向下4.下列方程是关于的一元二次方程的是( )A .B.C .D .5.二次函数的图象的顶点坐标是( )A .B .C .D .6.如图,把绕着点顺时针旋转得到,点的对应点落在边上,则下列结论不正确的是( )A .B .平分C .D .7.已知抛物线与轴交于点,,则关于的方程的解是( )A .,B .,23610x x --=6-1-1-36-2y x =-x 20ax bx c ++=2112x x+=2221x x x +=-()()23121x x +=+()2213y x =--+()1,3()1,3-()1,3-()1,3--ADE △D CDB △A C DE AE BC =DE ADB ∠AE BD∥ADE CDB△≌△2y x bx c =-+x ()1,0A ()3,0B -x 20x bx c -+=11x =-23x =-11x =23x =-C .,D .,8.风力发电非常环保,风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转后能与原来的图案重合,那么的值可能是( )A .45B .60C .90D .1209.若将抛物线向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为( )A .B .C .D .10.为确保经济困难学生顺利完成学业,某校成立“情暖校园”爱心基金会,去年上半年发给每个经济困难的学生600元,今年上半年发给了800元,设每半年发给的资金金额的平均增长率为,则下面列出的方程中正确的是( )A .B .C .D .11.设,,是抛物线上的三点,则,,的大小关系为( )A .B .C .D .12.二次函数的图像如下图所示,对称轴是直线,有以下结论:①;②;③;④.其中正确的结论的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题2分,共12分)13.点关于原点对称的点的坐标为______.14.如图,四个二次函数的图芜中,分别对应的是:①;②;③;④;则11x =23x =11x =-23x =n ︒n 2y x =()223y x =-+()223y x =++()223y x =+-()223y x =--x ()28001600x -=()26001800x -=()26001800x +=()28001600x +=()12,A y -()21,B y ()32,C y ()211y x =-++1y 2y 3y 321y y y >>132y y y >>123y y y >>312y y y >>2y ax bx c =++1x =-0abc >24ac b <20a b -=2a b c -+>()2,1-2y ax =2y bx =2y cx =2y dx =、、、的大小关系为______.15.若1是关于的方程的一个根,则的值是______.16.若函数是二次函数,则的值为______.17.已知、是方程的两个实数根,则的值为______.18.在等边中,是边上一点,连接,将绕点逆时针旋转,得到,连接,若,.则下列四个结论:①;②是等边三角形;③;④的周长是9.其中正确的结论是______(把你认为正确结论的序号都填上.)三、解答题:本大题共8小题,满分共72分.将解答过程写在答题卡的相应位置上,作图或添辅助线先用铅笔画完,再用水性笔描黑.19.(6分)解方程:.20.(6分)已知二次函数(是常数).(1)若该二次函数的图像与轴有两个不同的交点,求的取值范围;(2)若该二次函数的图象与轴的其中一个交点坐标为,求一元二次方程的解.21.(10分)已知,在网格中建立如图所示的平面直角坐标系,的三个顶点都在格点上.a b c d x 20x nx m ++=m n +()273m y m x-=-m 1x 2x 2630x x ++=2112x x x x +ABC △D AC BD BCD △B 60︒BAE △ED 6BC =5BD =AE BC ∥BDE △ADE BDC ∠=∠AED △22150x x +-=22y x x m =-+-m x m x ()1,0-220x x m -+-=1010⨯ABC △(1)画出绕点逆时针方向旋转得到的;(2)画出向下平移4个单位长度得到的;(3)的面积是______.22.(10分)【探究发现】观察下列一组方程:①;②;③;④;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.(1)【解决问题】若也是“连根一元二次方程”,写出的值,并解这个一元二次方程;(2)【举一反三】请写出第个方程和它的根.23.(10分)如图,已知抛物线与轴交于,两点,与轴交于点.(1)求线段的长;(2)点是抛物线对称轴上的一个动点,当的值最小时,求点的坐标.24.(10分)【综合与实践】依托“中国陶瓷名城”名片,玉林北流打造了一批国内外有影响力的知名陶瓷品牌.北流某陶瓷公司以每只60元的价格销售一种成本价为40元的文化纪念杯,每星期可售出100只.后来经过市场调查发现,每只杯子的售价每降低1元,则平均每星期可多卖出10只.若该公司销售这种文化纪念杯要想平均每星期获利2240元,请回答:(1)每只杯应降价多少元?(2)在平均每星期获利不变的情况下,为尽可能让利于顾客,赢得市场,该公司应该按原售价的几折出售?25.(本题满分10分)【综合与实践】【问题情况】2024年10月12日,2024-2025赛季CBA “战火重燃”,辽宁队以123比112战胜了浙江队取得了揭幕战的胜利,小浩看了这场比赛,对投篮产生了兴趣.通过查询资料,他发现投篮时篮球以一定速度斜向上抛出,不计空气阻力,在空中划过的运动路线可以看作是抛物线的一部分(如图1).【收集数据】建立平面直角坐标系,篮球从出手到进入篮筐的过程中,它的竖直高度(单位:m )与它和投篮者的水平距离(单位:m )近似满足二次函数关系.已知篮筐中心距离地面的竖直高度是3m ,小浩记录了学校篮球队队员小宇两次定点投篮训练的数据.ABC △O 90︒111A B C △111A B C △222A B C △ABC △20x x -=2320x x -+=2560x x -+=27120x x -+=2560x kx ++=k n 245y x x =-++x A B y C BC P l PA PC +P y x(1)第一次训练时,小宇投出的篮球的水平距离与竖直高度的几组数据如下:水平距离01234…竖直高度 2.03.03.63.83.6…【建立模型】①在图2的平面直角坐标系中,描出以上表中各组数据为坐标的点,并用平滑的曲线连接这些点.②结合表中数据或所画图缘,直接写出篮球运行的最高点距离地面的竖直高度是______m ,并求与满足的函数解析式.(3)已知此次定点投篮训练小宇距篮筐中心的水平距离为5m ,则小宇这次投篮练习是否成功?请说明理由.【拓展应用】(2)第二次定点投篮训练时,小宇出手时篮球的竖直高度与第一次训练相同,此时投出的篮球的竖直高度与水平距离近似满足函数关系.若投篮成功,求此时小宇距篮筐中心的水平距离______5m .(填“”“”或“”)26.(10分)(1)【探究证明】在中,,,直线经过点,且于点,于点,当直线绕点旋转到图1的位置时,求证:.(2)【发现探究】当直线绕点旋转到图2的位置时,(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.(3)【解决问题】当直线绕点旋转到图3的位置时,若,,则的长为______.2024年秋季期期中适应性训练九年级数学参考答案及评分意见一、选择题(每题3分,共36分)y m x my y x y x ()23 4.25y a x =-+d ><=ABC △90ACB ∠=︒AC BC =MN C AD MN ⊥D BE MN ⊥E MN C DE AD BE =+MN C MN C 8BE =2AD =DE123456789101112ABDDACBDACCD二、填空题(每题2分,共12分)13. 14. 15. 16. 17.10 18.①②(注:第18题选一个且正确得1分,多选或错选得0分)三、解答题(8小题共72分)提示:其它解法合理正确的,请对照评分标准酌情给分.19.解:因式分解,得于是得或,,.20.解:(1)二次函数的图象与轴有两个不同的交点,一元二次方程有两个不相等的实数根,,即,解得;(2)二次函数的图象与轴的其中一个交点坐标为,,解得,一元二次方程为,解得或3.21.解:(1)如下图所示,即为所求;(2)如下图所示,即为所求;(3)3.5.22.解:(1)根据题意,得,原方程为,即,()2,1-a b c d >>>1-3-()()530x x +-=50x +=30x -=15x =-23x = 22y x x m =-+-x ∴220x x m -+-=Δ0∴>()()22410m -⨯-⨯->1m <22y x x m =-+-x ()1,0-120m ∴---=3m =-∴220x x m -+-=2230x x -++=1x =-111A B C △222A B C △15k =-∴215560x x -+=()()780x x --=解得,.第个方程为,即.解得,(为正整数).23.解:(1)抛物线的解析式为,,,(2)如图,连接,点与点关于直线对称,,当点、、共线时,为最小值,即为的最小值.由(1)可知,,,易得直线的解析式为,对称轴为直线,且当时,,当的值最小时,点的坐标为.24.解:(1)设每只杯子降价元,根据题意,可列方程:,整理得到:,解得,.所以每只杯子应降价4元或6元.(2)因为要保持每星期获利不变,且尽可能利于顾客,因为该公司应使价格尽量低,因此应降价6元.所以有,所以应按原价的九折出售.25.解:(1)①如图,即为所求.17x =28x =n ()()22110x n x n n --+-=()()10x n x n -+-=11x n =-2x n =n 245y x x =-++()0,5C ∴()5,0B BC ∴==PB A B l PA PC PB PC ∴+=+C P B PB PC BC +=PA PC +()0,5C ()5,0B BC 5y x =-+ l 2x =2x =253y =-+=∴PA PC +P ()2,3x ()()1001060402240x x +--=210240x x -+=14x =26x =6060.960-=②3.8;设与满足的函数解析式为,把点代入,得.解得.故与满足的函数解析式为.(3)成功.理由:当时,.解得,.故小宇距篮筐中心的水平距离为5m 时,篮球的运行轨迹经过篮筐中心,即这一次投篮练习是成功的.(2).提示:把点代入,得.解得.此时与满足的函数解析式为.当时,.解得,.由,可知要使投篮成功,小宇距篮筐中心的水平距离.26.(1)证明:,,,,,,,在和中,,y x ()23 3.8y m x =-+()0,2()2203 3.8m =-+0.2m =-y x ()20.23 3.8y x =--+3y =()20.23 3.83x --+=15x =21x =>()0,2()23 4.25y a x =-+()2203 4.25a =-+0.25a =-y x ()20.253 4.25y x =--+3y =()20.253 4.253x --+=13x =13x =35+>5m d >AD MN ⊥ BE MN ⊥90ADC BEC ∴∠=∠=︒90DAC ACD ∴∠+∠=︒90ACB ∠=︒ 90ACD BCE ∴∠+∠=︒DAC BCE ∴∠=∠ADC △CEB △ADC BECDAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩;,,,;(2)解:(1)中的结论不成立,结论为:.理由如下:,.又于点,于,,,.在和中,,;,,,即.(3)6.ADC CEB ∴△≌△DC BE ∴=AD EC =DE DC EC =+ DE BE AD ∴=+DE BE AD +=90ACB ︒∠= 90ACD BCE ︒∴∠+∠=AD MN ⊥ D BE MN ⊥E 90ADC BEC ︒∴∠=∠=90ACD CAD ︒∴∠+∠=CAD BCE ∴∠=∠ADC △CEB △ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩ADC CEB ∴△≌△CD BE ∴=AD CE =DE BE DE CD EC AD ∴+=+==DE BE AD +=。
广西中考数学模拟考试试卷-含答案
广西中考数学模拟考试试卷-含答案学校:___________班级:___________姓名:___________考号:___________一.选择题(共12小题,满分36分,每小题3分)1.(3分)实数﹣2023的相反数是()A.2023B.﹣2023C.D.﹣2.(3分)如图,下列图案是我国几家水产品机构的标志,其中轴对称图形有()A.B.C.D.3.(3分)下列计算正确的是()A.(a3)4=a7B.a8÷a2=a4C.a2+a2=a4D.a2•a4=a64.(3分)要使代数式的值为非负数,则x的取值范围是()A.x≥0B.x≤0C.x>﹣7D.x≥75.(3分)下列函数中,表示y是x的反比例函数的是()A.x(y+1)=1B.C.D.6.(3分)为估计池塘两岸A、B间的距离,如图,小明在池塘一侧选取了一点O,测得OA=16m,OB=12m,那么AB的距离不可能是()A.5m B.15m C.20m D.30m7.(3分)下列各组二次根式中,属于同类二次根式的是()A.和B.和C.和D.和8.(3分)小军旅行箱的密码是一个五位数,若他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是()A.B.C.D.9.(3分)已知△ABC三个顶点的坐标分别是A(2,1),B(1,3),C(3,0),将△ABC向左平移3个单位长度,再向下平移1个单位长度,则平移后三个顶点的坐标分别为()A.(5,0),(4,2),(6,﹣1)B.(﹣1,0),(﹣2,2),(0,﹣1)C.(﹣1,2),(﹣2,4),(0,1)D.(5,2),(4,4),(6,1)10.(3分)在Rt△ABC中,∠ACB=90°,分别以A点,B点为圆心以大于AB为半径画弧,两弧交于E,F,连接EF交AB于点D,连接CD,以C为圆心,CD长为半径作弧,交AC于G点,则CG:AB =()A.1:B.1:2C.1:D.1:11.(3分)如图,在△ABC中,BC=10,点O为AB上一点,以5为半径作⊙O分别与BC,AC相切于D,E两点,OB与⊙O交于点M,连接OC交⊙O于点F,连接ME,FE,若点D为BC的中点,给出下列结论:①CO平分∠ACB;②点E为AC的中点;③∠AME=22.5°;④的长度为π;其中正确结论的个数是()A.1B.2C.3D.412.(3分)星期天,王军去朋友家借书,如图是他离家的距离(千米)与时间(分钟)的图象,根据图象信息,下列说法不正确的是()A.王军去时的速度小于回家的速度B.王军去时所花的时间多于回家所花的时间C.王军在朋友家停留了10分钟D.王军去时走上坡路,回家时走下坡路二.填空题(共6小题,满分12分,每小题2分)13.(2分)“随手翻开华师大版初中数学课本,翻到的页码恰好是3的倍数”,这个事件是事件(填“随机”、“必然”或“不可能”).14.(2分)若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解,则m=.15.(2分)如图,E为▱ABCD内任一点,且▱ABCD的面积为10,则图中阴影部分的面积为.16.(2分)如图,AB∥CD,∠E=30°,∠ABE=130°,则∠DCE的度数为.17.(2分)某高铁路段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D处(A、C、D共线)同时施工.测得∠CAB=30°,AB=4km,∠ABD =105°,则BD的长为.(结果保留根号)18.(2分)如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y=(k >0,x>0)的图象上,若△OAB的面积为,则k的值为.三.解答题(共8小题,满分72分)19.(6分)计算:.20.(6分)解分式方程:.21.(10分)如图,已知∠AOB和线段MN,点M,N在射线OA,OB上.(1)尺规作图:作∠AOB的角平分线和线段MN的垂直平分线,交于点P,保留作图痕迹,不写作图步骤;(2)连接MP、NP,过P作PC⊥OA,PD⊥OB,垂足分别为点C和点D,求证:MC=ND,请补全下列证明.证明:∵P在线段MN的垂直平分线上∴MP=NP,()∵P在∠AOB的角平分线上,PC⊥OA,PD⊥OB∴PC=PD,()请补全后续证明.22.(10分)某中学为了解学生对“航空航天知识”的掌握情况,随机抽取50名学生进行测试,并对成绩(百分制)进行整理,信息如下:a.成绩频数分布表:成绩x(分)50≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100频数1912166 b.成绩在70≤x<80这一组的是(单位:分):70 71 72 72 74 77 78 78 78 79 79 79根据以上信息,回答下列问题:(1)在这次测试中,成绩的中位数是分,成绩不低于80分的人数占测试人数的百分比为;(2)这次测试成绩的平均数是76.4分,甲的测试成绩是77分,乙说:“甲的成绩高于平均数,所以甲的成绩高于一半学生的成绩.”你认为乙的说法正确吗?请说明理由:(3)请对该校学生“航空航天知识”的掌握情况给出一条合理的评价.23.(10分)如图,已知四边形ABCD内接于⊙O,∠DAB=90°.(Ⅰ)若AB=AD,求∠ACB的度数;(Ⅱ)连接AC,若AD=8,AB=6,对角线AC平分∠DAB,求AC的长.24.(10分)如图,A,B两地由公路和铁路相连,在这条路上有一家食品厂,它到B地的距离是到A地距离的2倍,现该食品厂从A地购买原料,全部制成食品(制作过程中有损耗)卖到B地,两次运输(第一次:A地→食品厂,第二次:食品厂→B地)共支出公路运费15600元,铁路运费20600元.已知公路运费为1.5元/(千米•吨),铁路运费为1元/(千米•吨).(1)求该食品厂到A地,B地的铁路距离分别是多少千米?(2)求该食品厂买进原料及卖出食品各多少吨?(3)若该食品厂此次买进的原料每吨花费5000元,要想该批食品销售完后工厂共获利863800元,求卖出的食品每吨售价是多少元?(利润=总售价﹣总成本﹣总运费)25.(10分)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6m的点E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部点O离水面的距离;(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,设其中一条彩带与支柱OH的水平距离为dm,当这条彩带的长度小于m时,求d的取值范围.26.(10分)(1)(教材呈现)如图,在△ABC中,点D、E分别是AB与AC的中点,结论:DE∥BC.DE =BC.(2)(结论应用)如图1,四边形ABCD中,AD=BC,E、F、G分别是AB、DC、AC的中点,若∠ACB =80°,∠DAC=20°,求∠EFG的度数.(3)如图2,在△ABC外分别作正方形ACEF和BCGH.D是AB的中点,M,N分别是正方形的中心,AC=3,BC=2,则△DMN的面积最大值为多少?参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:实数﹣2023的相反数是2023.故选:A.2.解:观察四个选项可知,只有A选项中的图形沿着一条直线对折后,直线两侧的部分能够完全重合因此A选项中的图形是轴对称图形,B,C,D选项均不合题意.故选:A.3.解:(a3)4=a12,则A不符合题意;a8÷a2=a6,则B不符合题意;a2+a2=2a2,则C不符合题意;a2•a4=a6,则D符合题意;故选:D.4.解:由题意可知﹣1≥0解得:x≥7.故选:D.5.解:根据反比例函数的定义,可判断出只有表示y是x的反比例函数.故选:D.6.解:根据三角形的三边关系可得:16﹣12<AB<16+12即4<AB<2830m不可能.故选:D.7.解:A.=3,即和不是同类二次根式,故本选项不符合题意;B.=3,即和不是同类二次根式,故本选项不符合题意;C.=,即和不是同类二次根式,故本选项不符合题意;D.=,﹣=3,即和﹣是同类二次根式,故本选项符合题意;故选:D.8.解:末位数字可能是0到9,共10种等可能结果,其中正确的只有1种所以小军能一次打开旅行箱的概率是故选:A.9.解:∵A(2,1),B(1,3),C(3,0)∴平移后的坐标分别为(﹣1,0),(﹣2,2),(0,﹣1).故选:B.10.解:由作图可知:EF是AB的垂直平分线,D为AB的中点,CD=CG∵∠ACB=90°∴CG=CD=AB∴CG:AB=1:2故选:B.11.解:如图,连接OD,OE∵以5为半径作⊙O分别与BC,AC相切于D,E两点∴OE⊥AC,OD⊥BC∴圆心O在∠ACB的平分线上∴CO平分∠ACB,故①正确;∵点D为BC的中点∴DC=OD=5∴∠OCD=45°∵∠ACB=90°∴OD∥AC∴点O为AB中点∴OE∥BC故点E为AC的中点,故②正确;由①知,∠OCE=∠COE=45°∴∠AOE=45°∴∠AOE=22.5°,故③正确;由③可知∠BOC=90°∴的长度为π,故④正确.故选D.12.解:王军去时的速度为:2÷20=0.1千米/分回家的速度为:2÷(40﹣30)=0.2千米/分,所以A正确,不符合题意;去时时间为(20分),回家时间为10分故去时所花的时间多于回家所花的时间,所以B正确,不符合题意;而去时速度小但不一定走上坡路,回家时速度大但不一定走下坡路,所以D错误,符合题意;王军在朋友家呆的时间为:30﹣20=(10分),所以C正确,不符合题意;故选:D.二.填空题(共6小题,满分12分,每小题2分)13.解:“随手翻开华师大版初中数学课本,翻到的页码恰好是3的倍数”,这个事件是随机事件故答案为:随机.14.解:依题意,得(m+1)x=±2×4x解得:m=﹣9或7.故答案为:7或﹣9.15.解:设两个阴影部分三角形的底为AB,CD,高分别为h1,h2,则h1+h2等于平行四边形AB边上的高∴故答案为:5.16.解:延长AB交CE于点F,如图∵∠E=30°,∠ABE=130°,∠ABE是△BEF的外角∴∠AFE=∠ABE﹣∠E=100°∵AB∥CD∴∠DCE=∠AFE=100°.故答案为:100°.17.解:过B作BE⊥AD于点E∵∠CAB=30°,AB=4km∴∠ABE=60°,BE=2km∵∠ABD=105°∴∠EBD=45°∴∠EDB=45°∴BE=DE=2km∴BD===2(km)即BD的长是2km.18.解:如图,连接OC∵BC是直径∴AC=AB∴S△ABO=S△ACO=∴S△BCO=5∵⊙A与x轴相切于点B∴CB⊥x轴∴S△CBO=∴k=10故答案为10.三.解答题(共8小题,满分72分)19.解:=81÷(2+7)+6×(﹣)=81÷9+(﹣3)=9+(﹣3)=6.20.解:去分母得:2x=3﹣(x﹣2)去括号得:2x=3﹣x+2移项得:2x+x=3+2合并同类项得:3x=5解得:x=检验:把x=代入得:2(x﹣2)≠0∴分式方程的解为x=.21.解:(1)∠AOB的角平分线和线段MN的垂直平分线,如图所示.(2)证明:∵P在线段MN的垂直平分线上∴MP=NP,(线段垂直平分线上的点到线段两个端点的距离相等)∵P在∠AOB的角平分线上,PC⊥OA,PD⊥OB∴PC=PD,(角平分线上的点到角的两边距离相等)∵△PCM和△PDN为直角三角形∴Rt△PCM≌Rt△PDN(HL)∴MC=ND.故答案为:线段垂直平分线上的点到线段两个端点的距离相等;角平分线上的点到角的两边距离相等.22.解:(1)这次测试成绩的中位数是第25、26个数据的平均数,而第25、26个数据的平均数为=78.5(分)所以这组数据的中位数是78.5分成绩不低于80分的人数占测试人数的百分比为×100%=44%故答案为:78.5;44%;(2)不正确因为甲的成绩77分低于中位数78.5分所以甲的成绩不可能高于一半学生的成绩;(3)测试成绩不低于80分的人数占测试人数的44%,说明该校学生对“航空航天知识”的掌握情况较好(答案不唯一,合理均可).23.解:(Ⅰ)连接BD∵∠DAB=90°∴BD为直径∵AD=AB∴△ABD为等腰直角三角形∴∠ACB=∠ADB=45°;(Ⅱ)作BH⊥AC于H∵∠DAB=90°∴BD为直径,BD===10∴∠BCD=90°∵AC平分∠DAB∴∠BAC=∠DAC=45°∴∠CBD=∠BDC=45°∴△CDB为等腰直角三角形∴BC=BD=×10=5在Rt△ABH中,AH=BH=AB=3在Rt△BCH中,CH===4∴AC=AH+CH=7.24.解:(1)设这家食品厂到A地的距离是x公里,到B地的距离是y公里根据题意,得:解得:∴50﹣20=30,100﹣30=70答:这家食品厂到A地的铁路距离是30千米,到B地的铁路距离是70千米.(2)设该食品厂买进原料m吨,卖出食品n吨由题意得:解得:答:该食品厂买进原料220吨,卖出食品200吨(3)设卖出的食品每吨售价为a元由题意得:200a﹣5000×220﹣15600﹣20600=863800解得:a=10000答:卖出的食品每吨售价是10000元.25.解:(1)根据题意可知点F的坐标为(6,﹣1.5)可设拱桥侧面所在二次函数表达式为:y1=a1x2将F(6,﹣1.5)代入y1=a1x2有:﹣1.5=36a1解得a1=﹣∴y1=﹣x2当x=12时,y1=﹣×122=﹣6∴桥拱顶部离水面高度为6m;(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x﹣6)2+1 将H(0,4)代入其表达式有:4=a2(0﹣6)2+1,求得a2=∴右边钢缆所在抛物线表达式为:y2=(x﹣6)2+1同理可得左边钢缆所在抛物线表达式为:y3=(x+6)2+1②设彩带的长度为L m则L=y2﹣y1=(x﹣6)2+1﹣(﹣x2)=x2﹣x+4=(x﹣4)2+2∵这条彩带的长度小于m∴(x﹣4)2+2<解得<x<.∴d的取值范围<d<.26.(1)证明:∵D,E分别是AB,AC的中点∴==∵∠A=∠A∴△DAE∽△BAC∴∠ADE=∠B,==∴DE∥BC且DE=BC;(2)解:∵E、F、G分别是AB、DC、AC的中点∴GF=AD,GF∥AD,GE∥BC,GE=BC∴∠DAC=∠FGC=20°,∠AGE=∠ACB=80°∴∠CGE=180°﹣80°=100°∴∠EGF=∠FGC+∠CGE=20°+100°=120°∵AD=BC∴GF=GE∴∠EFG=∠FEG=(180°﹣∠EGF)=×(180°﹣120°)=30°;(3)解:如图2,连接BE,AG交于点P,BE与AC与点O,连接AE,GB在正方形ACEF和正方形BCGH中,AC=EC,BC=CG,∠ACE=∠BCG=90°∴∠BCG+∠ACB=∠ACE+∠ACB即∠ACG=∠ECB∴△ACG≌△ECB(SAS)∴BE=AG,∠CEB=∠CAG∵∠APO+∠CAG=∠OCE+∠CEB(八字模型)∴∠APO=∠OCE=90°∴BE⊥AG∵M,N分别是正方形的中心∴点M在AE上,点N在BG上∴AM=EM,BN=NG又∵AD=BD∴MD=BE,DN=AG,MD∥BE,DN∥AG∴MD=DN,MD⊥DN∴△MDN是等腰直角三角形∴△DMN的面积=DM2∴当DM有最大值时,△DMN的面积有最大值∵MD=BE∴当BE有最大值时,MD有最大值∵BE≤BC+CE∴BE≤5∴MD≤∴△DMN的面积的最大值为××=.。
广西初三初中数学中考真卷带答案解析
广西初三初中数学中考真卷班级:___________ 姓名:___________ 分数:___________一、解答题1.(10分)如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,-4),且,求m的值和一次函数的解析式.2.(12分)如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第ts时,△EFG的面积为Scm2.(1)当t=1s时,S的值是多少?(2)写出S与t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由。
3.4.(11·肇庆)(本小题满分6分)如图6是一个转盘.转盘分成8个相同的图形,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其兹有停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色。
5.(11·肇庆)(本小题满分7分)6.(11·肇庆)(本小题满分7分)如罔7,在一方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.7.(11·肇庆)(本小题满分7分)肇庆市某施工队负责修建1800米的绿道.为了尽量减少施工对周边环境的影响,实际工作效率比原计划提高了20%,结果提前两天完成.求原计划平均每天修绿道的长度.8.(11·肇庆)(本小题满分8分)如图8.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠ACB=30°,菱形OCED的而积为,求AC的长.9.(11·肇庆)(本小题满分8分)如图9.一次函数y=x+b的图象经过点B (-1,0),且与反比例函数 (k为不等于0的常数)的图象在第一象限交于点A (1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.10.(11·肇庆)(本小题满分10分)己知:如图10.△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC干点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA(2)求证:P处线段AF的中点.11.(11·肇庆)(本小题满分10分).(1)求证:抛物线的对称轴在y轴的左恻:(3)设抛物线与y轴交于点C,若△ABC是直角三角形.求△ABC的面积.12.(本题满分6分)已知a= +1,b= 。
2024年广西中考数学真题卷含答案解析
2024年广西初中学业水平考试数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A. B. C. D.2. 端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A. B. C. D.3. 广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A. 90.84910⨯B. 88.4910⨯C. 784.910⨯D. 684910⨯4. 榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是( )A. B. C. D.5. 不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是( )A. 1B. 13 C. 12 D. 236. 如图,2时整,钟表的时针和分针所成的锐角为( )A. 20︒B. 40︒C. 60︒D. 80︒7. 如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A. ()3,0B. ()0,2C. ()3,2D. ()1,28. 激光测距仪L 发出的激光束以5310km s ⨯的速度射向目标M ,s t 后测距仪L 收到M 反射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A. 53102d t ⨯= B. 5310d t =⨯ C. 52310d t =⨯⨯ D. 6310d t=⨯9. 已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A. 120y y << B. 210y y << C. 120y y << D. 120y y <<10. 如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A. 0B. 1C. 4D. 911. 《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A. 1345x x x ++= B. 100345x x x ++=C. 3451x x x ++= D. 345100x x x ++=12. 如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A 1 B. 2 C. 5 D. 10二、填空题(本大题共6小题,每小题2分,共12分.)13. 已知1∠与2∠为对顶角,135∠=︒,则2∠=______°.14.__.15. 八桂大地孕育了丰富药用植物.某县药材站把当地药市交易的400种药用植物按“草.的本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有______种.16. 不等式7551x x +<+的解集为______.17. 如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为______cm .18. 如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =______m .三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19 计算:()()2342-⨯+-20. 解方程组:2321x y x y +=⎧⎨-=⎩21. 某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:.进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.22. 如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.23 综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg水.浓度关系式:0.50.5d d w=+前后.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?.【(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.24. 如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.25. 课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.26. 如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M'①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.2024年广西初中学业水平考试数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1. 下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A. B. C. D.【答案】A【解析】【分析】本题考查了温度的比较以及正负数的概念,熟悉掌握概念是解决本题的关键.0℃以下记为负数,0℃以上记为正数,温度都小于0℃时,绝对值最大的,温度最低.【详解】解:∵ 4.6 4.6-=, 3.2 3.2-=,4.6 3.2>,∴ 4.6 3.2 5.88.1-<-<<,∴气温最低的是北京.故选:A .2. 端午节是中国传统节日,下列与端午节有关的文创图案中,成轴对称的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查成轴对称的定义,掌握成轴对称的定义是解题的关键.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.根据两个图形成轴对称的定义,逐一判断选项即可.【详解】A .不是轴对称图形,故不符合题意;B .是轴对称图形,故符合题意;C .不是轴对称图形,故不符合题意;D .不是轴对称图形,故不符合题意;故你:B .3. 广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A. 90.84910⨯B. 88.4910⨯C. 784.910⨯D. 684910⨯【答案】B【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法:()10110,n a a n ⨯≤<为整数,进行表示即可.【详解】解:88490000008.4910=⨯;故选B .4. 榫卯是我国传统建筑及家具的基本构件.燕尾榫是“万榫之母”,为了防止受拉力时脱开,榫头成梯台形,形似燕尾,如图是燕尾榫正面的带头部分,它的主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查三视图,根据主视图是从前往后看,得到的图形,进行判断即可.【详解】解:由图可知:几何体的主视图为:故选A.5. 不透明袋子中装有白球2个,红球1个,这些球除了颜色外无其他差别.从袋子中随机取出1个球,取出白球的概率是()A. 1B. 13C. 12D.23【答案】D【解析】【分析】本题考查求概率,直接利用概率公式进行计算即可.【详解】解:从袋子中随机取出1个球,有213+=种等可能的结果,其中取出白球的情况有2种,∴23P=;故选D.6. 如图,2时整,钟表的时针和分针所成的锐角为()A. 20︒B. 40︒C. 60︒D. 80︒【答案】C【解析】【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .7. 如图,在平面直角坐标系中,点O 为坐标原点,点P 的坐标为()2,1,则点Q 的坐标为( )A. ()3,0 B. ()0,2 C. ()3,2 D. ()1,2【答案】C【解析】【分析】本题主要考查点的坐标,理解点的坐标意义是关键.根据点P 的坐标可得出横、纵轴上一格代表一格单位长度,然后观察坐标系即可得出答案.【详解】解:∵点P 的坐标为()2,1,∴点Q 坐标为()3,2,故选:C .8. 激光测距仪L 发出的激光束以5310km s ⨯的速度射向目标M ,s t 后测距仪L 收到M反的射回的激光束.则L 到M 的距离dkm 与时间s t 的关系式为( )A. 53102d t ⨯= B. 5310d t =⨯ C. 52310d t =⨯⨯ D. 6310d t=⨯【答案】A【解析】【分析】本题考查列函数关系式,熟练掌握路程=速度×时间是解题的关键.根据路程=速度×时间列式即可.【详解】解:55131031022d t t =⨯⨯=⨯⋅,故选:A .9. 已知点()11,M x y ,()22,N x y 在反比例函数2y x =的图象上,若120x x <<,则有( )A. 120y y << B. 210y y << C. 120y y << D. 120y y <<【答案】A【解析】【分析】本题考查了反比例函数的图象,熟练掌握反比例函数图象上点的坐标特征是解题的关键.根据点()11,M x y ,()22,N x y 在反比例函数图象上,则满足关系式2y x =,横纵坐标的积等于2,结合120x x <<即可得出答案.【详解】解: 点()11,M x y ,()22,N x y 在反比例函数2y x=的图象上,∴ 112x y =,222x y =,120x x <<,∴ 10y <,20y >,∴ 120y y <<.故选:A .10. 如果3a b +=,1ab =,那么32232a b a b ab ++的值为( )A. 0B. 1C. 4D. 9【答案】D【解析】【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .11. 《九章算术》是我国古代重要的数学著作,其中记载了一个问题,大致意思为:现有田出租,第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱.问:出租的田有多少亩?设出租的田有x 亩,可列方程为( )A. 1345x x x ++= B. 100345x x x ++=C. 3451x x x ++= D. 345100x x x ++=【答案】B【解析】【分析】本题考查了一元一次方程的应用,根据“第一年3亩1钱,第二年4亩1钱,第三年5亩1钱.三年共得100钱”列方程即可.【详解】解:根据题意,得100345x x x ++=,故选:B .12. 如图,边长为5的正方形ABCD ,E ,F ,G ,H 分别为各边中点,连接AG ,BH ,CE ,DF ,交点分别为M ,N ,P ,Q ,那么四边形MNPQ 的面积为( )A. 1B. 2C. 5D. 10【答案】C【解析】【分析】先证明四边形AECG 是平行四边形,得出AG CE ∥,同理AF BH ∥,则可证四边形MNPQ 是平行四边形,利用平行线分线段成比例可得出DQ PQ =,AM QM =,证明()SAS ADG BAH ≌得出DAG ABH ∠=∠,则可得出90QMN AMB ∠=∠=︒,同理90AQD ∠=︒,得出平行四边形MNPQ 是矩形,证明()AAS ADQ BAM ≌,得出DQ AM =,进而得出DQ AM PQ QM ===,得出矩形MNPQ 是正方形,在Rt ADQ △中,利用勾股定理求出25QM =,然后利用正方形的面积公式求解即可.【详解】解:∵四边形ABCD 是正方形,∴AB BC CD DA ===,AB CD ∥,AD BC ∥,90DAB ABC BCD CDA ∠=∠=∠=∠=︒,∵E ,F ,G ,H 分别为各边中点,∴12CG DG CD AH ===,12AE AB =,∴DG CG AE ==,∴四边形AECG 是平行四边形,∴AG CE ∥,同理DF BH ,∴四边形MNPQ 是平行四边形,∵AG CE ∥,∴1DQ DG PQ CG==,∴DQ PQ =,同理AM QM =,∵DG AH =,90ADG BAH ∠=∠=︒,AD BA =,∴()SAS ADG BAH ≌,∴DAG ABH ∠=∠,∵90DAG GAB ∠+∠=︒,∴90ABH GAB ∠+∠=︒,∴90QMN AMB ∠=∠=︒,同理90AQD ∠=︒,∴平行四边形MNPQ 是矩形,∵90AQD AMB ∠=∠=︒,DAG ABH ∠=∠,AD BA =,∴()AAS ADQ BAM ≌,∴DQ AM =,又DQ PQ =,AM QM =,∴DQ AM PQ QM ===,∴矩形MNPQ 是正方形,在Rt ADQ △中,222AD DQ AQ =+,∴()22252QM QM =+,∴25QM =,∴正方形MNPQ 的面积为5,故选:C .【点睛】本题考查了正方形的判定与性质,全等三角形判定与性质,平行线分线段成比例,勾股定理等知识,明确题意,灵活运用相关知识求解是解题的关键.二、填空题(本大题共6小题,每小题2分,共12分.)13. 已知1∠与2∠为对顶角,135∠=︒,则2∠=______°.【答案】35【解析】【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒,∴2135∠=∠=︒.故答案为:35.14.__.【答案】2(答案不唯一)【解析】【分析】本题考查实数大小比较,估算无理数的大小是解题的关键.大小,再找出符合条件的整数即可.【详解】解:134<<,12∴<<,∴符合条件的数可以是:2(答案不唯一).故答案为:2.15. 八桂大地孕育了丰富的药用植物.某县药材站把当地药市交易的400种药用植物按“草本、藤本、灌木、乔木”分为四类,绘制成如图所示的统计图,则藤本类有______种.【答案】80【解析】【分析】本题考查了扇形统计图,用400乘以藤本类的百分比即可求解,看懂统计图是解题的关键.【详解】解:由扇形统计图可得,藤本类有40020%80⨯=种,故答案为:80.16. 不等式7551x x +<+的解集为______.【答案】<2x -【解析】的【分析】本题考查了解一元一次不等式,根据解一元一次不等式的步骤解答即可求解,掌握解一元一次不等式的步骤是解题的关键.【详解】解:移项得,7515x x -<-,合并同类项得,24x <-,系数化为1得,<2x -,故答案为:<2x -.17. 如图,两张宽度均为3cm 的纸条交叉叠放在一起,交叉形成的锐角为60︒,则重合部分构成的四边形ABCD 的周长为______cm .【答案】【解析】【分析】本题考查了平行四边形的判定,菱形的判定和性质,菱形的周长,过点A 作AM BC ⊥于M ,AN CD ⊥于N ,由题意易得四边形ABCD 是平行四边形,进而由平行四边形的面积可得AM AN =,即可得到四边形ABCD 是菱形,再解Rt ADN △可得sin 60AN AD ==︒,即可求解,得出四边形ABCD 是菱形是解题的关键.【详解】解:过点A 作AM BC ⊥于M ,AN CD ⊥于N ,则90AND ∠=︒,∵两张纸条的对边平行,∴AB CD ∥,AD BC ∥,∴四边形ABCD 是平行四边形,又∵两张纸条的宽度相等,∴AM AN =,∵··ABCD S BC AM CD AN == ,∴BC CD =,∴四边形ABCD 是菱形,在Rt ADN △中,60ADN ∠=︒,3cm AN =,∴sin 60AN AD ===︒,∴四边形ABCD的周长为4=,故答案为:18. 如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =______m .【答案】353【解析】【分析】本题考查的是二次函数的实际应用,设抛物线为()254y a x =-+,把点70,4⎛⎫ ⎪⎝⎭,代入即可求出解析式;当0y =时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:()254y a x =-+,把点70,4⎛⎫ ⎪⎝⎭代入得:72544a +=,解得:9100a =-,∴抛物线解析式为:()2954100y x =--+;当0y =时,()29540100x --+=,解得,153x =-(舍去),2353x =,即此次实心球被推出的水平距离OM 为35m 3.故答案为:353三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19. 计算:()()2342-⨯+-【答案】8-【解析】【分析】本题主要考查了有理数的混合运算.先算乘法和乘方,再算加法即可.【详解】解:原式124=-+8=-.20. 解方程组:2321x y x y +=⎧⎨-=⎩【答案】212x y =⎧⎪⎨=⎪⎩【解析】【分析】本题考查的是二元一次方程组的解法,直接利用加减消元法解方程组即可.【详解】解:2321x y x y +=⎧⎨-=⎩①②,+①②得:24=x ,解得:2x =,把2x =代入①得:12y =,∴方程组的解为:212x y =⎧⎪⎨=⎪⎩.21. 某中学为了解七年级女同学定点投篮水平,从中随机抽取20名女同学进行测试,每人定点投篮5次,进球数统计如下表:进球数012345人数186311(1)求被抽取的20名女同学进球数的众数、中位数、平均数;(2)若进球数为3以上(含3)为“优秀”,七年级共有200名女同学,请估计七年级女同学中定点投篮水平为“优秀”的人数.【答案】(1)众数为1、中位数为2、平均数为1.9(2)估计为“优秀”等级的女生约为50人【解析】【分析】(1)根据平均数、中位数、众数的定义求解即可;(2)算出样本的优秀率,再估计总体的优秀人数.【小问1详解】解:女生进球数的平均数为()1011826334151 1.920⨯⨯+⨯+⨯+⨯+⨯+⨯=(个),女生进球数的中位数是第10个和第11个成绩的平均数,即2222+=(个),女生进球个数为1个人最多,故众数是1个;【小问2详解】解:3112005020++⨯=(人),答:估计为“优秀”等级的女生约为50人.的【点睛】本题考查了中位数,众数,平均数,用样本件估计总体,掌握中位数,平均数、众数的定义以及优秀率的求法是解题的关键.22. 如图,在ABC 中,45A ∠=︒,AC BC >.(1)尺规作图:作线段AB 的垂直平分线l ,分别交AB ,AC 于点D ,E :(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE ,若8AB =,求BE 的长.【答案】(1)见详解(2)【解析】【分析】(1)分别以A 、B 为圆心,大于12AB 为半径画弧,分别交AB ,AC 于点D ,E ,作直线DE ,则直线l 即为所求.(2)连接BE ,由线段垂直平分线的性质可得出BE AE =,由等边对等角可得出45EBA A ∠=∠=︒,由三角形内角和得出90BEA ∠=︒,则得出ABE 为等腰直角三角形,再根据正弦的定义即可求出BE 的长.小问1详解】解:如下直线l 即为所求.【小问2详解】连接BE如下图:【∵DE 为线段AB 的垂直平分线,∴BE AE =,∴45EBA A ∠=∠=︒,∴90BEA ∠=︒,∴ABE 为等腰直角三角形,∴sin BE A AB ==∴8BE AB ===【点睛】本题主要考查了作线段的垂线平分线,线段的垂线平分线的性质,等腰三角形的性质,三角形内角和定理以及正弦的定义.掌握线段的垂直平分线的性质是解题的关键.23. 综合与实践在综合与实践课上,数学兴趣小组通过洗一套夏季校服,探索清洗衣物的节约用水策略.【洗衣过程】步骤一:将校服放进清水中,加入洗衣液,充分浸泡揉搓后拧干;步骤二:将拧干后的校服放进清水中,充分漂洗后拧干.重复操作步骤二,直至校服上残留洗衣液浓度达到洗衣目标.假设第一次漂洗前校服上残留洗衣液浓度为0.2%,每次拧干后校服上都残留0.5kg 水.浓度关系式:0.50.5d d w=+前后.其中d 前、d 后分别为单次漂洗前、后校服上残留洗衣液浓度;w 为单次漂洗所加清水量(单位:kg )【洗衣目标】经过漂洗使校服上残留洗衣液浓度不高于0.01%【动手操作】请按要求完成下列任务:(1)如果只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要多少清水?(2)如果把4kg 清水均分,进行两次漂洗,是否能达到洗衣目标?(3)比较(1)和(2)的漂洗结果,从洗衣用水策略方面,说说你的想法.【答案】(1)只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水. (2)进行两次漂洗,能达到洗衣目标;(3)两次漂洗的方法值得推广学习【解析】【分析】本题考查的是分式方程的实际应用,求解代数式的值,理解题意是关键;(1)把0.01%d =后,0.2%d =前代入0.50.5d d w =+前后, 再解方程即可;(2)分别计算两次漂洗后的残留洗衣液浓度,即可得到答案;(3)根据(1)(2)的结果得出结论即可.【小问1详解】解:把0.01%d =后,0.2%d =前代入0.50.5d d w=+前后得.0.50.2%0.01%05w =+⨯,解得9.5w =.经检验符合题意;∴只经过一次漂洗,使校服上残留洗衣液浓度降为0.01%,需要9.5kg 清水.【小问2详解】解:第一次漂洗:把2kg w =,0.2%d =前代入0.50.5d d w =+前后,∴0.50.2%0.04%0.52d ⨯==+后,第二次漂洗:把2kg w =,0.04%d =前代入0.50.5d d w =+前后,∴0.50.04%0.008%0.52d ⨯==+后,而0.008%0.01%<,∴进行两次漂洗,能达到洗衣目标;【小问3详解】解:由(1)(2)的计算结果发现:经过两次漂洗既能达到洗衣目标,还能大幅度节约用水,∴从洗衣用水策略方面来讲,采用两次漂洗的方法值得推广学习.24. 如图,已知O 是ABC 的外接圆,AB AC =.点D ,E 分别是BC ,AC 的中点,连接DE 并延长至点F ,使DE EF =,连接AF .(1)求证:四边形ABDF 是平行四边形;(2)求证:AF 与O 相切;(3)若3tan 4BAC ∠=,12BC =,求O 的半径.【答案】(1)证明见解析 (2)证明见解析(3)10【解析】【分析】(1)先证明BD CD =,DE EF =,再证明AEF CED △≌△,可得AF CD =,F EDC ∠=∠,再进一步解答即可;(2)如图,连接AD ,证明AD BC ⊥,可得AD 过圆心,结合∥A F B D ,证明AF AD ⊥,从而可得结论;(3)如图,过B 作BQ AC ⊥于Q ,连接OB ,设BQ 3x =,则4AQ x =,可得CQ AC AQ x =-=,求解x ==5AB x ==18AD ==,设O 半径为r ,可得18OD r =-,再利用勾股定理求解即可.【小问1详解】证明:∵点D ,E 分别是BC ,AC 的中点,∴BD CD =,AE CE =,又∵AEF CED ∠=∠,DE EF =,∴AEF CED △≌△,∴AF CD =,F EDC ∠=∠,∴AF BD =,∥A F B D ,∴四边形ABDF 是平行四边形;【小问2详解】证明:如图,连接AD ,∵AB AC =,D 为BC 中点,∴AD BC ⊥,∴AD 过圆心,∵∥A F B D ,∴AF AD ⊥,而OA 为半径,∴AF 为O 的切线;【小问3详解】解:如图,过B 作BQ AC ⊥于Q ,连接OB ,∵3tan 4BAC ∠=,∴34BQAQ =,设BQ 3x =,则4AQ x =,∴5AC AB x ===,∴CQ AC AQ x =-=,∴BC ==,12=,∴x ==,∴5AB x ==∵AB AC =,12BC =,AD BC ⊥,∴6BD CD ==,∴18AD ==,设O 半径为r ,∴18OD r =-,∴()222186r r =-+,解得:10r =,∴O 的半径为10.【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的性质,勾股定理的应用,平行四边形的判定与性质,切线的判定,垂径定理的应用,做出合适的辅助线是解本题的关键.25. 课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++-的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =-,求二次函数223y x ax a =++-的最小值.①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:a...4-2-024 (x)…*204-2-…y 的最小值…*9-3-5-15-…注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.”甲同学:“我发现,老师给了a 值后,我们只要取x a =-,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++-,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.【答案】(1)①287y x x =--;②当4x =时,y 有最小值为23-(2)见解析(3)正确,114-【解析】【分析】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解题的关键:(1)①把4a =-代入解析式,写出函数解析式即可;②将一般式转化为顶点式,进行求解即可;(2)将一般式转化为顶点式,根据二次函数的性质进行解释即可;(3)将一般式转化为顶点式,表示出y 的最大值,再利用二次函数求最值即可.【详解】解:(1)①把4a =-代入223y x ax a =++-,得:()()22244387y x x x x =+⋅-+--=--;∴287y x x =--;②∵()2287423y x x x =--=--,∴当4x =时,y 有最小值为23-;(2)∵()222233y x ax a x a a a =+-+-=++-,∵抛物线的开口向上,∴当x a =-时,y 有最小值;∴甲的说法合理;(3)正确;∵()222233y x ax a x a a a =+-+-=++-,∴当x a =-时,y 有最小值为23a a -+-,即:22min 111324y a a a ⎛⎫=-+-=--- ⎪⎝⎭,∴当12a =时,min y 有最大值,114-.26. 如图1,ABC 中,90B Ð=°,6AB =.AC 的垂直平分线分别交AC ,AB 于点M ,O ,CO 平分ACB ∠.为(1)求证:ABC CBO △∽△;(2)如图2,将AOC 绕点O 逆时针旋转得到A OC ''△,旋转角为()0360a α︒<<︒.连接A M ',C M'①求A MC ''△面积的最大值及此时旋转角α的度数,并说明理由;②当A MC ''△是直角三角形时,请直接写出旋转角α的度数.【答案】(1)见解析(2)①180α=︒;②120︒或240︒【解析】【分析】(1)利用线段垂直平分线的性质得出OA OC =,利用等边对等角得出A ACO ∠=∠,结合角平分线定义可得出A ACO OCB ∠=∠=∠,最后根据相似三角形的判定即可得证;(2)先求出30A ACO OCB ∠=∠=∠=︒,然后利用含30︒的直角三角形性质求出2BO =,4AO =,2MO =,利用勾股定理求出AM =AC =A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N ,由旋转的性质知AOC A OC '' ≌,OM '为OM 旋转α所得线段,则OM A C '''⊥,A C AC ''==,2OM OM '==,根据点到直线的距离,垂线段最短知MN MM '≤,三角形三边关系得出MN OM OM '≤+,故当M 、O 、M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+=,此时180α=︒,最后根据三角形面积公式求解即可;②先利用三角形三边关系判断出MC A C '''<,MA A C '''<,则当A MC ''△为直角三角形时,只有90A MC ''∠=︒,然后分A 和C '重合,A '和C 重合,两种情况讨论即可.【小问1详解】证明:∵MO 垂直平分AC ,∴OA OC =,∴A ACO ∠=∠,∵CO 平分ACB∠∴ACO OCB ∠=∠,∴A OCB ∠=∠,又B B ∠=∠;∴ABC CBO △∽△;【小问2详解】解:①∵90B Ð=°,∴90A ACO OCB ∠+∠+∠=︒,∴30A ACO OCB ∠=∠=∠=︒,∴1122BO CO AO ==,又6AB AO BO =+=,∴2BO =,4AO =,∵MO 垂直平分AC ,∴122OM AO ==,2AC AM =,∴AM ==,∴AC =,取A C ''中点M ',连接OM ',MM ',作MN A C ''⊥于N ,由旋转的性质知AOC A OC '' ≌,OM '为OM 旋转α所得线段,∴OM A C '''⊥,A C AC ''==,2OM OM '==,根据垂线段最短知MN MM '≤,又MM OM OM ≤'+',∴当M 、O 、M '三点共线,且点O 在线段MM '时,MN 取最大值,最大值为224+=,此时180α=︒,∴A MC ''△面积的最大值为142⨯=;②∵246MC MO OC ''≤+=+=,A C ''=,∴MC A C '''<,同理MA A C '''<∴A MC ''△为直角三角形时,只有90A MC ''∠=︒,当A 和C '重合时,如图,∵AOC A OA'≌∴30A CAO '∠=∠=︒,30OAA OCA '∠=∠=︒,∴120A OA '∠=︒,∵90AMO ∠=︒,∴60AOM ∠=︒,∴180A OA AOM '∠+∠=︒,∴A '、O 、M 三点共线,∴A MC ''△为直角三角形,此时旋转角120A OA α'=∠=︒;当A '和C 重合时,如图,同理30OCC CAO '∠=∠=︒,30C OCA '∠=∠=︒,∴120COC '∠=︒,∵AO CO =,60AOM ∠=︒∴60COM AOM ∠=∠=︒,∴180COM COC '∠+∠=︒,∴C '、O 、M 三点共线,又90AMO ∠=︒∴A MC ''△为直角三角形,此时旋转角360240A OA α'=︒-∠=︒;综上,旋转角α的度数为120︒或240︒时,A MC ''△为直角三角形.【点睛】本题考查了线段垂直平分线的性质,含30︒的直角三角形的性质,勾股定理,旋转的性质等知识,明确题意,正确画出图形,添加辅助线,合理分类讨论是解题的关键.。
广西玉林市中考数学真题试题(含解析)-人教版初中九年级全册数学试题
2020年某某某某市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上.1.(3分)2的倒数是()A.B.﹣C.2 D.﹣2【分析】根据倒数的概念求解.【解答】解:2的倒数是.故选:A.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)sin45°的值是()A.B.C.D.1【分析】根据特殊角的三角函数值求解.【解答】解:sin45°=.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握特殊角的三角函数值.3.(3分)2019新型冠状病毒的直径是0.00012mm,将0.00012用科学记数法表示是()A.120×10﹣6B.12×10﹣3C.1.2×10﹣4D.1.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00012=1.2×10﹣4.故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(3分)如图是由4个完全相同的正方体搭成的几何体,则()A.三视图都相同B.俯视图与左视图相同C.主视图与俯视图相同D.主视图与左视图相同【分析】分别得出该几何体的三视图进而得出答案.【解答】解:如图所示:,故该几何体的主视图和左视图相同.故选:D.【点评】本题考查了三视图的知识,正确把握三视图的画法是解题关键.5.(3分)下列计算正确的是()A.8a﹣a=7 B.a2+a2=2a4C.2a•3a=6a2D.a6÷a2=a3【分析】根据合并同类项、单项式乘单项式、同底数幂的除法,分别进行计算,即可判断.【解答】解:A.因为8a﹣a=7a,所以A选项错误;B.因为a2+a2=2a2,所以B选项错误;C.因为2a•3a=6a2,所以C选项正确;D.因为a6÷a2=a4,所以D选项错误.故选:C.【点评】本题考查了单项式乘单项式、合并同类项、同底数幂的除法,解决本题的关键是熟练掌握以上知识.6.(3分)下列命题中,其逆命题是真命题的是()A.对顶角相等B.两直线平行,同位角相等C.全等三角形的对应角相等D.正方形的四个角都相等【分析】首先写出各个命题的逆命题,再进一步判断真假.【解答】解:A,其逆命题是:两个相等的角是对顶角,故是假命题;B,其逆命题是:同位角相等,两直线平行,故是真命题;C,其逆命题是:对应角相等的两个三角形是全等三角形.大小不同的两个等边三角形虽然对应角相等但不全等,故是假命题;D,其逆命题是:四个角都相等的四边形是正方形,故是假命题;故选:B.【点评】本题主要考查了逆命题的定义及真假性,学生易出现只判断原命题的真假,也就是审题不认真,难度适中.7.(3分)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2=,由公式提供的信息,则下列说法错误的是()A.样本的容量是4 B.样本的中位数是3【分析】先根据方差的公式得出这组数据为2、3、3、4,再根据样本容量、中位数、众数和平均数的概念逐一求解可得答案.【解答】解:由题意知,这组数据为2、3、3、4,所以这组数据的样本容量为4,中位数为=3,众数为3,平均数为=3,故选:D.【点评】本题主要考查方差、样本容量、中位数、众数和平均数,解题的关键是根据方差的定义得出这组数据.8.(3分)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是:()A.②→③→①→④B.②→①→③→④C.①→③→④→②D.①→③→②→④【分析】证出四边形ADCF是平行四边形,得出CF AD.即CF BD,则四边形DBCF是平行四边形,得出DF BC,即可得出结论.【解答】证明:延长DE到点F,使EF=DE,连接FC,DC,AF,∵点D,E分别是△ABC的边AB,AC的中点,∴AD=BD,AE=EC,∴四边形ADCF是平行四边形,∴CF AD.即CF BD,∴四边形DBCF是平行四边形,∴DF BC,∴DE∥BC,且DE=BC.∴正确的证明顺序是②→③→①→④,故选:A.【点评】本题考查了平行四边形的判定与性质、三角形中位线定理的证明;熟练掌握平行四边形的判定与性质是解题的关键.9.(3分)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A.等腰直角三角形B.等腰三角形C.直角三角形D.等边三角形【分析】如图,过点C作CD∥AE交AB于点D,可得∠DCA=∠EAC=35°,根据AE∥BF,可得CD∥BF,可得∠BCD=∠CBF=55°,进而得△ABC是等腰直角三角形.【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.∴∠ACD=∠ACB﹣∠BCD=90°﹣55°,=35°,∵CD∥AE,∴∠EAC=∠ACD=35°,∴∠CAD=∠EAD﹣∠CAE=80°﹣35°=45°,∴∠ABC=∠ACB﹣∠CAD=45°,∴CA=CB,∴△ABC是等腰直角三角形.故选:A.【点评】本题考查了直角三角形、方向角,解决本题的关键是掌握方向角定义.10.(3分)观察下列按一定规律排列的n个数:2,4,6,8,10,12,…,若最后三个数之和是3000,则n等于()A.499 B.500 C.501 D.1002【分析】观察得出第n个数为2n,根据最后三个数的和为3000,列出方程,求解即可.【解答】解:由题意,得第n个数为2n,那么2n+2(n﹣1)+2(n﹣2)=3000,解得:n=501,故选:C.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为2n是解决问题的关键.11.(3分)一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A.一种B.两种C.三种D.四种【分析】分类讨论:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的一根上截下的两段长分别为xcm,ycm(x+y≤120),易得长60cm的木条不能与75cm的一边对应,所以当长60cm的木条与100cm的一边对应时有==;当长60cm的木条与120cm的一边对应时有==,然后分别利用比例的性质计算出两种情况下得x和y的值.【解答】解:长120cm的木条与三角形木架的最长边相等,要满足两边之和大于第三边,则长120cm的木条不能作为一边,设从120cm的木条上截下两段长分别为xcm,ycm(x+y≤120),由于长60cm的木条不能与75cm的一边对应,否则x、y有大于120cm,当长60cm的木条与100cm的一边对应,则==,解得:x=45,y=72;当长60cm的木条与120cm的一边对应,则==,解得:x=37.5,y=50.答:有两种不同的截法:把120cm的木条截成45cm、72cm两段或把120cm的木条截成37.5cm、50cm两段.故选:B.【点评】本题考查了相似三角形的应用:通常构建三角形相似,然后利用相似三角形的性质即相似三角形的对应边的比相等进行几何计算.12.(3分)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A.﹣4 B.0 C.2 D.6【分析】根据关于x轴对称的点的坐标特征得出原二次函数的顶点为(1,﹣4a),即可得出原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,和y=ax2+bx+c比较即可得出b =﹣2a,c=﹣3a,代入(m﹣1)a+b+c≤0,即可得到m≤6.【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故选:D.【点评】本题考查了二次函数图象与系数的关系,作关于x轴的对称的点的坐标特征,二次函数的图象与几何变换,得到b=﹣2a,c=﹣3a是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上.13.(3分)计算:0﹣(﹣6)= 6 .【分析】利用有理数的减法法则,直接求解即可.【解答】解:原式=0+6=6.故答案为:6.【点评】本题考查了有理数的减法.掌握有理数的减法法则是解决本题的关键.14.(3分)分解因式:a3﹣a=a(a+1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.15.(3分)如图,将两X对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 是菱形(填“是”或“不是”).【分析】作AE⊥BC于点E,AF⊥DC于点F,根据两X等宽的长方形纸条交叉叠放在一起可得AE=AF,再根据等面积法证明BC=DC,进而证明四边形ABCD的形状一定是菱形.【解答】解:如图,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,作AE⊥BC于点E,AF⊥DC于点F,∵两X等宽的长方形纸条交叉叠放在一起,∴AE=AF,∴S平行四边形ABCD=BC•AE=DC•AF,∴BC=DC,∴▱ABCD是菱形.故答案为:是.【点评】本题考查了菱形的判定与性质,利用等面积法解决本题是关键.16.(3分)经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:画树状图如下:由树状图知,共有4种等可能结果,其中至少有一辆向左转的有3种等可能结果,所以至少有一辆向左转的概率为,故答案为:.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.17.(3分)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是3π.【分析】根据正六边形的性质和旋转的性质以及扇形的面积公式即可得到结论.【解答】解:∵在边长为3的正六边形ABCDEF中,∠DAC=30°,∠B=∠BCD=120°,AB=BC,∴∠BAC=∠BCA=30°,∴∠ACD=90°,∵CD=3,∴AD=2CD=6,∴图中阴影部分的面积=S四边形ADEF+S扇形DAD′﹣S四边形AF′E′D′,∵将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,∴S四边形ADEF=S四边形AD′E′F′∴图中阴影部分的面积=S扇形DAD′==3π,【点评】本题考查了正多边形与圆,旋转的性质,扇形的面积的计算,正确的识别图形是解题的关键.18.(3分)已知:函数y1=|x|与函数y2=的部分图象如图所示,有以下结论:①当x<0时,y1,y2都随x的增大而增大;②当x<﹣1时,y1>y2;③y1与y2的图象的两个交点之间的距离是2;④函数y=y1+y2的最小值是2.则所有正确结论的序号是②③④.【分析】根据补全的函数图象即可判断.【解答】解:补全函数图象如图:①当x<0时,y1随x的增大而增大,y2随x的增大而减小;故①错误;②当x<﹣1时,y1>y2;故②正确;③y1与y2的图象的两个交点之间的距离是2;故③正确;④由图象可知,函数y=y1+y2的最小值是2,故④正确.综上所述,正确的结论是②③④.【点评】主要考查反比例函数的图象与性质,一次函数的图象与性质,反比例函数与一次函数的交点问题,数形结合是解题的关键.三、解答题:本大题共8小题,满分共66分.解答应写出证明过程成演算步骤(含相应的文字说明).将解答写在答题卡上.19.(6分)计算:•(π﹣3.14)0﹣|﹣1|+()2.【分析】先计算(π﹣3.14)0、|﹣1|、()2,再加减求值.【解答】解:原式=×1﹣(﹣1)+9=﹣+1+9=10.【点评】本题考查了零指数幂的意义、绝对值的化简、及开平方乘方运算.掌握零指数幂及绝对值的意义,是解决本题的关键.20.(6分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:7x=7,解得:x=1,把x=1代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.21.(8分)已知关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根.(1)求k的取值X围;(2)若方程的两个不相等的实数根是a,b,求﹣的值.【分析】(1)根据方程有两个不相等的实数根可得△=4+4k>0,解不等式求出k的取值X围;(2)由根与系数的关系可得a+b=﹣2,a•b=﹣k,代入整理后的代数式,计算即可.【解答】解:(1)∵方程有两个不相等的实数根,∴△=b2﹣4ac=4+4k>0,解得k>﹣1.∴k的取值X围为k>﹣1;(2)由根与系数关系得a+b=﹣2,a•b=﹣k,﹣===1.(1)【点评】此题考查了一元二次方程ax2+bx+c=0根的判别式和根与系数的关系的应用,△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根;(4)x1+x2=﹣,x1•x2=.22.(8分)在镇、村两委及帮扶人大力扶持下,贫困户周大叔与某公司签订了农产品销售合同,并于今年春在自家荒坡上种植了A,B,C,D四种不同品种的果树苗共300棵,其中C品种果树苗的成活率为90%,几个品种的果树苗种植情况及其成活情况分别绘制在如图图①和图②两个尚不完整的统计图中.(1)种植B品种果树苗有75 棵;(2)请你将图②的统计图补充完整;(3)通过计算说明,哪个品种的果树苗成活率最高?【分析】(1)用B品种果树苗所占的百分比乘以总棵树300计算即可得解;(2)求出C品种果树苗的棵数,然后乘以成活率计算即可得解;(3)分别求出四个品种的成活率,然后比较即可.【解答】解:(1)300×(1﹣35%﹣20%﹣20%)=300×25%=75(棵).故答案为:75;(2)300×20%×90%=54(棵),补全统计图如图所示:(3)A品种的果树苗成活率:×100%=80%,B品种的果树苗成活率:×100%=80%,C品种的果树苗成活率:90%,D品种的果树苗成活率:×100%=85%,所以,C品种的果树苗成活率最高.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD =AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.【分析】(1)连接OF,易证∠DBC+∠C=90°,由等腰三角形的性质得∠DBC=∠OFB,∠C =∠EFC,推出∠OFB+∠EFC=90°,则∠OFE=90°,即可得出结论;(2)连接AF,则∠AFB=90°,求出BD=3OD=3,CD=AB=4,BC==5,证明△FBA∽△DBC,得出=,求出BF=,由CF=BC﹣BF即可得出结果.【解答】(1)证明:连接OF,如图1所示:∵CD⊥AB,∴∠DBC+∠C=90°,∵OB=OF,∴∠DBC=∠OFB,∵EF=EC,∴∠C=∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣90°=90°,∴OF⊥EF,∵OF为⊙O的半径,∴EF是⊙O的切线;(2)解:连接AF,如图2所示:∵AB是⊙O的直径,∴∠AFB=90°,∵D是OA的中点,∴OD=DA=OA=AB=×4=1,∴BD=3OD=3,∵CD⊥AB,CD=AB=4,∴∠CDB=90°,由勾股定理得:BC===5,∵∠AFB=∠CDB=90°,∠FBA=∠DBC,∴△FBA∽△DBC,∴=,∴BF===,∴CF=BC﹣BF=5﹣=.【点评】本题考查了切线的判定、等腰三角形的性质、圆周角定理、勾股定理、相似三角形的判定与性质等知识;熟练掌握切线的判定和相似三角形的判定与性质是解题的关键.24.(8分)某某至某某高速铁路已于去年开工建设.某某良睦隧道是全线控制性工程,首期打通共有土石方总量为600千立方米,设计划平均每天挖掘土石方x千立方米,总需用时间y天,且完成首期工程限定时间不超过600天.(1)求y与x之间的函数关系式及自变量x的取值X围;(2)由于工程进度的需要,实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,某某际挖掘了多少天才能完成首期工程?【分析】(1)利用xy=600,进而得出y与x的函数关系,根据完成首期工程限定时间不超过600天,求出x的取值X围;(2)利用实际平均每天挖掘土石方比原计划多0.2千立方米,工期比原计划提前了100天完成,得出分式方程,进而求出即可.(也可以设原计划每天挖掘土石方m千立方米,列分式方程,计算量比较小).【解答】解:(1)根据题意可得:y=,∵y≤600,∴x≥1;(2)设实际挖掘了m天才能完成首期工程,根据题意可得:﹣=0.2,解得:m=﹣600(舍)或500,检验得:m=500是原方程的根,答:实际挖掘了500天才能完成首期工程.【点评】此题主要考查了分式方程的应用以及反比例函数的应用,根据题意得出正确的等量关系是解题关键.25.(10分)如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF 的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.【分析】(1)根据平行四边形的判定推出四边形是平行四边形,求出AC=BD,得出四边形是矩形,根据勾股定理的逆定理求出AC⊥BD,根据正方形的判定推出即可;(2)根据已知条件得到四边形BGEF是矩形,根据旋转的性质得到∠DHE=90°,DH=HE,根据全等三角形的性质得到AD=HG,AH=EG,推出矩形BGEF是正方形,设AH=x,则BG =EG=x,根据题意列方程即可得到结论.【解答】(1)证明:∵OA=OB=OC=OD,∴AC=BD,∴平行四边形ABCD是矩形,∵OA=OB=OC=OD=AB,∴OA2+OB2=AB2,∴∠AOB=90°,即AC⊥BD,∴四边形ABCD是正方形;(2)解:∵EF⊥BC,EG⊥AG,∴∠G=∠EFB=∠FBG=90°,∴四边形BGEF是矩形,∵将线段DH绕点H顺时针旋转90°,得到线段HE,∴∠DHE=90°,DH=HE,∴∠ADH+∠AHD=∠AHD+∠EHG=90°,∴∠ADH=∠EHG,∵∠DAH=∠G=90°,∴△ADH≌△GHE(AAS),∴AD=HG,AH=EG,∵AB=AD,∴AB=HG,∴AH=BG,∴BG=EG,∴矩形BGEF是正方形,设AH=x,则BG=EG=x,∵s1=s2.∴x2=2(2﹣x),解得:x=﹣1(负值舍去),∴AH=﹣1.【点评】本题考查了旋转的性质,正方形的判定和性质,全等三角形的判定和性质,正确的识别图形是解题的关键.26.(12分)如图,已知抛物线:y1=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)直接写出点A,B,C的坐标;(2)将抛物线y1经过向右与向下平移,使得到的抛物线y2与x轴交于B,B'两点(B'在B的右侧),顶点D的对应点为点D',若∠BD'B'=90°,求点B'的坐标及抛物线y2的解析式;(3)在(2)的条件下,若点Q在x轴上,则在抛物线y1或y2上是否存在点P,使以B′,C,Q,P为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点P的坐标;如果不存在,请说明理由.【分析】(1)令x=0或y1=0,解方程可得结论.(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H.,连接BD′,B′D′.构建方程组解决问题即可.(3)观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.分别令y1和y2等于3或﹣3,解方程即可解决问题.【解答】解:(1)对于y1=﹣x2﹣2x+3,令y1=0,得到﹣x2﹣2x+3=0,解得x=﹣3或1,∴A(﹣3,0),B(1,0),令x=0,得到y1=3,∴C(0,3).(2)设平移后的抛物线的解析式为y2=﹣(x﹣a)2+b,如图1中,过点D′作D′H⊥OB′于H,连接BD′.∵D′是抛物线的顶点,∴D′B=D′B′,D′(a,b),∵∠BD′B′=90°,D′H⊥BB′,∴BH=HB′,∴D′H=BH=HB′=b,∴a=1+b,又∵y2=﹣(x﹣a)2+b,经过B(1,0),∴b=(1﹣a)2,解得a=2或1(不合题意舍弃),b=1,∴B′(3,0),y2=﹣(x﹣2)2+1=﹣x2+4x﹣3.(3)如图2中,观察图象可知,当点P的纵坐标为3或﹣3时,存在满足条件的平行四边形.对于y1=﹣x2﹣2x+3,令y1=3,x2+2x=0,解得x=0或﹣2,可得P1(﹣2,3),令y1=﹣3,则x2+2x﹣6=0,解得x=﹣1,可得P2(﹣1﹣,﹣3),P3(﹣1+,﹣3),对于y2=﹣x2+4x﹣3,令y2=3,方程无解,令y2=﹣3,则x2﹣4x=0,解得x=0或4,可得P4(0,﹣3),P5(4,﹣3),综上所述,满足条件的点P的坐标为(﹣2,3)或(﹣1﹣,﹣3)或(﹣1+,﹣3)或(0,﹣3)或(4,﹣3).【点评】本题属于二次函数综合题,考查了二次函数的性质,平行四边形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会利用参数构建方程组解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
广西来宾市2006年中考数学试卷(含答案)
2006年中等学校招生来宾市统一考试数 学(课改区)(考试时间120分钟,满分120分)一、填空题:本大题共10小题,每小题2分,共20分.请将答案填写在题中的横线上.1.20061-的相反数是___________________________. 2.分解因式:92-x =___________________________. 3.事件“中秋节晚上可以看到月亮”是______________事件(填写“必然”、“可能”、“不可能”).4.如图,已知直线a ∥b ,∠1=65°,则∠2=___________. 5.不等式组⎩⎨⎧≥-<-0202x x 的解集是_________________.6.截止到2005年11月1日零时,广西全区常住人口为4655万 人(数据来源:2006年3月21日《广西日报》),右图是根据报 纸上的数据绘制的扇形统计图,从图中可求得其他少数民族常 住人口为___________________人(保留三个有效数字). 7.如图,CD ⊥AB ,BE ⊥AC ,请你再添加一个条件:________________,使△ABE ≌△ACD .8.如图,在⊙O 中,∠AOB =100°,点P 在⊙O 上,则∠APB 的度数是__________________.9.如图,一个长12cm ,宽9cm ,高6cm 的长方体纸盒,一只小虫从点P (长的四等分点)处出发,沿纸盒的侧面爬到点Q (宽的三等分点)处,则小虫爬行的最短路程为_________cm . 10.观察下面用棋子摆成的一列图案,每个图案棋子的个数记为S .按此规律,可推断出S 与n 的关系式为____________________.第4题图21cba P AB O第8题图二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案前的字母填入题后的括号内. 11.计算363x x ÷-结果为………………………………………………………………( )A .23xB .23x -C .33xD .33x - 12.如图是用八块小正方体叠成的几何体,该几何体的俯视图是……………………( )DC B A13.一个不透明的袋中,装有用相同材料制成形状、大小相同的5个黄色小球和3个红色小球,从中随机摸出一个,则摸到红色小球的概率是……………………………( )A .83B .31 C .53 D .81 14.函数xxy --=3的自变量x 的取值范围是………………………………………( ) A .x >3 B .x ≤3且x ≠0 C .x ≤3 D .x <3且x ≠0 15.某农村贫困家庭的孩子读书,今年享受“两免一补”(即免学杂费、免课本费,补助寄宿生活费),加上免收农业税,该家庭现在平均每月可减少40%的费用支出.若该家庭原来平均每月支出m 元,则现在每月的支出为……………………………( )A .6.0mB .4.0m C .m %60 D .m %4016.在四边形ABCD 中,O 是对角线交点,下列条件中,不能判定四边形ABCD 是平行四边形的是…………………………………………………………………………( ) A .AD ∥BC ,AD =BC B .AB =DC ,AD =BC C .OA =OC ,OD =OB D .AB ∥DC ,AD =BC 17.函数xky =1和k kx y -=2(k ≠0)在同一直角坐标系中的图象大致是…………( )18.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知AB =8,BC =10,则BAF ∠tan 的值为……………………………………………………( )A .43 B .34 C .53D .54三、解答题:本大题共9小题,满分76分.解答应写出文字说明、证明过程或演算步骤. 19.(本小题满分6分)计算:()()22812345sin 2--+-- .20.(本小题满分6分)用一条直线将一个直角梯形分成面积相等的两部分,请你在下面的图中分别画出两种不同的分割图形.21.(本小题满分8分)为了从甲、乙两名同学中选拔一人参加校运会比赛,在相同条件下对他们进行了8次体能测试,测试成绩绘制成如下统计图:(注:成绩80分以上(含80分)为合格)(1(2)根据平均分和成绩合格次数比较,_______的成绩较好;根据平均分和中位数比较,_______的成绩较好;(3)结合所学的统计知识分析,你认为应选拔哪位同学去参赛较合适,并简述理由.在菱形ABCD 中,AE ⊥BC ,AF ⊥CD ,垂足分别为E 、F . 求证:CE =CF .23.(本小题满分8分)航空测量飞机在与地面平行的直线上飞行,雷达观测站P 与飞机的航线在同一铅垂平面内,已知飞机的飞行速度为50米/秒,观测站测得飞机在点A 处的仰角为30°,经过1分钟后飞机到达B 处,这时观测站测得飞机的仰角为45°,求飞机的飞行高度.(精确到1米).24.(本小题满分8分)某校七年级一、二班同学为一山区小学捐献书籍,如果从一班所捐的书中拿出8本加到二班,则一班剩下书籍是两班所捐书籍总数的31;如果从二班所捐书籍中拿出8本加到一班,此时两班的书籍数相等.问一班、二班各捐多少本书? 25.(本小题满分10分)某水果店为了尽快销售一种水果,按以下方法进行促销:购买这种水果不超过10千克的,每千克a 元;超过10千克的,超出部分每千克c 元.某人两次到该店购买这种水果的数量x (千克)与付款y (元)如下表:(1)求a 、c (2)若购买这种水果75千克,应付款多少元?Q ABP F E D CB A如图,AB 为半圆的直径,O 是圆心,C 、D 是半圆上的两点,且∠COD =90°,AC 与BD 相交点E .(1)试写出图中一对相似三角形,并写出它们相似的理由;(2)请你在图中量一量线段DA 和DE 的长,猜想它们有何数量关系,并证明你的猜想.27.(本小题满分12分)如图,在平面直角坐标系中,直线643+-=x y 交x 轴于点A ,交y 轴于点B .点P 、点Q 同时从原点出发作匀速运动,点P 沿x 轴正方向运动,点Q 沿OB →BA 方向运动,并同时到达点A .点P 运动的速度为1厘米/秒.(1)求点Q 运动的速度;(2)当点Q 运动到线段BA 上时,设点P 运动的时间为x (秒),△POQ 的面积为y (平方厘米),那么用x 的代数式表示AQ =________________;并求y 与x 的函数关系式;(3)若将(2)中所得函数的自变量x 的取值范围扩大到任意实数后,其函数图象上是否存在点M ,使得点M 与该函数图象和x 轴的两个交点所组成的三角形面积等于△AOB 的面积?若存在,求出点M 的坐标;若不存在,请说明理由.O2006年中等学校招生来宾市统一考试数学(课改区)参考答案及评分标准一、填空题:每小题2分,共20分.1.20061; 2.()()33-+x x ; 3.可能; 4.115°; 5.0<x ≤2; 6.61076.2⨯; 7.AB =AC 或AD =AE 或BE =CD ; 8.50°; 9.15. 10.16-=n S .二、选择题:每小题3分,共24分.11.D ; 12.C ; 13.A ; 14.B ; 15.C ; 16.D ; 17.B ; 18.A .三、解答题: 19.解:原式=222323222-++-⨯…………………………4分 =122+-……………………………………………5分=1…………………………………………………………6分20.每对一个,给3分.注:(1)(2)均为(3)的特例,(3)中,EF 为梯形的中位线,O 为EF 的中点,MN 为过点O 且与上、下底都相交的任意直线.21.解:(1)甲的平均分:75 …………………………………………2分甲的合格次数:3…………………………………………3分 乙的合格次数:4…………………………………………4分(2)乙;甲…………………………………………………………6分(3)由测试成绩看,甲、乙两人的成绩都呈上升趋势,但乙上升的速度比甲快,并且在后阶段乙的成绩合格次数比甲多,所以选乙参赛较合适. ………………8分22.证法一:∵四边形ABCD 是菱形∴∠B =∠D ,AB =AD =BC =CD ……………………………………2分 又∵AE ⊥BC ,AF ⊥CD ∴∠AEB =∠AFD =90°∴△AEB ≌△AFD ………………………………………………………5分 ∴BE =DF ………………………………………………………………6分∴BC -BE =CD -DF∴CE =CF ………………………………………………………………8分证法二: 连结AC∵四边形ABCD 是菱形∴∠ACE =∠ACF …………………………………………3分∵AE ⊥BC ,AF ⊥CD∴∠AEC =∠AFC =90°…………………………………5分又∵AC =AC∴△ACE ≌△ACF …………………………………………7分 ∴CE =CF …………………………………………………8分23.解:过P 作PC ⊥AB ,垂足为C ,设PC =x (m )…………1分在Rt △P AC 中,∠P AC =30°∴x PC AC 330cot =⋅=………………………3分 在Rt △PBC 中,∠PBC =45°∴BC =PC =x …………………………………………5分 ∵AB =AC -BC ∴x x -=⨯36050∴ ()4098732.21500131500133000≈⨯=+⨯=-=x (米)………………7分答:飞机的飞行高度为4098米. …………………………………………………8分24.解:(1)设一班捐书x 本,二班捐书y 本.………………………………1分依题意得()⎪⎩⎪⎨⎧-=++=-88318y x y x x …………………………………………………4分 即 ⎩⎨⎧-=-=-16242y x y xABPCQABCD E F解这个方程组得 ⎩⎨⎧==5640y x …………………………………………………7分答:一班捐书40本,二班捐书56本. …………………………………8分25.解:(1)31030==a (元/千克) ……………………………………………2分 6.210153043=--=c (元/千克) ……………………………………4分∴)100(3≤≤=x x y ……………………………………………5分 ())10(46.2106.2310>+=-+⨯=x x x y ……………………7分(2)当x =75千克时∵75>10∴y =2.6×75+4=199(元)……………………………………………10分26.解:(1)△ABE ∽△DCE (或△ADE ∽△BCE )……………2分∵∠EAB =∠EDC ,∠AEB =∠DEC∴△ABE ∽△DCE ……………………………………………5分 (2)DA =DE 在⊙O 中 ∵AB 是直径∴∠ADE =90° ………………………………………………6分 又∵DOC DAC DAE ∠=∠=∠21,∠DOC =90°…………7分 ∴∠DAE =45° ………………………………………………8分 ∴△DAE 是等腰直角三角形 …………………………………9分 ∴DA =DE ……………………………………………………10分27.解:(1)易知A (8,0),B (0,6)………………1分∴106822=+=AB ………………………2分 设点Q 的速度为v (厘米/秒),则18610=+v ∴v =2(厘米/秒) ……………………………3分(2)AQ =16-2x ………………………………4分 如图,过点Q 作QC ⊥OA 于点C ,连结OQ 、PQ ∵△AQC ∽△ABO ∴ABAQBO QC =O∴()5648102166xx AB BO AQ QC -=-⋅=⋅=………………………………………6分∴x x x x QC OP y 52453564821212+-=-⋅=⋅=………………………………7分(3)令0524532=+-x x ,解得x =0或x =8 ……………………………………8分 ∴x x y 524532+-=的图象与x 轴交于点O (0,0)和A (8,0)………………9分 设图象上存在点M (x ,y ),使AOB MOA S S ∆∆=即OB OA y OA ⋅=⋅21||21 即 |y |=OB =6 ∴ y =±6……………………………………………………………………………10分当y =6时,由6524532=+-x x ,解得64±=x 当y =-6时,由6524532-=+-x x ,解得264±=x ………………………11分 ∴抛物线x x y 524532+-=上存在满足条件的点M ,坐标为)6,64(+,)6,64(-,)6,264(-+,)6,264(--.……………………………………………………………12分。
《二元一次方程组的应用》2006年中考试题集锦
《二元一次方程组的应用》2006年中考试题集锦第1题. (2006 常州课改)小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x 张,2元的贺卡为y 张,那么x y , 所适合的一个方程组是( )A .1028y x x y ⎧+=⎪⎨⎪+=⎩ B .8210210x y x y ⎧+=⎪⎨⎪+=⎩C .1028x y x y +=⎧⎨+=⎩D .8210x y x y +=⎧⎨+=⎩答案:D第2题. (2006 成都课改)已知代数式1312a x y -与23b a b x y -+-是同类项,那么a b ,的值分别是( ) A .21a b =⎧⎨=-⎩,B .21a b =⎧⎨=⎩,C .21a b =-⎧⎨=-⎩,D .21a b =-⎧⎨=⎩,答案:A第3题. (2006 北京非课改)国外营养学家做了一项研究,甲组同学每天正常进餐,乙组同学每天除正常进餐外,每人还增加六百毫升牛奶.一年后发现,乙组同学平均身高的增长值比甲组同学平均身高的增长值多2.01cm ,甲组同学平均身高的增长值比乙组同学平均身高的增长值的34少0.34cm .求甲、乙两组同学平均身高的增长值.答案:解法一:设甲组同学平均身高的增长值为x cm , 乙组同学平均身高的增长值为y cm .依题意,得 2.0130.34.4y x y x -=⎧⎪⎨-=⎪⎩,解得 4.676.68.x y =⎧⎨=⎩,答:甲、乙两组同学平均身高的增长值分别为4.67cm 和6.68cm .解法二:设甲组同学平均身高的增长值为x cm , 则乙组同学平均身高的增长值为( 2.01)x +cm .依题意,得3( 2.01)0.344x x +-=. 解得 4.67x =. 2.01 6.68x ∴+=.答:甲、乙两组同学平均身高的增长值分别为4.67cm 和6.68cm .第4题. (2006 河北非课改)根据图提供的信息,可知一个杯子的价格是( )共43共94A.51元 B.35元 C.8元 D.7.5元 答案:C第5题. (2006 河北非课改)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图-1,图-2.图中各行从左到右列出的算筹数分别表示未知数x y ,的系数与相应的常数项.把图-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423.x y x y +=⎧⎨+=⎩,类似地,图-2所示的算筹图我们可以表述为( )A.2114327.x y x y +=⎧⎨+=⎩, B.2114322.x y x y +=⎧⎨+=⎩, C.3219423.x y x y +=⎧⎨+=⎩, D.264327.x y x y +=⎧⎨+=⎩,答案:A第6题. (2006 济南非课改)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐. (1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.答案:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得2168022280.x y x y +=⎧⎨+=⎩,解这个方程组,得960360.x y =⎧⎨=⎩,答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐. (2)因为9605360255205300⨯+⨯=>,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.第7题. (2006 泰州课改)扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示.如果长方体盒子的长比宽多4cm ,求这种药品包装盒的体积.答案:解:设这种药品包装盒的宽为cm x ,高为cm y ,则长为(4)cm x +,图-1 图-2根据题意得,22144213x y x y +=⎧⎨++=⎩解这个方程组得52x y =⎧⎨=⎩故长为9cm ,宽为5cm ,高为2cm . 体积395290(cm )V =⨯⨯=答:这种药品包装盒的体积为390cm .第8题. (2006 广州课改)目前广州市小学和初中在校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:2005学年度广州市教育统计手册). (1)求目前广州市在校的小学生人数和初中生人数;(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由广州市政府拨款解决,则广州市政府要为此拨款多少?答案:解:(1)方法1: 设目前广州市在校的中学生人数约为x 万,则目前广州市在校的小学生人数约为(214)x + 万,根据题意得:(214)128x x ++=,解这个方程,得38x =.2142381490x +=⨯+=.答:目前广州市在校的小学生人数和初中生人数分别约为:90万和38万. 方法2:设目前广州市在校的小学生人数约为x 万,在校初中生人数约为y 万,根据题意得:128214x y x y +=⎧⎨=+⎩,., 解这个方程组,得9038x y =⎧⎨=⎩,.答:目前广州市在校的小学生人数和初中生人数分别约为:90万和38万.(2)5009010003883000⨯+⨯=(万元). 答:今年,市政府要支出83000万元.第9题. (2006 镇江课改)小刘同学用10元钱购买两种不同的贺卡共8张,单价分别是1元与2元.设1元的贺卡为x 张,2元的贺卡为y 张,那么x y , 所适合的一个方程组是( )A .1028y x x y ⎧+=⎪⎨⎪+=⎩ B .8210210x yx y ⎧+=⎪⎨⎪+=⎩C .1028x y x y +=⎧⎨+=⎩D .8210x y x y +=⎧⎨+=⎩答案:D第10题. (2006 海南非课改)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?答案:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元. 依题意,得214523280x y x y +=⎧⎨+=⎩解这个方程组,得12510x y =⎧⎨=⎩答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元.第11题. (2006 宿迁课改)在2006年德国世界杯足球赛中,32支足球队将分成8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是( ) A.两胜一负 B.一胜两平 C.一胜一平一负 D.一胜两负 答案:B第12题. (2006 南昌非课改)一副三角板按如图方式摆放,且1∠的度数比2∠的度数大50,若设1x ∠=,2y ∠= ,则可得到方程组为( )A.50180x y x y =-⎧⎨+=⎩,B.50180x y x y =+⎧⎨+=⎩,C.5090x y x y =-⎧⎨+=⎩,D.5090x y x y =+⎧⎨+=⎩,答案:D第13题. (2006 南京课改)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆,现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆? 答案:解法一:设中型汽车有x 辆,小型汽车有y 辆.共计145元 共计280元根据题意,得5064230.x y x y +=⎧⎨+=⎩,解这个方程组,得1535.x y =⎧⎨=⎩,答:中型汽车有15辆,小型汽车有35辆.第14题. (2006 广东非课改)商场销售A B ,两种品牌的衬衣,单价分别为每件30元,50元,一周内共销售出300件;为扩大衬衣的销售量,商场决定调整衬衣的价格,将A 种衬衣降价20%出售,B 种衬衣按原价出售,调整后,一周内A 种衬衣的销售量增加了20件,B 种衬衣销售量没有变,这周内销售额为12880元,求调整前两种品牌的衬衣一周内各销售多少件?答案:解:设A 种品牌的衬衣有x 件,B 种品牌的衬衣有y 件.依题意可得,30030(120%)(20)5012880.x y x y +=⎧⎨⨯-++=⎩,解得,100200.x y =⎧⎨=⎩,答:A 种品牌的衬衣有100件,B 种品牌的衬衣有200件.第15题. (2006 菏泽课改)为迎接“五一”劳动节,菏泽市某中学组织了甲、乙两个义务劳动小组,甲组x 人,乙组y 人,到“中华路”和“青年路”打扫卫生,根据打扫卫生的进度,学校随时调整两组人数,如果从甲组调50人去乙组,则乙组人数为甲组人数的2倍;如果从乙组调m 人去甲组,则甲组人数为乙组人数的3倍.(1)求出x 与m 之间的关系式.(2)问当m 为何值时,甲组人数最少,最少是多少人?答案:解:(1)由题意得方程组()()250503x y x m y m -=+⎧⎪⎨+=-⎪⎩,,整理得215034x y x y m -=⎧⎨-=-⎩,, ① ②3⨯-①②得54504x m =+,4905x m ∴=+(得到54504x m =+或其变形式皆给分). (2)由4905x m =+知x 随m 增大而增大,又因x ,m ,y 均为正整数, 所以当5m =时,x 取得最小值.其最小值为4590945⨯+=,此时38y =适合题意.答:当5m =时,甲组人数最少,最少为94人.第16题. (2006 玉林、防城港课改)商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是 cm . 答案:50第17题. (2006 株洲课改)某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x 桶,买乙种水y 桶,则所列方程组中正确的是( ) A.8625075%x y y x +=⎧⎨=⎩ B.8625075%x y x y +=⎧⎨=⎩ C.6825075%x y y x+=⎧⎨=⎩D.6825075%x y x y+=⎧⎨=⎩答案:A第18题. (2006 鄂尔多斯课改)国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市某中学国家免费提供教科书补助的部分情况.)A.3001109026200x y x y +=⎧⎨+=⎩B.30011090400026200x y x y +=⎧⎨++=⎩C.80300400026200x y x y ++=⎧⎨++=⎩D.8030011090400026200x y x y ++=⎧⎨++=⎩答案:D第19题. (2006 吉林非课改)如图,在33⨯的方格内,填写了一些代数式和数. (1)在图1中各行、各列和对角线上三个数之和都相等,请你求出x ,y 的值; (2)把满足(1)的其它6个数填入图2中的方格内.53x - 4 7 x - 3y 547(图1) (图2)答案:解:由已知条件可得:7343745x y x -=+⎧⎨-=+⎩,.解得23x y =-⎧⎨=⎩,.(本题列方程组具有开放性,只要列、解方程组正确,即得满分.)第20题. (2006 吉林课改)如图,在33⨯的方格内,填写了一些代数式和数. (1)在图1中各行、各列及对角线上三个数之和都相等,请你求出x ,y 的值; (2)把满足(1)的其它6个数填入图2中的方格内.答案:解:由已知条件可得:234345x y y y +=-⎧⎨+=⎩,. 解得11x y =-⎧⎨=⎩,.(本题列方程组具有开放性,只要列、解方程组正确,即给4分).第21题. (2006 泉州课改)某校的一间阶梯教室,第1排的座位数为a ,从第2排开始,每一排都比前一排增加b 个座位.(1(2)已知第4排有18个座位,第15排座位数是第5排座位数的2倍,求第21排有多少个座位?5 4 7 2 96 8 3 10 23- 4y23-(图1) (图2)3 2x y 3 2 3- 3 2- 5 1 0 1- 4答案:解:(1)3a b+(2)依题意得318142(4)a ba b a b+=⎧⎨+=+⎩解得122ab=⎧⎨=⎩1220252+⨯=∴答:第21排有52个座位.第22题. (2006娄底)小英和小强相约一起去某超市购买他们看中的随身听和书包.你能根据他们的对话内容(如图),求出他们看中的随身听和书包单价各是多少元吗?答案:解:设他们看中的书包的单价为x元,随身听的单价为y元.依题意有45248x yy x+=⎧⎨=-⎩解得92360xy=⎧⎨=⎩答:(略)第23题. (2006 湘西自治区)在社会主义新农村建设中,某村积极响应党的号召,大力发动农户扩大烟叶和蔬菜的种植面积,取得了较好的经济效益.今年该村烟叶和蔬菜的种植面积比去年增加了800亩,其中烟叶种植面积增加了20%,蔬菜种植面积增加了30%,从而使该村的烟叶和蔬菜种植面积共达到了4200亩.问该村去年种植烟叶和蔬菜的面积各是多少亩?答案:解:设该村去年种植烟叶和蔬菜面积各为x亩,y亩,根据题意有:420080020%30%800x yx y+=-⎧⎨+=⎩解得:22001200xy=⎧⎨=⎩答:该村去年种植烟叶和蔬菜的面积各是2200亩,1200亩.第24题. (2006 湘西自治区)如图,平行四边形ABCD的周长是48,对角线AC与BD相交于点O,AOD△的周长比AOB △的周长多6,若设AD x =,AB y =,则可用列方程组的方法求AD ,AB 的长,这个方程组可以是:( )A.2()486x y x y +=⎧⎨-=⎩B.2()486x y y x +=⎧⎨-=⎩C.486x y x y +=⎧⎨-=⎩D.486x y y x +=⎧⎨-=⎩答案:A第25题. (2006 岳阳课改)今年五月二十七日,印尼中爪哇省发生强烈地震,给当地人民造成巨大的经济损失.某学校积极组织捐款支援灾区,初三(1)班55名同学共捐款274元,捐款情况如右表.表中捐款2元和5元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.答案:解:设捐款2元和5元的学生人数分别为x 人,y 人,依题意得: 556725274670x y x y +=--⎧⎨+=--⎩4225198x y x y ⎛+=⎫⎧ ⎪⎨+=⎩⎝⎭解方程组,得438x y =⎧⎨=⎩答:捐款2元的有4人,捐款5元的有38人.第26题. (2006 张家界课改)我市某生态果园今年收获了15吨李子和8吨桃子,要租用甲、乙两种货车共6辆,及时运往外地,甲种货车可装李子4吨和桃子1吨,乙种货车可装李子1吨和桃子3吨. (1)共有几种租车方案? (2)若甲种货车每辆需付运费1000元,乙种货车每辆需付运费700元,请选出最佳方案,此方案运费是多少.答案:解:(1)设安排甲种货车x 辆,乙种货车(6)x -辆,根据题意,得:4(6)1533(6)85x x x x x x +-⎧⎧⇒⎨⎨+-⎩⎩≥≥≥≤ 35x ∴≤≤x 取整数有:3,4,5,共有三种方案.(2)租车方案及其运费计算如下表.(说明:不列表,用其他形式也可)答:共有三种租车方案,其中第一种方案最佳,运费是5100元.。
2006年广西玉林市、防城港市(非课改卷)
2006年玉林市、防城港市初中毕业升学考试数学(非课改卷)亲爱的同学,展示才华的时候到了,相信自己,细心解答,遇到数字运算尽可能使用计算器,定会获得理想的成绩.祝你成功!一、填空题:本大题共10小题,每小题2分,共20分.请将答案直接写在题中的横线上. 1.计算:(2)(1)-⨯-=. 2.写出23a 的一个同类项:.3.已知数据:06625,,,,,那么这组数据的众数是.4.若1003x y +=,2x y -=,则代数式22x y -的值是 .5.如图1,火焰的光线穿过小孔O ,在竖直的屏幕上形成倒立的实像,像的高度为1.5cm ,48cm OA =,16cmOC =,则火焰的高度是cm. 6.已知一元二次方程240x x a ++=两根的和等于这两根的积,则a =.7.如图2,有反比例函数1y x =,1y x=-的图象和一个圆,则S =阴影.8.商店里把塑料凳整齐地叠放在一起,据图3的信息,当有10张塑料凳整齐地叠放在一起时的高度是 cm .9.某厂前年缴税30万元,今年缴税36.3万元,如果该厂缴税的年平均增长率为x ,那么可列方程为 .10.如图4,AB 为O 的直径,AB 经过弦CD 的中点E ,150BOC ∠=,则ABD ∠=.图1图2图4二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有 一项是符合题意的,请将你认为正确答案的序号填在题后括号内.11.截至2006年4月15日3时44分,我国神舟六号飞船轨道舱已环绕地球2920圈,用科学记数法表示这个数是( ) A.42.9210⨯圈 B.32.9210⨯圈C.229.210⨯圈D.40.29210⨯圈12.计算:111x x x +--,正确的结果是( ) A.1- B.0 C.2D.113.不等式组230.52x x x >-+⎧⎨<⎩,的解集是( )A.1x > B.4x <C.1x >或4x < D. 14x <<14.如图5,下列条件不能判定直线a b ∥的是( )A.12∠=∠ B.13∠=∠C.14180∠+∠=D.24180∠+∠=15.丽丽买了一张30元的租碟卡,每租一张碟后剩下的余额如表6表示,若丽丽租碟25张,则卡中还剩下( ) A.5元 B.10元 C.20元 D.14元16.正比例函数(1)y a x =+的图象经过第二、四象限,若a 同时满足方程22(12)0x a x a +-+=,则此方程的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根D.不能确定17.如图7,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在MN上,且不与M N ,重合,当P 点在MN 上移动时,矩形PAOB 的形状、大小随之变化,则AB 的长度( ) A.变大 B.变小C.不变 D.不能确定表6 BNPO图7314ac图5b218.如图8,1O 与2O 相交于A B ,两点,直线PQ 与1O 相切于点P ,与2O 相切于点Q ,AB 的延长线交PQ 于C ,连结PA ,PB .下列结论:①PC CQ =;②P B B Q>;③PBC APC ∠=∠.其中错误..的结论有( ) A.3个 B.2个C.1个 D.0个三八为解答题,满分共76分.解答应写出文字说明,证明过程或演算步骤. 三、本大题共2小题,满分共16分. 19.(本小题满分8分)计算:08(1-. 20.(本小题满分8分) 解方程:651(1)x x x x +=++.四、本大题共2小题,满分共16分. 21.(本小题满分8分)某科技馆座落在山坡M 处,从山脚A 处到科技馆的路线如图9所示.已知A 处海拔高度 为103.4m ,斜坡AB 的坡角为30,40m AB =,斜坡BM 的坡角为18,60m BM =,那么科技馆M 处的海拔高度是多少?(精确到0.1m )(参考数据:sin180.309= cos180.951= tan180.324= cot18 3.08=)22.(本小题满分8分)如图10,在ABC △和ABD △中,现给出如下三个论断:①AD BC =;②C D ∠=∠; ③12∠=∠.请选择其中两个论断为条件,另一个论断为结论,构造一个命题.(1)写出所有的真命题(写成“⎫⇒⎬⎭”形式,用序号表示): . (2)请选择一个真命题加以证明.图83018 AB M 图9 21ACDB图10你选择的真命题是:⎫⇒⎬⎭.证明:五、本大题共1小题,满分10分. 23.(本小题满分10分)某制衣厂近四年来关于销售额与总成本的统计图,如图11所示. (1)请你在图12中画出四年利润(利润=销售额-总成本)的统计直方图(要求标出数字); (2)根据图11,图12分别写出一条你发现的信息;(3)若从2004年到2006年这两年间的利润年平均增长率相同,请你预测2006年的利润是多少万元?六、本大题共1小题,满分10分. 24.(本小题满分10分)为鼓励居民节约用水和保护水资源,A 市城区从2006年3月1日起,对居民生活用水采取按月按户实行阶梯式计量水价收费,其收费标准是:第一阶梯水价为1.28元/3m ;第二阶梯水价为1.92元/3m .(1)每户人口为4人(含4人)以内的,月用水量332m ≤执行第一阶梯水价,月用水量332m >的部分..执行第二阶梯水价.如果某户人口4人,3月份用水量330m ,那么应交水费元;4月份用水量335m ,那么应交水费元.(2)每户核定人数超过4人的,月用水量≤(38m ⨯核定人数)执行第一阶梯水阶,月用水量>(38m ⨯核定人数)的部分..执行第二阶梯水价,若小江家人口有5人,设月用水量3m x ,应交水费y 元. ①请你写出y 与x 的函数关系式;图11 2002 2003 2004 2005 年份 利润(万元) 图12②若小江家某月交水费60.8元,则该月用水量是多少3m ? 七、本大题共1小题,满分12分. 25.(本小题满分12分) 如图13,已知AB 是O 的直径,弦CD AB ⊥于E ,F 是CE上的一点,且FC FA =,延长AF 交O 于G ,连结CG . (1)试判断ACG △的形状(按边分类),并证明你的结论; (2)若O 的半径为5,2OE =,求CF CD 之值.八、本大题共1小题,满分12分. 26.(本小题满分12分)在矩形ABCD 中,4AB =,2BC =,以A 为坐标原点,AB 所在的直线为x 轴,建立直角坐标系.然后将矩形ABCD 绕点A 逆时针旋转,使点B 落在y 轴的E 点上,则C 和D 点依次落在第二象限的F 点上和x 轴的G 点上(如图14). (1)求经过BE G ,,三点的二次函数解析式;(2)设直线EF 与(1)的二次函数图象相交于另一点H ,试求四边形EGBH 的周长. (3)设P 为(1)的二次函数图象上的一点,BP EG ∥,求P 点的坐标.2006年玉林市、防城港市初中毕业升学考试数学试题(非课改)参考答案及评分标准一、填空题:(每小题2分,共20分) 1.22.答案不唯一,如22a -, 3.6 4.20065.4.5 6.4-7.2π8.509.230(1)36.3x +=10.15二、选择题:(每小题3分,共24分) 11.B 12.D 13.D 14.C 15.B16.A 17.C 18.CA图13图14三、19.解:原式8=- ····················································································· 6分 8=. ········································································································ 8分 20.解:65x x =+. ···································································································· 2分 55x =. ·········································································································· 4分1x =. ············································································································· 6分检验:当1x =时,120x +=≠,(1)1(11)20x x +=⨯+=≠.∴原方程的解为1x =. ·················································································· 8分 四、21.解:过B 向水平线AC 作垂线BC ,垂足为C ,过M 向水平线BD 作垂线MD ,垂足为D (如右图),则 ··································· 2分 11402022BC AB ==⨯=. ···························4分 sin18MD BM =600.309=⨯18.54=. ········································································································ 6分 ∴科技馆M 处的海拔高度是:103.42018.54141.94141.9(m)++=≈. ······ 8分22.解:(1)真命题是:⎫⇒⎬⎭①②③,⎫⇒⎬⎭②①③ ······························································ 4分(2)选择命题一:⎫⇒⎬⎭①②③证明:在ABC △和BAD △中,AD BC =∵,12∠=∠,AB BA =, ABC BAD ∴△≌△. ······································································· 7分C D ∠=∠∴. ···················································································· 8分选择命题二:⎫⇒⎬⎭②①③ 证明:在ABC △和BAD △中,C D ∠=∠∵,21∠=∠,AB BA =, ABC BAD ∴△≌△. ······································································· 7分 AD BC =∴. ····················································································· 8分 五、23解:(1)正确画出统计直方图,并标出数字. ························································ 4分3018ABM DC2002 2003 2004 2005年份 150 100 50(2)答案不唯一.每写出一条正确的信息给1分. ········································ 6分 (3)2004年到2005年的增长率120100100%20%100-=⨯=. ····················· 8分预测2006年的利润为:120(120%)144⨯+=(万元). ·················· 10分 六、24.解:(1)38.4,46.72 ··························································································· 4分 (2)①当040x ≤≤时, 1.28y x =; ························································· 5分当40x >时,40 1.28(40) 1.92y x =⨯+-⨯1.9225.6x =-. ······················································ 7分② 1.2851.260.840⨯=<∵,可见用水量超过340m .∴当60.8y =时,1.9225.660.8x -=. ········································· 8分 解得45x =. ··················································································· 9分∴小江家该月用水量为345m . ······················································· 10分七、25.(1)解:ACG △是等腰三角形.证明如下:CD AB ∵⊥,AD AC =∴. ······················· ······································ 1分G ACD ∠=∠∴. ··········································· ······································ 2分 FC FA =∵,ACD CAG ∠=∠∴. ············· ······································ 3分 G CAG ∠=∠∴.ACG ∴△是等腰三角形. ······················· 4分(2)解:连结AD ,BC . ······································ 5分由(1)知AC AD =,AC AD =∴.D ACD ∠=∠∴. ···································· 6分 D G CAG ∠=∠=∠∴. 又ACF DCA ∠=∠,ACF DCA ∴△∽△. ·········································································· 7分::AC CD CF AC =∴,即2AC CF CD =. ····································· 8分CD AB ∵⊥,2(52)(52)21CE AE EB ==-+=∴. ·············································· 9分 2222(52)2130AC AE CE =+=-+=∴. ······································ 11分 30CF CD =∴. ················································································· 12分 八、26.(1)解:由题意可知,4AE AB ==,2AG AD BC ===. ························· 1分(40)B ,∴,(04)E ,,(20)G -,. ·························································· 2分A设经过B E G ,,三点的二次函数解析式是(2)(4)y a x x =+-.把(04)E ,代入之,求得12a =-.·························································· 3分 ∴所求的二次函数解析式是:211(2)(4)422y x x x x =-+-=-++.··············································· 4分(2)解:由题意可知,四边形AEFG 为矩形.F HG B ∴∥,且6GB =. ······································································· 5分∵直线4y =与二次函数图象的交点H 的坐标为(24)H ,, 2EH =∴. ································································································ 6分G ∵与B E ,与H 关于抛物线的对称轴对称,BH EG =∴. ····························································· 7分 ∴四边形EGBH 的周长262=++⨯8=+ ····························································································· 8分 (3)解法1:设BP 交y 轴于M .B P E G ∵∥,::AB AG AM AE =∴, 即4:2:4AM =.8AM =∴,于是(08)M -,. ···················· 9分设直线BM 的解析式为y kx b =+.把(40)B ,,(08)M -,代入之, 得408.k b b +=⎧⎨=-⎩,解得28.k b =⎧⎨=-⎩,28y x =-∴. ·························································································· 10分联合一次,二次函数解析式组成方程组2281 4.2y x y x x =-⎧⎪⎨=-++⎪⎩,解得620x y =-⎧⎨=-⎩,或40.x y =⎧⎨=⎩,(此组数为B 点坐标)∴所求的P 点坐标为(620)P -,. ···························································· 12分解法2:过P 作PN x ⊥轴于N .由BP EG ∥,得EGB PBN ∠=∠. 设所求P 点的横坐标为(0)a a <,则纵坐标为214(0)2a a a -++<. ····· 9分 tan PN PBN NB ∠=∵,4tan 22AE EGB AG ∠===, 2PN AENB AG==∴. ······················································································ 10分 4NB NA AB a =+=-∴,22114422PN a a a a ⎛⎫=--++=-- ⎪⎝⎭, 214224a a a--=-∴.解之,得6a =-或4a =. ·········································································· 11分 经检验可知,6a =-是原方程的根;4a =是原方程的增根,故应舍去.当6a =-时,22114(6)642022a a -++=-⨯--+=.∴所求的P 点坐标为(620)P -,.································································ 12分。
初一找规律经典题型(含部分问题详解)
图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
然后再简化代数式a+(n-1)b 。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1)6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3 n =4 n =5 ……数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
广西省玉林市、防城港市(课改区)
广西省玉林市、防城港市2008年中考语文试题(课改区)(考试时间:150分钟满分:120分)一、识字写字、口语交际与综合性学习(12分)1、下列各组词语中加点字的读音有误的一项是()(3分)A 酝(yùn )酿阴晦(huì)憧(chōng )憬轩(xuān)榭B 阔绰(chuî)潮讯(xùn)水藻(zǎo)瀑(pù)布C 惘(wǎng)然埋(mán)怨狼藉( jí)斟酌(zhuï)D 气氛(fēn)澄(chéng)清蹒(mǎn)跚琐(suǒ)屑2、把“没有一种冰不被自信的阳光融化”抄写在田字格中,以展示你的书写水平。
(3分)联合国发出警告:“水将成为一种严重的社会危机。
”我国是一个水资源十分短缺的国家,人均水资源占有量仅占世界平均水平的1/4。
正像水的问题一样,许许多多与环境有关的问题成了社会发展的新的危机,可以这样说,环境问题已经警钟长鸣。
6月5日是世界环境日,你所在的学校为此举办了“环境保护周”系列活动。
3、学校团委结合“环境保护周”活动,举办了一次以“要不要节约用水”为话题的辩论会。
会上,反方代表说:“我们这里水资源那么丰富,不用它也会哗哗地流掉,没必要节约用水。
”假如你是正方代表,请你加以反驳。
你说: (3分)4、学校为了开展经常性的环保活动,向全校师生征集“环保主题活动”方案。
请你选择一个切合实际活动主题(除节约用水外),并列举活动的主要内容。
主题: (1分)内容: (2分)二、古诗文与名著阅读(24分)5、根据课文和要求,默写出相应的古诗文名句。
(每小题2分,共8分)(1)东风不与周郎便,。
(杜牧《赤壁》)(2)我欲乘风归去,又恐琼楼玉宇,。
(苏轼《明月几时有》)(3) ;处江湖之远则忧其君。
(范仲淹《岳阳楼记》)(4)乡愁是一种抹不掉的记忆。
初中阶段你所学过的古诗词中,用家书来写乡愁,表达作者思念家人的一个句子是:阅读下面一首诗,完成第6题。
2020年广西玉林市中考数学试卷(附答案与解析)
广西玉林市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.1.(3分)9的倒数是()A.B.﹣C.9 D.﹣92.(3分)下列各数中,是有理数的是()A.πB.1.2 C.D.3.(3分)如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是()A.平行四边形B.正方形C.矩形D.圆4.(3分)南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是()A.278×108B.27.8×109C.2.78×1010D.2.78×1085.(3分)若α=29°45′,则α的余角等于()A.60°55′B.60°15′C.150°55′D.150°15′6.(3分)下列运算正确的是()A.3a+2a=5a2B.3a2﹣2a=aC.(﹣a)3•(﹣a2)=﹣a5D.(2a3b2﹣4ab4)÷(﹣2ab2)=2b2﹣a27.(3分)菱形不具备的性质是()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等8.(3分)若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)的值是()A.4 B.2 C.1 D.﹣29.(3分)如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有()A.3对B.5对C.6对D.8对10.(3分)定义新运算:p⊕q=,例如:3⊕5=,3⊕(﹣5)=,则y=2⊕x(x≠0)的图象是()A.B.C.D.11.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.812.(3分)已知抛物线C:y=(x﹣1)2﹣1,顶点为D,将C沿水平方向向右(或向左)平移m个单位,得到抛物线C1,顶点为D1,C与C1相交于点Q,若∠DQD1=60°,则m等于()A.±4 B.±2 C.﹣2或2 D.﹣4或4二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:(﹣6)﹣(+4)=.14.(3分)样本数据﹣2,0,3,4,﹣1的中位数是.15.(3分)我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是.16.(3分)如图,一次函数y1=(k﹣5)x+b的图象在第一象限与反比例函数y2=的图象相交于A,B两点,当y1>y2时,x的取值范围是1<x<4,则k=.17.(3分)设0<<1,则m=,则m的取值范围是.18.(3分)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB边的碰撞次数是.三、解答题(共8小题,满分66分)19.(6分)计算:|﹣1|﹣(﹣2)3﹣+(π﹣cos60°)0.20.(6分)解方程:﹣=1.21.(6分)如图,已知等腰△ABC顶角∠A=30°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.22.(8分)某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是;(2)当α=180°时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.23.(9分)如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O分别交于AC,BC于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.24.(9分)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg与3.6万kg,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg.如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?25.(10分)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.26.(12分)已知二次函数:y=ax2+(2a+1)x+2(a<0).(1)求证:二次函数的图象与x轴有两个交点;(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数时,求a的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x轴的两个交点A,B(A在B的左侧),与y轴的交点C及其顶点D这四点画出二次函数的大致图象,同时标出A,B,C,D的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P使∠PCA=75°?如果存在,求出点P的坐标;如果不存在,请说明理由.2019年广西玉林市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.1.【解答】解:9的倒数是:.故选:A.2.【解答】解:四个选项中只有1.2是有理数.故选:B.3.【解答】解:∵圆柱底面圆半径为2,高为2,∴底面直径为4,∴圆柱的左视图是一个长为4,宽为2的长方形,故选:C.4.【解答】解:278亿用科学记数法表示应为2.78×1010,故选:C.5.【解答】解:∵α=29°45′,∴α的余角等于:90°﹣29°45′=60°15′.故选:B.6.【解答】解:A、3a+2a=5a,故此选项错误;B、3a2﹣2a,无法计算,故此选项错误;C、(﹣a)3•(﹣a2)=a5,故此选项错误;D、(2a3b2﹣4ab4)÷(﹣2ab2)=2b2﹣a2,正确.故选:D.7.【解答】解:A、是轴对称图形,故正确;B、是中心对称图形,故正确;C、对角线互相垂直,故正确;D、对角线不一定相等,故不正确;故选:D.8.【解答】解:根据题意得x1+x2=1,x1x2=﹣2,所以(1+x1)+x2(1﹣x1)=1+x1+x2﹣x1x2=1+1﹣(﹣2)=4.故选:A.9.【解答】解:图中三角形有:△AEG,△ADC,CFG,△CBA,∵AB∥EF∥DC,AD∥BC∴△AEG∽△ADC∽CFG∽△CBA共有6个组合分别为:∴△AEG∽△ADC,△AEG∽CFG,△AEG∽△CBA,△ADC∽CFG,△ADC∽△CBA,CFG∽△CBA故选:C.10.【解答】解:∵p⊕q=,∴y=2⊕x=,故选:D.11.【解答】解:如图,设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为OP﹣OF,∵AC=4,BC=3,∴AB=5∵∠OPB=90°,∴OP∥AC∵点O是AB的三等分点,∴OB=×5=,==,∴OP=,∵⊙O与AC相切于点D,∴OD⊥AC,∴OD∥BC,∴==,∴OD=1,∴MN最小值为OP﹣OF=﹣1=,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值=+1=,∴MN长的最大值与最小值的和是6.故选:B.12.【解答】解:抛物线CC:y=(x﹣1)2﹣1沿水平方向向右(或向左)平移m个单位得到y=(x﹣m﹣1)2﹣1,∴D(1,﹣1),D(m+1,﹣1),∴Q点的横坐标为:,代入y=(x﹣1)2﹣1求得Q(,﹣1),若∠DQD1=60°,则△DQD1是等腰直角三角形,∴QD=DD=|m|1,由勾股定理得,(﹣1)2+(﹣1+1)2=m2,解得m=±4,故选:A.二、填空题(共6小题,每小题3分,满分18分)13.【解答】解:(﹣6)﹣(+4)=(﹣6)+(﹣4)=﹣10.故答案为:﹣1014.【解答】解:按从小到大的顺序排列是:﹣2,﹣1,0,3,4.中间的是1.则中位数是:0.故答案是:0.15.【解答】解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为;故答案为:.16.【解答】解:由已知得A、B的横坐标分别为1,4,所以有解得k=4,故答案为4.17.【解答】解:m==,∵0<<1,∴﹣2<﹣<0,∴﹣1≤1﹣<1,即﹣1<m<1.故答案为:﹣1<m<118.【解答】解:如图根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2019÷6=336…3,当点P第2019次碰到矩形的边时为第337个循环组的第3次反弹,点P的坐标为(6,4)∴它与AB边的碰撞次数是=336×2=672次故答案为672三、解答题(共8小题,满分66分)19.【解答】解:原式=﹣1+8﹣+1=8.20.【解答】解:﹣===1,∴x2+2x﹣3=(x﹣1)(x+2),∴x=1,经检验x=1是方程的增根,∴原方程无解;21.【解答】(1)解:如图,点D为所作;(2)证明:∵AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°,∵DA=DB,∴∠ABD=∠A=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴△BCD是等腰三角形.22.【解答】解:(1)低于80分的征文数量为20×(1﹣30%﹣20%﹣10%)=8,则抽到试卷的分数为低于80分的概率是=,故答案为:.(2)当α=180°时,成绩是70分的人数为10人,则成绩是60分的人数20﹣10﹣20×(10%+20%+30%)=2(人);(3)∵80分的人数为:20×30%=6(人),且80分为成绩的唯一众数,所以当70分的人数为5人时,这个班的平均数最大,∴最大值为:(20×10%×100+20×20%×90+20×30%×80+5×70+3×60)÷20=78.5(分).23.【解答】(1)证明:连接AE,如图所示:∵AB为⊙O的直径,∴∠ADB=∠AEB=90°,∴AE⊥BC,BD⊥AC,∵AB=AC,∴BE=CE=3,∵EF是⊙O的切线,∴OE⊥EF,∵OA=OB,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD,∴BD∥EF,∵BE=CE,∴CF=DF,∴EF是△CDB的中位线;(2)解:∵∠AEB=90°,∴AE===4,∵△ABC的面积=AC×BD=BC×AE,∴BD===,∵EF是△CDB的中位线,∴EF=BD=.24.【解答】解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x,根据题意得,2.5(1+x)2=3.6,解得:x=0.2,x=﹣2.2(不合题意舍去),答:该养殖场蛋鸡产蛋量的月平均增长率为20%;(2)设至少再增加y个销售点,根据题意得,3.6+0.32y≥3.6×(1+20%),解得:y≥,答:至少再增加3个销售点.25.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CD,AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠CFD=∠BEA,∵∠BAC=∠BEA+∠ABE,∠DCA=∠CFD+∠CDF,∴∠ABE=∠CDF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(AAS),∴BE=DF,∵BH=DG,∴BE+BH=DF+DG,即EH=GF,∵EH∥GF,∴四边形EHFG是平行四边形;(2)如图,连接BD,交EF于O,∵四边形ABCD是正方形,∴BD⊥AC,∴∠AOB=90°,∵AB=2,∴OA=OB=2,Rt△BOE中,EB=4,∴∠OEB=30°,∴EO=2,∵OD=OB,∠EOB=∠DOF,∵DF∥EB,∴∠DFC=∠BEA,∴△DOF≌△BOE(AAS),∴OF=OE=2,∴EF=4,∴FM=2,EM=6,过F作FM⊥EH于M,交EH的延长线于M,∵EG∥FH,∴∠FHM=∠GEH,∵tan∠GEH=tan∠FHM==2,∴,∴HM=1,∴EH=EM﹣HM=6﹣1=5,FH===,∴四边形EHFG的周长=2EH+2FH=2×5+2=10+2.26.【解答】解:(1)∵y=ax2+(2a+1)x+2=(x+2)(ax+1),且a<0,∴抛物线与x轴的交点为(﹣2,0)、(﹣,0),则二次函数的图象与x轴有两个交点;(2)∵两个交点的横坐标均为整数,且a为负整数,∴a=﹣1,则抛物线与x轴的交点A的坐标为(﹣2,0)、B的坐标为(1,0),∴抛物线解析式为y=(x+2)(﹣x+1)=﹣x2﹣x+2=﹣(x+)2+,当x=0时,y=2,即C(0,2),函数图象如图1所示:(3)存在这样的点P,∵OA=OC=2,∴∠ACO=45°,如图2,当点P在直线AC上方时,记直线PC与x轴的交点为E,∵∠PCA=75°,∴∠PCO=120°,∠OCB=60°,则∠OEC=30°,∴OE===2,则E(2,0),求得直线CE解析式为y=﹣x+2,联立,解得或,∴P(,);如图3,当点P在直线AC下方时,记直线PC与x轴的交点为F,∵∠ACP=75°,∠ACO=45°,∴∠OCF=30°,则OF=OC tan∠OCF=2×=,∴F(,0),求得直线PC解析式为y=﹣x+2,联立,解得:或,∴P(﹣1,﹣1),综上,点P的坐标为(,)或(﹣1,﹣1).。
2010年广西玉林市、防城港市中考数学试卷(WORD版)
2010年玉林市、防城港市初中毕业暨升学考试数学全试卷共三大题,共4页,满分为120分,考试时间120分钟。
注意事项:1.本试卷分为试题卷和答题卷两部分。
请将答案填写在答题卷上,在试卷上作答无效........。
考试结束后,将本试卷和答题卷一并交回。
2.选择题每小题选出答案后,玉林市的考生......用2B 铅笔把答题卷上对应题目的选项标号涂黑;防城港的考生......用蓝黑色的钢笔或圆珠笔将选项标号填写在答题卷上对应题目的空格内。
3.非选择题玉林市的考生......用直径0.5毫米黑色签字笔在答题卷上各题的答题区域内作答;防城港市的考生.......,用蓝黑色的钢笔或圆珠笔在答题卷上各题的答题区域内作答。
一、选择题(本大题共12小题,每小题3分,共36分。
每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(或涂)在答题卷内相应的位置上)1.9的相反数是: A .9 B. 9- C. 19 D.19- 2.下列四个数中,最小的数是:A. 2-B. 1-C. 1D. 03.如图1,直线a ∥b ,c 与a 、b 均相交,则β=A. 60︒B. 100︒C. 120︒D. 150︒4.玉林市、防城港市面积共为19000km 3,用科学记数法表示这个数是:A.31910⨯B. 50.1910⨯C. 51.910⨯D. 41.910⨯5.计算32()a 的结果是:A.5aB.6aC.8aD.1a -6.下列图形中,既是轴对称图形又是中心对称图形的是:A.等边三角形B.平行四边形C.菱形D.正五边形 7.掷一个骰子,向上一面的点数大于2且小于5的概率为1p ,抛两枚硬币,正面朝上的概率为2p ,则A.12p p <B. 12p p >C. 12p p =D. 不能确定8.在数轴上,点A 所表示的实数是2-,⊙A 的半径为2,⊙B 的半径为1,若⊙B 与⊙B 外切,则在数轴上点B 所表示的实数是:A.1B.5-C. 1或5-D.1-或3-9.对于函数2y k x =(k 是常数,0k ≠)的图像,下列说法不正确...的是A.是一条直线B.过点1(,)k kC.经过一、三象限或二、四象限D.y 随x 的增大而增大 10.如图2,将△ABC 的三边分别扩大一倍得到△111A B C (顶点均在格点上),它们是以点P 为位似中心的位似图形,则P 点的坐标是:A. (4,3)--B. (3,3)--C. (4,4)--D. (3,4)--11.如图3,正方形ABCD 内接于⊙O ,直径MN ∥AD ,则阴影部分的面积占圆面积:A.12B. 14C. 16D. 1812.直线l 与双曲线C 在第一象限相交于点A 、B 两点,其图像信息如图4所示,则阴影阴部分(包括边界)横纵坐标都是整数的点(俗称格点)有:A.4个B.5个C.6个D.8个二、填空题(本大题共6小题,每小题3分,共18分。
广西玉林市2019年中考数学真题试题(含解析)
2019年广西玉林市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.1.(3分)9的倒数是()A.B.﹣C.9 D.﹣92.(3分)下列各数中,是有理数的是()A.πB.1.2 C.D.3.(3分)如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是()A.平行四边形B.正方形C.矩形D.圆4.(3分)南宁到玉林城际铁路投资约278亿元,将数据278亿用科学记数法表示是()A.278×108B.27.8×109C.2.78×1010D.2.78×1085.(3分)若α=29°45′,则α的余角等于()A.60°55′B.60°15′C.150°55′D.150°15′6.(3分)下列运算正确的是()A.3a+2a=5a2B.3a2﹣2a=aC.(﹣a)3•(﹣a2)=﹣a5D.(2a3b2﹣4ab4)÷(﹣2ab2)=2b2﹣a27.(3分)菱形不具备的性质是()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等8.(3分)若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)的值是()A.4 B.2 C.1 D.﹣29.(3分)如图,AB∥EF∥DC,AD∥BC,EF与AC交于点G,则是相似三角形共有()A.3对B.5对C.6对D.8对10.(3分)定义新运算:p⊕q=,例如:3⊕5=,3⊕(﹣5)=,则y =2⊕x(x≠0)的图象是()A.B.C.D.11.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是()A.5 B.6 C.7 D.812.(3分)已知抛物线C:y=(x﹣1)2﹣1,顶点为D,将C沿水平方向向右(或向左)平移m个单位,得到抛物线C1,顶点为D1,C与C1相交于点Q,若∠DQD1=60°,则m 等于()A.±4B.±2C.﹣2或2D.﹣4或4二、填空题(共6小题,每小题3分,满分18分)13.(3分)计算:(﹣6)﹣(+4)=.14.(3分)样本数据﹣2,0,3,4,﹣1的中位数是.15.(3分)我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A口进E口出的概率是.16.(3分)如图,一次函数y1=(k﹣5)x+b的图象在第一象限与反比例函数y2=的图象相交于A,B两点,当y1>y2时,x的取值范围是1<x<4,则k=.17.(3分)设0<<1,则m=,则m的取值范围是.18.(3分)如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,若发光电子与矩形的边碰撞次数经过2019次后,则它与AB边的碰撞次数是.三、解答题(共8小题,满分66分)19.(6分)计算:|﹣1|﹣(﹣2)3﹣+(π﹣cos60°)0.20.(6分)解方程:﹣=1.21.(6分)如图,已知等腰△ABC顶角∠A=30°.(1)在AC上作一点D,使AD=BD(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:△BCD是等腰三角形.22.(8分)某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是;(2)当α=180°时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.23.(9分)如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O分别交于AC,BC 于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.24.(9分)某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万kg与3.6万kg,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万kg.如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?25.(10分)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.26.(12分)已知二次函数:y=ax2+(2a+1)x+2(a<0).(1)求证:二次函数的图象与x轴有两个交点;(2)当二次函数的图象与x轴的两个交点的横坐标均为整数,且a为负整数时,求a 的值及二次函数的解析式并画出二次函数的图象(不用列表,只要求用其与x轴的两个交点A,B(A在B的左侧),与y轴的交点C及其顶点D这四点画出二次函数的大致图象,同时标出A,B,C,D的位置);(3)在(2)的条件下,二次函数的图象上是否存在一点P使∠PCA=75°?如果存在,求出点P的坐标;如果不存在,请说明理由.2019年广西玉林市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.1.【解答】解:9的倒数是:.故选:A.2.【解答】解:四个选项中只有1.2是有理数.故选:B.3.【解答】解:∵圆柱底面圆半径为2,高为2,∴底面直径为4,∴圆柱的左视图是一个长为4,宽为2的长方形,故选:C.4.【解答】解:278亿用科学记数法表示应为2.78×1010,故选:C.5.【解答】解:∵α=29°45′,∴α的余角等于:90°﹣29°45′=60°15′.故选:B.6.【解答】解:A、3a+2a=5a,故此选项错误;B、3a2﹣2a,无法计算,故此选项错误;C、(﹣a)3•(﹣a2)=a5,故此选项错误;D、(2a3b2﹣4ab4)÷(﹣2ab2)=2b2﹣a2,正确.故选:D.7.【解答】解:A、是轴对称图形,故正确;B、是中心对称图形,故正确;C、对角线互相垂直,故正确;D、对角线不一定相等,故不正确;故选:D.8.【解答】解:根据题意得x1+x2=1,x1x2=﹣2,所以(1+x1)+x2(1﹣x1)=1+x1+x2﹣x1x2=1+1﹣(﹣2)=4.故选:A.9.【解答】解:图中三角形有:△AEG,△ADC,CFG,△CBA,∵AB∥EF∥DC,AD∥BC∴△AEG∽△ADC∽CFG∽△CBA共有6个组合分别为:∴△AEG∽△ADC,△AEG∽CFG,△AEG∽△CBA,△ADC∽CFG,△ADC∽△CBA,CFG∽△CBA故选:C.10.【解答】解:∵p⊕q=,∴y=2⊕x=,故选:D.11.【解答】解:如图,设⊙O与AC相切于点D,连接OD,作OP⊥BC垂足为P交⊙O于F,此时垂线段OP最短,PF最小值为OP﹣OF,∵AC=4,BC=3,∴AB=5∵∠OPB=90°,∴OP∥AC∵点O是AB的三等分点,∴OB=×5=,==,∴OP=,∵⊙O与AC相切于点D,∴OD⊥AC,∴OD∥BC,∴==,∴OD=1,∴MN最小值为OP﹣OF=﹣1=,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值=+1=,∴MN长的最大值与最小值的和是6.故选:B.12.【解答】解:抛物线CC:y=(x﹣1)2﹣1沿水平方向向右(或向左)平移m个单位得到y=(x﹣m﹣1)2﹣1,∴D(1,﹣1),D(m+1,﹣1),∴Q点的横坐标为:,代入y=(x﹣1)2﹣1求得Q(,﹣1),若∠DQD1=60°,则△DQD1是等腰直角三角形,∴QD=DD=|m|1,由勾股定理得,(﹣1)2+(﹣1+1)2=m2,解得m=±4,故选:A.二、填空题(共6小题,每小题3分,满分18分)13.【解答】解:(﹣6)﹣(+4)=(﹣6)+(﹣4)=﹣10.故答案为:﹣1014.【解答】解:按从小到大的顺序排列是:﹣2,﹣1,0,3,4.中间的是1.则中位数是:0.故答案是:0.15.【解答】解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为;故答案为:.16.【解答】解:由已知得A、B的横坐标分别为1,4,所以有解得k=4,故答案为4.17.【解答】解:m==,∵0<<1,∴﹣2<﹣<0,∴﹣1≤1﹣<1,即﹣1<m<1.故答案为:﹣1<m<118.【解答】解:如图根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2019÷6=336…3,当点P第2019次碰到矩形的边时为第337个循环组的第3次反弹,点P的坐标为(6,4)∴它与AB边的碰撞次数是=336×2=672次故答案为672三、解答题(共8小题,满分66分)19.【解答】解:原式=﹣1+8﹣+1=8.20.【解答】解:﹣===1,∴x2+2x﹣3=(x﹣1)(x+2),∴x=1,经检验x=1是方程的增根,∴原方程无解;21.【解答】(1)解:如图,点D为所作;(2)证明:∵AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°,∵DA=DB,∴∠ABD=∠A=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°,∴∠BDC=∠C,∴△BCD是等腰三角形.22.【解答】解:(1)低于80分的征文数量为20×(1﹣30%﹣20%﹣10%)=8,则抽到试卷的分数为低于80分的概率是=,故答案为:.(2)当α=180°时,成绩是70分的人数为10人,则成绩是60分的人数20﹣10﹣20×(10%+20%+30%)=2(人);(3)∵80分的人数为:20×30%=6(人),且80分为成绩的唯一众数,所以当70分的人数为5人时,这个班的平均数最大,∴最大值为:(20×10%×100+20×20%×90+20×30%×80+5×70+3×60)÷20=78.5(分).23.【解答】(1)证明:连接AE,如图所示:∵AB为⊙O的直径,∴∠ADB=∠AEB=90°,∴AE⊥BC,BD⊥AC,∵AB=AC,∴BE=CE=3,∵EF是⊙O的切线,∴OE⊥EF,∵OA=OB,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD,∴BD∥EF,∵BE=CE,∴CF=DF,∴EF是△CDB的中位线;(2)解:∵∠AEB=90°,∴AE===4,∵△ABC的面积=AC×BD=BC×AE,∴BD===,∵EF是△CDB的中位线,∴EF=BD=.24.【解答】解:(1)设该养殖场蛋鸡产蛋量的月平均增长率为x,根据题意得,2.5(1+x)2=3.6,解得:x=0.2,x=﹣2.2(不合题意舍去),答:该养殖场蛋鸡产蛋量的月平均增长率为20%;(2)设至少再增加y个销售点,根据题意得,3.6+0.32y≥3.6×(1+20%),解得:y≥,答:至少再增加3个销售点.25.【解答】解:(1)∵四边形ABCD是正方形,∴AB=CD,AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠CFD=∠BEA,∵∠BAC=∠BEA+∠ABE,∠DCA=∠CFD+∠CDF,∴∠ABE=∠CDF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(AAS),∴BE=DF,∵BH=DG,∴BE+BH=DF+DG,即EH=GF,∴四边形EHFG是平行四边形;(2)如图,连接BD,交EF于O,∵四边形ABCD是正方形,∴BD⊥AC,∴∠AOB=90°,∵AB=2,∴OA=OB=2,Rt△BOE中,EB=4,∴∠OEB=30°,∴EO=2,∵OD=OB,∠EOB=∠DOF,∵DF∥EB,∴∠DFC=∠BEA,∴△DOF≌△BOE(AAS),∴OF=OE=2,∴EF=4,∴FM=2,EM=6,过F作FM⊥EH于M,交EH的延长线于M,∵EG∥FH,∴∠FHM=∠GEH,∵tan∠GEH=tan∠FHM==2,∴,∴EH=EM﹣HM=6﹣1=5,FH===,∴四边形EHFG的周长=2EH+2FH=2×5+2=10+2.26.【解答】解:(1)∵y=ax2+(2a+1)x+2=(x+2)(ax+1),且a<0,∴抛物线与x轴的交点为(﹣2,0)、(﹣,0),则二次函数的图象与x轴有两个交点;(2)∵两个交点的横坐标均为整数,且a为负整数,∴a=﹣1,则抛物线与x轴的交点A的坐标为(﹣2,0)、B的坐标为(1,0),∴抛物线解析式为y=(x+2)(﹣x+1)=﹣x2﹣x+2=﹣(x+)2+,当x=0时,y=2,即C(0,2),函数图象如图1所示:(3)存在这样的点P,∵OA=OC=2,∴∠ACO=45°,如图2,当点P在直线AC上方时,记直线PC与x轴的交点为E,∵∠PCA=75°,∴∠PCO=120°,∠OCB=60°,则∠OEC=30°,∴OE===2,则E(2,0),求得直线CE解析式为y=﹣x+2,联立,解得或,∴P(,);如图3,当点P在直线AC下方时,记直线PC与x轴的交点为F,∵∠ACP=75°,∠ACO=45°,∴∠OCF=30°,则OF=OC tan∠OCF=2×=,∴F(,0),求得直线PC解析式为y=﹣x+2,联立,解得:或,∴P(﹣1,﹣1),综上,点P的坐标为(,)或(﹣1,﹣1).祝福语祝你考试成功!。
圆内的弦与角
圆内的弦与角(2006年山东省滨州市)如图,在半径为10的O 中,如果弦心距6OC =,那么弦AB 的长等于A.4 B.8C.16 D.32(2006年泸州市)如图,C 是⊙O 上一点,若圆周角∠ACB=40°,则圆心角∠AOB 的度数是(A)50° (B)60° (C)80° (D)90°(2006年攀枝花市)右图中BOD ∠的度数是A 、550B 、1100C 、1250D 、150(2006年吉林省长春市)如图,BD 为O 的直径,30A = ∠,则CBD ∠的度数为A.30 B.45 C.60 D.80(2006年贵州省黔南)如图,O 的弦AB CD ,相交于E ,已知60ECB = ∠,65AED = ∠,那么ADE ∠的度数是A .40B .15C .55D .65(2006年海南省)如图,AB 和CD 都是⊙0的直径,∠AOC=90°,则∠C 的度数是A .20°B .25°C .30°D .50°(2006年湖北省武汉市大纲卷)如图,AB 是⊙O 的直径,C ,D是⊙O 上的点,AD DC =,连结AD 、AC ,若∠DAB =55º, 则∠CAB 等于(A )14º (B )16º(C )18º(D )20º(2006,则该圆的半径为(A )1cm (B )(C (D )(2006年湖南省永州市) 如图,在半径为R 的圆内作一个内接正方形,然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是A .n RB .1()2n R C .11()2n R - D .1n R -(2006A.2 B.3 C.4 D.5(2006年福建省湛江市课改实验区)如图,O 的半径为5,弦AB 的长为8,点M 在线段AB (包括端点A B ,)上移动,则OM 的取值范围是A .35OM ≤≤B .35OM <≤C .45OM ≤≤D .45OM <≤(2006年山东菏泽市)如图,底面半径为5dm 的圆柱形油桶横放在水平地面上,向桶内加油后,量得长方形油面的宽度为8dm ,则油的深度(指油的最深处即油面到水平地面的距离)为A.2dmB.3dm C.2dm 或3dm D.2dm 或8dm(2006年山东菏泽市)如图,点A ,B ,C 在O 上,80AOC = ∠,则ABC ∠的度数为A.100 B.120 C.140 D.160(2006年广西省崇左市)等边三角形的外接圆的面积是内切圆面积的A.2倍 B.3倍 C.4倍 D.5倍(2006年辽宁省沈阳市课改实验区)已知点I 为△ABC 的内心,∠BIC =130°,则∠BAC的度数是A 、65°B 、75°C 、80°D 、100°( )(2006年山东省聊城市)如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF = ∠,则A ∠的度数为A.76 B.68 C.52 D.38(2006年攀枝花市)如图所示,AB 是⊙O 的直径,弦AC 、BD 相交于E ,则ABCD 等于 A 、AED ∠tan B、cos D ∠C、AED ∠sin D、AED ∠cos(2006年南京市)如图,点A 、B 、C 在⊙O 上,AO ∥BC ,∠O AC =20°,则∠AO B 的度数是A .1O °B .20°C .40°D .70°(2006年绵阳市)如图,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC = CD = DA .则∠BCD =A .100°B .110°C .120°D .135°(2006年北京市海淀区毕业考试)如图,已知A 、B 、C 在⊙O 上,∠COA =100°,则∠CBA =( )A. 40°B. 50°C. 80°D. 200°(2006年安徽省)如图, △ABC 内接于 ⊙O , ∠C = 45º, AB =4 ,则⊙O 的半径为A . 22B . 4C . 23D . 5(2006年江苏省常州市)如图,已知⊙O 的半径为5mm ,弦mm AB 8=,则圆心O 到AB 的距离是A .1 mmB .2 mmC .3 mmD .4 mm(2006年广东省肇庆市)如图,O 是等边ABC △的外接圆,P 是O 上一点,则CPB∠等于A.30 B.45 C.60 D.90(2006年内江市)如图,AC 是⊙O 的直径,∠BAC=20°,P 是弧AB 的中点,则∠PAB=A .35°B 。
广西中考数学试卷
选择题在直角坐标系中,点A(3, -2)关于x轴对称的点的坐标是:A. (-3, -2)B. (-3, 2)C. (3, 2)(正确答案)D. (2, 3)下列计算正确的是:A. 3a + 2b = 5abB. (a + b)2 = a2 + b2C. a6 ÷ a3 = a2D. (2a3)2 = 4a6(正确答案)已知△ABC △ △DEF,且S△ABC : S△DEF = 4 : 9,则AB : DE 等于:A. 16 : 81B. 2 : 3(正确答案)C. 4 : 9D. 9 : 4函数y = -2x + 1与y轴的交点是:A. (1, 0)B. (0, 1)(正确答案)C. (-1, 0)D. (0, -1)下列不等式组中,解集为x > 2的是:A. { x > 1, x > 3 }B. { x > 2, x < 4 }C. { x ≥ 2, x ≠ 3 }D. { x > 1, x ≥ 2 }(正确答案)一个长方形的周长是20厘米,长是a厘米,则宽是:A. (20 - a)厘米B. (20 - 2a)厘米(正确答案)C. (10 - a)厘米D. 10 - a厘米下列方程中,是一元一次方程的是:A. x2 + 2x - 1 = 0B. 2/x = 1C. y + 3 = 7 - y(正确答案)D. 3x + 2y = 5若关于x的一元二次方程ax2 + bx + c = 0(a ≠ 0)有两个相等的实数根,则判别式Δ =:A. a2 - 4ac > 0B. a2 - 4ac < 0C. a2 - 4ac = 0(正确答案)D. 无法确定在平行四边形ABCD中,若△A : △B = 2 : 3,则△C的度数是:A. 60°B. 90°C. 108°(正确答案)D. 120°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年广西省玉林市、防城港市初中毕业升学考试数学(非课改卷)亲爱的同学,展示才华的时候到了,相信自己,细心解答,遇到数字运算尽可能使用计算器,定会获得理想的成绩.祝你成功!一、填空题:本大题共10小题,每小题2分,共20分.请将答案直接写在题中的横线上. 1.计算:(2)(1)-⨯-=. 2.写出23a 的一个同类项:.3.已知数据:06625,,,,,那么这组数据的众数是.4.若1003x y +=,2x y -=,则代数式22x y -的值是 .5.如图1,火焰的光线穿过小孔O ,在竖直的屏幕上形成倒立的实像,像的高度为 1.5cm ,48cm OA =,16cm OC =,则火焰的高度是cm . 6.已知一元二次方程240x x a ++=两根的和等于这两根的积,则a =.7.如图2,有反比例函数1y x =,1y x=-的图象和一个圆,则S =阴影.8.商店里把塑料凳整齐地叠放在一起,据图3的信息,当有10张塑料凳整齐地叠放在一起时的高度是 cm .9.某厂前年缴税30万元,今年缴税36.3万元,如果该厂缴税的年平均增长率为x ,那么可列方程为 .10.如图4,AB 为O 的直径,AB 经过弦CD 的中点E ,150BOC ∠=,则ABD ∠=.图1图2图4二、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有 一项是符合题意的,请将你认为正确答案的序号填在题后括号内.11.截至2006年4月15日3时44分,我国神舟六号飞船轨道舱已环绕地球2920圈,用科学记数法表示这个数是( ) A.42.9210⨯圈 B.32.9210⨯圈C.229.210⨯圈D.40.29210⨯圈12.计算:111x x x +--,正确的结果是( ) A.1- B.0 C.2D.113.不等式组230.52x x x >-+⎧⎨<⎩,的解集是( )A.1x > B.4x <C.1x >或4x < D. 14x <<14.如图5,下列条件不能判定直线a b ∥的是( )A.12∠=∠ B.13∠=∠C.14180∠+∠=D.24180∠+∠=15.丽丽买了一张30元的租碟卡,每租一张碟后剩下的余额如表6表示,若丽丽租碟25张,则卡中还剩下( ) A.5元 B.10元 C.20元 D.14元16.正比例函数(1)y a x =+的图象经过第二、四象限,若a 同时满足方程22(12)0x a x a +-+=,则此方程的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根D.不能确定17.如图7,四边形PAOB 是扇形OMN 的内接矩形,顶点P 在MN上,且不与M N ,重合,当P 点在MN 上移动时,矩形PAOB 的形状、大小随之变化,则AB 的长度( ) A.变大 B.变小C.不变 D.不能确定表6 BNPO图7314ac图5b218.如图8,1O 与2O 相交于A B ,两点,直线PQ 与1O 相切于点P ,与2O 相切于点Q ,AB 的延长线交PQ 于C ,连结PA ,PB .下列结论:①PC CQ =;②P B B Q>;③PBC APC ∠=∠.其中错误..的结论有( ) A.3个 B.2个C.1个 D.0个三八为解答题,满分共76分.解答应写出文字说明,证明过程或演算步骤. 三、本大题共2小题,满分共16分. 19.(本小题满分8分)计算:08(1-. 20.(本小题满分8分) 解方程:651(1)x x x x +=++.四、本大题共2小题,满分共16分. 21.(本小题满分8分)某科技馆座落在山坡M 处,从山脚A 处到科技馆的路线如图9所示.已知A 处海拔高度 为103.4m ,斜坡AB 的坡角为30,40m AB =,斜坡BM 的坡角为18,60m BM =,那么科技馆M 处的海拔高度是多少?(精确到0.1m )(参考数据:sin180.309= cos180.951= tan180.324= cot18 3.08=)图83018BM图922.(本小题满分8分)如图10,在ABC △和ABD △中,现给出如下三个论断:①AD BC =;②C D ∠=∠; ③12∠=∠.请选择其中两个论断为条件,另一个论断为结论,构造一个命题. (1)写出所有的真命题(写成“⎫⇒⎬⎭”形式,用序号表示): . (2)请选择一个真命题加以证明. 你选择的真命题是:⎫⇒⎬⎭.证明:五、本大题共1小题,满分10分. 23.(本小题满分10分)某制衣厂近四年来关于销售额与总成本的统计图,如图11所示. (1)请你在图12中画出四年利润(利润=销售额-总成本)的统计直方图(要求标出数字); (2)根据图11,图12分别写出一条你发现的信息;(3)若从2004年到2006年这两年间的利润年平均增长率相同,请你预测2006年的利润是多少万元?图11 2002 2003 2004 2005 年份 利润(万元) 图1221ACDB图1024.(本小题满分10分)为鼓励居民节约用水和保护水资源,A 市城区从2006年3月1日起,对居民生活用水采取按月按户实行阶梯式计量水价收费,其收费标准是:第一阶梯水价为1.28元/3m ;第二阶梯水价为1.92元/3m .(1)每户人口为4人(含4人)以内的,月用水量332m ≤执行第一阶梯水价,月用水量332m >的部分..执行第二阶梯水价.如果某户人口4人,3月份用水量330m ,那么应交水费元;4月份用水量335m ,那么应交水费元.(2)每户核定人数超过4人的,月用水量≤(38m ⨯核定人数)执行第一阶梯水阶,月用水量>(38m ⨯核定人数)的部分..执行第二阶梯水价,若小江家人口有5人,设月用水量3m x ,应交水费y 元. ①请你写出y 与x 的函数关系式;②若小江家某月交水费60.8元,则该月用水量是多少3m ?七、本大题共1小题,满分12分. 25.(本小题满分12分)如图13,已知AB 是O 的直径,弦CD AB ⊥于E ,F 是CE 上的一点,且FC FA =,延长AF 交O 于G ,连结CG . (1)试判断ACG △的形状(按边分类),并证明你的结论; (2)若O 的半径为5,2OE =,求CF CD 之值.A图1326.(本小题满分12分)在矩形ABCD 中,4AB =,2BC =,以A 为坐标原点,AB 所在的直线为x 轴,建立直角坐标系.然后将矩形ABCD 绕点A 逆时针旋转,使点B 落在y 轴的E 点上,则C 和D 点依次落在第二象限的F 点上和x 轴的G 点上(如图14). (1)求经过BE G ,,三点的二次函数解析式;(2)设直线EF 与(1)的二次函数图象相交于另一点H ,试求四边形EGBH 的周长. (3)设P 为(1)的二次函数图象上的一点,BP EG ∥,求P 点的坐标.2006年广西省玉林市、防城港市初中毕业升学考试数学试题(非课改)参考答案及评分标准一、填空题:(每小题2分,共20分) 1.22.答案不唯一,如22a -, 3.6 4.20065.4.5 6.4-7.2π8.509.230(1)36.3x +=10.15二、选择题:(每小题3分,共24分) 11.B 12.D 13.D 14.C 15.B16.A 17.C 18.C三、19.解:原式8=- ····················································································· 6分 8=. ········································································································ 8分 20.解:65x x =+. ···································································································· 2分 55x =. ·········································································································· 4分1x =. ············································································································· 6分检验:当1x =时,120x +=≠,(1)1(11)20x x +=⨯+=≠.∴原方程的解为1x =. ·················································································· 8分 四、21.解:过B 向水平线AC 作垂线BC ,垂足为C ,过M 向水平线BD 作垂线MD ,垂足为D (如右图),则 ··································· 2分 11402022BC AB ==⨯=. ···························4分 sin18MD BM =600.309=⨯18.54=. ········································································································ 6分 ∴科技馆M 处的海拔高度是:103.42018.54141.94141.9(m)++=≈. ······ 8分22.解:(1)真命题是:⎫⇒⎬⎭①②③,⎫⇒⎬⎭②①③ ······························································ 4分 (2)选择命题一:⎫⇒⎬⎭①②③证明:在ABC △和BAD △中,AD BC =∵,12∠=∠,AB BA =, ABC BAD ∴△≌△. ······································································· 7分C D ∠=∠∴. ···················································································· 8分选择命题二:⎫⇒⎬⎭②①③ 3018ABM DC证明:在ABC △和BAD △中,C D ∠=∠∵,21∠=∠,AB BA =, ABC BAD ∴△≌△. ······································································· 7分 AD BC =∴. ····················································································· 8分 五、23解:(1)正确画出统计直方图,并标出数字. ························································ 4分(2)答案不唯一.每写出一条正确的信息给1分. ········································ 6分 (3)2004年到2005年的增长率120100100%20%100-=⨯=. ····················· 8分预测2006年的利润为:120(120%)144⨯+=(万元). ·················· 10分 六、24.解:(1)38.4,46.72 ··························································································· 4分 (2)①当040x ≤≤时, 1.28y x =; ························································· 5分当40x >时,40 1.28(40) 1.92y x =⨯+-⨯1.9225.6x =-. ······················································ 7分② 1.2851.260.840⨯=<∵,可见用水量超过340m .∴当60.8y =时,1.9225.660.8x -=. ········································· 8分 解得45x =. ··················································································· 9分∴小江家该月用水量为345m . ······················································· 10分七、25.(1)解:ACG △是等腰三角形.证明如下:CD AB ∵⊥,AD AC =∴. ······················· ······································ 1分G ACD ∠=∠∴. ··········································· ······································ 2分 FC FA =∵,ACD CAG ∠=∠∴. ············· ······································ 3分 G CAG ∠=∠∴.ACG ∴△是等腰三角形. ······················· 4分(2)解:连结AD ,BC . ······································ 5分由(1)知AC AD =,AC AD =∴. D ACD ∠=∠∴. ···································· 6分D G CAG ∠=∠=∠∴. 又ACF DCA ∠=∠,2002 2003 2004 2005 年份150 100 50AACF DCA ∴△∽△. ·········································································· 7分::AC CD CF AC =∴,即2AC CF CD =. ····································· 8分CD AB ∵⊥,2(52)(52)21CE AE EB ==-+=∴. ·············································· 9分 2222(52)2130AC AE CE =+=-+=∴. ······································ 11分 30CF CD =∴. ················································································· 12分 八、26.(1)解:由题意可知,4AE AB ==,2AG AD BC ===. ························· 1分(40)B ,∴,(04)E ,,(20)G -,. ·························································· 2分设经过B E G ,,三点的二次函数解析式是(2)(4)y a x x =+-.把(04)E ,代入之,求得12a =-.·························································· 3分 ∴所求的二次函数解析式是:211(2)(4)422y x x x x =-+-=-++.··············································· 4分(2)解:由题意可知,四边形AEFG 为矩形.F HG B ∴∥,且6GB =. ······································································· 5分∵直线4y =与二次函数图象的交点H 的坐标为(24)H ,, 2EH =∴. ································································································ 6分G ∵与B E ,与H 关于抛物线的对称轴对称,BH EG ===∴ ····························································· 7分 ∴四边形EGBH 的周长262=++⨯8=+ ····························································································· 8分 (3)解法1:设BP 交y 轴于M .B P E G ∵∥,::AB AG AM AE =∴, 即4:2:4AM =.8AM =∴,于是(08)M -,. ···················· 9分设直线BM 的解析式为y kx b =+.把(40)B ,,(08)M -,代入之,得408.k b b +=⎧⎨=-⎩,解得28.k b =⎧⎨=-⎩,28y x =-∴. ·························································································· 10分联合一次,二次函数解析式组成方程组2281 4.2y x y x x =-⎧⎪⎨=-++⎪⎩,解得620x y =-⎧⎨=-⎩,或40.x y =⎧⎨=⎩,(此组数为B 点坐标)∴所求的P 点坐标为(620)P -,. ···························································· 12分解法2:过P 作PN x ⊥轴于N .由BP EG ∥,得EGB PBN ∠=∠. 设所求P 点的横坐标为(0)a a <,则纵坐标为214(0)2a a a -++<. ····· 9分 tan PN PBN NB ∠=∵,4tan 22AE EGB AG ∠===, 2PN AENB AG==∴. ······················································································ 10分 4NB NA AB a =+=-∴,22114422PN a a a a ⎛⎫=--++=-- ⎪⎝⎭, 214224a a a--=-∴.解之,得6a =-或4a =. ·········································································· 11分 经检验可知,6a =-是原方程的根;4a =是原方程的增根,故应舍去.当6a =-时,22114(6)642022a a -++=-⨯--+=.∴所求的P 点坐标为(620)P -,.································································ 12分。