贾俊平《统计学》课后习题及详解(时间序列分析和预测)【圣才出品】
贾俊平《统计学》配套题库 【课后习题】详解 第13章~第14章【圣才出品】
二、练习题
1.下表是 1991~2008 年我国小麦产量数据。
年份
小麦产量(万吨) 年份
1991
9595.3
2000
1992
10158.7
2001
1993
10639.0
2002
1994
9929.7
2003
1995
10220.7
2004
1996
11056.9Leabharlann 2005199712328.9
2006
1998
3 / 52
圣才电子书 十万种考研考证电子书、题库视频学习平台
移动平均值,然后再计算出各比值的季度(或月份)平均值。 (3)季节指数调整。由于各季节指数的平均数应等于 1 或 100%,若根据第 2 步计算
的季节比率的平均值不等于 1 时,则需要进行调整。具体方法是:将第(2)步计算的每个 季节比率的平均值除以它们的总平均值。
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 13 章 时间序列分析和预测
一、思考题 1.简述时间序列的构成要素。 答:时间序列的构成要素分为 4 种,即趋势、季节性或季节变动、周期性或循环波动、 随机性或不规则波动。 (1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长 期趋势; (2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动; (3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或 振荡式变动; (4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈 现出某种随机波动。
2 / 52
圣才电子书 十万种考研考证电子书、题库视频学习平台
统计学第五版(贾俊平)课后习题答案 (1)
中位数位置
30 1 2
15.5 , M e
272
2
273
272.5 。
(2) QL 位置
30 4
7.5
, QL
258 2
261
259.5 。
QU 位置
3 30 4
22 .5 , QU
284 291 287.5 。 2
(3) s
n
(xi x)2
i 1
n 1
13002.7 21.17 。 30 1
4.2 172.1
0.024 ;
幼儿组身高的离散系数: vs
2.5 71.3
0.035 ;
由于幼儿组身高的离散系数大于成年组身高的离散系数,说明幼儿组身高的离
散程度相对较大。
4,11(1)应该从平均数和标准差两个方面进行评价。在对各种方法的离散程度进
行比较时,应该采用离散系数。
(2)下表给出了用 Excel 计算一些主要描述统计量。
550
18
9900
600 以上
650
11
7150
合计
—
120
k
x
Mi fi
i 1
51200
426.67 。
n
120
51200
标准差计算过程见下表:
按利润额分组 组中值 M i 企业数 fi (M i x)2 (M i x)2 fi
200~300
250
19
31212.3
593033.5
300~400
2 (25 1)
0.77 。
(5)分析:从众数、中位数和平均数来看,网民年龄在 23~24 岁的人数占多数。 由于标准差较大,说明网民年龄之间有较大差异。从偏态系数来看,年龄分布为右
统计学(第五版)贾俊平-课后思考题和练习题答案(最终完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)整理by__kiss—ahuang第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论.1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1。
3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据.它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据.统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据.时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据.1.4解释分类数据,顺序数据和数值型数据答案同1。
31。
5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命.1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量.经验变量和理论变量。
1。
7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”.1.8统计应用实例人口普查,商场的名意调查等。
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1。
1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1。
2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的.(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1。
4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1。
6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1。
7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
贾俊平《统计学》课后习题及详解(导论)【圣才出品】
第1章导论一、思考题1.什么是统计学?答:统计学是关于数据的科学,它所提供的是一套有关数据收集、处理、分析、解释并从数据中得出结论的方法,统计研究的是来自各领域的数据。
数据收集也就是取得统计数据;数据处理是将数据用图表等形式展示出来;数据分析则是选择适当的统计方法研究数据,并从数据中提取有用信息进而得出结论。
2.解释描述统计和推断统计。
答:数据分析所用的方法可分为描述统计方法和推断统计方法。
(1)描述统计研究的是数据收集、处理、汇总、图表描述、概括与分析等统计方法。
(2)推断统计是研究如何利用样本数据来推断总体特征的统计方法。
比如,对产品的质量进行检验,往往是破坏性的,不可能对每个产品进行测量。
这就需要抽取部分个体即样本进行测量,然后根据获得的样本数据对所研究的总体特征进行推断,这就是推断统计要解决的问题。
3.统计数据可分为哪几种类型?不同类型的数据各有什么特点?答:统计数据是对现象进行测量的结果,可以从不同角度对统计数据进行分类:(1)按照所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
①在分类数据中,各类别之间是平等的并列关系,无法区分优劣或大小,各类别之间的顺序是可以改变的;②顺序数据也表现为类别,但这些类别之间是可以比较顺序的;③数值型数据具有分类数据和顺序数据的特点,并且还可以进行加、减、乘、除运算。
(2)按照统计数据的收集方法,可以将其分为观测数据和实验数据。
①观测数据是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的,有关社会经济现象的统计数据几乎都是观测数据;②实验数据则是在实验中控制实验对象而收集到的数据,自然科学领域的大多数数据都为实验数据;(3)按照被描述的现象与时间的关系,可以将统计数据分为截面数据和时间序列数据。
①截面数据是在相同或近似相同的时间点上收集的数据,这类数据通常是在不同的空间上获得的,用于描述现象在某一时刻的变化情况;②时间序列数据是在不同时间上收集到的数据,这类数据是按时间顺序收集到的,用于所描述现象随时间变化的情况。
贾俊平《统计学》配套题库 【章节题库】详解 第13章~第14章【圣才出品】
2 / 90
圣才电子书
D.随机性
十万种考研考证电子书、题库视频学习平台
【答案】A
【解析】趋势是指时间序列在长期内呈现出来的某种持续上升或持续下降的变动,也称
长期趋势。时间序列中的趋势可以是线性的,也可以是非线性的。
16.指数平滑法适合于预测( )。 A.平稳序列 B.非平稳序列 C.有趋势成分的序列 D.有季节成分的序列 【答案】A 【解析】平稳时间序列通常只含有随机成分,其预测方法主要有简单平均法、移动平均 法和指数平滑法等,这些方法主要是通过对时间序列进行平滑以消除其随机波动。
11.环比增长率是( )。 A.报告期观察值与前一时期观察值之比减 l B.报告期观察值与前一时期观察值之比加 l C.报告期观察值与某一固定时期观察值之比减 l D.报告期观察值与某一固定时期观察值之比加 l 【答案】A 【解析】增长率可分为环比增长率和定基增长率。环比增长率是报告期观察值与前一时 期观察值之比减 1,说明现象逐期增长变化的程度。
9.从下面的图形可 C.周期性 D.趋势和随机性 【答案】D 【解析】趋势是指时间序列在长期内呈现出来的某种持续上升或持续下降的变动,也称 长期趋势。随机波动是时间序列中除去趋势、季节变动和循环波动之后的随机波动。随机波
4 / 90
圣才电子书 十万种考研考证电子书、题库视频学习平台
动通常是夹在时间序列中,致使时间序列产生一种波浪形或振荡式变动。从图中可以看出, 该时间序列中存在着持续向上的线性趋势以及明显的随机波动。
10.增长率是时间序列中( )。 A.报告期观察值与基期观察值之比 B.报告期观察值与基期观察值之比减 l C.报告期观察值与基期观察值之比加 l D.基期观察值与报告期观察值之比减 l 【答案】B 【解析】增长率也称增长速度,它是时间序列中报告期观察值与基期观察值之比减 1 后的结果,用%表示。
《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析
《统计学》课后答案(第二版,贾俊平版)附录答案第6章-9章方差分析第6章方差分析6.1 0215.86574.401.0=<=F F (或01.00409.0=>=-αvalue P ),不能拒绝原假设。
6.2 579.48234.1501.0=>=F F (或01.000001.0=<=-αvalue P ),拒绝原假设。
6.3 4170.50984.1001.0=>=F F (或01.0000685.0=<=-αvalue P ),拒绝原假设。
6.4 6823.37557.1105.0=>=F F (或05.0000849.0=<=-αvalue P ),拒绝原假设。
6.5 8853.30684.1705.0=>=F F (或05.00003.0=<=-αvalue P ),拒绝原假设。
85.54.14304.44=>=-=-LSD x x B A ,拒绝原假设;85.58.16.424.44=<=-=-LSD x x C A ,不能拒绝原假设;85.56.126.4230=>=-=-LSD x x C B ,拒绝原假设。
6.6554131.3478.105.0=<=F F (或05.0245946.0=>=-αvalue P ),不能拒绝原假设。
第7章相关与回归分析7.1 (1)散点图(略),产量与生产费用之间正的线性相关关系。
(2)920232.0=r 。
(3)检验统计量2281.24222.142=>=αt t ,拒绝原假设,相关系数显著。
7.2 (1)散点图(略)。
(2)8621.0=r 。
7.3 (1)0?β表示当0=x 时y 的期望值。
(2)1?β表示x 每变动一个单位y 平均下降0.5个单位。
(3)7)(=y E 。
7.4 (1)%902=R 。
(2)1=e s 。
7.5 (1)散点图(略)。
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(第三版课后习题答案) 贾俊平版
区分指标与标志,总量指标分类、分配数列、上限不在内原则、各种平均数之间的关系、平均发展指标!计算可能考的公式有:计划完成情况相对指标、结构(比例/比较/强度/动态)相对指标、各种平均数算法、众数、中位数、四分位数、平均差、标准差、标准差系数、偏态和峰度、发展速度和增长速度、总指数(很重要)、平均指标指数、重要经济指数的编制(上证指数、工业产品产量总指数、农副产品收购价格指数)统计学(第三版课后习题答案) 贾俊平版2.1 (1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)频率%A1414B2121C3232D1818E1515合计100100(3)条形图(略)2.2 (1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)先进企业良好企业一般企业落后企业11119927.527.522.522.5合计40 100.0 2.3 频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)25~30 30~35 35~40 40~45 45~5046159610.015.037.522.515.0合计40 100.0 直方图(略)。
2.4 (1)排序略。
(2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~660 2 2660~670 5 5670~680 6 6680~690 14 14690~700 26 26700~710 18 18710~720 13 13720~730 10 10730~740 3 3740~750 3 3合计100 100 直方图(略)。
2.5 (1)属于数值型数据。
(2)分组结果如下:分组天数(天)-25~-20 6-20~-15 8-15~-10 10-10~-5 13-5~0 120~5 45~10 7合计60(3)直方图(略)。
贾俊平《统计学》复习笔记课后习题详解及典型题详解(时间序列分析和预测)【圣才出品】
第13章时间序列分析和预测13.1 复习笔记一、时间序列及其分解1.时间序列(1)概念:时间序列是同一现象在不同时间上的相继观察值排列而成的序列,也称动态数列或时间数列。
(2)时间序列的两要素任何一个时间序列都具有两个基本要素:一是统计指标所属的时间,也称为时间变量;二是统计指标在特定时间的具体指标值。
(3)研究时间序列的目的①在编制时间序列的基础上,可以计算平均发展水平,进行动态水平分析;②可以计算各种速度指标,进行速度分析;③利用相关的数学模型,对现象的变动进行趋势分析。
2.时间序列的类型(1)平稳序列它是基本上不存在趋势的序列。
这类序列中的各观察值基本上都在某个固定的水平上波动,虽然在不同的时间段波动的程度不同,但并不存在某种规律,其波动可以看成是随机的。
(2)非平稳序列它是包含趋势、季节性或周期性的序列,它可能只含有其中的一种成分,也可能含有几种成分,因此非平稳序列可以分为有趋势的序列、有趋势和季节性的序列、几种成分混合而成的复合型序列。
3.时间序列的4种成分(1)趋势(T)也称长期趋势,它是时间序列在长时期内呈现出来的某种持续上升或持续下降的变动。
时间序列中的趋势可以是线性的,也可以是非线性的。
(2)季节性(S)也称季节变动,它是时间序列在一年内重复出现的周期性波动。
季节性中的“季节”一词是广义的,它不仅仅是指一年中的四季,其实是指任何一种周期性的变化。
(3)周期性(C)也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动。
(4)随机性(I)也称不规则波动,它是时间序列中除去趋势、周期性和季节性之后的偶然性波动。
4.时间序列的分解模型将时间序列分解成长期趋势、季节变动、周期变动和随机变动四个因素后,可以认为时间序列Y t是这四个因素的函数,即Y t=f(T t,S t,C t,I t),其中较常用的是加法模型和乘法模型,其表现形式为:加法模型:Y t=T t+S t+C t+I t乘法模型:Y t=T t×S t×C t×I t注意:时间序列组合模型中包含了四种因素,这是时间序列的完备模式,但是并不是在每个时间序列中这四种因素都同时存在。
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1。
2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据.它也是有类别的,但这些类别是有序的.(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值.统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1。
4解释分类数据,顺序数据和数值型数据答案同1。
31。
5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1。
6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量.经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数"连续型变量,取之连续不断,不能一一列举,比如“温度”。
统计学(第六版)贾俊平——_课后习题答案
第一章导论1.1.1(1)数值型变量。
(2)分类变量。
(3)离散型变量。
(4)顺序变量。
(5)分类变量。
1.2(1)总体是该市所有职工家庭的集合;样本是抽中的2000个职工家庭的集合。
(2)参数是该市所有职工家庭的年人均收入;统计量是抽中的2000个职工家庭的年人均收入。
1.3(1)总体是所有IT从业者的集合。
(2)数值型变量。
(3)分类变量。
(4)截面数据。
1.4(1)总体是所有在网上购物的消费者的集合。
(2)分类变量。
(3)参数是所有在网上购物者的月平均花费。
(4)参数(5)推断统计方法。
第二章数据的搜集1.什么是二手资料?使用二手资料需要注意些什么?与研究内容有关的原始信息已经存在,是由别人调查和实验得来的,并会被我们利用的资料称为“二手资料”。
使用二手资料时需要注意:资料的原始搜集人、搜集资料的目的、搜集资料的途径、搜集资料的时间,要注意数据的定义、含义、计算口径和计算方法,避免错用、误用、滥用。
在引用二手资料时,要注明数据来源。
2.比较概率抽样和非概率抽样的特点,举例说明什么情况下适合采用概率抽样,什么情况下适合采用非概率抽样。
概率抽样是指抽样时按一定概率以随机原则抽取样本。
每个单位被抽中的概率已知或可以计算,当用样本对总体目标量进行估计时,要考虑到每个单位样本被抽中的概率,概率抽样的技术含量和成本都比较高。
如果调查的目的在于掌握和研究总体的数量特征,得到总体参数的置信区间,就使用概率抽样。
非概率抽样是指抽取样本时不是依据随机原则,而是根据研究目的对数据的要求,采用某种方式从总体中抽出部分单位对其实施调查。
非概率抽样操作简单、实效快、成本低,而且对于抽样中的专业技术要求不是很高。
它适合探索性的研究,调查结果用于发现问题,为更深入的数量分析提供准备。
非概率抽样也适合市场调查中的概念测试。
3.调查中搜集数据的方法主要有自填式、面方式、电话式,除此之外,还有那些搜集数据的方法?实验式、观察式等。
《统计学》课后答案(第二版_贾俊平版)
第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。
本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。
本章各节的主要内容和学习要点如下表所示。
二、主要术语1. 统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2. 描述统计:研究数据收集、处理和描述的统计学分支。
3. 推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
4. 分类数据:只能归于某一类别的非数字型数据。
5. 顺序数据:只能归于某一有序类别的非数字型数据。
6. 数值型数据:按数字尺度测量的观察值。
7. 观测数据:通过调查或观测而收集到的数据。
8. 实验数据:在实验中控制实验对象而收集到的数据。
9. 截面数据:在相同或近似相同的时间点上收集的数据。
10. 时间序列数据:在不同时间上收集到的数据。
11. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法。
12. 普查:为特定目的而专门组织的全面调查。
13. 总体:包含所研究的全部个体(数据)的集合。
14. 样本:从总体中抽取的一部分元素的集合。
15. 样本容量:也称样本量,是构成样本的元素数目。
16. 参数:用来描述总体特征的概括性数字度量。
17. 统计量:用来描述样本特征的概括性数字度量。
18. 变量:说明现象某种特征的概念。
19. 分类变量:说明事物类别的一个名称。
20. 顺序变量:说明事物有序类别的一个名称。
21. 数值型变量:说明事物数字特征的一个名称。
22. 离散型变量:只能取可数值的变量。
23. 连续型变量:可以在一个或多个区间中取任何值的变量。
第2章数据的图表展示一、学习指导数据的图表展示是应用统计的基本技能。
本章首先介绍数据的预处理方法,然后介绍不同类型数据的整理与图示方法,最后介绍图表的合理使用问题。
本章各节的主要内容和学习二、主要术语24. 频数:落在某一特定类别(或组)中的数据个数。
统计学贾俊平课后习题答案完整版
统计学贾俊平课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】附录:教材各章习题答案第1章统计与统计数据1.1(1)数值型数据;(2)分类数据;(3)数值型数据;(4)顺序数据;(5)分类数据。
1.2(1)总体是“该城市所有的职工家庭”,样本是“抽取的2000个职工家庭”;(2)城市所有职工家庭的年人均收入,抽取的“2000个家庭计算出的年人均收入。
1.3(1)所有IT从业者;(2)数值型变量;(3)分类变量;(4)观察数据。
1.4(1)总体是“所有的网上购物者”;(2)分类变量;(3)所有的网上购物者的月平均花费;(4)统计量;(5)推断统计方法。
1.5(略)。
1.6(略)。
第2章数据的图表展示2.1(1)属于顺序数据。
(2)频数分布表如下(4)帕累托图(略)。
2.2(1)频数分布表如下2.3频数分布表如下2.5(1)排序略。
(2)频数分布表如下2.6(3)食品重量的分布基本上是对称的。
2.72.8(1)属于数值型数据。
2.9(1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.10A 班分散,且平均成绩较A 班低。
2.11 (略)。
2.12 (略)。
2.13 (略)。
2.14 (略)。
2.15 箱线图如下:(特征请读者自己分析) 第3章 数据的概括性度量3.1(1)100=M ;10=e M ;6.9=x 。
(2)5.5=L Q ;12=U Q 。
(3)2.4=s 。
(4)左偏分布。
3.2(1)190=M ;23=e M 。
(2)5.5=L Q ;12=U Q 。
(3)24=x ;65.6=s 。
(4)08.1=SK ;77.0=K 。
(5)略。
3.3 (1)略。
(2)7=x ;71.0=s 。
(3)102.01=v ;274.02=v 。
(4)选方法一,因为离散程度小。
3.4 (1)x =(万元);M e= 。
统计学(第五版)贾俊平-课后思考题和练习题答案(完整版)
统计学(第五版)贾俊平课后思考题和练习题答案(最终完整版)第一部分思考题第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
贾俊平《统计学》(第5版)章节题库-第13章 时间序列分析和预测【圣才出品】
16.下面的哪种方法不适合于对平稳序列的预测( )。 A.移动平均法 B.简单平均法 C.指数平滑法 D.线性模型法 【答案】D 【解析】平稳时间序列通常只含有随机成分,其预测方法主要有:①简单平均法;② 移动平均法;③指数平滑法。这些方法主要是通过对时间序列进行平滑以消除其随机波动, 因而也称平滑法。线性模型法适合于具有线性趋势的趋势型序列的预测。
1 / 48
圣才电子书
A.趋势
十万种考研考证电子书、题库视频学习平 台
B.季节性
C.周期性
D.随机性
【答案】A
【解析】趋势是指时间序列在长期内呈现出来的某种持续上升或持续下降的变动,也
称长期趋势。时间序列中的趋势可以是线性的,也可以是非线性的。
4.时间序列在一年内重复出现的周期性波动称为( )。 A.趋势 B.季节性 C.周期性 D.随机性 【答案】B 【解析】季节性也称季节波动,是指时间序列在一年内重复出现的周期性波动。
5.时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动称为( )。 A.趋势 B.季节性 C.周期性 D.随机性 【答案】C
2 / 48
圣才电子书
十万种考研考证电子书、题库视频学习平
台
【解析】周期性也称循环波动,是指时间序列中呈现出来的围绕长期趋势的一种波浪
圣才电子书
十万种考研考证电子书、题库视频学习平
台
时期观察值之比减 1,说明现象逐期增长变化的程度。
10.定基增长率是( )。 A.报告期观察值与前一时期观察值之比减 l B.报告期观察值与前一时期观察值之比加 l C.报告期观察值与某一固定时期观察值之比减 l D.报告期观察值与某一固定时期观察值之比加 l 【答案】C 【解析】定基增长率是报告期观察值与某一固定时期观察值之比减 1,说明现象在整 个观察期内总的增长变化程度。
贾俊平《统计学》(第7版)考研真题与典型题详解-第13章 时间序列分析和预测【圣才出品】
第13章时间序列分析和预测一、单项选择题1.五月份的商品销售额为60万元,该月的季节指数为120%,则消除季节因素影响后,该月的商品销售额为()万元。
[中国海洋大学2018研;对外经济贸易大学2015研;山东大学2015研;中央财经大学2011研]A.72B.50C.60D.51.2【答案】B【解析】消除季节因素影响后,商品销售额=该月商品实际销售额/该月季节指数=60/120%=50(万元)。
2.周末超市的营业额常常会高于平常的数额,这种波动属于()。
[厦门大学2014研]A.长期趋势B.循环变动C.季节变动D.不规则变动【答案】C【解析】季节变动也称季节性,它是时间序列在一年或更短的时间内重复出现的周期性波动。
季节性中的“季节”一词是广义的,它不仅仅是指一年中的四季,其实是指任何一种短期内周期性的变化。
3.应用指数平滑法预测时,给定的权数应该是()。
[厦门大学2013研]A.近期权数大,远期权数小B.近期权数小,远期权数大C.权数和资料的大小成正比D.权数均相等【答案】A【解析】指数平滑法是通过对过去的观察值加权平均进行预测的一种方法,该方法使t +1期的预测值等于t期的实际观察值与t期的预测值的加权平均值。
指数平滑法是加权平均的一种特殊形式,观察值时间越远,其权数也跟着呈现指数下降。
即近期权数大,远期权数小。
4.在羽绒服销售量时间序列分析中,一般情况下8月份的季节指数()。
[四川大学2014研]A.等于1B.大于1C.小于1D.无法确定【答案】C【解析】季节指数刻画了序列在一个年度内各月或各季度的典型季节特征。
季节指数是以其平均数等于100%为条件而构成的,它反映了某一月份或季度的数值占全年平均数值的大小。
一般来说,8月份是羽绒服销售淡季,故季节指数应小于1。
5.如果时间序列的逐期观察值按一定的增长率增长或衰减,则适合的预测模型是()。
[浙江工商大学2011研、安徽财经大学2012样题]A.移动平均模型B.指数平滑模型C.线性模型D.指数模型【答案】D【解析】移动平均模型和指数平滑模型是对平稳时间序列进行预测的方法,而线性模型和指数模型是对趋势型序列进行预测的方法。
贾俊平《统计学》考研真题(含复试)与典型习题详解 第13章~第14章【圣才出品】
A.消除偶然因素引起的不规则变动 B.消除非偶然因素引起的不规则变动 C.消除绝对数变动 D.消除计算误差 【答案】A 【解析】平稳时间序列通常只含有随机成分,其预测方法主要有简单平均法、移动平均 法和指数平滑法等,这些方法主要是通过对时间序列进行平滑以消除其随机波动。
1 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台
测值逐渐降低,并以 0 为极限。
3.某一时间数列,当取时间变量t=1,2,3,……时,有Y=38+72t,若取t=0, 2,4,……,则趋势方程为( )。[浙江工商大学 2011 研]
A.y=38+144t B.y=110+36t C.y=72+110t D.y=34+36t 【答案】B
【解析】线性趋势方程式 Yˆt b0 b1t 中, Yˆt 代表时间序列 Yt 的预测值;t 代表时间标 号;b0 代表趋势线在 Y 轴上的截距,是当 t=0 时, Yˆt 的数值;b1 是趋势线的斜率,表示
时问 t 变动一个单位,观察值的平均变动数量。
4.如果时间序列不存在季节变动,则各期的季节指数应( )。[安徽财经大学 2012
10.时间序列分析中,计算季节指数通常采用的是( )。[中南财大 2003 研] A.同期平均法 B.最小平方法 C.几何平均法 D.调和平均法 【答案】A 【解析】计算季节指数较常用的是同期平均法和趋势剔除法。
3 / 72
圣才电子书 十万种考研考证电子书、题库视频学习平台
7.如果时间序列的环比增长量大致相等,则应采用的趋势模型为( )。[中央财经大 学 2012 研]
贾俊平《统计学》(第7版)考点归纳和课后习题详解(含考研真题)-第一章至第三章【圣才出品】
第1章导论1.1考点归纳【知识框架】【考点提示】(1)统计学的目的(选择题考点);(2)描述统计和推断统计的区分、参数估计和假设检验的区分(选择题考点);(3)统计数据类型、分类、各自特点及其具体应用(选择题、简答题考点)(非常重要);(4)统计学中的基本概念(选择题、简答题考点)。
【核心考点】考点一:统计数据的类型(见表1-1)表1-1统计数据的类型【注意】①分类数据和顺序数据说明的是事物的品质特征,其结果均表现为类别,因而也统称为定性数据或称品质数据;数值型数据说明的是现象的数量特征,因此也称为定量数据或数量数据。
②对不同类型的数据采用不同的统计方法来处理和分析。
对分类数据可以计算出各类别的频率,而数值型数据则可以进行数学运算。
【真题精选】1.在对数据进行汇总时,往往将男性用“1”来表示,女性用“0”来表示,所以将性别视为数值型变量。
[对外经济贸易大学2018研]【答案】×【解析】数值型变量是说明事物数字特征的一个名称,其取值是数值型数据,数值型数据是按数字尺度测量的观察值,其结果表现为具体的数值;分类变量是说明事物类别的一个名称,其取值是分类数据,分类数据是只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,是用文字来表述的。
性别是分类变量,为便于统计处理,对于分类变量可以用数字代码来表示各个类别。
2.下列数据不属于时间序列数据的是()。
[四川大学2016研]A.1990~2014年我国每年进出口总额B.2014年某品牌手机在中国各个省市的销售量C.成都市2014年每个月的PM2.5月平均浓度D.某股票在2015年1月的日收盘价【答案】B【解析】时间序列数据是在不同时间收集到的数据,这类数据是按时间顺序收集到的,用于描述现象随时间变化的情况。
本题中B项是在相同的时间点、不同的空间上获得的数据,属于截面数据。
考点二:统计中的基本概念1.总体和样本(1)总体、个体(2)样本、样本量2.参数和统计量(1)参数:用于描述总体特征,是未知的常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第13章时间序列分析和预测
一、思考题
1.简述时间序列的构成要素。
答:时间序列的构成要素分为4种,即趋势、季节性或季节变动、周期性或循环波动、随机性或不规则波动。
(1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势;
(2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动;
(3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;
(4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。
2.利用增长率分析时间序列时应注意哪些问题?
答:在应用增长率分析实际问题时,应注意以下几点:
(1)当时间序列中的观察值出现0或负数时,不宜计算增长率。
这是因为对这样的序列计算增长率,要么不符合数学公理,要么无法解释其实际意义;
(2)在有些情况下,不能单纯就增长率论增长率,要注意增长率与绝对水平的结合分析。
3.简述平稳序列和非平稳序列的含义。
答:(1)平稳序列是基本上不存在趋势的序列。
这类序列中的观察值基本上在某个固定的水平上波动,虽然在不同的时间段波动的程度不同,但并不存在某种规律。
其波动可以看成是随机的。
(2)非平稳序列包含趋势、季节性或周期性的序列,它可能只含有其中的一种成分,也可能是几种成分的组合。
因此,非平稳序列可以分为有趋势的序列、有趋势和季节性的序列、几种成分混合而成的复合型序列。
4.简述时间序列的预测程序。
答:在对时间序列进行预测时,通常包括以下几个步骤:
(1)确定时间序列所包含的成分,也就是确定时间序列的类型;
(2)找出适合此类时间序列的预测方法;
(3)对可能的预测方法进行评估,以确定最佳预测方案;
(4)利用最佳预测方案进行预测。
5.简述指数平滑法的基本含义。
答:指数平滑法是对过去的观察值加权平均进行预测的一种方法,该方法使得第t+1期的预测值等于t期的实际观察值与第t期预测值的加权平均值。
指数平滑法是加权平均的一种特殊形式,观察值时间越远,其权数也跟着呈现指数的下降,因而称为指数平滑。
使用指数平滑法时,关键的问题是确定一个合适的平滑系数α。
因为不同的α会对预测结果产生不同的影响。
当α=0时,预测值仅仅是重复上一期的预测结果;当α=1时,预
测值就是上一期实际值;α越接近1,模型对时间序列变化的反应就越及时,因为它对当前的实际值赋予了比预测值更大的权数;同样,α越接近0,意味着对当前的预测值赋予更大的权数,因此模型对时间序列变化的反应就越慢。
一般而言,当时间序列有较大的随机波动时,宜选较大的α,以便能很快跟上近期的变化,当时间序列比较平稳时,宜选较小的α。
但实际应用时,还应考虑预测误差,这里仍用误差均方来衡量预测误差的大小,确定α时,可选择几个α进行预测,然后找出预测误差最小的作为最后的α值。
6.简述复合型时间序列的预测步骤。
答:复合型序列是指含有趋势性、季节性、周期性和随机成分的序列。
对这类序列预测方法通常是将时间序列的各个因素依次分解出来,然后再进行预测,分解法预测通常按下面的步骤进行:
(1)确定并分离季节成分。
计算季节指数,以确定时间序列中的季节成分。
然后将季节成分从时间序列中分离出去,即用每一个时间序列观测值除以相应的季节指数,以消除季节性;
(2)建立预测模型并进行预测。
对消除了季节成分的时间序列建立适当的预测模型,并根据这一模型进行预测;
(3)计算出最后的预测值。
用预测值乘以相应的季节指数,得到最终的预测值。
7.简述季节指数的计算步骤。
答:以移动平均趋势剔除法为例,计算季节指数的基本步骤为:
(1)计算移动平均值(如果是季度数据采用4项移动平均,月份数据则采用12项移动平均),并将其结果进行“中心化”处理,也就是将移动平均的结果再进行一次2项的移
动平均,即得出“中心化移动平均值”(CMA)。
(2)计算移动平均的比值,也称为季节比率,即将序列的各观察值除以相应的中心化移动平均值,然后再计算出各比值的季度(或月份)平均值。
(3)季节指数调整。
由于各季节指数的平均数应等于1或100%,若根据第2步计算的季节比率的平均值不等于1时,则需要进行调整。
具体方法是:将第(2)步计算的每个季节比率的平均值除以它们的总平均值。
二、练习题
1.下表是1991~2008年我国小麦产量数据。
要求:
(1)分别采用3期移动平均法和指数平滑法(α=0.3)预测2009年的小麦产量,并
将实际值和预测值绘图进行比较。
(2)分析预测误差,说明用哪种方法预测更合适。
解:(1)分别采用3期移动平均法、指数平滑法(α=0.3)预测历年小麦产量如表13-1所示。
表13-1 3期移动平均、指数平滑(α=0.3)预测值
年份小麦产
量(万
吨)
3期移动
平均预
测(万
吨)
3期移动平均
预测误差
3期移动平
均预测误差
平方
指数平
滑预测
(万吨)
指数平滑预
测误差
指数平滑预
测误差平方
1991 9595.3
1992 10158.7 9595.3 563.4 317419.6 1993 10639 9764.3 874.7 765065.1 1994 9929.7 10131.0 -201.3 40521.7 10026.7 -97.0 9413.7 1995 10220.7 10242.5 -21.8 473.8 9997.6 223.1 49766.1 1996 11056.9 10263.1 793.8 630065.5 10064.5 992.4 984774.9 1997 12328.9 10402.4 1926.5 3711273.8 10362.2 1966.7 3867715.2 1998 10972.6 11202.2 -229.6 52700.9 10952.2 20.4 414.3 1999 11388 11452.8 -64.8 4199.0 10958.4 429.6 184598.2 2000 9963.6 11563.2 -1599.6 2558613.5 11087.2 -1123.6 1262579.9 2001 9387.3 10774.7 -1387.4 1924971.3 10750.2 -1362.9 1857365.7
2002
9029 10246.3 -1217.3 1481819.3 10341.3 -1312.3 1722121.9
2003 8648.8 9460.0 -811.2 657991.4 9947.6 -1298.8 1686900.9 2004 9195.2 9021.7 173.5 30102.3 9558.0 -362.8 131598.6 2005 9744.5 8957.7 786.8 619106.7 9449.1 295.4 87240.1 2006 10846.6 9196.2 1650.4 2723930.2 9537.7 1308.9 1713101.5 2007 10929.8 9928.8 1001.0 1002067.7 9930.4
999.4
998797.4 2008 11246.4 10507.0
739.4
546761.7 10230.2 1016.2
1032619.7 2009 11007.6 10535.1 -10535.1
110987799
.5
采用3期移动平均法2009年小麦产量:
200820072006200911246.410929.810846.6
11007.633
Y Y Y Y ++++=
==(万吨)
采用指数平滑法(α=0.3)预测,20090.311246.40.710230.210535.1F =⨯+⨯=(万吨)
绘制实际值和预测值对比图,如图13-1所示。