苏77-3-6井压裂改造技术

合集下载

井下微地震裂缝监测设计及压裂效果评价_王治中

井下微地震裂缝监测设计及压裂效果评价_王治中

收稿日期:2005-08-17作者简介:王治中(1969-),男,中国石油大学(北京)在读博士,从事油气井岩石力学和出砂预测研究工作。

文章编号:1000-3754(2006)06-0076-03井下微地震裂缝监测设计及压裂效果评价王治中1,邓金根1,赵振峰2,慕立俊2,刘建安2,田 红1(11中国石油大学,北京 102249;21长庆油田勘探开发公司,陕西咸阳 712000)摘要:井下微地震监测技术作为监测压裂效果的有效手段之一,首次在长庆油田的庄19井区得到了应用。

本文在简要介绍井下微地震压裂监测技术的基础上,论述了选井选层设计、测震传感器的布置优化、井筒体液设计和压裂设计,并利用微地震压裂监测结果分析了压裂井的裂缝展布特征,验证了压裂施工效果。

该方法对于验证传统方法的准确性、提高裂缝测试水平及油田开发效果具有重要意义。

关键词:微地震技术;水力压裂;施工设计;监测;裂缝展布;油田应用;效果分析中图分类号:TE35711 文献标识码:A水力压裂作为油气增产的主要措施已被广泛应用于现代石油工业。

经济有效的水力压裂应尽可能地让裂缝在储层延伸,防止裂缝穿透水层和低压渗透层[1,2]。

现场作业表明,水力压裂的效果往往不是十分明显,有时由于穿透隔层而导致失败,造成油层压力体系破坏,影响油田的开发效果[3]。

因此,研究裂缝扩展规律、优选压裂作业参数,并采取有效措施控制裂缝的扩展形态是提高压裂处理效果的基础。

但从油田实践看,由于受监测手段的限制,对裂缝扩展规律的认识还十分有限。

井下微地震监测技术作为监测水力压裂裂缝扩展的最佳方法之一,首次在长庆油田的庄19井区得到了应用。

本文在简要介绍井下微地震监测技术的基础上,论述了选井选层设计、测震传感器布置优化、井筒液体设计和压裂设计方法,并利用微地震监测结果分析了压裂井的裂缝展布特征,验证了压裂施工效果。

1 井下微地震裂缝监测技术微地震压裂监测技术的主要依据是,在水力压裂过程中,裂缝周围的薄弱层面(如天然裂缝、横推断层、层理面)的稳定性受到影响,发生剪切滑动,产生了类似于沿断层发生的/微地震0或/微天然地震0。

压 裂

压  裂

压裂压裂是指在井筒中形成高压迫使地层形成裂缝的施工过程。

通常指水力压裂,水力压裂是指应用水力传压原理,从地面泵入携带支撑剂的高压工作液,使地层形成并保持裂缝,是被国内、外广泛应用的行之有效的增产、增注措施。

由于被支撑剂充填的高导流能力裂缝相当于扩大了井筒半径,增加了泄流面积,大大降低了渗流阻力,因而能大幅度提高油、气井产量,提高采油速度,缩短开采周期,降低采油成本。

第一节压裂设备及管柱一、地面设备1、压裂井口压裂井口一般可分为两类:①用采油树压裂,采油树型号可分为250、350、600、700、1050型,250型工作压力25MPa,主要用于浅井,其它型号分别用于中深井、深井和超深井,如果单位以大气压计算,工作压力基本与型号命名相同。

②采用大弯管、投球器、井口球阀与井口控制器的专用压裂井口,完成压裂施工,大弯管、投球器及井口球阀工作压力70MPa或100MPa。

2、压裂管汇目前压裂管汇种类很多,承压和最大过砂能力也不相同。

常用的有压裂管汇车和专用的地面管汇。

专用的地面管汇有8个连接头,压裂车可任选一个连接。

高压管线外径Ф76mm,内径Ф60mm,最高压力可达100MPa。

3、投球器投球器有两种,一种是前面井口装置中用于分层压裂管柱中投钢球的投球器,另一种是选压或多裂缝压裂封堵炮眼用投球器。

美国进口投球器,最大工作压力100MPa,一次装Ф22mm的堵球200个,电动旋转投球每分钟12圈,每圈投4个球。

二、压裂车组压裂设备主要包括压裂车、混砂车、仪表车、管汇车等。

1、压裂泵车压裂车是压裂的主要动力设备,它的作用是产生高压,大排量的向地层注入压裂液,压开地层,并将支撑剂注入裂缝。

它是压裂施工中的关键设备,主要由运载汽车、驱泵动力、传动装置、压裂泵等四部分组成。

压裂泵是压裂车的主机。

对压裂车技术性能要求大部分是对压裂泵提出的。

目前各油田压裂车组在产地、品牌和型号上有很多不同种类。

几种常见的压裂车性能参数见表1,S—2000型泵压力排量表见表2。

超低渗油藏整体宽带压裂技术研究与应用

超低渗油藏整体宽带压裂技术研究与应用

41长庆油田采油三厂靖安油田D油藏位于鄂尔多斯盆地陕北斜坡中部,无断层发育,属于典型的超低渗的油藏。

随着油田持续开采,油藏开发进入开发中期,开发面临的问题矛盾日益突出,油井长期低产低效问题难以解决[1]。

采用常规压裂措施后产量稳产期短,含水升幅高[2],无法满足当前阶段的油田生产开发需要,因此,亟需研究新的工艺方法解决当前油井低产低效的现状。

近年来,为了改善井网的水驱效果,长庆油田开始试验了宽带压裂技术,先后在多个油田取得了较好的应用效果[3-5]。

宽带压裂技术是在初次常规压裂的基础上对油藏进行二次重复压裂改造的过程,通过缝端暂堵及缝内多级暂堵技术提高侧向压力梯度,增大了裂缝的侧向波及范围,改变了优势水驱方向,并且通过对堵剂的不断优化,实现了提液控含水、提高单井产量,有效的降低油藏递减速度,为采油三厂中高含水阶段油藏高效开发具有深远的指导意义。

1 宽带压裂技术实施背景1.1 储层物性差,低产低效井占比高靖安油田D油藏北部、东部、西北部物性相对较好,单井产量相对较高,油藏南部、西南部物性较差,单井产量低。

经过统计发现,油藏物性较差部位油井低产低效占比高,为30%。

分析认为,由于储层物性差,导致注采系统主、向侧向井无法形成有效驱替是造成油井低产低效的主要原因。

而宽带压裂技术通过“控制缝长、增加带宽”的思路对储层进行大规模改造,主向裂缝半长控制在110~120m,侧向裂缝带宽控制在50~60m,可以建立超低渗透D油藏井组的有效驱替,实现油藏高效开发。

 1.2 常规压裂效果差,侧向剩余油动用少通过对靖安油田D油藏2018—2021年常规压裂实施效果进行统计。

结果表明:四年内实施常规压裂后油井平均单井日增油0.76t,措施增油水平较低,难以充分动用侧向剩余油;措施后油井含水达60%,含水增幅超过20%,达到21.1%,这对中含水期油藏开发非常不利。

因此需要对常规压裂的工艺参数进行优化,在提高单井增油的基础上控制含水上升幅度,见表1。

压裂技术探讨

压裂技术探讨

前言:水力压裂是油田增产、增注,保持油田稳产的一项重要工艺技术。

它利用液体传导压力的性能,在地面利用高压泵组,以大于地层吸收能力的排量将高粘度液体泵入井中,在井底憋起高压,此压力超过油层的地应力和岩石抗张强度,在地层产生裂缝,继续将带有支撑剂的携砂液注入裂缝,裂缝边得到延伸,边得到支撑。

停泵后就在油层形成了具有一定宽度的高渗透填砂裂缝,由于这个裂缝扩大了油气流动通道,改变了流动方式,降低了渗流阻力,可起到增产增注作用,这一施工过程就叫油层水力压裂。

一、压裂液压裂液的主要功能是传递能量,使油层张开裂缝并沿裂缝输送支撑剂。

其性能好坏对于能否造出一条足够尺寸、并具有足够导流能力的填砂裂缝密切相关,因此,有必要了解压裂液的特点和性能。

(一)压裂液的作用压裂液的主要作用是将地面设备的能量传递到油层岩石上,在地层形成裂缝,并携带支撑剂填充到裂缝中。

按照在压裂施工中不同阶段的作用可以分为前置液、携砂液、顶替液三种。

1、前置液;用来在地层造成裂缝,并形成一定几何形态裂缝的液体。

在高温井层中,还具有一定的降温作用。

2、携砂液:携带支撑剂进入地层,把支撑剂充填到预定位置的液体。

和前置液一样也具有造缝及冷却地层的作用。

由于携带比重较高的支撑剂,必须使用交联压裂液。

3、顶替液:把压裂管柱、地面管汇中的携砂液全部替入裂缝,以避免压裂管柱砂卡、砂堵的液体。

组成与前置液一致。

(二)压裂液的性能为确保压裂施工顺利实施,要求压裂液具有以下性能特点1、滤失性:主要取决于压裂液自身的粘度和造壁性,粘度高则滤失少。

添加防滤失剂能改善压裂液的造壁性,大大减少滤失量。

2、携砂性:指压裂液对于支撑剂的携带能力。

主要取决于液体的粘度、密密度及其在管道和裂缝中的流速,粘度越高,携带能力越强。

3、降阻性:指压裂液在管道中流动时的水力摩擦阻力特性,摩阻越小,压裂设备效率越高。

摩阻过高会导致井口压力高,从而降低排量,影响压裂施工。

4、稳定性:压裂液应具有热稳定性,不能由于温度升高而使粘度有较大的损失;还应具有抗剪切稳定性,不会由于流速的增加而大幅度降解。

超低渗透水平裂缝油藏水平井井眼轨迹优化技术

超低渗透水平裂缝油藏水平井井眼轨迹优化技术

超低渗透水平裂缝油藏水平井井眼轨迹优化技术贾自力;石彬;周红燕;陈芳萍;孟选刚【摘要】七里村油田长6油藏为浅层超低渗透油藏,压裂后人工裂缝为水平缝,直井开采效果不理想.为改善开发效果,水平井的水平段设计为纵向穿越不同的流动单元,压裂后形成多条水平裂缝.基于此思路,设计了"一"字型、大斜度型和"弓"型3种形状的井眼轨迹.数值模拟计算了3种井眼轨迹的开发指标,"弓"型井眼轨迹生产效果最佳.在七平1井上开展现场试验,长622 油层实施6段压裂,分别在3个流动单元各造2组水平裂缝,水平井投产后开发效果明显改善,初期日产油、累计产油均达到同区直井的13.0倍以上.试验表明,采用"弓"型井眼轨迹可有效提高水平裂缝油藏储量动用程度,对国内同类油藏的开发具有借鉴意义.%Chang6 reservoir in Qilicun oil field is a shallow ultra-low permeability reservoir, in which artificial fractures are horizontal after fracturing and production efficiency is unsatisfactory with vertical wells.In order to improve development efficiency, the horizontal section of the horizontal well is designed so as to cross different flow units vertically and multiple horizontal fractures form after fracturing.Based on this idea, three well paths are designed including straight line shape, high deflection shape and arch shape.Development index are calculated for three well paths using numerical simulation, which shows best development efficiency in arch shape well path.Field tests were implemented on Well Qiping 1, in which 6-segment fracturing was implemented in Chang622 zone and two groups of horizontal fractures formed in three flow units.Development efficiency was apparently improved after the horizontal well was put on production, initial daily oilproduction and cumulative oil production reaching 13.0 times of that of vertical wells in the same area.Tests show that arch shape well path can effectively improve reserve depletion around horizontal fractures and provides basis for the development of similar reservoirs in China.【期刊名称】《特种油气藏》【年(卷),期】2017(024)003【总页数】5页(P150-154)【关键词】超低渗油藏;水平裂缝;水平井;"弓"型井眼轨迹;长6油藏【作者】贾自力;石彬;周红燕;陈芳萍;孟选刚【作者单位】陕西延长石油(集团)有限责任公司研究院,陕西西安 710075;陕西延长石油(集团)有限责任公司研究院,陕西西安 710075;陕西延长石油(集团)有限责任公司研究院,陕西西安 710075;陕西延长石油(集团)有限责任公司研究院,陕西西安710075;延长油田股份有限公司,陕西延安 716000【正文语种】中文【中图分类】TE243七里村油田为超低渗透油藏[1],压裂后人工裂缝为水平裂缝[2-5],一直采用直井开发,单井产量低,年采油速度仅为0.24%。

压裂工艺基础知识介绍

压裂工艺基础知识介绍

压裂工艺基础知识介绍目录一、压裂工艺概述 (2)1. 压裂工艺定义及重要性 (3)2. 压裂工艺发展历程 (3)3. 压裂工艺应用领域 (4)二、压裂原理与基本流程 (5)1. 压裂原理简介 (6)(1)岩石破裂理论 (7)(2)水力压裂基本原理 (8)2. 压裂基本流程 (9)(1)前期准备 (10)(2)压裂施工 (11)(3)后期评估 (13)三、压裂设备与技术参数 (14)1. 压裂设备组成 (15)(1)压裂泵 (15)(2)高压管汇 (17)(3)地面设备 (18)(4)井下工具 (19)2. 技术参数介绍 (20)(1)压力参数 (22)(2)流量参数 (23)(3)化学药剂参数 (24)四、压裂液与支撑剂 (25)1. 压裂液介绍 (27)(1)压裂液种类与特性 (28)(2)压裂液性能要求 (30)2. 支撑剂介绍 (31)(1)支撑剂种类与特性 (32)(2)支撑剂作用及选择要求 (33)五、压裂工艺优化与新技术发展 (34)一、压裂工艺概述压裂工艺是一种用于开采石油和天然气资源的地质工程技术,它通过在地层中注入高压水,使岩石发生裂缝和破碎,从而释放出地下的石油和天然气资源。

压裂工艺在全球范围内得到了广泛的应用,尤其是在美国、加拿大、中国等国家的油气田开发中发挥了重要作用。

压裂工艺的主要目的是提高油气井的产量,延长油气井的使用寿命,降低生产成本。

随着科技的发展,压裂工艺也在不断地改进和完善,以适应不同类型的油气藏和地层条件。

压裂工艺主要包括水力压裂、化学压裂和生物压裂等多种类型。

水力压裂是最早的一种压裂方法,主要利用高压水流产生的压力差来破碎岩石。

随着技术的进步,化学压裂逐渐成为主流技术,它通过向地层中注入特殊的化学剂,使岩石发生化学反应,从而产生裂缝和破碎。

生物压裂则是近年来发展起来的一种新型压裂技术,它利用微生物降解有机物的过程来产生裂缝和破碎。

压裂工艺作为一种重要的地质工程技术,为石油和天然气资源的开发提供了有效的手段。

采油工程第5章水力压裂技术

采油工程第5章水力压裂技术
第5章 水力压裂技术
5.1 造缝机理 5.2 压裂液
5.3 支撑剂
5.4 压裂设计
5.5 压裂设备及工艺方法
思考题
第5章 水力压裂技术
水力压裂是利用地面高压泵组,将高粘液体以大大超
过地层吸收能力的排量注入井中,在井底憋起高压,当此压 力大于井壁附近的地应力和地层岩石抗张强度时在井底附近 地层产生裂缝。继续注入带有支撑剂的携砂液,裂缝向前延 伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底 附近地层内形成具有一定几何尺寸和导流能力的填砂裂缝, 使井达到增产增注的目的。 水力压裂增产增注的原理主要是降低了井底附近地 层中流体的渗流阻力和改变了流体的渗流状态,使原来的径 向流动改变为油层流向裂缝近似性的单向流动和裂缝与井筒 间的单向流动,消除了径向节流损失,大大降低了能量消耗。 因而油气井产量或注水井注入量就会大幅度提高。
3.泡沫压裂液 泡沫压裂液是用于低压低渗油气层改造的新型压裂液。 其最大特点是易于返排滤失少以及摩阻低等。基液多用淡水、 盐水、聚合物水溶液;气相为二氧化碳、氮气、天然气;发泡 剂用非离子型活性剂。泡沫干度为65%~85%,低于65%则粘 度太低,超过92%则不稳定。 泡沫压裂液也具有不利因素 (1)由于井筒气一液柱的压降低,压裂过程中需要较高的 注入压力,因而对深度大于2000m以上的油气层,实施泡沫压 裂是困难的。 (2)使用泡沫压裂液的砂比不能过高,在需要注入高砂比 情况下,可先用泡沫压裂液将低砂比的支撑剂带人,然后再泵 人可携带高砂比支撑剂的常规压裂液。 泡沫压裂液的粘度稳定性取决于泡沫干度(泡沫质量),即 气体体积与泡沫液总体积之比,典型值为70%~80%。
z X y z y X
ቤተ መጻሕፍቲ ባይዱ
X
图5-4 人工裂缝方向示意图

压裂工艺基础知识介绍

压裂工艺基础知识介绍

压裂工艺基础知识介绍目录一、压裂工艺概述 (2)1. 压裂的定义与目的 (2)2. 压裂技术的发展历程 (3)3. 压裂工艺的重要性 (5)二、压裂工艺基本原理 (6)1. 压裂液的组成及作用 (7)(1)主要成分 (8)(2)添加剂的功能 (9)2. 压裂液的流动性与黏度控制 (10)3. 岩石的破裂机理 (11)(1)应力与应变的关系 (12)(2)岩石的破裂条件 (13)三、压裂工艺操作流程 (14)1. 井场准备与设备配置 (16)(1)井场选址与布局 (17)(2)设备选择与配置 (18)2. 施工前的准备工作 (19)(1)井筒处理 (21)(2)压裂液的准备 (21)3. 压裂施工流程 (23)(1)压裂液的注入 (24)(2)压力控制 (25)(3)裂缝的扩展与控制 (26)4. 施工后的工作 (28)(1)井场清理 (29)(2)数据分析与评估 (30)四、压裂工艺的关键技术 (31)一、压裂工艺概述压裂技术是一种常用的油气藏开发技术,是指通过将高压介质注入油气藏缝中,以增加缝隙的有效面积,从而提高油气采收率的一种工艺。

压裂就是利用外力的强大冲击,使岩石裂缝变大或者新形成裂缝,从而扩大油气藏的产能。

评价及设计:对油气藏进行详细的测井、物理模型模拟等,确定压裂的适宜性及最佳工艺参数,例如压裂液种类、压裂泵送量、压裂压力等。

压裂泵送:通过压裂泵等设备,将压裂液以高压泵入油气藏中,使岩石裂开。

压裂液选择:压裂液种类多样,常见的有水基粉体系、水基酸体系、油基体系等,其选择要考虑油气藏特征和压裂目标。

控压处理:压裂完成后,需要通过控压处理,稳定油气藏,防止裂缝过早闭合。

压裂技术在油气田开发中得到广泛应用,特别是对低渗透或岩性和天然裂缝发育不良的油气藏,其效果显著,能够有效提高油气产能。

1. 压裂的定义与目的压裂技术是油气井增产及煤层气、页岩气等非常规油气资源高效开发的一种关键工艺。

在地下油气井实施过程之中,由于岩石的密实性和高渗透层间的限制,油气井的生产能力受到自然渗透率的束缚,进而导致产能低下。

胜利油田低渗透油藏压裂裂缝暂堵转向技术研究

胜利油田低渗透油藏压裂裂缝暂堵转向技术研究
胜添加利副油标田题 低渗透油 藏压裂裂缝暂堵转 向汇技报人:术研究
目录
PART One
添加目录标题
PART Three
胜利油田低渗透油藏压裂 裂缝暂堵转向技术的原理
PART Five
胜利油田低渗透油藏压裂 裂缝暂堵转向技术的未来 发展
PART Two
胜利油田低渗透油藏压裂 裂缝暂堵转向技术的研究 背景
PART Four
胜利油田低渗透油藏压裂 裂缝暂堵转向技术的实践 应用
PART Six
结论
单击添加章节标题
胜利油田低渗透油 藏压裂裂缝暂堵转 向技术的研究背景
胜利油田低渗透油藏的特点
储层物性差,渗透率低 天然能量不足,产量递减快 开发难度大,需要采用特殊技术 分布范围广,开发潜力大
压裂向技术的原理和作用
暂堵转向技术在胜利油田的应用实 例
添加标题
添加标题
添加标题
添加标题
胜利油田低渗透油藏的特点和挑战
暂堵转向技术对胜利油田的贡献和 效益
应用效果分析
提高采收率:通过压裂裂缝暂堵转向技术,有效提高低渗透油藏的采收率。 降低生产成本:该技术可减少重复压裂次数,降低生产成本。 优化生产参数:根据不同油藏条件,优化压裂施工参数,提高生产效益。 减少环境污染:该技术可减少压裂液的使用量,降低对环境的污染。
强化裂缝监测技术:实时监 测裂缝扩展情况,确保压裂
效果
引入人工智能技术:利用大 数据和机器学习,提高压裂
决策的准确性和科学性
未来发展趋势和展望
技术创新:不断探索和研发更高效、环保的压裂裂缝暂堵转向技术,以 满足油田生产的需求。
智能化发展:利用人工智能、大数据等技术手段,实现压裂裂缝暂堵转 向技术的智能化,提高油田生产效率。

(化验室)中石化酸化压裂工程技术中心规划方案20170630

(化验室)中石化酸化压裂工程技术中心规划方案20170630

规格型号 V10.0-10.3 V5.21 2010 2010 2007
实验仪器名 称 高温高压流变仪 泡沫管道流变仪 支撑剂基本性能测定仪 耐酸高温流变仪 酸岩反应旋转岩盘反应仪
规格型号 RS300 FPR170
微机控制电液伺服 压力实验机 RS-6000
HX-1
石油工程公司酸化压裂工程技术现状
二、石油工程公司酸化压裂工程技术现状
(一)人才及队伍情况
(二)实验仪器、压裂软件及装备
(三)特色技术 (四)取得的业绩与成绩
石油工程公司酸化压裂工程技术现状
(一)人才及队伍情况 中原井下
主要研发人员53人,其中,局首席专家1人,处专家2人,高级工程师20人,硕士8人, 高级职称占 37.7%,工程师及以上占85%,硕士占 15 %。 拥有酸化压裂施工队伍7支,其中甲级资质5支,乙级资质2支,分布国内外市场。
中石化酸化压裂工程技术中心
规划方案
中原石油工程有限公司
2017.07
汇报内容
一、 项目背景
二、 石油工程公司酸化压裂工程技术现状
三、 国内外现状及技术发展趋势 四、 存在的差距及建设的必要性 五、 酸化压裂工程技术中心规划 六、 酸化压裂工程技术中心建设方案 七、 投资估算 八、 环保与安全 九、保障措施
石油工程公司酸化压裂工程技术现状
(二)实验仪器、压裂软件及装备 胜利井下
西南井下
江汉井下
石油工程公司酸化压裂工程技术现状
(三)特色技术 1、工艺技术
围绕缝洞型碳酸盐岩、非常规页岩油气、致密砂岩油气资源和煤层气勘探开发需
求,中原井下探索并完善了多个特色酸化压裂工艺技术,创造了多项工程纪录,为中 原、普光、元坝、塔河和涪陵等油气田的开发提供了强有力的技术支撑。

压裂作业规程指导质量准则

压裂作业规程指导质量准则

精心整理第一章压裂作业质量标准1.1 范围本标准规定了水力压裂作业质量要求、作业技术标准。

本标准适用于油田水力压裂作业质量的评定。

1.2压裂作业质量要求依据《压裂工程质量技术监督及验收规范》制定以下作业质量要求。

压裂作业质量分为合格、不合格:合格(1)(2)实际作业排量达到设计要求;(3)实际加砂比达到设计要求;(4)顶替液量达到设计要求;(5)胶联和破胶性能达到设计要求;(6)不进行质量评定。

在整理异常井(1)(2)1.3压裂用植物胶通用技术要求(依据SY/5764-2007):表1-1 压裂用植物胶通用技术要求撑剂指标依据《SY/T5108-2006压裂支撑剂性能指标及测试推荐作法》制定。

(1)粒径组成:水力压裂用支撑剂至少有90%的粒径在公称直径范围内,小于最下面一层筛子的支撑剂不应超②陶粒支撑剂的抗破碎能力陶粒支撑剂的抗破碎能力要经过52MPa和69MPa两个模拟闭合压力的测试,破碎率指标至少应在52MPa的闭合压力下达到本标准的要求。

因支撑剂性能比较的需要,闭合压力可增至86MPa和100MPa,相应的粒径范围的破碎率指标,闭合压力与破碎室受力值见表1-4。

表1-4 陶粒支撑剂的抗破碎测试压力及指标第二章压裂作业技术标准2.1准备工作2.1.1井筒及下井工具准备(1)要求固井质量良好,井下无落物,口袋应大于15m。

(2)压裂施工前必须先通洗井,保证管串及井筒干净。

(3)下井管串要仔细丈量三次,并涂抹丝扣油,油管上扣要适当。

压裂管柱、压裂工具下井前应仔细检查,下井工具要测量并绘制草图。

(43m,下界以下0.5m~1.5m2.1.2 地面准备(1(2抹黄油,保证密封。

(3挂。

(410m和出口处用地锚固定牢靠,120o的弯头。

(5(6,应定期进行检查、维(72.1.3(1)配液罐的数量要足以盛放施工用的所有液体,距井口距离要适当并要便于连接,配液罐要清洁、干净,无污物。

(2)配液罐上要有标号(注明液体类型、数量)。

多层压裂方法及其应用

多层压裂方法及其应用

大多数油气井的产量在水力压裂措施后能够得到显著提高。

但在某些完井配置情况下,尤其是多层合采井及大位移、大斜度井,由于投资和作业成本较高,因提高最终采收率或增产而获得的经济收益往往会被抵消。

现在,通过应用更高效的多层压裂工具并在作业过程中进行实时监测,可以解决这一难题。

多层压裂方法及其应用在编写本文过程中得到以下人员的帮助,谨表谢意:得克萨斯州Longview 的Michael Dardis ;休斯敦的Phil Duda 和Donald Smith ;莫斯科的Matt Gillard ;沙特阿拉伯Al-Khobar 的Shrihari Kelkar ;科威特Ahmadi 的刘海,以及刚果Pointe-Noire 的Brad Malone 。

AbrasiFRAC ,ABRASIJET ,ACTive ,CoilFRAC ,Contact ,DeepSTIM ,DivertaMAX ,InterACT ,PCM ,POD ,RapidSTIM ,StageFRAC ,StimMAP ,SuperX ,SXE ,VDA (粘弹性转向酸)和VSI (多用途地震成像仪)等是斯伦贝谢公司的商标。

PerfFRAC 是斯伦贝谢公司的商标,其技术许可证来自埃克森美孚上游研究公司。

Bader Al-Matar Majdi Al-Mutawa Muhammad Aslam Mohammad Dashti Jitendra Sharma 科威特石油公司科威特Ahmadi Byung O. LeeJ. Ricardo Solares 沙特国家石油公司沙特阿拉伯Udhailiyah Tom S. NemecGoodrich 石油公司美国得克萨斯州休斯敦Jason Swaren得克萨斯州Sugar Land Loris Tealdi埃尼集团刚果分公司刚果共和国Pointe Noire当前,提高地下油气采收率的策略包括大斜度、大位移井、多层合采及二次完井,应用这些技术的目的在于开发原先不具有经济性或难以开采的油气层。

水平井体积压裂技术的探讨

水平井体积压裂技术的探讨

水平井体积压裂技术的探讨摘要:我国重要的石油开采基地大庆,其外围的储油层渗透率较低(为4—5)×10-3μm2,丰度也低(10~20)×104km2,厚度也薄(单层的厚度大约在50cm),若用直井的方式开采效益很低甚至没有效益,若用水平井的方式开采,则能较好的解决外围的低渗透油田的多井的地产问题,可达到高效开采的目的。

随着我国对石油需求量的增大和油价的居高不下,国家加大了对石油领域的投入和科研攻关的力度,水平井的攻关技术日臻成熟,得到了新的突破,特别是水平井的压裂的技术提高更明显,刚开始实行的是全井笼统限流法压裂,通过攻关则发展到现在的以下几种:1、段内限流多段压裂;2、胶塞压裂;3、双封单卡分段压裂;4、水力喷砂压裂;5、机械桥塞分段压裂。

共5种方式和工艺。

在提高水平井的开发效果方面,虽然这些新技术和新工艺取得了明显的效果,但是还存在一些问题和不足,使水平井压后产量的增加受到限制。

关键词:水平井;体积压裂;水泥加固1. 关于在水平井压裂方面面临的技术难题水平井压裂方面面临着两大技术难题:第一、由于通过压裂后裂缝的形成种类单一,使得油层的改造不够充分。

由于所开发的水平井的位置地质条件不好,存在低孔和储层低渗透,并且油层所处的地质环境不好。

像AN油田,砂岩单层的平均厚度只有80公分,而有效厚度只有30公分,并且平均孔隙度只有17%不到,且渗透率只有渗透率13.3×10-3μm2,含油的饱和度只有区区的51%。

在此区做得无用功较多,钻遇率低,单层砂岩的平均钻遇率只有36%,而有效的钻遇率刚刚达到13.8%。

面对这样的水平井,有效的处理方法就是在投产前需要压裂处理,但是运用常规的压裂技术一段段进行压裂,每段压裂段只能出现一条主要裂缝,使得储层的渗流面积受到很大限制,这样一来,对低渗透储层以及特低渗透储层而言远远达不到开采的要求。

并且因为储层的渗透性能较差不好,常出现如下情况:刚刚开始时候,产能还不错,但时间不长产能下滑的很快,造成前高后低的现象。

裸眼封隔器

裸眼封隔器

裸眼封隔器水平井分段压裂裸眼封隔器的研究与应用水平井裸眼分段压裂是一项先进的完井工艺技术,是低压、低渗透油气藏开发的重要增产措施之一,近年来在国内开始推广应用。

水平井裸眼分段压裂工具是实现这项工艺技术的核心硬件,该技术被少数国外公司垄断,国内自主研发尚处于起步阶段。

此前,用传统工具和工艺改造水平井,耗时长、产量低,用国外先进技术和工艺改造水平井效果虽好,但费用太高。

为此,渤海钻探工程技术研究院研发了水平井裸眼完井分段压裂配套工具并在苏里格地区成功应用,预示着国产水平井分段压裂工具及压裂工艺进入了一个崭新的时期。

裸眼封隔器作为水平井分段压裂配套工具的重要组成部分,在多段压裂过程中的作用至关重要,其性能直接影响着压裂施工的效果。

为此对裸眼封隔器的一些关键部分进行了缜密的设计。

1裸眼封隔器的研制苏里格气藏具有低压低渗透、开采难度大的特点,4000 m 井底温度达到130 ℃。

水平井分段压裂时,裸眼封隔器的工作位置处于水平裸眼段,井底情况复杂、地层压力高。

封隔器下入过程中,在井壁摩擦及管内液柱压力的作用下比较容易损坏胶筒和提前坐封,同时由于裸眼段井径变化大,使用密封胶筒较短的常规压缩式封隔器可能会导致坐封不完全,影响后期的压裂施工。

针对上述情况,设计了开启阀式扩张封隔器,该封隔器将开启阀与单流阀综合利用,封隔器开启压力根据施工井的具体情况进行调节,能有效地防止下井过程中封隔器提前打开并坐封的现象;单流阀的设计使液体单向流入密封胶筒并防止回流,在后期打开压差滑套和压裂作业时即使压力骤增也可继续通过单流阀向密封胶筒内单向泵入液体,使胶筒充分膨胀,加强密封效果。

该封隔器具有外径小、密封段长的特点,不但有利于工具的顺利下入,而且长密封胶筒与裸眼地层有更大的接触面积,更好地保证完全密封。

2技术分析2.1结构及工作原理水平井裸眼完井分段压裂专用裸眼封隔器结构,该封隔器在现场配合自主研发的悬挂器、投球滑套、压差滑套、坐封球座等使用。

苏家屯油田压裂工艺技术研究

苏家屯油田压裂工艺技术研究

技术应用与研究一、引言苏家屯油田位于松辽盆地梨树断陷苏家屯次洼后洼甸圈闭,主力油层为营三段,其中Ⅴ、Ⅵ砂层组为主要含油层段。

属于低孔特低-超低渗储层。

2012年苏家屯油田加砂符合率仅为77%,部分井未完成设计加砂,通过对压裂工艺、压裂液及支撑剂、施工参数及配套工艺进行优化,获得了较好的压裂效果,施工一次成功率和压裂后产量都获得了较大的提高,在SW33-23、SW33-27井获得高产,形成了适合苏家屯油田的压裂工艺技术系列。

二、压裂难点2012年苏家屯油田压裂加砂符合率为77%,部分井未完成设计加砂,导致加砂符合率偏低的因素主要有三个方面:1.苏家屯储层纵向上砂泥岩薄互层发育,薄互层储层由于泥岩夹层的夹层作用较强,水力裂缝的缝宽较窄,压裂施工后期,高砂比进入地层极易产生缝口砂卡,施工被迫停止。

2.苏家屯地区地应力较高,且最大与最小主应力差大,使得压裂施工难度增加,水力裂缝的缝口窄。

3.从前期探井分析来看,勘探控制面积大,由于苏家屯储层断块较发育,且对断层重视程度不够,在小断块储层压裂过程中经常由于滤失量大,导致压裂施工过程中出现砂堵。

三、设计优化通过总结分析2012年的经验教训,深入评价认识储层,通过对压裂工艺、压裂液、支撑剂、施工参数及配套工艺进行优化,形成了一套适合苏家屯油田的压裂工艺技术系列。

1.压裂工艺根据目的砂层组纵向上分布情况、纵向非均质情况、层间跨度等选择单层压裂或机械分层压裂方式。

对于隔层厚度较大的井(不小于5m)可采取封隔器+滑套分层压裂工艺,对于纵向非均质性较强,跨度较大的井结合射孔参数优化,可选择实施限流压裂工艺,对于平面上断块发育,压裂规模应根据井筒到断层距离优化。

2.压裂液及支撑剂该区地温梯度3.44℃/100m,地层温度89.47℃~94.6℃,储层具有中等偏弱水敏、中等偏强盐敏和碱敏,压裂液体系优化如下:(1)压裂液具有足够的粘度,以达到造缝、延缝以及携砂的目的,以满足施工设计要求;(2)压裂液要加强防膨,控制滤失液的pH值,避免发生水敏、碱敏等伤害,以达到保护油层的目的;(3)是油层低孔特低渗,易受伤害,需加强防水锁、返排、降滤等措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档