压裂改造及其分类

合集下载

油气层改造技术——压裂-

油气层改造技术——压裂-

第二节:压裂液
3、配制方法 水+添加剂+稠化剂溶胶剂 水+添加剂+交联剂交联剂 溶胶剂+交联剂水基冻胶压裂液 田箐及其衍生物
(3 y x ) pi ( pi pP )
1 2 1
总垂向应力:
Z z ( pi p p )
1 2 1
第一节、造缝机理
二、造缝条件
1、形成垂直裂缝的条件 当井壁上存在的周向应力达到井壁岩石的水平方向的 抗拉强度时,岩石将在垂直于水平应力的方向上产生脆性 破裂,即在与周向应力相垂直的方向上产生垂直裂缝。造 缝条件为: h
第一节、造缝机理
(一)地应力 ①垂向应力:作用在单元体上的垂向应力来自上覆岩层
的重量,其大小可以根据密度测井资料计算:
z s gdz
0
H
由于油气层中均有一定的孔隙压力pS (即地层压力或流体 压力 ) ,部分上覆岩层的压力σz被多孔介质中的流体压 力支持。
第一节、造缝机理
所以,有效垂向应力为:
第一节、造缝机理
三、人工裂缝的方向 在天然裂缝不发育的地层,裂缝的形态(垂直缝或水
平缝)取决于其三向应力状态。根据最小主应力原理,
裂缝总是产生于强度最弱,阻力最小的方向,即岩石 破裂面垂直于最小主应力轴方向。
•当σz最小时,形成水平裂缝; •当σz最大时,形成垂直裂缝; •当σz> σx> σy时,裂缝面垂直于σx方向; •当σz > σy> σx时,裂缝面垂直于σy方向。
Z
v t
产生水平裂缝时,井筒内注入流 体的压力等于地层的破裂压力:
PF Ps
z tv
1

水力压裂工艺技术概述与分类

水力压裂工艺技术概述与分类

水力压裂工艺技术概述与分类摘要:水力压裂是油气井增产、水井增注的一项重要技术措施。

当地面高压泵组将液体以大大超过地层吸收能力的排量注入井中时,在井底附近蹩起超过井壁附近地层的最小地应力及岩石抗张强度的压力后,即在地层中形成裂缝。

随着带有支撑剂的液体注入缝中,裂缝逐渐向前延伸,这样,在地层中形成了具有一定长度、宽度及高度的填砂裂缝。

由于压裂形成的裂缝具有很高的导流能力,使油气能够畅流入井,从而起到了增产增注的作用。

关键词:机理;裂缝;技术研究;增产;发展;探索。

一、水利压裂技术概述水力压裂技术经过50 多年的发展,在裂缝模型、压裂井动态预测、压裂液、支撑剂、压裂施工设备、应用领域等方面均取得了惊人的发展,不但成为油气藏的增产增注手段,也成为评价认识储层的重要方法。

近期水力压裂在总体优化压裂、重复压裂、大型压裂、高砂比压裂,端部脱沙压裂、CO2 泡沫压裂及特殊井(斜井、水平井、深井、超深井、小井眼井等)压裂技术方面有了进一步的完善和发展,压裂的单项技术也有了很大进展。

国内压裂酸化技术在设计软件、压裂酸化材料、施工技术指标等方面,已接近国际先进水平。

介绍了国内不同储层类型所适用的压裂技术,对更好地发挥水力压裂技术在油气田勘探与开发中的作用具有重要意义。

自1947 年美国进行第1 次水力压裂以来,经过50 多年的发展,水力压裂技术从理论研究到现场实践都取得了惊人的发展。

如裂缝扩展模型从二维发展到拟三维和全三维;压裂井动态预测模型从电模拟图版和稳态流模型发展到三维三相不稳态模型,且可考虑裂缝导流能力随缝长和时间的变化、裂缝中的相渗曲线和非达西流效应及储层的应力敏感性等因素的影响;压裂液从原油和清水发展到低、中、高温系列齐全的优质、低伤害、具有延迟交联作用的胍胶有机硼“双变”压裂液体系和清洁压裂液体系;支撑剂从天然石英砂发展到中、高强度人造陶粒,并且加砂方式从人工加砂发展到混砂车连续加砂;压裂设备从小功率水泥车发展到1000 型压裂车和2000 型压裂车;单井压裂施工从小规模、低砂液比发展到超大型、高砂液比压裂作业;压裂应用的领域从特定的低渗油气藏发展到特低渗和中高渗油气藏(有时还有防砂压裂)并举。

压裂的技术种类3篇

压裂的技术种类3篇

压裂的技术种类第一篇:常见的压裂技术压裂是一种在地下岩石中注入高压液体,以打开自然气和原油储层并促进油气的流动的技术。

这项技术已成为能源开发行业的常用技术。

这里将介绍一些常见的压裂技术。

1. 液态压裂液态压裂是最早出现的压裂技术,它使用液体(通常是水)注入井中并对岩石施加高压,以打开裂缝和孔隙,促进油气的流动。

这种技术被广泛应用于油气勘探和生产领域。

2. 液态热压裂液态热压裂利用高温加热液体,以增加注入岩石中的压力和渗透能力,从而加速油气的释放和流动。

这种技术在石油天然气勘探和开发中都有应用。

3. 脉冲压裂脉冲压裂是利用高压液体产生的脉冲效应来打开地下岩石裂缝的一种技术。

该技术的优点在于需要较小的注入压力就能达到理想的裂缝效果。

4. 爆炸压裂爆炸压裂是利用炸药等爆炸物产生的大量高压气体和震动波,来塑造地下岩石形态和打开裂缝的一种技术。

虽然效果显著,但因为会对环境造成不良影响,目前已较少使用。

5. 气体压裂气体压裂是利用压缩的天然气和其他气体,注入井下井筒并对岩石施加压力,以打开裂缝和孔隙的一种技术。

与液态压裂相比,使用气体还可以避免水在地下过程中可能带来的污染风险。

以上是一些常见的压裂技术,不同技术根据资源、地质情况和环保标准的不同,运用场景和适用范围也有所不同。

在使用时需依据实际情况选用相应的压裂技术。

第二篇:常见压裂技术的优缺点各种压裂技术都有其优点和缺点,需要根据实际情况选用相应技术。

以下是几种常见的压裂技术的优缺点:1. 液态压裂优点:操作和操作成本相对较低。

这种技术不需要使用任何特殊设备,使用水等便宜而普遍存在的液体即可实现。

缺点:对地下水资源有一定的影响。

如果水的质量不高,可能会带来一些环境污染的风险。

而且,相对其他技术而言,液态压裂需要较高的注入压力和较大的水量,可能会造成井底形成堵塞。

2. 热压裂优点:较高的作用效果。

热压裂能够加速油气的释放,提高产量,并对开采成本产生一定的降低效果。

压裂工艺基础知识介绍

压裂工艺基础知识介绍

压裂工艺基础知识介绍目录一、压裂工艺概述 (2)1. 压裂工艺定义及重要性 (3)2. 压裂工艺发展历程 (3)3. 压裂工艺应用领域 (4)二、压裂原理与基本流程 (5)1. 压裂原理简介 (6)(1)岩石破裂理论 (7)(2)水力压裂基本原理 (8)2. 压裂基本流程 (9)(1)前期准备 (10)(2)压裂施工 (11)(3)后期评估 (13)三、压裂设备与技术参数 (14)1. 压裂设备组成 (15)(1)压裂泵 (15)(2)高压管汇 (17)(3)地面设备 (18)(4)井下工具 (19)2. 技术参数介绍 (20)(1)压力参数 (22)(2)流量参数 (23)(3)化学药剂参数 (24)四、压裂液与支撑剂 (25)1. 压裂液介绍 (27)(1)压裂液种类与特性 (28)(2)压裂液性能要求 (30)2. 支撑剂介绍 (31)(1)支撑剂种类与特性 (32)(2)支撑剂作用及选择要求 (33)五、压裂工艺优化与新技术发展 (34)一、压裂工艺概述压裂工艺是一种用于开采石油和天然气资源的地质工程技术,它通过在地层中注入高压水,使岩石发生裂缝和破碎,从而释放出地下的石油和天然气资源。

压裂工艺在全球范围内得到了广泛的应用,尤其是在美国、加拿大、中国等国家的油气田开发中发挥了重要作用。

压裂工艺的主要目的是提高油气井的产量,延长油气井的使用寿命,降低生产成本。

随着科技的发展,压裂工艺也在不断地改进和完善,以适应不同类型的油气藏和地层条件。

压裂工艺主要包括水力压裂、化学压裂和生物压裂等多种类型。

水力压裂是最早的一种压裂方法,主要利用高压水流产生的压力差来破碎岩石。

随着技术的进步,化学压裂逐渐成为主流技术,它通过向地层中注入特殊的化学剂,使岩石发生化学反应,从而产生裂缝和破碎。

生物压裂则是近年来发展起来的一种新型压裂技术,它利用微生物降解有机物的过程来产生裂缝和破碎。

压裂工艺作为一种重要的地质工程技术,为石油和天然气资源的开发提供了有效的手段。

油田压裂新技术工艺

油田压裂新技术工艺

油田压裂新技术工艺引言油田压裂是一种常用的提高原油产量的工艺技术。

近年来,随着技术的不断发展,油田压裂新技术工艺逐渐成熟。

本文将介绍几种常见的油田压裂新技术工艺,并探讨其应用前景和优势。

1. 液态压裂技术液态压裂技术是一种将高压液体注入油井,以增加油层压力从而提高原油产量的技术。

与传统的压裂技术相比,液态压裂技术在注入液体的过程中采用了新型的压裂剂,并结合了近年来的各种物理化学原理,使得压裂效果更好。

液态压裂技术具有操作简单、施工周期短、压裂效果明显等优势,逐渐在油田压裂领域得到广泛应用。

2. 固态压裂技术固态压裂技术是一种将固体颗粒注入油井,通过机械力或化学反应引起油层裂缝扩展,达到提高原油产量的效果。

这种技术比传统压裂技术更加安全可靠,对环境的污染更小,且具有使用寿命长、耐高温高压、压裂效果持久等优势。

固态压裂技术在特殊油藏和复杂油藏中具有广泛的应用前景,并且在油田开发过程中可以减少压裂液体的使用量,节约成本。

3. 气体压裂技术气体压裂技术是一种利用高压气体将油井中的裂缝扩展以增加油层产量的技术。

相比传统的液态压裂技术,气体压裂技术在施工过程中不需要使用水或化学药剂,从而避免了对地下水资源的污染。

此外,气体压裂技术可以适应不同类型的油藏和井筒条件,并且能够实现变压变量压裂,提高压裂效果。

因此,气体压裂技术被认为是一种环保、高效的油田压裂新技术工艺。

4. 超声波压裂技术超声波压裂技术是一种利用超声波能量将油井中的裂缝扩展以提高油层产量的技术。

超声波通过在岩石中引起振动,使油藏裂缝扩展并增加流动性。

这种技术在压裂过程中不需要注入任何液体或化学药剂,避免了地下水资源的污染和化学物质对油层的损害。

超声波压裂技术具有能耗低、操作简便、压裂效果持久等特点,被广泛应用于特殊油藏和复杂油藏的开发。

5. 电磁压裂技术电磁压裂技术是一种利用电磁场的能量改变油藏的物理性质,从而实现裂缝扩展的技术。

通过在油井中施加高频电磁场,可以使油藏岩石中的裂缝扩展并增加渗透率。

压裂的技术种类

压裂的技术种类

压裂的技术种类压裂技术是一种常用的石油及天然气开采技术,它通过将水、沙和化学物质以高压注入井孔,强化油气层中的裂缝,以提高油气产量。

压裂技术的种类有很多,其中比较常用的包括:1. 液体压裂技术液体压裂技术是最常见的一种压裂技术,它利用高压泵将压裂液体注入井孔,通过压力使裂缝扩大,让更多的油气从裂缝中流出。

通常所使用的液体是水、沙子和化学添加剂的混合物,它们可以改善油藏的渗透性,提高油气产量。

2. 气体压裂技术气体压裂技术是一种比较安全的压裂技术,它采用高压气体(如二氧化碳或氮气等)将井孔内的油藏压裂。

气体本身不会对环境产生污染,经过压缩后会变得非常密集,能够迅速将油藏的裂缝扩大,从而提高油气的产出。

3. 化学压裂技术化学压裂技术也称为酸化压裂技术,它是一种利用酸性溶液将油藏压裂的技术。

化学品会猛烈地反应,扩大井管中的裂缝,从而使油气能够更加容易地流出。

这种技术可以更深地进入油藏中,但需要非常小心地使用,以避免出现环境污染。

4. 多级压裂技术多级压裂技术是一种通过多次压裂来增加油气产量的技术。

在这种技术中,压裂管会在一定深度处短暂停留,然后再向下延伸,重复压裂过程以扩大裂缝。

经过多次重复,裂缝会变得更大,油气产量也会随之上升。

5. 水平压裂技术水平压裂技术是一种适用于受限油藏的压裂技术。

在这种技术中,井管不再是垂直的,而是以水平姿态进入地下岩石层中。

使用液体压裂技术将垂直的井孔衔接新建的水平井管,从而增加了开发油藏的热点数量,使油气产量大大增加。

总之,压裂技术虽然是一种常见的油气开采技术,却需要高度关注环境保护问题,合理使用各种压裂技术,对保障生态环境和人民健康是至关重要的。

压裂基础知识

压裂基础知识

压裂基础知识压裂基础知识一、水力压裂原理(一)基本原理水力压裂是利用地面高压泵组,将高粘液体以大大超过地层吸收能力的排量注入井中,在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,便在井底附近地层产生裂缝;继续注入带有支撑剂的携砂液,裂缝向前延伸并填以支撑剂,关井后裂缝闭合在支撑剂上,从而在井底附近地层内形成具有一定几何尺寸和高导流能力的填砂裂缝,使井达到增产增注的目的。

(二)增产原理1、形成的填砂裂缝的导流能力比原地层系数大得多,可大几倍到几十倍,大大增加了地层到井筒的连通能力;2、由原来渗流阻力大的径向流渗流方式转变为单向流渗流方式,增大了渗流截面,减小了渗流阻力;3、可能沟通独立的透镜体或天然裂缝系统,增加新的油源;4、裂缝穿透井底附近地层的污染堵塞带,解除堵塞,因而可以显著增加产量。

二、压裂材料(一)压裂液在压裂过程中注入的液体统称为压裂液,根据压裂过程中注入井内的压裂液在不同施工阶段所起的作用不同,可把压裂液分为前置液、携砂液、顶替液三种。

1、根据作用不同分类前置液:它的作用是破裂地层并造成一定几何尺寸的裂缝,以便后面的携砂液进人在温度较高的地层里,它还可起一定的降温作用。

有时为了提高前置液的工作效率,在前置液中还加入一定量的细砂(粒径100-140目,砂比10%左右)以堵塞地层中的微隙,减少液体的滤失。

携砂液:它起到将支撑剂带入裂缝中并将支撑剂填在裂缝内预定位置上的作用。

在压裂液的总量中,这部分比例很大。

携砂液和其他压裂液一样,有造缝及冷却地层的作用。

携砂液由于需要携带密度很高的支撑剂,必须使用交联的压裂液(如冻胶等)。

顶替液:顶替液是在加砂程序结束后,用来将携砂液全部替人裂缝中,以提高携砂液的效率和防止井筒沉砂。

2、根据类型不同分类根据压裂液类型不同,可以将压裂液分为水基压裂液、油基压裂液、泡沫压裂液等。

(1)水基压裂液:水基压裂液是用水溶胀性聚合物(称为成胶剂)经交链剂(又叫交联剂)交链后形成的冻胶。

井下压裂工艺技术分类与发展趋势探讨

井下压裂工艺技术分类与发展趋势探讨

井下压裂工艺技术分类与发展趋势探讨随着我国近几年来社会经济的快速发展,由于社会生产生活对石油资源需求量的不断增加,导致油气田在实际生产开发过程对开发技术的要求越来越高。

在油气田实际生产开发过程中转化压力技术的应用非常广泛,该技术的应用,为油田创造了巨大的经济效益及社会效益。

但是压裂技术在实际应用过程中也面临着一些问题。

现如今石油资源的日益短缺,对低渗透油田压裂工艺提出了更高的技术需求。

特别是经济发展的不断迅速,需明确石油工艺的特征,以提高原油的开采率为核心,提高这方面工艺的基础收益。

基于此,本文分析了压裂技术方法、压裂工艺的基本形式,以及该工艺的应用趋势,以此为鉴。

标签:压裂;低渗透;油田;应用趋势油气资源是社会经济发展过程中非常重要的一种资源,随着现代社会对油气资源的需求量不断增加,油气田开发规模也在不断扩大。

就我国目前油气资源开发现状来看,实际油气开采在很大程度上都要受到技术条件的制约,从而使得我国油气资源开发效率得不到有效提升,油气资源开采速率也很难满足社会对油气资源的实际需求。

鉴于此,在油气田开发过程中充分应用压裂技术能够有效提升油气田开采效率,为油田企业带来巨大的经济价值。

本文阐述了油田井下压裂技术的种类,并提出压裂技术的现状问题,由此对压裂技术的发展方向进行了分析,以期为我国油田井下压裂技术的发展提供一定参考。

1.压裂技术简析压裂技术就是利用油田中的空气裂缝,结合油田开发过程中的开采技术,保证在液压的环境中引导流体进入指定区域,以提高液压的排量为基准,确保液压环境处理一个高排量的状态。

在此过程中,压裂技术能够科学的引导油田在指定地点形成对应的裂缝,借助有效的管理模型进行流量放量,保证对应的排量能够具有一定价值的密度参数。

就目前的应用而言,该技术主要涵括了水基压环境、油压环境以及泡沫模式的压裂技术,不同的压力模式能够应对不同的实践技术。

2.油田压裂技术的应用形式2.1开发压裂技术形式开发压裂技术主体结合了水压技术原理,结合水体的物理性质作出一定的技术分析和技术调研。

压裂工艺技术

压裂工艺技术

3.利用压裂液粘度和密度控制裂缝高度 压裂液粘度越大,裂缝越高,保持在50-100mPa·较合适。 s 要控制裂缝向上延伸,应采用密度较高的压裂液;要控制裂 缝向下延伸,则应采用密度较低的压裂液。 (二)人工隔 层控制裂缝 高度技术 1.用漂浮 式转向剂控 制裂缝向上 延伸技术 (1)工作原 理
(2) 对漂浮式转向剂性能要求
(4)技术要求
1)水力锚的啮合力必须大于施工时作用于封隔器上的上顶力, 以免顶弯油管; 2)施工时作用于封隔器上下的压差必须小于封隔器允许的最 大压差;
3)压裂层的射孔段与上面一层射孔段之间的距离,中深井应
不小于3m,深井应不小于5m。
2.双封隔器分层压裂
(1)管柱结构图
(2)用途 在射开多层的油气井中, 对其中任意一层进行压裂。 (3)特点
(5)孔眼持球力
考虑孔眼和堵球几何尺寸的影响,需对上式进行修正。即
当FH’>Fu时,堵球才能坐封在孔眼处不脱落!
4.选择堵球直径与堵球数量的经验公式 (1)选择堵球直径经验公式
(2)选择堵球数量的经验公式
5.不同密度差、不同流量与封堵效率关系
(三)限流法分层压裂
1.限流法分层压裂工艺原理
3.表面活性剂
在气、液混合后,使气体成气泡状均匀分散在液体中形成泡沫。
4.滑套封隔器分层压裂 有两种管柱类型,而且开关滑套方式也有两种。 国内最常用的是只有喷砂器带滑套的管柱和采用投球憋压 方法打开滑套。 (1)管柱结构图 (2)用途 1)可以不动管柱、不压井、不放喷一次施工分压多层; 2)对多层进行远层压裂和投产。 (3)特点 1)对油气层伤害小,有利于保护油气层; 2)由于受管柱内径限制,一般最多只能用三级滑套,一次分 压四层; 3)如果一次压多层,必须起钻换管柱,才能对下部层位进行 排液投产。

压裂教材

压裂教材

五、压裂施工工艺
1、常规分层压裂工艺 (1)原理 当压完第一层后,通过投球器和井口球阀 分别投入不同直径的钢球,逐次将滑套憋到喷 砂器内堵死水眼,然后依次再进行压裂。当最 后一层替挤完后,立即活动管柱,并投入堵塞 器,从而实现不压井、不放喷起出油管。
五、压裂施工工艺
五、压裂施工工艺
(2)管柱结构
是从“七五”期间从BJ程序开始的。
91年研究编制了“DQJX”压裂设计程序; 92年为适应老区油水井压裂的需要, 研制开发了水平缝压裂设 计程序;
93年又引进了西南石油学院的“HDFG”设计程序;
近年来,引进了FracproPT、StimPlan软件。
四、优化压裂设计
监测软件主要有:FRACPT、西方压裂 设计程序、Noscow公司的Smarts程序。
二、油层水力压裂概念
外围深井压裂管柱:
工具参数:
Y344-114
名称 长度(mm)
封隔器 1161
导压 喷砂器
喷咀 300
660 112 25
最大外径(φmm) 最小通径(φmm)
114 54
95 25
使用条件:
工作 压力 MPa 工作 温度 ℃ 90 喷砂器 过砂量 m3 最高 砂比 % 适用 套管 内径 mm 124
缝。继续将带有支撑剂的压裂液注入裂缝,使裂缝向前延
伸,并在裂缝中填充支撑剂。在停泵后即可在地层中形成 足够长度、一定宽度及高度的填砂裂缝。由于这个裂缝扩 大了油气流动通道,改善了地层渗透性,可起到增产增注 作用。这一施工过程就叫油层水力压裂。
二、油层水力压裂概念 2、水力压裂分类
水力压裂
笼统压裂 机械分层压裂 桥塞压裂 封隔器压裂 分层压裂
二、油层水力压裂概念

水平井压裂改造工艺技术介绍

水平井压裂改造工艺技术介绍

水平井压裂改造工艺技术介绍1. 引言水平井压裂改造是一种常见的油气田开发技术,旨在提高地下能源资源的开采效率。

本文将详细介绍水平井压裂改造的工艺技术,包括其定义、工作原理、施工流程和相关的设备要求。

2. 定义水平井压裂改造是指对已经完成垂直井钻探的油气井进行改造,将垂直井在一定深度范围内轨迹转向水平方向,并通过压裂技术增强储层与井筒的沟通,以提高井产能和油气采收率。

3. 工作原理水平井压裂改造通过将井筒定向转向垂直方向的水平段,增加了储层与井筒的接触长度,从而提高了油气流动的能力。

压裂技术则通过施加高压液体流体将储层破裂,使得油气能顺利流入井筒中。

具体工作原理如下: 1. 钻探井筒:先进行垂直井的钻探工作,直至达到目标层位。

2. 轨迹转向:通过钻井工具及技术手段将井筒的轨迹转向水平方向,达到水平井的状态。

3. 压裂液准备:准备高压液体流体,包括液体配方、加砂剂等。

4.压裂操作:将准备好的压裂液体注入井筒,施加高压力使得储层破裂。

5. 压裂结束:压裂操作结束后,通过压裂液体的排放,将砂粒保持在储层缝隙中,增强储层与井筒的沟通。

6. 后续作业:可能需要进行其他作业,如井筒完井、油气生产等。

4. 施工流程水平井压裂改造通常包括以下施工流程:1.井筒定向转向:通过定向钻探技术,将井筒从垂直井转向水平井。

这个过程包括选择下入点、使用定向钻头、使用定向钻井工具等。

2.井筒完井:改造完成后,需要进行井筒的完井工作。

这个过程包括安装套管、水泥固井等。

3.压裂前准备:准备压裂液体,包括选取适当的液体配方、加入砂剂等。

4.压裂操作:将准备好的压裂液体注入井筒,施加高压力,使得储层破裂。

这个过程包括选择压裂技术、压裂参数的确定等。

5.压裂后作业:压裂操作结束后,需要进行相关的后续作业,如排放压裂液体、记录压裂参数等。

6.生产测试:改造完成后,进行生产测试,评估改造效果,并决定后续的开采方案。

5. 设备要求水平井压裂改造主要涉及以下设备:1.钻井设备:包括钻机、钻井套管等。

水力压裂新技术

水力压裂新技术

Flow rate Prop conc
7
6 – 停止注入后,液体不断滤失 到渗透性地层 7 – 裂缝闭合在支撑剂上,形成了 一条导流通道
一、概述
2、水力压裂的目的

提高油井的产能--产的更多、更快。 压开了一条或多条有导流能力的裂缝通道通 过近井地带的伤害区。

延伸了裂缝的通道,使其有足够的深度进入
21 22 23 24 25 26 27 28 29 30 31 6-1 6-2 6-3 6-4 6-5 6-6 6-7 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-
二、水力压裂工艺技术
重复转向压裂技术(新技术)
4.现场实施及效果分析
增产情况: 新杨11-2井 该井于2002年1月投产,初期日产油1.0t,含水55%;2002年3月压裂改造, 初期日产油6.1t,含水32.5%。后来日产油1.3t,含水84.7%。为了提高单井
二、水力压裂工艺技术
重复转向压裂技术(新技术)
4.现场实施及效果分析
2005年江苏油田选择了两口井实施重复转向压裂,转向和增产效果都 很明显:
转向情况:
沙19-14井小型压裂测得人工裂缝方位为 北东向105.8度,加转向剂后,主压裂测得裂缝
方向为北东向54.9度,裂缝转向50.9゜
新杨11-2井小型压裂测得人工裂缝方位 为北东向79.5度,加转向剂后,主压裂测得裂
二、水力压裂工艺技术
2、压裂材料
(1)压裂液
1)作用:
压裂液的基本作用为:压开裂缝并使之延伸、降低地层温度、 输送并铺置支撑剂、压裂后液体能最大限度的破胶与返排,减少 对裂缝及油层的伤害。 2)分类: 前置液(压开油层、降温)、携砂液(携带砂子)、顶替液( 将井筒中的砂浆顶入地层)

水平井压裂改造工艺技术介绍

水平井压裂改造工艺技术介绍

水平井压裂改造工艺技术介绍1. 概述水平井压裂改造工艺技术是一种用于增加水平井产能和改善产能分布的重要工艺。

本文将介绍水平井压裂改造工艺技术的基本原理、施工流程、优势和应用范围。

2. 基本原理水平井压裂改造工艺技术是通过在水平井井筒中注入压裂液体,并对井筒进行断裂压裂,从而增加井筒的有效产能。

其基本原理包括以下几个步骤:•断裂形成:通过在井筒中注入高压水力驱动的压裂液体,使井壁发生断裂形成压裂裂缝,增加井筒的有效渗透半径。

•压裂液体充填:在压裂过程中,通过控制压裂液体的注入速度和压力,将压裂液体充填到断裂裂缝中,以增加地层的孔隙度和渗透性。

•稳定压裂裂缝:一旦充填到断裂裂缝中的压裂液体停止注入,继续施加压力使断裂裂缝保持稳定,以增加压裂效果的持久性。

•压裂液体回收:施工完成后,通过抽取压裂液体回收,达到减少环境污染和资源浪费的目的。

3. 施工流程水平井压裂改造工艺技术的施工流程包括以下几个主要步骤:步骤一:井筒准备在施工前需要对水平井井筒进行准备工作,包括井筒清洗、固井套管等。

确保井筒的完整性和安全性。

步骤二:压裂液体准备准备压裂液体,包括选择适宜的压裂液体成分、调整液体浓度和粘度等。

同时,需要确保压裂液体的质量和稳定性。

步骤三:注入压裂液体将准备好的压裂液体通过泵送设备注入至水平井井筒中。

在注入过程中,需要控制注入速度和压力,以保证压裂效果的稳定性和一致性。

步骤四:压裂过程监测在压裂过程中,需要通过监测设备对压裂参数进行实时监控,包括注入压力、注入速度、裂缝形成和发展等。

根据监测结果,可以及时调整施工方案,以获得最佳的压裂效果。

步骤五:压裂液体回收施工完成后,需要通过回收设备将压裂液体回收。

回收后的液体可以进行再利用或进行环境处理,以减少资源浪费和环境污染。

4. 优势和应用范围水平井压裂改造工艺技术具有以下优势:•提高井筒的产能和采收率,增加油气开采效益;•优化储层压裂裂缝的分布,改善产能分布;•降低对地下水资源的影响,减少环境风险;•提高油气开采过程中的安全性和稳定性。

压裂方法分类及选择条件

压裂方法分类及选择条件

压裂方法分类及选择条件一、压裂设计的原则和方法压裂设计的原则是最大限度的发挥油层潜能和裂缝的作用,是压裂后油气井和注入井达到最佳状态,同时还要求压裂井的有效期和稳定期长。

压裂设计的方法是根据油层特性和设备能力,以获取最大产量和经济效益为目标,在优选裂缝几何参数基础上,设计合适的加砂方案。

二、压裂技术2.1合层压裂2.1.1油管压裂油管压裂就是压裂液自油管泵入油层。

其特点是施工简单,且油管截面小、流速大,其压裂液的携带能力强,又不会增加液流阻力和设备负荷,降低了有效功率。

2.1.2 套管压裂套管压裂液是井内不下入油管,从套管里直接泵入压裂液进行压裂。

其特点是施工简单,可最大限度的降低管道摩阻,从而相应的提高了排量和降低了泵压,但携带能力差,一旦造成砂堵,无法进行循环解堵。

2.1.3 环形空间压裂环形空间压裂是压裂液从套管和油管的环形空间泵入油层。

它与前两种方法相比,具有阻力损失小,适应抽油井不起泵压裂的特点,但流速低,携砂能力低。

2.1.4 油、套管同时进行压裂油、套管同时进行压裂是在井里下入油管,压裂时油管接一台压裂车。

施工时,压裂液从油、套管同时泵入,支撑剂从套管加进。

其特点是利用油管泵入的液体从油管谢出来时改变流向,可以防止支撑剂下沉,若一旦发生砂堵,进行反循环也比较方便。

因此,这种压裂适宜于中深井压裂。

2.2 分层压裂2.2.1 球堵法分层压裂如果同时开采渗透率不同的多层,当压裂液泵入井里后,液体首先进入高渗层,一般低渗层是压裂的目的层,这时就将若干赌球随液体泵入井中,赌球将高渗层的孔眼堵住,等压力憋起即可将低渗层压开。

这种方法可在一口井中多次使用,一次施工可压开多层。

对于射孔井,可用尼龙球,随压裂液进入井内并坐在高渗透层部位的炮眼上,以堵塞炮眼,即可将井内压力憋起,从而压开低渗透层的裂缝,此法可在一次压裂中多次重复使用,施工结束后,井底压力降低,堵球在压差的作用下,可以反排出来。

2.2.2 选择性压裂在同一开发层系中,由于地质上的非均质性,也存再高渗和低渗层段的差别。

压裂

压裂

压裂:利用水力作用,使油层形成裂缝的一种方法,又称油层水力压裂。

油层压裂工艺过程是用压裂车,把高压大排量具有一定粘度的液体挤入油层,当把油层压出许多裂缝后,加入支撑剂(如石英砂等)充填进裂缝,提高油层的渗透能力,以增加注水量(注水井)或产油量(油井)。

常用的压裂液有水基压裂液、油基压裂液、乳状压裂液、泡沫压裂液及酸基压裂液5种基本类型。

压裂酸化:在足以压开地层形成裂缝或张开地层原有裂缝的压力下对地层挤酸的酸处理工艺称为压裂酸化。

可分为前置液酸压和普通酸压(或一般酸压)。

压裂酸化主要用于堵塞范围较深或者低渗透区的油气井。

注酸压力高于油( 气) 层破裂压力的压裂酸化, 人们习惯称之为酸压。

酸化液压是国内外油田灰岩油藏广泛采用的一项增产增注措施。

现已开始成为重要的完井手段。

压裂用地面工具设备主要有封井器、井口球阀、投球器、活动弯头、油壬、蜡球管汇、压裂管汇等,为井口以上地面控制类工具。

施工设备由地面设备和压裂车组两部分组成。

压裂管汇:压裂管汇是地面管线与多台压裂车连接的地面用具。

用途是将压裂车泵出的液体汇集注入压裂井的目的层,所以要求它具有耐高压、摩阻小的特点。

压裂管汇主要由主体、控制阀、由壬组成。

成树叉形。

树叉形主体采用优质合金钢管焊接而成和锻制三通组成二种,焊接加工的承压能力为60 Mpa,锻制加工的承压能力为70 Mpa。

控制阀常采用球阀和旋塞阀二种,承压能力均为70 Mpa。

压裂施工时压裂车与控制阀端2″由壬连接,通往井口的地面管线与21/2 ″由壬连接。

放空阀起排出管汇内余压和余液作用。

注意事项:①压裂管汇施工前应检查是否有合格证,在安全使用期限内,不得使用不合格和超期限产品。

②各阀按球阀使用要求进行检查、操作,③在试挤过程中发现有漏失现象应及时停车,打开放空阀泄压后方可修整。

④压裂管汇超期限不得继续使用,维修工作须送交专业检测部门进行检测维修。

蜡球管汇是可与地面管线和压裂管汇连接的地面用具。

油田压裂助剂的分类及应用

油田压裂助剂的分类及应用

油田压裂助剂的分类及应用油田压裂助剂是指在油田开采过程中用来增强岩石裂缝带宽度和长度的一类化学品。

根据其化学成分和用途的不同,可以将油田压裂助剂分为多种分类。

以下将从化学分类和应用分类两个方面详细介绍油田压裂助剂的分类及应用。

一、化学分类:1. 化学溶解剂:主要包括水溶液和酸类等。

水溶液常用于增加流动性,改善液体在岩石中的渗透性。

酸类可用于溶解岩石中的水灰岩、碳酸盐矿物等,使岩石裂缝更容易形成。

2. 粘度调节剂:它可以改变废液的流变性质,使废液具有一定的粘度,提高液体运送和压裂效果。

常用的粘度调节剂有羟丙基甲基纤维素、羟乙基纤维素等。

3. 悬浮剂:主要用于调整岩石中固体颗粒的悬浮状态,防止颗粒的沉积和堵塞。

常用的悬浮剂有硬脂酸盐类、胶体硅酸盐等。

4. 防窜剂:主要用于控制液体在岩石中的窜漏现象,防止液体从裂缝中逸出而导致压裂效果不佳。

常用的防窜剂有颗粒类防窜剂、高分子防窜剂等。

5. 封堵剂:主要用于堵塞岩石中的目的地或降低岩石中的渗透性,以保持压裂效果。

常用的封堵剂有颗粒类封堵剂、树脂类封堵剂等。

6. 化学增溶剂:主要用于溶解油藏中的油膜,提高油田开采效果。

常用的化学增溶剂有表面活性剂、溶剂类化合物等。

二、应用分类:1. 增斜剂:用于增加液体在压裂过程中对岩石的侵蚀作用,从而使岩石裂缝宽度增大。

增斜剂的主要成分有有机酸盐类、表面活性剂等。

2. 扩张剂:用于使岩石中已有的微裂缝进一步扩大,增加岩石的可压裂性。

常用的扩张剂有可达特类化合物、超高分子量聚合物等。

3. 封堵剂:用于在压裂过程中堵塞未被压裂的岩石裂缝,防止裂缝扩展,保持压裂效果。

常用的封堵剂有砂类颗粒、膨润土、纤维素等。

4. 渗透剂:用于改善裂缝间的相互渗透性,使压裂液能更加均匀地分布在裂缝中,提高压裂效果。

常用的渗透剂有有机硅类化合物、聚酰胺类化合物等。

5. 调水剂:用于调整压裂液的极性及表面张力,使压裂液在水相和油相之间有较好的亲和力,提高压裂效果。

非常规储层压裂改造技术进展及应用

非常规储层压裂改造技术进展及应用

非常规储层压裂改造技术进展及应用一、本文概述随着全球能源需求的持续增长,非常规储层资源的开发利用越来越受到重视。

非常规储层,如页岩、致密砂岩等,由于其低孔低渗特性,压裂改造技术成为了提高其开采效率的关键。

本文旨在综述非常规储层压裂改造技术的最新进展,包括压裂液体系、压裂工艺、裂缝监测与控制等方面,并探讨这些技术在国内外油气田的实际应用情况。

通过对相关文献的梳理和案例分析,本文旨在为非常规储层压裂改造技术的发展提供理论支持和实践指导,推动该领域的技术创新和产业升级。

二、非常规储层压裂改造技术的发展历程非常规储层压裂改造技术的发展,经历了从传统水力压裂到现代复杂储层压裂技术的转变。

在过去的几十年里,随着全球能源需求的不断增长,以及对传统油气资源的日益开采,非常规储层如页岩、致密砂岩等逐渐成为油气勘探开发的重要领域。

这些储层具有低孔、低渗、非均质性强等特点,使得常规的压裂技术难以满足开发需求,推动了非常规储层压裂改造技术的不断创新与发展。

初期,非常规储层压裂主要依赖于传统的水力压裂技术,通过高压泵注大量液体来形成裂缝,从而提高储层的渗透性。

然而,这种方法在非常规储层中往往效果不佳,因为这些储层的岩石性质复杂,裂缝扩展困难。

随着技术的进步,科研人员开始尝试使用多种压裂液体系,如泡沫压裂液、稠化压裂液等,以提高压裂效果和降低对储层的伤害。

同时,为了更精确地控制裂缝的扩展方向和长度,研究人员开始引入地质导向、数值模拟等先进技术,为压裂施工提供更为准确的指导。

近年来,随着水平井技术的广泛应用,非常规储层压裂改造技术迎来了新的突破。

水平井技术能够使得井筒与储层接触面积更大,有利于裂缝的扩展和油气的流动。

在此基础上,研究人员又进一步开发出了分段压裂、多级压裂等复杂压裂技术,以适应不同储层条件和开发需求。

随着环保要求的日益严格,非常规储层压裂改造技术也在不断探索环保型压裂液和减少水资源消耗的新方法。

例如,利用二氧化碳等环保介质作为压裂液,既能够满足压裂需求,又能减少对环境的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压裂改造及其分类
人们将储层分为常规和非常规。

压裂的目的不同,常规储层和页岩气储层的水力压裂实现时采用的策略是不同的。

页岩气的勘探开发需求引起了水力压裂技术与理论的发展,从而拓展了水力压裂技术的分类。

因此,按储层的渗透性和增产机理,水力压裂技术可以分为3种类型:
(1)以解除污染并提高近井地带渗流能力的解堵型压裂。

主要应用于渗透率比较高的储层,其水力压裂的实施策略是追求较高的人工裂缝导流能力。

施工中采用较大排量、高砂比、有时配合端部脱砂等工艺,以消除钻完井过程中的污染,增加近井地带的渗透能力。

这类水力压裂可以提高单井产量,但是因为人工裂缝尺度不大,对井网部署、注水开发、采收率等开发指标几乎没有影响。

(2)以增大油气泄油面积的改造型压裂。

主要应用于低渗透和特低渗透储层,其水力压裂的实施策略是追求较长的人工裂缝长度。

这类压裂施工采用高黏度压裂液,大液量、大砂量注入,在储层形成几十米或上百米并具有一定导流能力的长裂缝,扩大了单井泄油面积。

由于人工裂缝尺度较大并具有一定的方向性,这类压裂可以提高单井产量和开采速度,有益于采收率等开发指标的改善。

(3)以形成最大SRV的缝网型压裂。

当水力压裂技术应用于页岩气储层时,其储层改造机理与前面两种类型完全不同。

页岩气压裂是通过尽可能“压碎”储层,在页岩储层中人工形成复杂密集裂缝网络,使游离和吸附在页岩空隙中的页岩气可以流动并汇集到井筒。

这类压裂提高单井产量并决定了单井的可采资源量和采收率。

描述页岩气压裂的关键参数是压裂形成的有效裂缝体积ESRV(effective stimulated reservoir volume)、裂缝密度、支撑和未支撑裂缝导流能力,而不仅仅是人工裂缝的长度和导流能力。

其水力压裂的实施策略是追求较高的有效裂缝体积。

Cipolla定义裂缝复杂指数FCI(fracture complex index)来描述网络裂缝有效性,即网缝宽度与长度之比。

这类水力压裂形成的裂缝网络使储层流体的流态复杂,压裂决定了井的初始产量和单井可采资源量(EUR)、开采的合理井距、以及采收率等开发技术指标。

Barnett某页岩气井压后微地震监测表明,网络裂缝的SRV达到14.5亿ft3(约4106万立方米),是单一裂缝改造体积的3.37倍。

国内外页岩气压裂的SRV 达到上千万立方米。

根据储层渗透率的大小情况,可将水力压裂分为3类:①解堵型压裂,通俗称为“压痛”;②改造型压裂,通俗称为“压开”;③裂缝型压裂(或“体积改造技术”),通俗称为“压碎”。

相关文档
最新文档