全国大学生数学竞赛简介
原题目:2023年全国大学生数学竞赛
原题目:2023年全国大学生数学竞赛
2023年全国大学生数学竞赛将是一场盛大的数学竞赛活动,旨在激发大学生对数学的兴趣和热爱,提高他们的数学能力。
竞赛将包括多个阶段,从校内选拔赛到全国总决赛。
目标
本次竞赛的目标是:
1. 提供一个平台,让大学生能够展示数学才华和技能;
2. 鼓励大学生积极研究数学知识,提高其数学能力;
3. 培养大学生的创新思维和解决问题的能力。
竞赛内容
竞赛将涵盖以下数学领域:
1. 数论
2. 代数
3. 几何
4. 概率统计
竞赛阶段
竞赛将分为以下几个阶段:
1. 校内选拔赛:各高校将组织选拔赛,挑选出优秀的选手代表
学校参加区域赛。
2. 区域赛:选拔赛优胜的选手将参加区域赛,竞争进入全国总
决赛的名额。
3. 全国总决赛:区域赛获胜者将齐聚一堂,参加激烈的数学竞赛,争夺冠军荣誉。
参赛资格
参赛资格如下:
1. 参赛选手必须是中国籍的在校大学生,年龄在18到22岁之间。
2. 参赛选手应具备扎实的数学基础和较高的数学能力。
奖项设置
本次竞赛将设立以下奖项:
1. 全国总冠军:最终获得第一名的选手将获得全国总冠军称号。
2. 区域赛冠军:各个区域赛的冠军将获得区域赛冠军称号。
3. 优胜奖:部分表现突出的选手将获得优胜奖。
参赛者将在竞赛中展示出色的数学能力,同时也将获得宝贵的经验和学习机会。
我们期待着所有大学生踊跃参与,并向他们传递数学的魅力和价值。
第十三届全国大学生数学竞赛
第十三届全国大学生数学竞赛
第十三届全国大学生数学竞赛是中国教育部每年举办的一项全
国性的数学竞赛。
竞赛旨在提高大学生的数学能力,激发大学生对数学的热情,培养具有创新能力的数学家。
本届竞赛于2020年11月7日至11月13日在北京举行,由教育部和中国教育学会联合主办,总部设在北京大学。
第十三届全国大学生数学竞赛收到来自全国二千多所高校的积
极参与,2018年起,全国高校一共报名参加了两万二千多名遴选参赛选手,届时共有二千多名参赛者参加。
竞赛分为三个阶段,分别为练习赛、初赛和决赛。
上千名全国高校选手参加练习赛和初赛,最终通过筛选获得进入决赛的机会。
决赛现场的气氛非常热烈。
参赛选手和数学专家们紧张着比赛,密切关注着比赛结果,同时表现出了无比的热情和激情。
参赛选手们以专业的知识和高超的技术,经过精湛的推理与计算,完成了每题精妙的计算。
经过紧张的激烈角逐,最终由重庆大学、北京大学和上海交通大学分获了本届竞赛的总冠军、亚军和季军,另外还有一百多名参赛选手被评为优胜奖。
凭借着出色的表现晋级至决赛的参赛选手们受到了来自国内外的赞誉,他们希望未来能够在数学高等学术研究领域发展出更多见解,为国家事业做出贡献。
参加本届数学竞赛有利于大学生树立自信,拓宽视野,提升综合素质,同时也能够开发个人的创造力,培养数学家的潜质。
希望今后
的竞赛能够让更多的大学生拥有机会参加,充分发挥自己的潜力,实现自己的梦想,努力做出更多的贡献。
最新全国大学生数学竞赛简介
全国大学生数学竞赛百度简介中国大学生数学竞赛该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。
编辑本段竞赛大纲中国大学生数学竞赛竞赛大纲(2009年首届全国大学生数学竞赛)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。
(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下:Ⅰ、数学分析部分一、集合与函数1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理.2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质.二、极限与连续1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用.3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).三、一元函数微分学1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.2.微分学基本定理:Fermat定理,Rolle定理,Lagrange定理,Cauchy定理,Taylor公式(Peano余项与Lagrange余项).3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital)法则、近似计算.四、多元函数微分学1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor公式.2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).4.极值问题(必要条件与充分条件),条件极值与Lagrange乘数法.五、一元函数积分学1. 原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分:型,型.2. 定积分及其几何意义、可积条件(必要条件、充要条件:)、可积函数类.3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理.4.无限区间上的广义积分、Canchy收敛准则、绝对收敛与条件收敛、非负时的收敛性判别法(比较原则、柯西判别法)、Abel判别法、Dirichlet 判别法、无界函数广义积分概念及其收敛性判别法.5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.六、多元函数积分学1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换).2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).3.重积分的应用(体积、曲面面积、重心、转动惯量等).4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.5.第一型曲线积分、曲面积分的概念、基本性质、计算.6.第二型曲线积分概念、性质、计算;Green公式,平面曲线积分与路径无关的条件.7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke 公式,两类线积分、两类面积分之间的关系.七、无穷级数1. 数项级数级数及其敛散性,级数的和,Cauchy准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz判别法;一般项级数的绝对收敛、条件收敛性、Abel判别法、Dirichlet判别法.2. 函数项级数函数列与函数项级数的一致收敛性、Cauchy准则、一致收敛性判别法(M-判别法、Abel判别法、Dirichlet判别法)、一致收敛函数列、函数项级数的性质及其应用.3.幂级数幂级数概念、Abel定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor级数、Maclaurin级数.4.Fourier级数三角级数、三角函数系的正交性、2及2周期函数的Fourier级数展开、 Beseel不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理.Ⅱ、高等代数部分一、多项式1. 数域与一元多项式的概念2. 多项式整除、带余除法、最大公因式、辗转相除法3. 互素、不可约多项式、重因式与重根.4. 多项式函数、余数定理、多项式的根及性质.5. 代数基本定理、复系数与实系数多项式的因式分解.6. 本原多项式、Gauss引理、有理系数多项式的因式分解、Eisenstein判别法、有理数域上多项式的有理根.7. 多元多项式及对称多项式、韦达(Vieta)定理.二、行列式1. n级行列式的定义.2. n级行列式的性质.3. 行列式的计算.4. 行列式按一行(列)展开.5. 拉普拉斯(Laplace)展开定理.6. 克拉默(Cramer)法则.三、线性方程组1. 高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解.2. n维向量的运算与向量组.3. 向量的线性组合、线性相关与线性无关、两个向量组的等价.4. 向量组的极大无关组、向量组的秩.5. 矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.6. 线性方程组有解判别定理、线性方程组解的结构.7. 齐次线性方程组的基础解系、解空间及其维数四、矩阵1. 矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.2. 矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系.3. 矩阵的逆、伴随矩阵、矩阵可逆的条件.4. 分块矩阵及其运算与性质.5. 初等矩阵、初等变换、矩阵的等价标准形.6. 分块初等矩阵、分块初等变换.五、双线性函数与二次型1. 双线性函数、对偶空间2. 二次型及其矩阵表示.3. 二次型的标准形、化二次型为标准形的配方法、初等变换法、正交变换法.4. 复数域和实数域上二次型的规范形的唯一性、惯性定理.5. 正定、半正定、负定二次型及正定、半正定矩阵六、线性空间1. 线性空间的定义与简单性质.2. 维数,基与坐标.3. 基变换与坐标变换.4. 线性子空间.5. 子空间的交与和、维数公式、子空间的直和.七、线性变换1. 线性变换的定义、线性变换的运算、线性变换的矩阵.2. 特征值与特征向量、可对角化的线性变换.3. 相似矩阵、相似不变量、哈密尔顿-凯莱定理.4. 线性变换的值域与核、不变子空间.八、若当标准形1.矩阵.2. 行列式因子、不变因子、初等因子、矩阵相似的条件.3. 若当标准形.九、欧氏空间1. 内积和欧氏空间、向量的长度、夹角与正交、度量矩阵.2. 标准正交基、正交矩阵、施密特(Schmidt)正交化方法.3. 欧氏空间的同构.4. 正交变换、子空间的正交补.5. 对称变换、实对称矩阵的标准形.6. 主轴定理、用正交变换化实二次型或实对称矩阵为标准形.7. 酉空间.Ⅲ、解析几何部分一、向量与坐标1. 向量的定义、表示、向量的线性运算、向量的分解、几何运算.2. 坐标系的概念、向量与点的坐标及向量的代数运算.3. 向量在轴上的射影及其性质、方向余弦、向量的夹角.4. 向量的数量积、向量积和混合积的定义、几何意义、运算性质、计算方法及应用.5. 应用向量求解一些几何、三角问题.二、轨迹与方程1.曲面方程的定义:普通方程、参数方程(向量式与坐标式之间的互化)及其关系.2.空间曲线方程的普通形式和参数方程形式及其关系.3.建立空间曲面和曲线方程的一般方法、应用向量建立简单曲面、曲线的方程.4.球面的标准方程和一般方程、母线平行于坐标轴的柱面方程.三、平面与空间直线1.平面方程、直线方程的各种形式,方程中各有关字母的意义.2.从决定平面和直线的几何条件出发,选用适当方法建立平面、直线方程.3.根据平面和直线的方程,判定平面与平面、直线与直线、平面与直线间的位置关系.4. 根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程.四、二次曲面1.柱面、锥面、旋转曲面的定义,求柱面、锥面、旋转曲面的方程.2.椭球面、双曲面与抛物面的标准方程和主要性质,根据不同条件建立二次曲面的标准方程.3.单叶双曲面、双曲抛物面的直纹性及求单叶双曲面、双曲抛物面的直母线的方法.4.根据给定直线族求出它表示的直纹面方程,求动直线和动曲线的轨迹问题.五、二次曲线的一般理论1.二次曲线的渐进方向、中心、渐近线.2.二次曲线的切线、二次曲线的正常点与奇异点.3.二次曲线的直径、共轭方向与共轭直径.4.二次曲线的主轴、主方向,特征方程、特征根.5.化简二次曲线方程并画出曲线在坐标系的位置草图.(二)中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: .4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler)方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2. 几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3. 任意项级数的绝对收敛与条件收敛.4. 函数项级数的收敛域与和函数的概念.5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7. 初等函数的幂级数展开式.8. 函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数关于举办第三届全国大学生数学竞赛的通知(这是10年的通知,今年的第四届大学生数学竞赛通知还没有下达,可借鉴的看一看)各省、市、自治区数学会、解放军院校协作中心数学联席会:为了培养人才、服务教学、促进高等学校数学课程的改革和建设,增加大学生学习数学的兴趣,培养分析、解决问题的能力,发现和选拔数学创新人才,为青年学子提供一个展示基础知识和思维能力的舞台,经中国数学会批准,第三届全国大学生数学竞赛由上海同济大学承办。
中国大学生数学竞赛
获奖名单
获奖名单
第一届全国大学生数学竞赛决赛获奖名单
谢谢观看
中国大学生数学竞赛
全国性高水平学科竞赛
01 竞赛简介
03 竞赛组委会 05 竞赛大纲
目录
02 历届情况 04 竞赛用书 06 获奖名单
基本信息
2009年,第一届全国大学生数学竞赛[The Chinese Mathematics Competitions (简称CMC)]开始举办。 作为一项面向本科生的全国性高水平学科竞赛,CMC为青年学子提供了一个展示数学基本功和数学思维的舞台, 为发现和选拔优秀数学人才并进一步促进高等学校数学课程建设的改革和发展积累了调研素材。由中国数学会承 办,也是全国高中数学竞赛在大学里的良好接力。
竞赛简介
竞赛简介
2009年,中国大学生数学竞赛(通称为“全国大学生数学竞赛”)开始举办,第一届CMC由中国数学会主办、 国防科学技术大学承办。此后CMC每年举办一次,由中国各大高校承办。
中国大学生数学竞赛活动图册(9张)CMC的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学 课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。中国大学生数学竞赛的参赛对象 为大学本科二年级及二年级以上的在校大学生。
第七届
2015年10月24日举办第七届全国大学生数学竞赛预赛,2016年3月27在由福建师范大学举办第七届全国大学 生数学竞赛决赛,来自清华大学、北京大学等著名高校的284位(数学类94人,非数学类190人)学生参加了决赛。
第八届
第八届全国大学生数学竞赛由北京科技大学承办,2016年10月22日各省统一时间举办第八届大学生数学竞 赛初赛,2017年3月18将在北京科技大学举办第八届全国大学生数学竞赛决赛。
全国大学生数学建模竞赛简介
全国大学生数学建模竞赛简介“全国大学生数学建模竞赛”从1992年开始每年举办一次,它是由教育部高等教育司与中国工业与应用数学学会共同举办的,是目前面向全国高等院校的一项规模最大的学生课外科技竞赛活动, 也是教育部高教司正式主办的仅有的两项学科竞赛之一。
其目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
“全国大学生数学建模竞赛”的题目一般是由工程技术、管理科学中的实际问题简化加工而成,没有现成的答案,没有固定的求解方法,没有指定的参考书,没有规定的数学工具与手段,也没有已经成型的数学问题,从建立数学模型开始就要求同学们自己进行思考和研究。
这就可能让同学们亲身去体验一下数学应用于相关学科之中时的创造或发现过程,培养他们的创造精神、意识和能力,取得在课堂里和书本上所无法代替的宝贵经验。
此外,“全国大学生数学建模竞赛”的题目一般没有事先设定的标准答案,竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰性为主要标准,充分体现参赛者的聪明才智和创造精神。
每组的赛题有两道,参赛者任选其一。
从几年来的赛题来看,这些题目涉及到许多领域的非常实际的问题,如98年的两道赛题分别是“投资的收益和风险”和“灾情巡视路线”,前者给出若干种股票、债券的收益率、交易费和预测的风险损失,要求制定一种投资方案,使总收益尽量大而整体风险尽量小,后者给出某县的乡村公路示意图,要求在路程最短、各巡视组均衡等不同条件下设计最优巡视路线。
再如 2003年的“SARS的传播”、“露天矿生产的车辆安排”、“抢渡长江”;2004年的“奥运会临时超市网点设计”、“电力市场的输电阻塞管理”、“饮酒驾车”、“公务员招聘”;2005年的“长江水质的评价和预测”、“DVD在线租赁”、“雨量预报方法的评价”——每一道题都紧扣当前社会热点,很有时代意义。
【2019年整理】全国大学生数学竞赛简介
全国大学生数学竞赛第一届2009年,第一届全国大学生数学竞赛由中国数学会主办、国防科学技术大学承办。
该比赛将推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才。
第二届2011年3月,历时十个月的第二届全国大学生数学竞赛在北京航空航天大学落幕。
来自北京、上海、天津、重庆等26个省(区、市)数百所大学的274名大学生进入决赛,最终,29人获得非数学专业一等奖,15人获数学专业一等奖。
这次赛事预赛报名人数达3万余人,已成为全国影响最大、参加人数最多的学科竞赛之一。
竞赛用书该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。
竞赛大纲中国大学生数学竞赛竞赛大纲(2009年首届全国大学生数学竞赛)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
1.竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
1.竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。
(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下:Ⅰ、数学分析部分1.集合与函数2. 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理.3. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.4. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质.5.极限与连续6. 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).7. 2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用.8. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.9. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).10.一元函数微分学11.1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.12.2.微分学基本定理:Fermat定理,Rolle定理,Lagrange定理,Cauchy定理,Taylor公式(Peano余项与Lagrange余项).13.3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital)法则、近似计算.14.多元函数微分学15.1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor公式.16.2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.17.3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).18.4.极值问题(必要条件与充分条件),条件极值与Lagrange乘数法.19.一元函数积分学20.1. 原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分:型,型.21.2. 定积分及其几何意义、可积条件(必要条件、充要条件:)、可积函数类.22.3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理.23.4.无限区间上的广义积分、Canchy收敛准则、绝对收敛与条件收敛、非负时的收敛性判别法(比较原则、柯西判别法)、Abel判别法、Dirichlet 判别法、无界函数广义积分概念及其收敛性判别法.24.5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.25.多元函数积分学26.1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换).27.2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).28.3.重积分的应用(体积、曲面面积、重心、转动惯量等).29.4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.30.5.第一型曲线积分、曲面积分的概念、基本性质、计算.31.6.第二型曲线积分概念、性质、计算;Green公式,平面曲线积分与路径无关的条件.32.7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke公式,两类线积分、两类面积分之间的关系.33.无穷级数34.1. 数项级数级数及其敛散性,级数的和,Cauchy准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz判别法;一般项级数的绝对收敛、条件收敛性、Abel判别法、Dirichlet判别法.1.函数项级数函数列与函数项级数的一致收敛性、Cauchy准则、一致收敛性判别法(M-判别法、Abel判别法、Dirichlet判别法)、一致收敛函数列、函数项级数的性质及其应用.1.幂级数幂级数概念、Abel定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor级数、Maclaurin级数.1.Fourier级数三角级数、三角函数系的正交性、2及2周期函数的Fourier级数展开、 Beseel 不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理. Ⅱ、高等代数部分1.多项式2. 1. 数域与一元多项式的概念3. 2. 多项式整除、带余除法、最大公因式、辗转相除法4. 3. 互素、不可约多项式、重因式与重根.5. 4. 多项式函数、余数定理、多项式的根及性质.6. 5.代数基本定理、复系数与实系数多项式的因式分解.7. 6. 本原多项式、Gauss引理、有理系数多项式的因式分解、Eisenstein判别法、有理数域上多项式的有理根.8.7. 多元多项式及对称多项式、韦达(Vieta)定理.9.行列式10.1. n级行列式的定义.11.2. n级行列式的性质.12.3. 行列式的计算.13.4. 行列式按一行(列)展开.14.5.拉普拉斯(Laplace)展开定理.15.6. 克拉默(Cramer)法则.16.线性方程组17.1.高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解.18.2. n维向量的运算与向量组.19.3. 向量的线性组合、线性相关与线性无关、两个向量组的等价.20.4. 向量组的极大无关组、向量组的秩.21.5.矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.22.6. 线性方程组有解判别定理、线性方程组解的结构.23.7.齐次线性方程组的基础解系、解空间及其维数24.矩阵25.1.矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.26.2. 矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系.27.3. 矩阵的逆、伴随矩阵、矩阵可逆的条件.28.4. 分块矩阵及其运算与性质.29.5.初等矩阵、初等变换、矩阵的等价标准形.30.6. 分块初等矩阵、分块初等变换.31.双线性函数与二次型32.1. 双线性函数、对偶空间33.2. 二次型及其矩阵表示.34.3.二次型的标准形化二次型为标准形的配方法、初等变换法、正交变换法.35.4. 复数域和实数域上二次型的规范形的唯一性、惯性定理.36.5.正定、半正定、负定二次型及正定、半正定矩阵37.线性空间38.1. 线性空间的定义与简单性质.39.2. 维数,基与坐标.40.3. 基变换与坐标变换.41.4. 线性子空间.42.5. 子空间的交与和、维数公式、子空间的直和.43.线性变换44.1. 线性变换的定义、线性变换的运算、线性变换的矩阵.45.2. 特征值与特征向量、可对角化的线性变换.46.3.相似矩阵、相似不变量、哈密尔顿-凯莱定理.47.4. 线性变换的值域与核、不变子空间.48.若当标准形49.1.矩阵.50.2. 行列式因子、不变因子、初等因子、矩阵相似的条件.51.3. 若当标准形.52.欧氏空间53.1. 内积和欧氏空间、向量的长度、夹角与正交、度量矩阵.54.2. 标准正交基、正交矩阵、施密特(Schmidt)正交化方法.55.3. 欧氏空间的同构.56.4. 正交变换、子空间的正交补.57.5. 对称变换、实对称矩阵的标准形.58.6. 主轴定理、用正交变换化实二次型或实对称矩阵为标准形.59.7. 酉空间.Ⅲ、解析几何部分1.向量与坐标2. 1. 向量的定义、表示、向量的线性运算、向量的分解、几何运算.3. 2. 坐标系的概念、向量与点的坐标及向量的代数运算.4. 3. 向量在轴上的射影及其性质、方向余弦、向量的夹角.5. 4. 向量的数量积、向量积和混合积的定义、几何意义、运算性质、计算方法及应用.6. 5. 应用向量求解一些几何、三角问题.7.轨迹与方程8. 1.曲面方程的定义:普通方程、参数方程(向量式与坐标式之间的互化)及其关系.9. 2.空间曲线方程的普通形式和参数方程形式及其关系.10.3.建立空间曲面和曲线方程的一般方法、应用向量建立简单曲面、曲线的方程.11.4.球面的标准方程和一般方程、母线平行于坐标轴的柱面方程.12.平面与空间直线13.1.平面方程、直线方程的各种形式,方程中各有关字母的意义.14.2.从决定平面和直线的几何条件出发,选用适当方法建立平面、直线方程.15.3.根据平面和直线的方程,判定平面与平面、直线与直线、平面与直线间的位置关系.16.4. 根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程.17.二次曲面18.1.柱面、锥面、旋转曲面的定义,求柱面、锥面、旋转曲面的方程.19.2.椭球面、双曲面与抛物面的标准方程和主要性质,根据不同条件建立二次曲面的标准方程.20.3.单叶双曲面、双曲抛物面的直纹性及求单叶双曲面、双曲抛物面的直母线的方法.21.根据给定直线族求出它表示的直纹面方程求动直线和动曲线的轨迹问题.22.二次曲线的一般理论23.1.二次曲线的渐进方向、中心、渐近线.24.2.二次曲线的切线、二次曲线的正常点与奇异点.25.3.二次曲线的直径、共轭方向与共轭直径.26.4.二次曲线的主轴、主方向,特征方程、特征根.27.5.化简二次曲线方程并画出曲线在坐标系的位置草图.(二)中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限. 7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4.高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5.微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1.常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2.变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3.可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: .4.线性微分方程解的性质及解的结构定理.5.二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6.简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7.欧拉(Euler)方程.8.微分方程的简单应用9.五、向量代数和空间解析几何10.向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.11.两向量垂直、平行的条件、两向量的夹角.12.向量的坐标表达式及其运算、单位向量、方向数与方向余弦.13.曲面方程和空间曲线方程的概念、平面方程、直线方程.14.平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.15.球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.16.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.17.六、多元函数微分学18.多元函数的概念、二元函数的几何意义.19.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.20.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.21.多元复合函数、隐函数的求导法.22.二阶偏导数、方向导数和梯度.23.空间曲线的切线和法平面、曲面的切平面和法线.24.二元函数的二阶泰勒公式.25.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.26.七、多元函数积分学27.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).28.两类曲线积分的概念、性质及计算、两类曲线积分的关系.29.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.30.两类曲面积分的概念、性质及计算、两类曲面积分的关系.31.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.32.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)33.八、无穷级数34.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.35.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.36.任意项级数的绝对收敛与条件收敛.37.函数项级数的收敛域与和函数的概念.38.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.39.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.40.初等函数的幂级数展开式.41.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数。
全国大学生数学竞赛介绍【模板】
全国大学生数学竞赛介绍为了培养人才、服务教学,增加大学生学习数学的兴趣,中国数学会决定从2009 年开始每年举办一次全国大学生数学竞赛。
竞赛主办单位为中国数学会,全国大学生竞赛委员会负责实施,竞赛分初赛和决赛两个阶段,XX市的参赛者初赛在上海赛区进行。
上海赛区组织工作由XX市数学会负责。
一、竞赛时间全国大学生数学竞赛初赛既XX市大学生数学竞赛在每年10月举行,决赛于次年3月举行。
二、参赛对象及分组大学本科二年级或二年级以上的在校大学生。
竞赛分为非数学专业组和数学专业组(含数学与应用数学、信息与计算科学专业的学生)。
数学专业学生不得参加非数学专业组的竞赛。
三、竞赛知识范围数学组竞赛初赛知识范围:数学分析(占50%)、高等代数(占35%)、解析几何(占15%)。
非数学组竞赛初赛知识范围:高等数学(以理工科本科教学大纲规定的教学内容为准)。
四、奖项全国竞赛设赛区奖和全国决赛奖。
上海赛区的赛区奖又作为XX市大学生数学竞赛优胜奖。
全国赛区的赛区奖(即XX市大学生数学竞赛优胜奖):按照数学组与非数学组共两个组别分别评奖,分一、二、三等奖,获奖总名额不超过总参赛人数的15%。
全国竞赛的决赛参赛者在赛区一等奖获得者中推选,由竞赛委员会批准。
全国竞赛决赛奖的评定按绝对分数评奖。
本届全国大学生数学竞赛的赛区奖和决赛奖的获奖证书均由中国数学会普及工作委员会盖章颁发。
本届XX市大学生数学竞赛的优胜奖的获奖证书由XX市数学会盖章颁发。
五、网站有关全国大学生数学竞赛的详细信息,请查阅中国大学生数学竞赛网站,网址为******/,各高校汇总用的Excel 电子表格参阅此网站。
热烈欢迎本市大学生踊跃报名,积极参加本次全国和XX市大学生数学竞赛。
第六届全国大学生数学竞赛
第六届全国大学生数学竞赛组织实施方案全国大学生数学竞赛由中国数学会主办,自2022年开始举办首届数学竞赛以来,至今已成功举办了五届,其中第五届全国大学生数学竞赛共分为28个赛区,参赛人数达52102人,较上届增加5218人,其中数学专业类12032人,非数学专业类40070人;参赛学校600余所。
数学竞赛已经受到越来越多的高校的重视。
全国大学生数学竞赛旨在推动高等学校数学课程的和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才。
前五届全国大学生数学竞赛活动我校参加了四届,由于第四届(2022年)竞赛时间正值我校本科教学评估,所以没有参加。
第五届我校选拔了60名学生参赛,其中非数学组40名,数学组20名,获得获非数学专业组一等奖1项、二等奖5项、三等奖11项,获数学专业组一、二等奖各1项、三等奖2项。
为了能在第六届全国大学生数学竞赛中取得较好的成绩,我们根据前几届数学竞赛的情况,特制订以下实施方案:一、参赛对象在校本科二年级或二年级以上大学生(最好三、四年级学生),分数学组及非数学组两种类型。
二、竞赛识范围非数学专业组:预赛以理工科本科教学大纲的高等数学教学内容为准,决赛时在预赛的基础上增加线性代数内容(考分约占15%-20%)数学专业组:预赛仍保持原来的三门课:数学分析(50%)、高等代数(35%)、解析几何(15%)。
三、竞赛的组织与选拔本次竞赛将在教务处的指导下,由数学与统计学院负责全校参赛学生的报名工作,以及初赛与决赛的组织工作。
我校拟选拔60名学生参加本次竞赛,其中非数学专业组40名,数学专业组20名。
数学专业组参赛学生由数学与统计学院负责选拔;非数学专业组参赛学生分别由信息科学技术学院、物理与电子工程学院、化学化工学院、生物与酿酒工程学院、机械与工程学院、旅游学院8个学院根据大学数学成绩进行选拔,建议分配名额如下:信息科学技术学院:8人;物理与电子工程学院:8人;化学化工学院:6人;机械与工程学院:7人;旅游学院:2人;生物与酿酒工程学院:5人管理学院:2人商学院:2人四、竞赛时间及评奖初赛时间为2022年10月25日(星期六)上午9:0011:30,在本校进行。
全国大学生数学建模竞赛简介
全国大学生数学建模竞赛简介全国大学生数学建模竞赛是教育部高教司和中国工业与应用数学学会共同主办、面向全国高校(包括高职高专院校)所有专业大学生的一项通讯竞赛,从1992年开始,每年一届,2013年的第22届竞赛有来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、印度和马来西亚的1326所院校、23339个队(其中本科组19892队、专科组3447队)、70000多名大学生报名参加(每队3名同学),是目前全国高校规模最大的基础性学科竞赛,也是也是世界上规模最大的数学建模竞赛;它是全国大学生规模最大的课外科技活动,能从一个侧面反映一个学校学生的综合能力。
竞赛2007年开始被列入教育部质量工程首批资助的学科竞赛之一。
一、什么是数学建模简而言之,数学建模就是用数学的方法解决实际问题。
当我们遇到一个实际问题时,首先对其进行分析,把其中的各种关系用数学的语言描述出来。
这种用数学的语言表达出来的问题形式就是数学模型。
一旦得到了数学模型,我们就将解决实际问题转化成了解决数学问题。
然后,就是选择合适的数学方法解决各个问题,最后将数学问题的结果作为实际问题的答案。
当然,这一结果与实际情况可能会有一些差距,所以我们就要根据实际情况对模型进行修改完善,重新求解,直至得到满意的结果。
实际上,数学建模对于同学们来讲并不是全新的事物,在中小学阶段做的数学应用题就是数学建模的简单形式。
现在,同学们学习了许多高等数学知识,所面临就是要用高等数学的知识和方法,并借助计算机来解决更接近实际的规模较大的问题。
所以参加数学建模活动是一个很有意义的科研实践机会,同时会让你认识到高等数学在实际生活中的巨大作用,提高学习数学的积极性。
二、数模竞赛的形式该竞赛每年9月(一般在上旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。
全国大学生数学竞赛介绍
简介:全国大学生数学竞赛旨在培养学生们对高等数学的热爱,增加高等院校教师和学生对高等数学的重视程度。
由于是由原北京市数学竞赛发展而来,2009年举办的全国首届大学生数学竞赛也是第二十届北京市数学竞赛。
编辑本段|回到顶部具体介绍:竞赛组委会由各大高校教职员工和致力于高等数学教学的教研员组成,主要吸收了在北京市举办了二十届的数学竞赛经验,希望能够办成与全国大学生数学建模竞赛,相同规模影响的比赛。
2008年,12月27日—28日,全国高校大学生数学竞赛筹备会议在北京航空航天大学新主楼会议中心第四会议室举行。
中国数学会副理事长巩馥洲,中国数学会秘书长、北京数学会理事长王长平以及来自北京大学、复旦大学、北京航空航天大学、国防科技大学等国内十余所著名大学的数学学院院长(系主任)参加会议。
我校郑志明副校长、教务处陈强处长出席了会议。
会议开幕式由中国数学会普及委员会常务副主任高宗升主持。
会议上中国数学会秘书长王长平发表讲话,指出举办全国数学竞赛意义重大,有利于发现和选拔优秀人才。
办好竞赛不应以赢利为目的,可以借鉴北京市高校大学数学竞赛的成功经验。
各与会人员集思广益对全国高校大学生数学竞赛的组织工作、参赛对象、竞赛内容、报名方法、奖励办法等方面对工作进行了详细研究,制定了具体办法。
希望通过此竞赛促进高校数学课的教学改革和建设,激发在校大学生学习数学的热情,促进大学对创新人才的选拔和培养。
会议最终决定:全国高校第一届大学生数学竞赛将于2009年11月在全国高校同时举行。
之后各大高校都积极准备,组织相关学生进行暑假培训。
更有甚者还开了动员大会进行誓师。
下图为桂林电子科技大学数计学院的动员大会图:编辑本段|回到顶部参赛对象:在校大学生。
竞赛分为三个组别:甲组:数学专业组,含数学与应用数学、信息与计算科学专业的学生。
乙组:非数学专业组。
丙组:经济类(北京赛区特有组别)。
数学专业学生不得参加非数学专业组的竞赛。
编辑本段|回到顶部竞赛内容:甲组:《数学分析》(50%)、《高等代数》(35%)、《解析几何》(15%)。
全国大学生数学竞赛
第十一届“全国大学生数学竞赛”简介全国大学生数学竞赛是由中国数学会主办的大学生专业技能竞赛活动,旨在进一步推动和促进高等学校数学的教学改革和课程建设,激发和培养广大学生学习数学的兴趣,发现和选拔数学创新人才,为青年学子提供一个展示自我的舞台。
一、竞赛的方式与时间安排第十一届全国大学生数学竞赛分初赛和决赛两个阶段。
分区初赛于2019年10月下旬在四川赛区进行,竞赛委员会负责统一命题,各赛区数学会组织考试。
全国决赛于2020年3月举行。
二、奖项的设立:设初赛(以省、市、自治区作为赛区)奖与决赛奖。
预赛奖:每个赛区的获奖总名额不超过总参赛人数的25%(其中一等奖、二等奖、三等奖分别占各类获奖总人数的20%、30%、50%)。
颁发“第八届全国大学生数学竞赛预赛*等奖”证书。
决赛奖:参加全国决赛的总人数不超过300人。
每个赛区参加决赛的名额不少于3名,由各赛区在赛区一等奖获得者中推选。
最后入选名单由竞赛工作小组批准。
决赛阶段的评奖等级按绝对分数评奖。
颁发“第八届全国大学生数学竞赛决赛*等奖”证书。
预赛奖和决赛奖证书均加盖“中国数学会普及工作委员会”的公章,获奖证书由承办单位统一印制。
三、全国竞赛内容:省级预赛只考高等数学内容。
全国决赛时在预赛的基础上增加线性代数内容。
(考分约占总分的15%--20%)。
四、全国大学生数学竞赛官网全国大学生数学竞赛网站/中国大学生数学竞赛(非数学专业类)竞赛内容一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立。
2.函数的性质:有界性、单调性、周期性和奇偶性。
3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数。
4.数列极限与函数极限的定义及其性质、函数的左极限与右极限。
5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较。
6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限。
7.函数的连续性(含左连续与右连续)、函数间断点的类型。
全国大学生数学竞赛赛试题(1-9届)
全国大学生数学竞赛赛试题(19届)一、试题概述全国大学生数学竞赛是由中国数学会主办的一项面向全国高校本科生的数学竞赛。
自2009年首届竞赛举办以来,已成功举办九届。
竞赛旨在激发大学生对数学的兴趣,提高他们的数学素养和综合能力,同时选拔优秀数学人才。
每届竞赛均设有预赛和决赛两个阶段,预赛为全国范围内的统一考试,决赛则在全国范围内选拔出的优秀选手中进行。
二、竞赛内容全国大学生数学竞赛的试题内容主要包括高等数学、线性代数、概率论与数理统计等基础数学知识。
试题难度适中,既考查参赛选手的基础知识掌握程度,又注重考查他们的综合应用能力和创新思维能力。
三、竞赛特点1. 公平公正:竞赛试题由全国数学教育专家命题,确保试题质量,保证竞赛的公平公正。
2. 注重基础:竞赛试题主要考查参赛选手对基础数学知识的掌握程度,有利于引导大学生重视基础数学学习。
3. 综合应用:试题设计注重考查参赛选手的综合应用能力,培养他们的创新思维和实践能力。
4. 激发兴趣:竞赛通过丰富多样的试题形式,激发大学生对数学的兴趣,培养他们的数学素养。
四、竞赛组织全国大学生数学竞赛由各省、市、自治区数学会负责组织本地区的预赛,中国数学会负责全国范围内的决赛。
竞赛组织工作包括试题命制、竞赛宣传、选手选拔、竞赛监督等环节,确保竞赛的顺利进行。
五、竞赛影响全国大学生数学竞赛自举办以来,受到了广大高校和数学爱好者的广泛关注和热情参与。
竞赛不仅为优秀数学人才提供了展示才华的舞台,也为全国高校数学教育提供了有益的借鉴和启示。
通过竞赛,大学生们不仅提高了自己的数学水平,还结识了许多志同道合的朋友,拓宽了视野,激发了学习热情。
六、竞赛历程自2009年首届全国大学生数学竞赛举办以来,竞赛规模逐年扩大,影响力不断提升。
参赛选手涵盖了全国各大高校的本科生,包括综合性大学、理工科院校、师范院校等。
随着竞赛的普及,越来越多的学生开始关注并参与其中,竞赛逐渐成为衡量高校数学教育水平和学生数学素养的重要标志。
全国大学生数学竞赛
全国大学生数学竞赛全国大学生数学竞赛是中国教育部主办的一项重要赛事,旨在提高大学生数学素质、培养数学科技创新人才,促进数学教育改革与发展。
该竞赛覆盖全国各高校,参赛学生的数学知识和解题能力都会得到锻炼和提高。
数学竞赛是一种评价学生数学水平的有效方式,既能激发学生学习数学的兴趣,又能展现学生的数学才华。
全国大学生数学竞赛不仅考察学生的基本数学知识,还倾向于培养学生的数学思维能力和解决复杂问题的能力。
竞赛的内容涉及到数学的各个领域,包括数论、代数、几何、概率与统计等。
题目不仅要求学生具备熟练的计算能力,还要求学生具备分析问题、拓展思路、创新解题等能力。
竞赛题目通常具有一定的难度,能够增强学生的自学能力和解决问题的能力。
全国大学生数学竞赛的选拔过程分为校内选拔和校外选拔两个阶段。
在校内选拔中,各高校会组织内部数学竞赛,评选出表现优异的学生参加校外选拔。
校外选拔是在全国范围内进行的,参赛学生需要经过一系列的层层选拔,直至获得最终的名次。
参加全国大学生数学竞赛对于学生来说是一次重要的机会,不仅可以与全国各地的优秀学生交流学习,还能获得奖金和荣誉。
优秀的成绩还可以作为申请研究生、出国留学等方面的加分项,对于学生未来的发展具有重要意义。
然而,要在全国大学生数学竞赛中取得好成绩并不容易。
首先,需要具备扎实的数学基础知识和分析思维能力。
其次,要有充分的备考时间,进行系统的复习和实战训练。
此外,还需要学会合理规划时间,合理安排每道题目的解答时间,从而在有限的时间内完成尽可能多的题目。
在备考期间,可以参加学校组织的数学竞赛培训班,或者参加一些数学竞赛的辅导课程,从中获取宝贵的经验和解题技巧。
同时,多做一些历年真题,熟悉竞赛的题型和难度,对于备考有很大的帮助。
总之,全国大学生数学竞赛是提高大学生数学素质、培养数学人才的一项重要赛事。
参加竞赛不仅可以锻炼学生的数学能力,还可以为个人发展增添亮点。
希望广大学生能够充分利用这个机会,努力备战,取得优异的成绩。
中国大学生数学建模竞赛
中国大学生数学建模竞赛一、竞赛简介中文名称:中国大学生数学建模竞赛通称:全国大学生数学建模竞赛英文名称:China Undergraduate Mathematical Contest in Modeling英文简称:CUMCM 主办机构:教育部高等教育司、中国工业与应用数学学会(CSIAM)二、竞赛宗旨:创新意识团队精神重在参与公平竞争中国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一。
该竞赛每年9月(一般在中旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。
同学可以向本校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系。
三、竞赛章程(2008年)第一条总则全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
第二条竞赛内容竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。
题目有较大的灵活性供参赛者发挥其创造能力。
参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。
竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
第三条竞赛形式、规则和纪律1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。
2.竞赛每年举办一次,一般在某个周末前后的三天内举行。
全国大学生数学竞赛
全国大学生数学竞赛全国大学生数学竞赛是一项全国范围内的学术竞赛活动,旨在提高大学生的数学素养和解决实际问题的能力。
该竞赛由教育部主办,每年都吸引着全国各高校的优秀学子参与。
作为数学竞赛的顶级赛事之一,全国大学生数学竞赛具有较高的知名度和影响力。
这项竞赛分为理论赛和应用赛两个阶段。
理论赛主要考察学生对数学基础知识的掌握和理论推导能力,题目涵盖了数学的各个分支,如代数、几何、概率与统计等。
而应用赛则侧重于学生解决实际问题的能力,要求学生运用数学方法分析和解决现实问题。
参加全国大学生数学竞赛对学生来说是一次宝贵的经历。
通过参与竞赛,学生可以锻炼自己的逻辑思维和分析问题的能力,提高数学知识的应用水平。
此外,竞赛中的交流和互动也有助于学生之间的学习和成长,激发出更多的数学热情。
全国大学生数学竞赛对于学习数学的大学生们而言意义重大。
通过参加竞赛,学生能够接触到一些高难度的数学问题,加深对数学知识的理解和掌握。
竞赛过程中的挑战和压力也能够帮助学生提升解决问题的能力和应对压力的能力。
为了取得好成绩,在备赛期间,学生们需要充分利用学校和社会资源,积极参加数学辅导班和讲座,深入学习数学知识,扩展数学视野。
同时,解题能力的提高也需要大量的题目练习和思考。
通过分析解题思路和解题技巧,学生们能够更好地应对竞赛中的各种题目。
总的来说,参加全国大学生数学竞赛对于大学生的数学学习和个人发展有着积极的影响。
它不仅能够提高学生的数学素养和解决实际问题的能力,还能够培养学生的逻辑思维和分析能力。
因此,我鼓励更多的大学生积极参与全国大学生数学竞赛,不断挑战自我,提高自己的数学能力。
大学数学竞赛
大学数学竞赛引言大学数学竞赛是一个重要的学术活动,是评价大学生数学能力和思维能力的重要途径。
它有助于培养学生对数学的兴趣和热爱,并提高他们的数学解决问题的能力。
本文将介绍大学数学竞赛的一些基本信息,包括竞赛的种类、参赛资格、赛制和相关的备赛策略。
竞赛的种类大学数学竞赛通常分为不同的种类,包括数学建模竞赛、数学奥林匹克竞赛和数学应用竞赛等。
每种竞赛都有自己的特点和要求,参赛选手需要根据个人兴趣和实力选择适合自己的竞赛种类。
•数学建模竞赛:这种竞赛要求参赛选手通过数学建模的方法解决实际问题。
参赛选手需要熟练掌握数学理论和建模技巧,能够将实际问题转化为数学模型并进行求解。
•数学奥林匹克竞赛:这种竞赛主要考察参赛选手的数学思维能力和创新能力。
竞赛题目通常非常有挑战性,需要参赛选手具备扎实的数学基础和解题技巧。
•数学应用竞赛:这种竞赛要求参赛选手将数学知识应用到实际问题中。
竞赛题目通常与实际应用场景相关,参赛选手需要通过数学分析和计算来解决实际问题。
参赛资格大学数学竞赛的参赛资格通常有一定的限制,参赛选手需要满足一定的条件才能报名参赛。
一般来说,参赛选手需要是在校大学生,并且具备一定的数学基础。
不同的竞赛种类对参赛资格的要求可能有所不同,一些竞赛还需要进行预赛或选拔赛。
赛制大学数学竞赛的赛制也有所不同,一般分为两个阶段,预赛和决赛。
•预赛:预赛通常是以校级或地区级为单位进行,采用笔试形式进行。
预赛的题目数量较多,题目类型多样,考查的内容涉及数学的各个领域。
参赛选手需要在规定的时间内完成题目,答案需要写清楚并进行证明或解答过程。
•决赛:决赛一般是在全国范围内进行,由优秀的参赛选手进入。
决赛的题目通常更加难题和复杂,需要参赛选手有较强的解题能力和创新思维。
决赛一般采用面试或现场解题形式进行,进行答辩和评分。
备赛策略参加大学数学竞赛需要精心备赛,以下是一些备赛策略供参考:1.扎实基础:数学竞赛离不开扎实的基础知识,参赛选手需要系统学习数学的各个分支,特别是中学数学的基础知识。
cmc数学竞赛证书
cmc数学竞赛证书
摘要:
1.引言
2.CMC 数学竞赛简介
3.CMC 数学竞赛证书的含金量
4.获得CMC 数学竞赛证书的意义
5.如何准备CMC 数学竞赛
6.总结
正文:
CMC 数学竞赛,全称为“全国大学生数学竞赛(CMC)”,是由中国数学会主办的全国性大学生数学竞赛活动。
作为一个高水平的数学竞赛平台,CMC 数学竞赛吸引了众多数学爱好者的参与。
而获得CMC 数学竞赛证书,无疑是对于参赛者数学能力和实力的最好证明。
CMC 数学竞赛证书的含金量非常高。
首先,该证书由中国数学会权威颁发,具有很高的权威性和公信力。
其次,CMC 数学竞赛的难度和水平都较高,能够在这种竞赛中获得证书,说明参赛者在数学方面具有很高的造诣。
因此,CMC 数学竞赛证书在学术界和就业市场上都有着极高的认可度。
获得CMC 数学竞赛证书的意义也是显而易见的。
对于参赛者个人来说,这是一种荣誉,是对自己数学才能的肯定,有助于提高个人自信心。
对于参赛者的学术生涯来说,这是一种宝贵的经历,有助于提升自己的数学能力和科研素养。
对于参赛者的就业来说,CMC 数学竞赛证书是一块有力的敲门砖,有
助于在激烈的就业竞争中脱颖而出。
那么,如何准备CMC 数学竞赛呢?首先,参赛者需要具备扎实的数学基础知识,这样才能应对竞赛中的各种题目。
其次,参赛者需要通过大量的练习,提高自己的解题速度和准确率。
此外,参赛者还可以参加一些CMC 数学竞赛的培训班或者请教有经验的老师,以提高自己的竞赛水平。
总之,CMC 数学竞赛证书是一个非常有价值的证书,能够获得这张证书无疑是一种荣誉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国大学生数学竞赛第一届2009年,第一届全国大学生数学竞赛由中国数学会主办、国防科学技术大学承办。
该比赛将推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才。
第二届2011年3月,历时十个月的第二届全国大学生数学竞赛在北京航空航天大学落幕。
来自北京、上海、天津、重庆等26个省(区、市)数百所大学的274名大学生进入决赛,最终,29人获得非数学专业一等奖,15人获数学专业一等奖。
这次赛事预赛报名人数达3万余人,已成为全国影响最大、参加人数最多的学科竞赛之一。
竞赛用书该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。
竞赛大纲中国大学生数学竞赛竞赛大纲(2009年首届全国大学生数学竞赛)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
1.竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
1.竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。
(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下:Ⅰ、数学分析部分1.集合与函数2. 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理.3. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.4. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质.5.极限与连续6. 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).7. 2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用.8. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.9. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).10.一元函数微分学11.1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.12.2.微分学基本定理:Fermat定理,Rolle定理,Lagrange定理,Cauchy定理,Taylor公式(Peano余项与Lagrange余项).13.3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital)法则、近似计算.14.多元函数微分学15.1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor公式.16.2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.17.3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).18.4.极值问题(必要条件与充分条件),条件极值与Lagrange乘数法.19.一元函数积分学20.1. 原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分:型,型.21.2. 定积分及其几何意义、可积条件(必要条件、充要条件:)、可积函数类.22.3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理.23.4.无限区间上的广义积分、Canchy收敛准则、绝对收敛与条件收敛、非负时的收敛性判别法(比较原则、柯西判别法)、Abel判别法、Dirichlet 判别法、无界函数广义积分概念及其收敛性判别法.24.5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.25.多元函数积分学26.1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换).27.2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).28.3.重积分的应用(体积、曲面面积、重心、转动惯量等).29.4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.30.5.第一型曲线积分、曲面积分的概念、基本性质、计算.31.6.第二型曲线积分概念、性质、计算;Green公式,平面曲线积分与路径无关的条件.32.7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke公式,两类线积分、两类面积分之间的关系.33.无穷级数34.1. 数项级数级数及其敛散性,级数的和,Cauchy准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz判别法;一般项级数的绝对收敛、条件收敛性、Abel判别法、Dirichlet判别法.1.函数项级数函数列与函数项级数的一致收敛性、Cauchy准则、一致收敛性判别法(M-判别法、Abel判别法、Dirichlet判别法)、一致收敛函数列、函数项级数的性质及其应用.1.幂级数幂级数概念、Abel定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor级数、Maclaurin级数.1.Fourier级数三角级数、三角函数系的正交性、2及2周期函数的Fourier级数展开、 Beseel 不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理. Ⅱ、高等代数部分1.多项式2. 1. 数域与一元多项式的概念3. 2. 多项式整除、带余除法、最大公因式、辗转相除法4. 3. 互素、不可约多项式、重因式与重根.5. 4. 多项式函数、余数定理、多项式的根及性质.6. 5.代数基本定理、复系数与实系数多项式的因式分解.7. 6. 本原多项式、Gauss引理、有理系数多项式的因式分解、Eisenstein判别法、有理数域上多项式的有理根.8.7. 多元多项式及对称多项式、韦达(Vieta)定理.9.行列式10.1. n级行列式的定义.11.2. n级行列式的性质.12.3. 行列式的计算.13.4. 行列式按一行(列)展开.14.5.拉普拉斯(Laplace)展开定理.15.6. 克拉默(Cramer)法则.16.线性方程组17.1.高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解.18.2. n维向量的运算与向量组.19.3. 向量的线性组合、线性相关与线性无关、两个向量组的等价.20.4. 向量组的极大无关组、向量组的秩.21.5.矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.22.6. 线性方程组有解判别定理、线性方程组解的结构.23.7.齐次线性方程组的基础解系、解空间及其维数24.矩阵25.1.矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.26.2. 矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系.27.3. 矩阵的逆、伴随矩阵、矩阵可逆的条件.28.4. 分块矩阵及其运算与性质.29.5.初等矩阵、初等变换、矩阵的等价标准形.30.6. 分块初等矩阵、分块初等变换.31.双线性函数与二次型32.1. 双线性函数、对偶空间33.2. 二次型及其矩阵表示.34.3.二次型的标准形化二次型为标准形的配方法、初等变换法、正交变换法.35.4. 复数域和实数域上二次型的规范形的唯一性、惯性定理.36.5.正定、半正定、负定二次型及正定、半正定矩阵37.线性空间38.1. 线性空间的定义与简单性质.39.2. 维数,基与坐标.40.3. 基变换与坐标变换.41.4. 线性子空间.42.5. 子空间的交与和、维数公式、子空间的直和.43.线性变换44.1. 线性变换的定义、线性变换的运算、线性变换的矩阵.45.2. 特征值与特征向量、可对角化的线性变换.46.3.相似矩阵、相似不变量、哈密尔顿-凯莱定理.47.4. 线性变换的值域与核、不变子空间.48.若当标准形49.1.矩阵.50.2. 行列式因子、不变因子、初等因子、矩阵相似的条件.51.3. 若当标准形.52.欧氏空间53.1. 内积和欧氏空间、向量的长度、夹角与正交、度量矩阵.54.2. 标准正交基、正交矩阵、施密特(Schmidt)正交化方法.55.3. 欧氏空间的同构.56.4. 正交变换、子空间的正交补.57.5. 对称变换、实对称矩阵的标准形.58.6. 主轴定理、用正交变换化实二次型或实对称矩阵为标准形.59.7. 酉空间.Ⅲ、解析几何部分1.向量与坐标2. 1. 向量的定义、表示、向量的线性运算、向量的分解、几何运算.3. 2. 坐标系的概念、向量与点的坐标及向量的代数运算.4. 3. 向量在轴上的射影及其性质、方向余弦、向量的夹角.5. 4. 向量的数量积、向量积和混合积的定义、几何意义、运算性质、计算方法及应用.6. 5. 应用向量求解一些几何、三角问题.7.轨迹与方程8. 1.曲面方程的定义:普通方程、参数方程(向量式与坐标式之间的互化)及其关系.9. 2.空间曲线方程的普通形式和参数方程形式及其关系.10.3.建立空间曲面和曲线方程的一般方法、应用向量建立简单曲面、曲线的方程.11.4.球面的标准方程和一般方程、母线平行于坐标轴的柱面方程.12.平面与空间直线13.1.平面方程、直线方程的各种形式,方程中各有关字母的意义.14.2.从决定平面和直线的几何条件出发,选用适当方法建立平面、直线方程.15.3.根据平面和直线的方程,判定平面与平面、直线与直线、平面与直线间的位置关系.16.4. 根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程.17.二次曲面18.1.柱面、锥面、旋转曲面的定义,求柱面、锥面、旋转曲面的方程.19.2.椭球面、双曲面与抛物面的标准方程和主要性质,根据不同条件建立二次曲面的标准方程.20.3.单叶双曲面、双曲抛物面的直纹性及求单叶双曲面、双曲抛物面的直母线的方法.21.根据给定直线族求出它表示的直纹面方程求动直线和动曲线的轨迹问题.22.二次曲线的一般理论23.1.二次曲线的渐进方向、中心、渐近线.24.2.二次曲线的切线、二次曲线的正常点与奇异点.25.3.二次曲线的直径、共轭方向与共轭直径.26.4.二次曲线的主轴、主方向,特征方程、特征根.27.5.化简二次曲线方程并画出曲线在坐标系的位置草图.(二)中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限. 7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4.高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5.微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1.常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2.变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3.可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: .4.线性微分方程解的性质及解的结构定理.5.二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6.简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7.欧拉(Euler)方程.8.微分方程的简单应用9.五、向量代数和空间解析几何10.向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.11.两向量垂直、平行的条件、两向量的夹角.12.向量的坐标表达式及其运算、单位向量、方向数与方向余弦.13.曲面方程和空间曲线方程的概念、平面方程、直线方程.14.平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.15.球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.16.空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.17.六、多元函数微分学18.多元函数的概念、二元函数的几何意义.19.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.20.多元函数偏导数和全微分、全微分存在的必要条件和充分条件.21.多元复合函数、隐函数的求导法.22.二阶偏导数、方向导数和梯度.23.空间曲线的切线和法平面、曲面的切平面和法线.24.二元函数的二阶泰勒公式.25.多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.26.七、多元函数积分学27.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).28.两类曲线积分的概念、性质及计算、两类曲线积分的关系.29.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.30.两类曲面积分的概念、性质及计算、两类曲面积分的关系.31.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.32.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)33.八、无穷级数34.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.35.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.36.任意项级数的绝对收敛与条件收敛.37.函数项级数的收敛域与和函数的概念.38.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.39.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.40.初等函数的幂级数展开式.41.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数。