二烯烃和炔烃6学时

合集下载

第七章炔烃和二烯烃

第七章炔烃和二烯烃

HC CH
CO2
+ H2O
21
炔烃的结构不同,氧化所得的产物也不同。 通过产物的分析,可以推测化合物的结构。
末端炔烃
H3C CH2 C CH
H3C CH2 C
KMnO4 H2O
H3C CH2
O C OH + CO2
生成羧 酸
放出 气体
C CH3 OH
OH
KMnO4 H 2O
H3C CH2 C O
+O
20
CH3(CH2)5C
CH
R2BH
CH3(CH2)5 H
H BR2 H2O2,OH
CH3(CH2)5CH2CHO
R=(CH3)2CHCH(CH3)2验碳碳叁键的存在。
强氧化剂
(72%)
四、氧化反应:高锰酸钾紫色逐渐消失可以用此来检
RC CR'
RCOOH + R'COOH
KMnO4 , H2O
强氧化剂:O3或KMnO4
17
O CH3CH2CH2C HgSO4 CCH2CH2CH3 H2SO4 CH3CH2CH2CCH2CH2CH2CH3 89%
CH3CH2CH2C
HgSO4 CH H2SO4
O
CH3CH2CH2CCH3
3.加卤素:同烯烃相似,炔烃也能使溴褪色。因此 可用溴褪色来检验叁键的存在。可与2分子氯或溴 加成生成四卤代物.
37
C CH3
22 返回
五、加氢和还原
完全加氢
H2 HC CH
H氢=175kJ/mol
H2 H2 C CH2
H氢=1属催化剂在氢气过量情况下反应不易 停留在烯烃阶段,从氢化热数据可以看出炔烃加氢比 烯烃有更大的反应活性.

第2章烃炔烃二烯烃-文档资料

第2章烃炔烃二烯烃-文档资料

2.聚合反应
共轭二烯容易进行聚合反应,生成高分子聚合物。
共轭二卫生高职有机化学课件
谢谢观看!
五年制卫生高职有机化学课件
五年制卫生高职有机化学课件
3.用途
有多种用途,如:合成氯丁橡胶
五年制卫生高职有机化学课件
二、二烯烃
二烯烃(diene)是一类含有两个C=C双键的不饱和链烃。比含同碳 原子的烯烃少两个氢原子,通式与炔烃相同,也是CnH2n-2
(一)分类、命名法 1.分类 根据二烯烃中两个双键的相对位置,可分为三类:
第二章 链 链烃 烃 第二章 烷 烃 第 炔烃 烃 第3 3节 节 炔 二烯烃
五年制卫生高职有机化学课件
学习目标
• • • • • 1.解释炔烃、二烯烃的概念 2.应用系统命名法对炔烃、二烯烃命名 3.说出炔、二烯烃的结构、性质的异同 4.详述乙炔的反应、制法 5.知道乙炔、二烯烃的用途
五年制卫生高职有机化学课件
(4)与水加成:
五年制卫生高职有机化学课件
2.氧化反应
(1)燃烧反应
乙炔在氧气中燃烧所形成的火焰,温度高达3000℃,故广泛用来 焊接和切割金属材料,这种火焰叫氧炔焰。
(2) KMnO4的氧化
五年制卫生高职有机化学课件
3.聚合反应:
五年制卫生高职有机化学课件
4.金属炔化物的生成
结构通式为RC≡CH 的炔烃可与与硝酸银的氨溶液 和氯化亚铜的氨溶液的作用
共轭效应:共轭的结果,是π电子云离域,键长平均
化倾向,体系能量降低而稳定性增加的效应
五年制卫生高职有机化学课件
(三)共轭二烯烃的化学反应
1,3-丁二烯具有共轭二烯的特定结构,从而表现特殊的性质
1.加成反应
较低温度下,1,2加成产物占优势;较高温度下,1,4加成产 物占优势

炔烃和二烯烃

炔烃和二烯烃
但仍可部分地重叠形成超共轭.
H α –碳氢键越多, 超共轭作用越强, CH2=CH—C—H 共轭体系越稳定.
H
• σ – p 共轭: 碳正离子缺电子碳(sp2杂化)上的p轨道与α –
碳氢σ 键虽然不平行, 但仍可部分地重叠形成超共轭.
+
H
CH2—C—H
H
α –碳氢键越多, 超共轭作用越强, 共轭体系越稳定.
产物的比例由各产物的相对生成速率决定. 对上述反应 而言, 1,2–加成的碳正离子中间体较稳定, 反应所需的活 化能较低, 反应速率较快, 因此反应主要得到1,2–加成产 物.
• 常温下, 反应一般受平衡控制或热力学控制, 即产物的比
例由各产物的相对稳定性决定.
6.6 Diels – Alder 反应
• 与碳碳单键和碳碳双键相比, 碳碳叁键的键长较短, 键能
较大, 但并非倍数关系.
6.2 炔烃的同分异构和命名法
6.2.1 炔烃的同分异构
主要有 碳链异构 和 官能团的位置异构, 没有顺反异构.
6.2.2 炔烃的命名法
与烯烃的命名类似.
6.3 炔烃的物理性质 (了解)
与烯烃类似. 炔烃分子的极性比烯烃略强.
6.7 共振结构理论简介和共振式 (了解)
共价键理论之一, 见 第1章 绪论.
• 共轭 π 键 和 共轭体系
凡是涉及3个或3个以上原子的 π 键叫做共轭 π 键.
构成共轭的体系叫做共轭体系.
• 分子轨道理论认为, 在共轭体系中的电子运动不是局限
于两个相邻的原子之间, 而是扩展到组成共轭体系的所 有原子之间, 即共轭体系内电子运动不是定域的, 而是离 域的. (注: 离域电子一般指 π 电子和未共用电子对, σ 电 子的离域程度较小).

有机化学 第三章 烯烃、炔烃和二烯烃

有机化学 第三章 烯烃、炔烃和二烯烃

第三章烯烃、炔烃和二烯烃第一节烯烃和炔烃单烯烃是指分子中含有一个C=C的不饱和开链烃,简称烯烃.通式为C n H2n。

炔烃是含有(triple bond) 的不饱和开链烃。

炔烃比碳原子数目相同的单烯烃少两个氢原子,通式CnH2n-2。

一、烯烃和炔烃的结构乙烯是最简单的烯烃, 乙炔是最简单的炔烃,现已乙烯和乙炔为例来讨论烯烃和炔烃的结构。

(一)乙烯的结构分子式为C2H4,构造式H2C=CH2,含有一个双键C=C,是由一个σ 键和一个π 键构成。

现代物理方法证明,乙烯分子的所有原子都在同一平面上,每个碳原子只和三个原子相连.杂化轨道理论根据这些事实,设想碳原子成键时,由一个s轨道和两个p轨道进行杂化,组成三个等同的sp2杂化轨道,sp2轨道对称轴在同一平面上, 彼此成1200角.此外,还剩下一个2p轨道,它的对称轴垂直于sp2轨道所在的平面。

乙烯:C-C σ键4C-H σ键在乙烯分子中,两个碳原子各以一个sp2轨道重叠形成一个C-Cσ键,又各以两个sp2轨道和四个氢原子的1s轨道重叠,形成四个C-Hσ键,五个σ键都在同一平面上。

每个碳原子剩下的一个py轨道,它们平行地侧面重叠,便组成新的分子轨道,称为π轨道。

其它烯烃的双键也都是由一个σ键和一个π键组成的。

双键一般用两条短线来表示,如:C=C,但两条短线含义不同,一条代表σ键,另一条代表π 键。

π键重叠程度比σ键小,不如σ键稳定,比较容易破裂。

(二)乙炔的结构乙炔的分子式是C2H2,构造式H-C≡C-C,碳原子为sp 杂化。

两个sp杂化轨道向碳原子核的两边伸展,它们的对称轴在一条直线上,互成180°。

在乙炔分子中,两个碳原子各以一个sp轨道互相重叠,形成一个C-Cσ键,每个碳原子又各以一个sp轨道分别与一个氢原子的1s轨道重叠形成C-Hσ键。

此外,每个碳原子还有两个互相垂直的未杂化的p轨道(px,py),它们与另一碳的两个p轨道两两相互侧面重叠形成两个互相垂直的π键。

第五章 炔烃和二烯烃

第五章 炔烃和二烯烃
H
超共轭
38
+
CH3CHCH3
6 (σ- p)
+
CH3CCH3
+
CH3
9 (σ- p)
39
碳正离子稳定性
H
HH C H
H
H C C+ > H C
H
H
C+ > H C
HH C H
HH C H
H
H
H
C+ > H C+
H
H
H
H
C-Hσ键:9
6
3
0
自由基稳定性
CH3
H
H
H
> H3C C
H3C C
> H3C C > H C
H
Br
Br Br2 H
Br Br
H
H
Br Br
分子中同时存在双键和三键时,加成首先在双键上进行。
CH3 C C CH CH2 Br2 (1mol)
CH3 C C CH CH2 Br Br
主要原因:炔烃的电子云是圆筒状,高度离域,更加稳定。
炔烃可使溴的四氯化碳溶液褪色,此反应也可作 为炔烃的鉴定试验,但褪色速率比烯烃慢。
与高锰酸钾反应 --- 不饱和键断裂
HC R1C
CH KMnO4
H+
CR2 KMnO4
H+
CO2 R1COOH
R2COOH
产物为二氧化碳和羧酸,无酮生成。该反应能 用于炔烃的鉴定。
17
(四)亲核加成( 烯烃不发生此反应 )
这类试剂的活性中心是带负电荷部分或电子云密度较大的部位,因此进 攻试剂具有亲核性,称亲核试剂。由亲核试剂引起的加成反应称亲核加 成反应。

第4章 炔烃、二烯烃

第4章 炔烃、二烯烃

碳素酸的弱酸性
Na
+ 2 HC
+
HC
CH
CH
110℃
2 HC
CNa
+H
NH3
2
NaNH2
HC
CNa
+
13
R3C CH
Ka
R3C C
CH
+
44
H
+
物质名称
pKa
HOH
HC
H2 C
CH2
H3 C
CH3
15.7
25
50
端炔酸性的解释 端炔中的碳为sp杂化, 轨道中s成分较大, 核 对电子的束缚能力强, 电子云靠近碳原子, 使分子中的C-H键极性增加, 易断裂:
HC CH
+ 2 Ag(NH3)2NO3
+ 2 Cu(NH3)2Cl
AgC
CAg
+ 2 NH4NO3 + 2 NH3
乙炔银(白色)
HC CH
CuC
CCu
+ 2 NH4Cl + 2 NH3
乙炔亚铜(砖红色)
应用: 区别端炔与非端炔、端炔与烯烃。
RC CH
16
炔化物的生成
注意:炔化银或炔化亚铜在干燥状态下, 受热或震动容易爆炸。实验完毕后 加稀硝酸使其分解。
+
RC
CH2
> RCH
+
CH
22
炔烃的亲电加成
炔烃与烯烃反应活性比较: 炔烃的加成速度比烯烃慢。
加卤素
当化合物中同时含有双键和叁键时, 首先在双键上发生加成反应。
Br2 低温
Br Br
选择性加成

有机化学教学课件炔烃和二烯烃详解演示文稿

有机化学教学课件炔烃和二烯烃详解演示文稿

Br Br
R-C=C R'
R
Br Br2
C=C
Br
R'
Br Br RC CR
Br Br
R-C ≡ C-R' HX
HX
HX
R-CH=C-R'
R C C R'
X
HX
(1) R-C≡C-H 与HX等加成时先得一卤代烯,而后得二卤代 烷,遵循马氏规则。
例如:
CH
CH + HCl
HgCl2
150-160oC
CH2 CHCl
未杂化的P(PY、PZ)轨道互相垂直,它们与中一碳的两个P轨 道两两互相侧面重叠形成两个互相垂直的键。
py
pz
sp
sp
180°
两个 sp 的空间分布
三键碳原子的轨道分布图
2、三键的形成
叁键是同一个键和两个互相垂直的组成的。两个键的 电子云分布好象是国围绕两个碳原子核心联系的圆柱状的电 子云。其示意如下图:
H
H
=
C2H5CH2 C C2H5 O
一烷基炔的硼氢化 – 氧化产物为醛;而二烷
基炔的硼氢化 – 氧化产物为酮。
2、水化反应
在炔烃加水的反应中,生成先一个很不稳定的醇烯,烯醇很 快转变为稳定的羰基化合物(酮式结构)。
C=C
HO 烯醇式(不稳定)
C=C
HO 酮 式(稳定)
这种异构现象称为酮醇互变异构。
炔烃和二烯烃都是通式为CnH2n-2的不饱和烃,炔烃是分子 中含有-C≡C-的不饱和烃,二烯烃是含有两个碳碳双键的不饱 和烃,它们是同分异构体, 但结构不同,性质各异。
炔烃
一、炔烃的结构
最简单的炔烃是乙炔,我们以乙炔来讨论三键的结构。

大学基础化学II课程教学大纲

大学基础化学II课程教学大纲

大学基础化学II课程教学大纲一、课程说明(一)课程名称、所属专业、课程性质、学分;大学基础化学II——有机化学;物理学院材料化学专业,主干基础课;4学分;(二)课程简介、目标与任务;有机化学是化学学科的一个重要分支,是研究有机化合物的组成、结构、性质、相互转化、合成以及与此相关的理论问题的学科,是一门理论性和实践性并重的课程。

有机化学课程是高等学校化学、材料、生物专业教学计划中一门必修的基础课程。

《有机化学(第二版)》共17章,按照以官能团分章的方式编排,每章最后都设置了相应的习题。

教材内容精练,重点突出。

在选材和举例方面,注重实用性和前沿性,许多实例都来自于科研。

在内容设置上,在教授基础知识的同时,注重培养学生的思考和探究能力,几乎每个章节都设立了思考、引导和探究项目,可供学生讨论。

还设置了拓展阅读部分,以拓展学生的知识面。

《有机化学(第二版)》的另一特色是,引入理论计算,对每种官能团的代表化合物都拟合出形象的电子分布密度图,便于读者形象地理解化合物结构与反应性的关系。

课程任务:要求学生通过理论学习和实验能够掌握并运用一些常见重要有机物的化学性质,掌握有机化学的基本理论、基本知识和基本技能,了解本学科范围内重大的科学技术新成就,培养学生具有分析和解决有机化学一般问题的初步能力,为学习后续课程和培养造就应用型人才打好一定基础。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接;无机化学与化学原理。

先修课程对学生在掌握学习有机化学结构理论和立体化学、反应动力学和化学平衡等化学理论方面具有重要的学习意义。

可通过前期的基本了解学习,为后续学习奠定良好的理论基础。

(四)教材与主要参考书。

教材:李艳梅等,有机化学(第二版),科学出版社,2014.参考资料:高坤、李瀛等,有机化学(第二版),科学出版社,2011.李瀛等,有机化学质疑暨考研指导,兰州大学出版社,2011.古练权等,有机化学,高等教育出版社,2008.伍越寰等,有机化学,中国科学技术大学出版社,2010.邢其毅等编著,基础有机化学(第三版),高等教育出版社,2005.二、课程内容与安排第一章绪论第一节有机化合物和有机化学第二节有机化合物的特征第三节共价键第四节分子间相互作用力第五节有机反应中的酸碱概念第六节有机化合物的分类第七节有机化合物构造式的写法第八节有机化合物命名的基本原则第九节有机化学的研究方法第二章饱和烃:烷烃和环烷烃第一节通式、同系列和同分异构第二节烷烃的命名第三节烷烃的结构第四节烷烃的物理性质第五节烷烃的化学反应第六节环烷烃的命名第七节环烷烃的结构与构象第八节环烷烃的物理性质第九节环烷烃的化学反应第十节烷烃和环烷烃的制备第三章不饱和烃:烯烃、炔烃和二烯烃第一节烯烃的结构第二节烯烃的异构和命名第三节烯烃的物理性质第四节烯烃的化学反应第五节炔烃的结构第六节炔烃的命名第七节炔烃的物理性质第八节炔烃的化学反应第九节二烯烃的分类和命名第十节共轭二烯烃的结构和共轭效应第十一节共轭二烯烃的化学反应第十二节烯烃和炔烃的制备第四章芳烃第一节芳烃的分类、异构和命名第二节苯的结构第三节芳烃的物理性质第四节单环芳烃的化学性质第五节芳烃亲电取代反应的定位规律第六节稠环芳烃第七节非苯芳烃第八节芳烃的来源及煤炭产业第五章对映异构第一节手性和对称性第二节含一个不对称碳原子的化合物第三节含两个及多个不对称碳原子的化合物第四节环状手性化合物第五节其他不含不对称碳原子的手性化合物第六节前(潜)手性碳和分子的前(潜)手性第七节不对称合成与拆分第八节手性与药物第九节异构体的分类第六章卤代烃、金属有机化合物第一节卤代烃的分类、异构、命名和结构第二节卤代烃的物理性质第三节卤代烃的化学反应第四节饱和碳原子上的亲核取代反应第五节影响亲核取代反应的因素第六节消除反应历程第七节影响消除反应发因素第八节取代反应与消除反应的竞争第九节其他卤代烃第十节卤代烃的制备第七章波谱分析在有机化学中的应用第一节电磁辐射第二节红外光谱第三节核磁共振第四节紫外光谱第五节质谱第八章醇、酚、醚第一节醇的分类、命名和结构第二节醇的物理性质与波谱特征第三节一元醇的化学性质第四节多元醇的特殊反应第五节醇的制备第六节酚的分类和命名第七节酚的物理性质与波谱特征第八节酚的化学性质第九节酚的制备第十节醚的分类和命名第十一节醚的物理性质和波谱特性第十二节醚的化学反应第十三节醚的制备第十四节环醚第十五节冠醚第九章醛、酮、醌第一节醛和酮的分类和命名第二节醛和酮的结构第三节醛和酮的物理性质和波普特性第四节醛和酮的亲核加成反应第五节醛和酮的α-H的反应第六节醛和酮的氧化和还原反应第七节 Cannizzaro反应第八节α,β-不饱和醛、酮第九节醛、酮的制备第十节醌的结构第十一节醌的化学性质第十二节醌与染料第十章羧酸及其衍生物第一节羧酸的分类、命名和结构第二节羧酸的物理性质和波谱特征第三节羧酸的化学性质第四节羧酸衍生物的命名第五节羧酸衍生物的物理性质和波谱特征第六节羧酸衍生物的化学性质第七节羟基酸的分类和命名第八节羟基酸的化学反应第九节β-二羰基化合物第十节羧酸的制备第十一章含氮化合物第一节硝基化合物的分类、命名和结构第二节硝基化合物的物理性质和波谱特征第三节硝基化合物的化学性质第四节胺的分类、命名和结构第五节胺的物理性质和波谱特征第六节胺的化学性质第七节季铵盐和季铵碱第八节胺的制备第九节芳香族重氮和偶氮化合物第十节腈和异腈第十二章含硫、含磷及含硅有机化合物第一节含硫有机化合物第二节含磷有机化合物第三节含硅有机化合物第十三章杂环化合物第一节杂环化合物的分类、命名和结构第二节五元杂环化合物第三节六元杂环化合物第四节杂环类药物第十四章类脂化合物第一节油脂第二节蜡第三节磷脂第四节萜类化合物第五节甾族化合物第十五章碳水化合物第一节碳水化合物的分类第二节单糖第三节二糖第四节多糖第十六章氨基酸、多肽、蛋白质及核酸第一节氨基酸第二节多肽第三节蛋白质第四节酶第五节核酸第六节生物技术和生物技术药物第十七章周环反应第一节前线轨道理论第二节电环化反应第三节环加成反应第四节 -迁移反应(一)教学方法与学时分配采用课堂多媒体讲授的方式开展教学活动。

有机化学 第七章炔烃和二烯烃

有机化学 第七章炔烃和二烯烃
Ni
CH2=CH-CH=CH2
共轭双键较稳定
要想将炔烃只还原到烯烃,可以采用林德拉(Lindlar)催化剂. 或者用Pd-BaSO4 、或者用NiB做催化剂 Pd-CaCO3 +喹啉
林德拉催化剂
RC CR' + H2
Lindlar Cat.
R H
R' C C H
C2H5 C C H H C2H5
(顺式烯烃)
[ CH2=CH-OH ]
RCCH
RCCR’
[ CH2=CR-OH ]
互变异构
CH3C=O R

H2O, HgSO4-H2SO4
互变异构
[ CHR’=CR-OH ] + [ CHR=CR’-OH ] O O R’CH2CR + RCH2CR’
反应特点: Hg2+催化,酸性。 符合马氏规则。 乙炔乙醛, 末端炔烃甲基酮,非末端炔烃两种 酮的混合物。
酮式和烯醇式的互变异构是有机化合物中的一 个普遍的现象,对于孤立的醛酮,一般是酮式较稳 定,平衡偏向于酮式。
互变异构:Tautomerism 互变异构体:Tautomer
互变异构属于构造异构的一种。在互变异构当 中,酮式和烯醇式处于动态平衡。互变异构体之间 难以分离。
(3)
亲核加成反应
定义:亲核试剂进攻炔烃的不饱和键而引起的加成 反应称为炔烃的亲核加成。
练习题
1
写出C5H8炔烃的所有构造式
CH3CHC CH CH3
2-戊炔 3-甲基丁炔
CH3CH2CH2C CH CH3CH2C CCH3
1-戊炔
2 炔烃是否有顺反异构?
无!因为炔烃的sp杂化的碳上只连接一个基团。

炔烃和二烯烃

炔烃和二烯烃
[(C6H5)3P]2 3CH CH
Ni(CO)2 CH3
[(C6H5)3P]2· Ni(CO)2 3 CH3 CH CH
H3C
CH3
均三甲苯
有机化学
炔烃
36
四、金属炔化物的生成
乙炔和1-炔烃(R-C≡CH)分子中,连接在叁键碳(sp杂化) 上的氢原子受叁键碳电负性的影响,其C-H σ键中共用电 子对偏向叁键碳一侧,而使得该H原子能以质子(H+)的形 式离去,则该H具有弱酸性,是活泼氢原子。
Zn(OOCCH3)2
170~230℃
此法是制备聚乙烯醇的重要方 法,因乙烯醇极不稳定,无法聚 合。此产物经聚合后水解,得聚 乙烯醇。在碘溶液中快速拉伸, 制得偏振片。
O
CH3 C O CH CH2
乙酸乙烯酯 又称“醋酸乙烯酯” 生产维尼纶的主要原料。
有机化学
炔烃
30
二、氧化反应
炔烃更易被氧化剂(如 KMnO4、臭氧化) 氧化。 乙炔通入高锰酸钾溶液中,即可被氧化成CO2和H2O,同时
42
5
3
1
3-戊烯-1-炔
4-甲基-1-庚烯-5-炔
有机化学
炔烃
6
二、炔烃的系统命名法
④. 当从两侧起,双键、叁键处于相同位置时,则应选择使 双键的位置较小的编号方式。
5
3
1
6
4
2
1-己烯-5-炔
有机化学
炔烃
7
4.2 炔烃的结构
炔烃的结构特征是分子中含有“C≡C”,它与“C=C”一 样,是由σ 键和 π 键构成。
下面以乙炔为例说明叁键的形成及结构 乙炔为一直线型分子,全部四个原子在同一直线上,

炔烃和二烯烃

炔烃和二烯烃

农业化学品
除草剂
01
炔烃和二烯烃可用于合成除草剂,如草甘膦、百草枯等,这些
除草剂在农业生产中有广泛应用。
杀虫剂
02
炔烃和二烯烃可用于合成杀虫剂,如滴滴涕、马拉硫磷等,这
些杀虫剂在防治农业害虫方面有重要作用。
植物生长调节剂
03
炔烃和二烯烃可用于合成植物生长调节剂,如赤霉素、细胞分
裂素等,这些调节剂可调节植物生长和发育。
05 炔烃和二烯烃的未来发展
新材料的开发
高性能聚合物
利用炔烃和二烯烃的特殊化学性质,开发出具有优异力学 性能、热性能和化学稳定性的新型聚合物材料,用于航空 航天、汽车、电子等领域。
功能性材料
通过炔烃和二烯烃的聚合反应,制备具有光、电、磁等功 能的材料,应用于传感器、光电转换器件、磁存储等领域。
生物医用材料
03 炔烃和二烯烃的反应
加成反应
01
碳碳双键和碳碳三键的加成反应
炔烃和二烯烃中的碳碳双键和碳碳三键容易发生加成反应,可以与氢气、
卤素、卤化氢等发生加成反应,生成相应的烷烃或卤代烃。
02
加成反应的催化剂
某些金属催化剂如铂、钯、镍等可以促进炔烃和二烯烃的加成反应。
03
加成反应的立体化学特征
加成反应可以遵循不同的立体化学规则,如顺式加成、反式加成和协同药物合成Leabharlann 1 2 3激素类药物
炔烃和二烯烃可用于合成激素类药物,如雌二醇、 睾酮等,这些药物在调节人体生理功能和治疗某 些疾病方面有重要作用。
抗生素类药物
炔烃和二烯烃可用于合成抗生素类药物,如青霉 素、头孢菌素等,这些药物在抗菌、消炎等方面 有广泛应用。
其他药物
炔烃和二烯烃还可用于合成其他药物,如抗癌药 物、镇痛药等。

四川大学华西药学院《有机化学(II)-1,2》教学大纲

四川大学华西药学院《有机化学(II)-1,2》教学大纲

《有机化学(II)-1,2》(药物化学专业)教学大纲一、课程基本信息课程名称( 中、英文): 有机化学Ⅱ-1[Organic Chemistry Ⅱ-1]有机化学Ⅱ-2[Organic Chemistry Ⅱ-2]课程号( 代码) :,课程类别: 类级平台课程,必修课学时:64+48学分:4+3先修课程:《无机化学》、《分析化学》基本面向:药物化学专业二、教学目的及要求有机化学与药学渊源深厚。

该课程要求药物化学专业的学生系统地、扎实地掌握有机化学的基本理论和基本规律,为后续课程的学习以及继续深造,为将来利用有机化学,服务药学奠定坚实的基础。

通过有机化学的教学,把有机化学与药学紧密结合起来,进一步加强对学生解决问题、分析问题和提出问题的能力培养。

在学习该课程时学生要着重掌握各类有机化合物的结构、命名、物理性质、光谱性质、常用制备方法和用途。

紧紧抓住结构与性能的关系,深入理解各类有机化合物的典型反应的规律,机理,立体化学。

三、教学内容1 前言(4学时)基本要求:一、了解有机化学的发展史、主要任务和学习方法;二、了解有机化合物的基本特点、分类和反应类型;三、了解共价健的本质,掌握共价健的属性,熟悉利用键能数据推算反应的焓变;四、掌握下述名词术语:有机化学;同分异构现象;分子间作用力;Van der walls 力;官能团1-1 有机化学的由来和发展1-2 有机化合物的特点:分子结构和组成(同分异构现象,结构的表示方法);理化性质1-3 共价键的键参数:键能、键长、键角;键的极性与诱导效应;键的可极化性1-4 共价键的断裂方式与有机反应的类型1-5 有机化合物的分类1-6 学习有机化学的目的和学习方法2 烷烃和环烷烃(6学时)基本要求:一、了解烷烃的物理性质,掌握烷烃的命名规则。

二、掌握构象的表示方法和典型的构象ap, sp, sc, ac 的稳定性分析;三、了解饱和碳原子的sp 3 杂化轨道与烷基自由基的sp 2 杂化轨道的形成与构型;四、着重掌握烷烃的自由基取代反应(卤代反应)的基本规律(区域选择性)和反应机理(自由基反应),五、弄清下列概念:同系列与同分异构;构造异构与链异构;T.S 与活泼中间体;扭转张力与Van der Walls 张力;Newman 投影式与透视式;活性与选择性;Baeyer 张力;船式与椅式构象2-1 烷烃的同系列与同分异构现象(键异构)2-2 烷烃和命名:习惯命名;系统命名(采用1980 年中国化学会有机化学命名原则)衍生物命名与俗名2-3 烷烃的结构:CH 4 的正四面体结构与sp 3 杂化轨道;烷烃的构象2-4 烷烃的物理性质2-5 烷烃的反应:烷烃的卤代反应(CH 4 的氯代反应及自由基反应历程);卤代反应中卤素的活性与选择性;氧化反应(燃烧与部分氧化);热裂反应2-6 烷烃自由基的立体化学(sp 2 杂化)2-7 环烷烃的分类、异构与命名2-8 环烷烃的物理性质2-9 环烷烃的化学反应2-10 拜尔张力学说与近代观点2-11 环烷烃的构象(环丙烷、环己烷及其衍生物、十氢萘)3 立体化学- 对映异构(6学时)基本要求:一、掌握对称因素与手性的关系;二、掌握Fischer 投影式的书写规则,并能熟练地掌握R/S 的命名法,正确地判断手性中心的构型;三、弄清下列概念:对映异构体和非对映异构体;手性和旋光性;旋光度与比旋光度;内消旋体和外消旋体;手性与对称因素,手性中心与手性分子;赤式与苏式;外消旋化与内消旋化3-1 手性现象3-2 平面偏振光与物质的光活性:平面偏振光;物质的光活性;旋光度与比旋光度3-3 手性与对称因素(对称面、心、轴,更迭对称轴)3-4 手性分子构型表示方法与命名结构表示法(透视式与投影式)命名(R 、S ,赤式与苏式,次序规则)3-5 含两个手性碳原子的化合物3-6 含三个手性碳原子的化合物3-7 其它手性分子4 卤代烃(8学时)基本要求:一、重点掌握卤代烃的三类反应:亲核取代、消去反应与活泼金属的反应以及前两类反应的极端历程的描述和特征(动力学特征、立体化学特征等);二、掌握影响S N 1 ,S N 2 ,E1 ,E2 历程的影响因素及其规律(判断反应的历程);三、熟练掌握消去反应的规律——Saytzev 烯和Hofman 烯;四、熟练掌握Grignard 试剂的制备和应用,了解RLi ,R 2 CuLi ,RNa 等的形成与应用;五、掌握下述概念:亲核剂;溶剂解;氢解;Walden 转化;两可离子;邻基参与与邻位促进4-1 卤代烃的分类、异构与命名4-2 卤代烃的化学反应一.亲核取代反应:碳亲核剂的反应;氧亲核剂的反应;氯亲核剂的反应硫亲核剂的反应;卤亲核剂的反应二.卤代烷SN 反应的历程和立体化学(S N 1 、S N 2 )三.影响SN 反应的因素:R 的结构;L 离去基团;Nu 的亲核性;溶剂四.芳卤的SN 反应(Meisenheimer 络合物,苯炔历程)五.卤代烃的消去反应:β- 消去的历程(E1 ,E2 ,E1cb )影响因素;定向规律六.卤代烷与金属的反应:格氏试剂及其反应;类格氏试剂及其反应七.卤代烃的还原八.多卤代烃与α- 消去反应九.分子内的SN 反应与邻基参与5 烯烃(10学时)基本要求:一、掌握烯烃和环烷烃的顺反异构现象和E/Z 命名法;二、掌握烯烃的各类反应,重点掌握其反应规律及离子型亲电加成反应的历程;三、了解环烷烃的性质和构象,掌握环丙烷和环已烷的构象及其理论解释;四、掌握下述概念:Markovnikov 规则与过氧化物效应;立体选择性反应与立体与一性反应;亲电剂;亲电反应;氢化热与燃烧热;5-1 烯的结构5-2 烯烃的异构与命名:烯烃的异构(位置、顺反异构);命名(Z 、E 命名法)5-3 烯烃的物理性质5-4 烯烃的化学反应;烯烃与卤素的加成反应与亲电加成反应的历程[ 立体选择性] 与立体专一性;烯烃与无机酸的亲电加成反应(Markovnikov 规则);烯烃与H 2 O 的反应;烯烃与HOX 的反应;烯烃的聚合反应;硼氢化一氧化反应;溶剂汞化一去汞化反应;烯烃的还原与氧化反应;烯烃的自由基加成反应;烯烃的α-H 反应5-5 烯烃的制备;醇脱水(Saytzev 规律)和卤代烃脱HX (Hofmann 规律)6 炔烃与二烯烃(6学时)基本要求:一、掌握炔烃的亲电加成反应、氧化还原和炔氢的反应,了解亲核加成、聚合反应等;二、掌握共轭二烯的亲电加成反应规律和共轭二烯的Diels-Alder 反应;三、掌握下述概念:共轭效应与诱导效应;双烯组分与亲双烯组分;乙烯基化反应与乙炔基化反应;速度控制与平衡控制;1 ,2- 加成与共轭加成6-1 炔烃的结构、异构和命名6-2 炔烃的化学反应:加成反应(亲电加成);炔烃与含活泼氢化物反应(亲核加成、乙烯基化);氧化与还原反应(Lindlar 催化剂);炔氢的反应(酸性、亲核取代、乙炔基化反应);乙炔的聚合反应6-3 炔烃的制备6-4 二烯烃的分类与多烯烃的命名6-5 共轭二烯烃的结构与π、π共轭效应6-6 其它类型的共轭效应(P- π、P-P 、σ- π、σ-P )6-7 共轭二烯烃的反应:与H 2 和HX 的反应(动力学和热力学控制反应)加H 2 ;游离基加成反应;Diels-Alder 反应;聚合反应6-8 共轭二烯烃的制备7 芳烃(8学时)基本要求:一、掌握苯系芳烃的亲电取代反应类型(卤代;硝化;磺化;付一克烷化与酰化)、历程和定位规则,能充分利用电子效应和共振论来解释其规律;二、掌握侧链上的氧化与卤代反应规律,了解芳环被催化氢化,催化氧化,Birch 还原的规律;三、掌握萘及一取代萘的亲电取代反应和蒽、菲的特性;四、掌握Huckel 规律与芳香性判断;五、掌握下述概念和人名反应:共振论和Kekule 结构;活化基与钝化基;邻对位定位基与间位定位基;同位素效应;空间效应;Friedel-Crafts 烷化和酰化;Clemensen 还原;Haworth 合成法7-1 芳烃的分类和命名7-2 苯的结构:苯的特性与Kekule 结构;苯结构的描述(MO 和共振论)7-3 苯系芳烃的亲电取代反应的反应历程:卤代;硝化;磺化;付一克烷化与酰化7-4 芳环上的亲电取代反应的定位规则及其应用:定位规律及理论解释;苯二元取代物再取代的定位规律;定位规律的应用7-5 氧化(苯环上氧化,侧链氧化)7-6 游离基反应(环的加成,侧链卤代)7-7 萘的结构与衍生物的命名7-8 萘的化学反应;亲电取代(定位规则);氧化与还原7-9 蒽、菲的特性7-10 致癌烃7-11 非苯芳烃:芳香性的条件(Huckel 规则);几个典型碳环非苯芳香族化合物(环丙烯正离子,环戊二烯负离子,环庚三烯正离子,篮烃,杯烯、轮烯)8 醇、醚(6学时)基本要求:一、了解醇、醚的结构的共性、命名与物理性质及一些主要合成法;二、掌握醇的亲核取代反应和消去反应的规律,了解醇氧化和掌握邻二醇的特性;三、掌握不对称醚的醚键断裂规律和酸碱作用下的环醚开环规律;四、弄清下述试剂与反应的体质:Lucas 试剂;Sarett 试剂;Oppenmer 氧化法;Williamenson 醚合成;Pinacol 重排;Wagner-meerwein 重排;Fries 重排8-1 醇的分类和命名8-2 醇的结构与物理性质8-3 醇的化学性质:酸性、碱性、亲核性(与R-X 反应,与ROH 反应,与RCOOH 反应,与TsCl 和无机酰卤反应,与CS 2 反应)与无机酸反应;消去反应;醇的氧化8-4 邻二醇的特性(氧化与重排)8-5 醇的制备8-7 醚(分类,命名,反应,制备)8-8 硫醇和硫醚:命名;物理性质;化学性质9 醛、酮(8学时)基本要求:一、重点掌握羧基上的各种亲核加成反应的规律及历程,注意Cram 规则的立体化学问题;二、掌握醛、酮的α-H 的反应历程;三、了解插烯原理,掌握α、β- 不饱和醛酮的共轭加成规律及意义;四、搞清下列名称反应:Aldol 反应;Claisen-Schmidt 缩合;Mamich 反应;Wittig 反应;Baeyer-Villiger 反应;Wolff-Kisher- 黄鸣龙反应;Michael 反应;Robinson 反应;Cannizzaro 反应9-1 醛酮的分类与命名9-2 醛酮羰基上的亲核加成反应——加HCN 、NaHSO 3 ,有机金属化合物,H 2 O ,LiAlH 4 ,NaBH 4 ,PCl 5 等和立体化学;与氨及氨衍生物的反应(肟、腙、缩氨脲),与醇的加成缩合反应——半缩醛(酮)、缩醛(酮)的生成,醛(酮)的Wittig 反应、Mannich 反应、安息香缩合;9-3 醛酮α-H 的反应:酮- 烯醇互变,卤代与卤仿反应,aldol 反应;9-4 醛酮的氧化与还原:醛酮的一般氧化,Baeyer-Villiger 氧化和Riley 氧化;Cannizzaro反应;还原成醇(催化氢化和金属氢化物和金属还原);还原成烃基(Clemensen 还原,Wolff-Kisher- 黄鸣龙还原)9-5 醛、酮、的制备9-6 不饱和醛、酮(插烯原理与共轭加成)10 酚、醌(4学时)基本要求:一、掌握酚的结构、反应和制备方法;二、掌握醌的结构特征和对体醌的基本反应;三、弄清Reimer-Tiemann 反应;Kolbe 反应;10-1 酚的结构和命名10-2 酚的化学反应(酸性,氧上的烷化与酰化,显色反应,芳环上的反氧化与还原,10-3 酚的制备(磺化法、氯苯水解法、异丙苯法等)10-4 醌的分类与命名10-5 对苯醌的反应10-6 醌的制备11 羧酸及取代羧酸(6学时)基本要求:一、重点掌握羧酸羰基碳上的亲核取代反应,熟悉取代羧酸的特性;二、了解羧酸的结构对酸性的影响,羧酸的脱酸与还原反应,羧酸的α-H 的反应;三、适当的掌握卤代酸、酚酸、醇酸的特有反应。

有机化学教学大纲(生物工程专业)

有机化学教学大纲(生物工程专业)

有机化学教学大纲(生物工程专业)有机化学教学大纲(生物工程专业)课程名称:有机化学课程编码:1060801学时:64学分:4开课学期:第三学期课程类别:必修课程性质:专业基础课(应用化学专业)先修课程:无机化学、分析化学教材:徐寿昌编著,有机化学,高等教育出版社一、课程的性质、目的与任务有机化学是高等学校化工类各专业的一门基础课。

在有限的学习时间内,学生应主要掌握本门学科的基本规律,即熟悉有机化合物基本类型的结构、性能、合成方法以及它们之间相互联系的规律和理论。

掌握这些基本规律和理论,不仅是为了能更好学习后继专业课程,更重要的是,在掌握比较全面的基本原理的基础上,根据今后工作的需要,能进一步继续学习和钻研与专业发展密切相关的有机化学知识。

在整个教学过程中,重点培养学生的独立自学、独立思考与解决问题的能力。

要求学生达到:1、能正确地写出所学有机物的结构式与名称。

2、能运用所学知识初步分析简单有机物的结构与性质间的关系。

3、能选择运用简单有机物的合成路线和方法。

二、课程的基本内容1、有机化合物的结构和性质2学时2、烷烃3学时(1)烷烃的结构异构、命名、构象等(2)烷烃的物理和化学性质,烷烃的卤代反应历程3、烯烃3学时(1)、烯烃的构造异构、命名。

(2)、烯烃的物理和化学性质。

4、炔烃、二烯烃2学时(1)炔烃的异构和命名(2)炔烃的物理和化学性质(3)共轭二烯烃的结构和共轭效应5、脂环烃的性质和结构2学时6、单环芳烃4学时(1)苯的结构和性质(2)苯环上亲电取代反应的定位规律17、多环芳烃和非苯芳烃2学时8、立体化学4学时(1)、手性和对映体(2)、含有手性碳原子的化合物的对映异构体,手性合成,环状化合物的立体异构,不含手性碳原子化合物的对映异构。

9、卤代烃4学时卤代烷、卤代烯烃、卤代芳烃10、醇和醚4学时(1)、醇的结构、分类、异构和命名,醇的制法,醇的物理和化学性质。

、醚的构造、分类和命名,醚的制法和性质11、酚和醌2学时酚的结构、分类和命名,酚的制法和性质,苯醌和萘醌12、醛和酮4学时(1)、醛和酮结构和命名(2)、醛、酮的制法和性质13、羧酸及其衍生物4学时(1)、羧酸的结构、分类和命名,羧酸的制法和性质(2)、羧酸衍生物的结构和命名(3)、酰基碳上的亲核替代反应14、β-二羰基化合物2学时丙二酸酯和乙酰乙酸乙酯在有机合成上的应用领域15、硝基化合物和胺4学时(1)、硝基化合物的分类、结构和命名,硝基化合物的性质(2)、胺的分类、结构和命名,胺的性质16、重氮化合物和偶氮化合物2学时重氮化反应,偶氮化合物和偶氮染料17、杂环化合物2学时(1)、杂环化合物的分类和命名(2)、杂环化合物的结构和芳香性三、课程的教学要求1、有机化合物的特性2、有机化学及有机化合物的分类和命名重点了解系统命名法,适度了解习惯命名法和派生命名法。

炔烃和二烯烃

炔烃和二烯烃

Br
HC CH2 Cl
H C2H5
C2H5C CC2H5 HCl
CC
Cl
99%
Br Br HC CH
Br Br
H C2H5
C2H5 CC
Cl 1%
C2H5 H
与氢卤酸加成先得一卤代烯,而后得二卤代烷,不对称炔烃的加成产物也符合
马尔科夫尼科夫规则
X
R-C CH HCl
R-C=CH2 HX R-C-CH3 X
多烯烃的顺反异构体用顺、反或 Z、E 表示
NaNH2
CC
CH2=C-CH=CH2 CH3
2-甲基-1,3-丁二烯
2-methl-1,3-butadiene
H
CH3
顺,反-2,4-己二烯
CH3 C C
CC
H
(2Z,4E)-2,4-己二烯
H
H
(2Z,4E)-2,4-hexadiene
1,3-丁二烯分子中两个双键可以在碳原子 2、3 之间的同侧或异侧,这种构象
CH3 CH3-CH-C
C-CH(CH3)2
2,5-二甲基-3-己炔
同时含有叁键和双键的称为“烯炔”,其命名选取含双键和叁键最长的碳链作为
主链,位次的编号使不饱和键位次最小,同时有双键与叁键则给双键以最低编号
5
4
3
CH3CH =CH
2
C
=C1 H
3 _ 戊烯 _ 1 _ 炔
CH3
= = 7
6 54
3
π键 π键
H
C
C
H
H C
H
丙二烯不稳定,性质活泼易发生加成反应异构化反应
(CH3)2C=C=CH2
KOH,C2H5OH 异构化

《基础化学》第4章 二烯烃和炔烃---课程思政

《基础化学》第4章 二烯烃和炔烃---课程思政

个未杂化的P轨道。两个sp杂化轨道成180分布,两个未杂化
的P轨道互相垂直,且都垂直于sp杂化轨道轴所在的直线
py
pz
sp
sp
180°
两个sp 的空间分布
三键碳原子的轨道分布图
《基础化学》
第四章 炔烃和二烯烃
❖ 三键的形成σ
π
π
π
H σ C σ C σH π
乙烯分子的成键情况
乙炔分子的π电子分布模型图
交替。
例如:1,3-丁二烯
CH2 CH C CH
乙烯基乙炔 O
CH2 CH C H 乙烯基乙醛
1,3,5-己三烯
CH2 CH C N 丙烯腈
《基础化学》
第四章 炔烃和二烯烃
A、π-π共轭体系的特点
• 电子离域:π电子不是固定在双键的2个
C原子之间,而是分布在共轭 体系中的几个C原子上。 • 键长趋于平均化
HCCH
Kekulè模型
Stuart 模型
《基础化学》
第四章 炔烃和二烯烃
(1)碳原子的sp杂化
基态
激发态
sp杂化态
2p
2p
2p
2s
2s
sp
1s
1s
1s
每个sp杂化轨道含1/2 s 成分和 1/2 p成分。
《基础化学》
第四章 炔烃和二烯烃
图4-5
一个2s轨道和一 个2p轨道形成二 个sp杂化轨道
1,2-丁二烯
碳架异构
官能团位次
(2)命名
异构
(A)只含C C的化合物
官能团异构
与烯相似,只将“烯”改为“炔”。
《基础化学》
第四章 炔烃和二烯烃
5

《有机化学》第4章_炔烃和二烯烃ppt课件

《有机化学》第4章_炔烃和二烯烃ppt课件

总目录
π键的形成:
• 两个相互垂直的p轨道 分别与两个相邻碳原子 的p轨道互相重叠,形
成相互垂直的两个π键
总目录
2. 共轭二烯烃
(1)键长、键角和氢化热 键角: 约 120°(平面分子) 键长:
0.1337nm
0.1340nm
CH2 CH CH CH2 CH2 CH CH2 CH CH2
0.1483nm
R’X = 伯卤代烃 仲、叔卤代烃反应,副产物多,乙烯式卤代 烃活性太低
总目录
第二节 二烯烃
一、分类
• 累积二烯烃 cumulative diene
CC C
• 共轭二烯烃 conjugated diene
CCC C
• 孤立二烯烃 isolated diene
n≥1
总目录
二、共轭二烯烃的命名
1. 命名原则与烯烃一致 位次
CH CH
CH3 C C CH3
2)找出前体分子,考虑连接方式
CH3 C C CH3
Na+-C C-Na+ CH3Cl
3)写出合成反应式 CH CH
总目录
CH CH NaNH2 Na+-C 液氨
C-Na+ CH3Cl CH3 C C CH3
思考
(1)由乙炔为原料,合成 1-丁炔 (2)由乙炔为原料,合成 3-己炔
子效应+ C (碳正离子除外)
同主族 (从上到下):原子半径增大 ,外层p轨道
也变大,与碳原子的π 轨道重叠困难,+C效应减小



>>Βιβλιοθήκη >>>>
总目录
同周期 (从左到右) :原子半径减小 +C效 应减弱
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 炔烃和二烯烃(4学时)目标与要求:1.掌握炔烃的命名与制备方法2.掌握炔烃的亲电加成和亲核加成(加成类型,加成 取向),在合成中的应用 3.掌握炔烃的两种还原方法及在合成中的应用(顺、反烯烃的制备) 4.知道末端炔烃的特殊性质及在合成中的应用 5.掌握二烯烃及D-A 反应 6.了解速度控制与平衡控制 7.掌握共轭效应教学重点:炔烃重要的理化性质,炔烃亲核与亲电加成,二烯烃及D-A 反应,共轭效应 教学难点:炔烃亲核与亲电加成,二烯烃及D-A 反应,共轭效应 主要内容:1.炔烃的命名与制备方法2.炔烃的亲电加成和亲核加成(加成类型,加成 取向),在合成中的应用 3.炔烃的两种还原方法及在合成中的应用(顺、反烯烃 的制备) 4.末端炔烃的特殊性质及在合成中的应用 5.二烯烃6.速度控制与平衡控制 7.共轭效应第一节 炔烃的结构炔烃:分子中含碳碳叁键的不饱和烃。

通式为C n H 2n-2在乙炔分子中,两个碳原子采用SP 杂化方式,即一个2S 轨道与一个2P 轨道杂化,组成两个等同的SP 杂化轨道,SP 杂化轨道的形状与SP 2、SP 3杂化轨道相似,两个SP 杂化轨道的对称轴在一条直线上。

两个以SP 杂化的碳原子,各以一个杂化轨道相互结合形成碳碳σ键,另一个杂化轨道各与一个氢原子结合,形成碳氢σ键,三个σ键的键轴在一条直线上,即乙炔分子为直线型分子。

每个碳原子还有两个末参加杂化的P 轨道,它们的轴互相垂直。

当两个碳原子的两P 轨道分别平行时,两两侧面重叠,形成两个相互垂直的π键。

碳原子杂化示意图碳碳键 单 键 双 键 叁 键键长(nm) 0.154 0.134 0.120杂化2s 2p sp 杂化 2p22C1C2H3H4键能(KJ) 345.6 610 835第二节炔烃的同分异构和命名1.异构: 碳键异构, 三键位置异构.2.命名:(1)普通命名:乙炔为母体,其他炔烃作为乙炔的衍生物:(CH3)3CC≡CH(CH3)3CC≡CC(CH3)2CF3C≡CH叔丁基乙炔三氟甲基乙炔二叔丁基乙炔(2) 系统命名A. 以含三键的最长碳链为主链, 称为某炔.B. 从靠近三键的一端开始编号.C. 以位次最小的炔碳表示三键的位置.D. 取代基的位次和书写遵守优先基团后列原则.E. 当有卤原子取代时, 卤原子作为取代基, 炔为母体.当有烯键时,以炔为母体,编号应使烯键和叁键的位次之和最小. 若两者都位于同等位次, 则应以双键位次为最小(次要基团优先)F. 复杂的化合物在命名时可把炔基作为取代基.第三节炔烃的物理性质1. bp: 沸点比相应的烯烃高(1) 乙炔,丙炔,1-丁炔为气体.(2) 碳架相同的炔烃, 三键在链端的较低.2. 密度比相应的烯烃高d < 13. 溶解性:弱极性,不溶于水,易溶于非极性或弱极性有机溶剂中;4. 炔烃具有偶极矩.5. 烷基支链多的炔烃较稳定.6. 易燃烧,炔氧焰温度高达:3500 0C,可用于熔融及焊接。

第四节炔烃的化学反应●炔烃中的叁键中的碳为sp杂化,sp杂化轨道含较多的s成分,电子离核比较近,不易给出电子。

●杂化轨道的电负性问题:●电负性大小: sp >sp2>sp3,sp杂化轨道的原子电负性大。

虽然炔烃中有两个π键,也不易给出电子,因此炔烃的亲电加成速度比烯烃的亲电加成速度慢。

●由于sp 杂化C电负性较大,故≡C—H 上的H 有一定酸性。

1.末端炔烃的酸性和炔化物与叁键碳原子直接相连的氢原子活泼性较大。

因SP杂化的碳原子表现出较大的电负性,使与叁键碳原子直接相连的氢原子较之一般的碳氢键,显示出弱酸性,可与强碱、碱金属或某些重金属离子反应生成金属炔化物。

叁键碳上H原子的活性1)乙炔与熔融的钠反应,可生成乙炔钠和乙炔二钠:CH≡CH+ Na + Na2)丙炔或其它末端炔烃与氨基钠反应,生成炔化钠: + NaNH 2 炔化钠与卤代烃(一般为伯卤代烷)作用,可在炔烃分子中引入烷基,制得一系列炔烃同系物。

如:+ RX + NaX 由于Na (K )金属炔化物的碱性强于H 2O ,当遇水时,立即分解为炔烃RC ≡C -Na + + H-OHRC ≡C -H + Na +OH -3)末端炔烃与某些重金属离子反应,生成重金属炔化物。

例如,将乙炔通入硝酸银的氨溶液或氯化亚铜的氨溶液时,则分别生成白色的乙炔银沉淀和红棕色的乙炔亚铜沉淀:+ Ag(NH 3)2NO 3 + NH 4NO 3 + NH 3 + Cu(NH 3)2Cl + NH 4Cl + NH 3 上述反应很灵敏,现象也很明显,常用来鉴别分子中的末端炔烃。

利用此反应,也可鉴别末端炔烃和叁键在其他位号的炔烃。

+ Ag(NH 3)2NO 3 + Ag(NH 3)2NO 3 不反应 注:干燥的金属炔化物遇热或受撞击易爆炸,可用硝酸分解:AgC ≡CAg + 2 HNO 3HEATH C ≡C H + 2 Ag NO 32.加成反应1)催化加氢炔烃的催化加氢分两步进行,第一步加一个氢分子,生成烯烃;第二步再与一个氢分加成,生成烷烃。

CC H HC C HHHHH 2 / PtCC H H HHH H 2 / Pt催化剂:Pb 、Pt 、Ni (很难停留在烯烃价段)。

Lindler 催化剂:钯附着于碳酸钙及少量氧化铅上或用硫酸钡做载体的钯。

催化氢化活性:炔大于烯。

炔烃比烯烃易于加氢 使用不同催化剂可得顺反异构体: 顺式加氢 Lindlar 催化剂: Pd-BaSO 4 (喹啉)或Pd-CaCO 3(含微量Pb(OAc)2; Ni 2B 硼化镍催化氢化也可得到顺式烯烃特点: C ≡C 可只 顺式加成 1 H2 得顺式 C=C 烯烃 反式还原氢化成反式烯烃反应条件:液氨中金属Na(K,Li)的还原CC C 4H 9C 4H 93CCH C 4H 9C 4H 9H3(E)-5-癸烯CH 3CH 2C ≡CCH 2CH 3o CHH 3CH 2C HCH 2CH 342)亲电加成(1) 加卤素C C H Na C C Na Na C C H R C C R Na C C R Na C C R R C C H H C C H H C C Ag Ag C C Cu Cu C C H R C C R Ag C C RR液氨液氨H 2RC C 4(CH 2)n -CH=CH 2CHR CH (CH 2)n -CH=CH 2炔烃与卤素的加成也是分两步进行的。

先加一分子氯或溴,生成二卤代烯,在过量的氯或溴的存在下,再进一步与一分子卤素加成,生成四卤代烷。

Br 2HC CHHC CH HC CH Br Br 2Br BrBr 2C CH CH 2=CHCH 2C CHCH 2-CHCH 290 %* 虽然炔烃比烯烃更不饱和,但炔烃进行亲电加成却比烯烃难。

这是由于SP 杂化碳原子的电负性比SP 2杂化碳原子的电负性强,因而电子与SP 杂化碳原子结合和更为紧密,不容易提供电子与亲电试剂结合,所以叁键的亲电加成反应比双键慢。

例如烯烃可使溴的四氯化碳溶液很快褪色,而炔烃却需要一两分钟才能使之褪色。

故当分子中同时存在双键和叁键时,与溴的加成首先发生在双键上。

(2) 加卤化氢炔烃与卤化氢的加成,加碘化氢容易进行,加氯化氢则难进行,一般要在催化剂存在下才能进行。

不对称炔烃加卤化氢时,服从马氏规则。

A .在汞盐的催化作用下,乙炔与氯化氢在气相发生加成反应,生成氯乙烯。

HCl +HC CH(g)(g)HgCl 2HC CH 2B . 在光或过氧化物的作用下,炔烃与溴化氢的加成反应,得到反马氏规则的加成产物。

如:CH 3CH 2CCHHBrCH 3CH 2C HHBrCH 3CH 2C CH HH 过氧化物Br Br Br* 炔烃和烯烃亲电加成反应活性的比较 a.活性: 烯烃 > 炔烃·不饱和C 原子的杂化状态不同电负性:sp > sp 2 > sp3··从反应过程中生成的活性中间体的稳定性来看①C CE ++C CE+②C CEC CE +E ++(3) 硼氢化反应炔烃的硼氢化反应停留在含烯键产物阶段 特点:a. 进行顺式加成,得到乙烯基硼化合物b. 乙烯基硼经酸水解 得到顺式烯烃c. 乙烯基硼经碱性H 2O 2氧化得到烯醇,重排后可得到羰基化合物(醛酮等)d. 如采用位阻大的二取代硼烷R2BH 作试剂,可由末端炔仅与1mol R2BH 反应,经过氧化水解,制备醛;而炔的直接水合,得到酮CCHR 2BHCC HBR 2CC HOHH 2O 2-CCH OH烯醇异构化CH CH HO炔烃硼氢化反应与水合反应生成羰基化合物的取向不同:1) B2H622H2O, H2SO44HOO3)亲核加成●炔烃可以进行亲核加成,而烯烃很难进行;●由亲核试剂进攻而引起的加成反应叫做亲核加成反应●亲核试剂有:HCN, HOR, HOOCCH3, H2O等,●亲核基团为:-CN, -OR, -O2CCH3, HO -●亲核加成反应一般比烯烃的亲电加成困难,所以需要催化剂,以提高三键C的正电性●亲核加成催化剂:HgSO4, Zn(OAc) 2, Cu2Cl2等含d轨道的过渡金属盐(1) 加HCNHC CH+HCN丙烯腈H2C CHCNCu2Cl2-NH4ClHHC CH+H2CCHCNCN HC CHCN反应机理:HCHC CHCNH亲核进攻正负离子结合慢快(2) 加水●条件:稀H2SO4(5% or 10%)+HgSO4●不对称炔烃,遵从马氏规律●产物为烯醇,经过重排后得到羰基化合物;端基乙炔得到甲基酮:R C CH H2SO4R C CH3+ H2O4甲基酮●H2O氧原子上有孤对电子,可作亲核试剂,但其亲核能力较弱;所以炔烃加水反应需要催化剂:汞盐Hg++和 H+●反应机理:CH3C C H+H2OHg 2+CH3CH3+2+CH3CHCH3C C HOHH烯醇式π络合物●工业上利用这个反应来制备:醛、酮和醋酸乙烯酯等:●例如醋酸乙烯酯的合成:HC CH+ HO2CCH32heatH2C CHO醋酸乙烯酯HgSO4OCH3醋酸乙烯酯是合成聚乙烯醇的原料,合成纤维——维尼纶:由聚乙烯醇甲醇缩合而成:H 2C CH2CCH 醋酸乙烯酯H 2CH CO 2CCH 3**n水解H 2CH C**n聚乙烯醇H 2C H C**n聚乙烯醇H 2C CH O *H 2C CH*nC H 2维尼纶H(3)、加醇在碱性条件下,乙炔与乙醇发生加成反应,生成乙烯基乙醚。

HC CH+ RO -CHCHRO HOR CH 2C H RO +RO -4)氧化反应 KMnO 4氧化炔烃对氧化剂的敏感性比烯烃差,即反应较慢;但仍然能被KMnO 4氧化,三键断裂,生成羧酸;末端三键碳氧化为CO 2:CH 3C CH + KMnO 4CH 3COHO HCOOHHCOOH + KMnO 4CO 2 + H 2OA .KMnO 4氧化反应可以用作炔烃鉴别反应和制备酸酸: 现象与结果:1)KMnO 4紫色退去,表明有不饱和键;2)根据羧酸的结构,推断原来炔烃的结构.B .二取代乙炔在缓和条件下氧化,可以制备得到1,2-二酮:OOCH 3(CH 2)7C ≡C(CH 2)7O O ..CH 3(CH 2)7C2)7COH2KMnO 4臭氧氧化O 3 裂解时从三键处断裂,得到羧酸:CH 3CH 2CH 2CH 2C ≡CH1) O 32CH 3CH 2CH 2CH 2COH + HOCHOO这与烯烃臭氧化产物不同(烯烃得到醛或酮) 4)聚合反应在不同的催化剂作用下,乙炔可以分别聚合成链状或环状化合物。

相关文档
最新文档